JP2019153387A - Positive electrode lattice body for lead acid battery and lead acid battery - Google Patents

Positive electrode lattice body for lead acid battery and lead acid battery Download PDF

Info

Publication number
JP2019153387A
JP2019153387A JP2018035609A JP2018035609A JP2019153387A JP 2019153387 A JP2019153387 A JP 2019153387A JP 2018035609 A JP2018035609 A JP 2018035609A JP 2018035609 A JP2018035609 A JP 2018035609A JP 2019153387 A JP2019153387 A JP 2019153387A
Authority
JP
Japan
Prior art keywords
positive electrode
frame bone
vertical
horizontal
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018035609A
Other languages
Japanese (ja)
Other versions
JP6762976B2 (en
Inventor
祐太朗 川口
Yutaro Kawaguchi
祐太朗 川口
由涼 荻野
Yusuke Ogino
由涼 荻野
雅 松下
Masa Matsushita
雅 松下
真也 菅
Shinya Suga
真也 菅
章宏 西村
Akihiro Nishimura
章宏 西村
古川 淳
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2018035609A priority Critical patent/JP6762976B2/en
Publication of JP2019153387A publication Critical patent/JP2019153387A/en
Application granted granted Critical
Publication of JP6762976B2 publication Critical patent/JP6762976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

To improve the life of lead acid battery, by preventing internal short circuit resulting from growth of positive electrode lattice body.SOLUTION: A positive electrode lattice body for lead acid battery includes: rectangular frame shape frame bones having first and second crosswise frame bones, and first and second vertical frame bones extending in the lengthwise direction; inner bones arranged in the bone frames, and having multiple horizontal rails and muntins provided in lattice while being connected with the frame bones; multiple openings provided as a region surrounded by the frame bones and the multiple horizontal rails and muntins, and a region surrounded by the multiple horizontal rails and the muntins; and a positive electrode collector lug. Out of the multiple openings, multiple openings adjacent to the second crosswise frame bones are a first opening group, some of the multiple muntins providing the first opening group are placed while being deviated crosswise for the muntins providing the multiple openings adjacent to the first opening group in the lengthwise direction, and the area of the multiple openings, excepting the first opening group, decreases gradually from the horizontal rail side toward the first horizontal rail side, when comparing on the same perpendicular traversing the first and second crosswise frame bones.SELECTED DRAWING: Figure 1

Description

本発明は、鉛蓄電池用正極格子体及び鉛蓄電池に関する。   The present invention relates to a positive electrode grid for a lead storage battery and a lead storage battery.

近年の環境問題の深刻化と排出ガス規制に対応するため、停車時に一時的にエンジンを停止させるアイドリングストップ機能を搭載した自動車(以下、「ISS車」と表記する。)が普及しつつある。ISS車は、信号待ち等で停車した際のアイドリングによる燃料の消費を抑制できるので、燃費が向上しさらに排出ガス量も低減できる。   In order to cope with the recent serious environmental problems and exhaust gas regulations, automobiles equipped with an idling stop function (hereinafter referred to as “ISS cars”) for temporarily stopping the engine when the vehicle is stopped are becoming widespread. Since the ISS vehicle can suppress fuel consumption due to idling when the vehicle is stopped due to a signal or the like, the fuel efficiency can be improved and the amount of exhaust gas can be reduced.

上記の様なISS車に搭載された鉛蓄電池は、早期寿命に至り易いことが知られている。この理由としては、ISS車では、信号待ち等でエンジンが停止した際、エアコン、ライト、ワイパー、カーナビ等の機器へ電力を供給するため、鉛蓄電池が深い放電状態で使用されること、また、発進時にエンジンを再始動するための放電と、オルタネーターや回生ブレーキによる充電を繰り返すことなどにより、鉛蓄電池に大きな負荷がかかることが挙げられる。   It is known that the lead storage battery mounted on the ISS vehicle as described above is likely to reach an early life. The reason for this is that in ISS cars, when the engine stops due to a signal, etc., the lead storage battery is used in a deeply discharged state in order to supply power to devices such as air conditioners, lights, wipers, car navigation systems, etc. It can be mentioned that a large load is applied to the lead-acid battery due to repeated discharges for restarting the engine at the time of start-up and charging by an alternator or a regenerative brake.

鉛蓄電池は、積層構造の極板群を電槽内に収納した後、当該電槽内に電解液である希硫酸を注液する工程を経て製造される。積層構造の極板群は、主として鉛又は鉛合金からなる格子体にペースト状の活物質が充填された正極板及び負極板とセパレータとが交互に積層されている。当該格子体としては、例えば枠骨と当該枠骨に囲まれた内骨とを有する構造のものが知られている。枠骨は、上側に配置され集電耳が形成される第1の横枠骨と、下側に配置される第2の横枠骨と、第1,2の横枠骨の端部同士を接続する第1,2の縦枠骨とを有する。内骨は、複数本の横桟及び縦桟を有する。格子体は少なくとも、枠骨と内骨とによって囲まれる領域として規定される開口部に活物質が充填されている。   A lead storage battery is manufactured through a process of pouring dilute sulfuric acid, which is an electrolytic solution, into the battery case after the electrode plate group having a laminated structure is housed in the battery case. In the electrode plate group having a laminated structure, a positive electrode plate and a negative electrode plate, and a separator, which are mainly made of lead or a lead alloy and filled with a paste-like active material, are alternately laminated. As the lattice body, for example, a structure having a frame bone and an inner bone surrounded by the frame bone is known. The frame bone includes the first horizontal frame bone arranged on the upper side and forming the current collecting ear, the second horizontal frame bone arranged on the lower side, and the ends of the first and second horizontal frame bones. And first and second vertical frame bones to be connected. The inner bone has a plurality of horizontal bars and vertical bars. In the lattice body, at least an opening defined as a region surrounded by the frame bone and the inner bone is filled with an active material.

このような鉛蓄電池の寿命要因の一つが、正極格子体の腐食に伴う正極格子体全体の膨張、変形である。このような正極格子体の変形は、グロースと呼ばれている。グロースが生じると、正極格子体の一部が湾曲して折損し、その折損端がセパレータを突き破り対向する負極板と接触する、又は上側へ膨張して負極ストラップ等の負極の一部に接触して内部短絡を起こし、鉛蓄電池が早期に寿命に至る虞がある。また、正極格子体のグロースは、正極活物質の剥落又は脱落を招き、早期の容量低下の原因になる。上述するような事情より、鉛蓄電池を設計する際には、正極格子体のグロースへの対策を講じる必要がある。   One of the life factors of such a lead storage battery is the expansion and deformation of the entire positive electrode lattice body due to corrosion of the positive electrode lattice body. Such deformation of the positive electrode lattice is called growth. When growth occurs, a part of the positive electrode lattice is bent and broken, and the broken end breaks through the separator and comes into contact with the opposing negative electrode plate, or expands upward and comes into contact with a part of the negative electrode such as a negative electrode strap. As a result, an internal short circuit may occur, and the lead-acid battery may reach the end of its life. Moreover, the growth of the positive electrode lattice causes peeling or dropping of the positive electrode active material, which causes an early capacity decrease. Due to the circumstances described above, it is necessary to take measures against the growth of the positive electrode grid when designing a lead-acid battery.

グロースが生じる機構は、次のように考えられる。鉛蓄電池における腐食は、正極格子体を形成する鉛又は鉛合金が、充放電により、主に電解液や活物質中に含まれる硫酸イオンと反応してPbO(x:1〜2)やPbSO等からなる多層構造の腐食反応生成物へと変化する酸化反応に起因する。当該腐食は充放電の繰り返しに伴って進行する。このとき、電解液と接触する正極格子体の表面近傍において、腐食反応生成物の層が成長する。当該腐食反応生成物の成長は、正極格子体の体積の増加を伴うため、腐食が進行すると正極格子体の表面近傍の腐食反応生成物と内部の正極格子体自体の膨張度合いの差により大きな応力が発生する。結果として、当該応力が正極格子体を延伸させる引張応力となり、正極板全体の膨張に伴うグロースを生じる。 The mechanism of growth is considered as follows. Corrosion in lead-acid batteries is caused by PbO x (x: 1 to 2) or PbSO reacting with sulfate ions contained mainly in the electrolyte or active material by charge / discharge of lead or lead alloy forming the positive electrode grid. This results from an oxidation reaction that changes to a corrosion reaction product having a multilayer structure composed of 4 etc. The corrosion proceeds with repeated charge / discharge. At this time, a layer of the corrosion reaction product grows in the vicinity of the surface of the positive electrode lattice body in contact with the electrolytic solution. Since the growth of the corrosion reaction product is accompanied by an increase in the volume of the positive electrode lattice body, when corrosion progresses, a large stress is caused by the difference in the degree of expansion between the corrosion reaction product near the surface of the positive electrode lattice body and the internal positive electrode lattice body itself. Will occur. As a result, the stress becomes a tensile stress that stretches the positive electrode lattice body, and grows due to expansion of the entire positive electrode plate.

鉛蓄電池の極板群は、ストラップから上側に延出するよう設けた極柱やセル間の接続部材によって、蓋あるいは電槽の上側に固定されているため、グロースが生じると正極板はまず固定されていない左右側と下側に対して伸びる。初期のグロースでは、正極板の左右側への伸び代と比較して下側への伸び代は小さくなる場合が多い。これは、当該極板群を支持するために、当該極板群の下端が、電槽底面や当該底面に設けた鞍部に当接していることによる。従って、グロースが生じると正極板の下側への伸びは上側への伸びに転じるため、正極板の上端が負極ストラップ等の負極の一部に接触して内部短絡を生じる虞がある。   The electrode plate group of the lead-acid battery is fixed to the upper side of the lid or battery case by a pole column provided to extend upward from the strap and the connection member between the cells, so when the growth occurs, the positive electrode plate is fixed first It stretches against the left and right sides and the lower side. In the initial growth, the extension allowance to the lower side is often smaller than the extension allowance to the left and right sides of the positive electrode plate. This is because, in order to support the electrode plate group, the lower end of the electrode plate group is in contact with the bottom surface of the battery case or the flange provided on the bottom surface. Therefore, when the growth occurs, the downward extension of the positive electrode plate turns to the upward extension, so that the upper end of the positive electrode plate may come into contact with a part of the negative electrode such as the negative electrode strap to cause an internal short circuit.

正極格子体の上側へのグロースによる内部短絡を防止する手段として、出願人は特許文献1及び特許文献2において、極板群を保持する電槽の鞍部をスポンジや発泡性樹脂で形成した鉛蓄電池を提案している。電槽の鞍部をスポンジや発泡性樹脂で形成することによって、正極格子体にグロースが生じた際、下側への伸びを鞍部が潰れて吸収するため、正極格子体の上側への伸びを抑制して負極ストラップ等への接触、内部短絡を防止できる。   As a means for preventing an internal short circuit due to growth on the upper side of the positive electrode grid body, the applicant described in Patent Document 1 and Patent Document 2 that a lead storage battery in which a collar portion of a battery case holding an electrode plate group is formed of a sponge or a foamed resin Has proposed. By forming the ridge part of the battery case with sponge or foamable resin, when the positive electrode lattice body grows, the heel part is crushed and absorbed when the growth occurs in the positive electrode lattice body, so the upward extension of the positive electrode lattice body is suppressed. Thus, contact with the negative strap or the like and internal short circuit can be prevented.

これに対し、特許文献1,2の構成と異なる形態で正極格子体と負極格子体の内部短絡を抑制する発明が種々提案されている。特許文献3では、正極板を宙吊り状態とし、正極板の下側が電槽底部に接触しない構造を有する鉛蓄電池が開示されている。この鉛蓄電池では、グロースが生じた際に正極板が下側へ優先的に伸びるため、上側への伸びとそれに伴う正極板と負極板との接触による内部短絡が抑制される。   On the other hand, various inventions that suppress the internal short circuit between the positive electrode lattice body and the negative electrode lattice body in a form different from the configurations of Patent Documents 1 and 2 have been proposed. Patent Document 3 discloses a lead-acid battery having a structure in which the positive electrode plate is suspended and the lower side of the positive electrode plate does not contact the bottom of the battery case. In this lead storage battery, since the positive electrode plate preferentially extends downward when growth occurs, an internal short circuit due to the upward extension and the contact between the positive electrode plate and the negative electrode plate is suppressed.

特許文献4及び特許文献5には、グロースによる正極板と負極板の接触を抑制する手法として、正極格子体の所定の部分に切り欠きやくびれ部分等、機械的強度の低い箇所を設けた鉛蓄電池が開示されている。このように、正極格子体の一部に機械的強度の低い箇所を形成することによって、グロースが生じた際に、機械的強度の低い箇所が優先的に折損又は変形し、正極格子体全体の膨張が抑制される。   In Patent Document 4 and Patent Document 5, as a method for suppressing contact between the positive electrode plate and the negative electrode plate due to growth, lead having a portion with low mechanical strength such as a notch or a constricted portion in a predetermined portion of the positive electrode grid body A storage battery is disclosed. In this way, by forming a portion with low mechanical strength in a part of the positive electrode lattice, when growth occurs, the portion with low mechanical strength is preferentially broken or deformed, Expansion is suppressed.

また、腐食による正極格子体のグロースを抑制する技術の他に、充放電サイクル中の活物質の膨張、収縮による変形を防止し鉛蓄電池の寿命を向上することも検討されている。   In addition to the technique for suppressing the growth of the positive electrode grid due to corrosion, it has been studied to improve the life of the lead-acid battery by preventing deformation due to expansion and contraction of the active material during the charge / discharge cycle.

特許文献6では、正極格子体において、内骨を構成する横桟及び縦桟の配列間隔を、中心部から周辺部に向かって小さくした鉛蓄電池が開示されている。このように横桟及び縦桟の配列間隔を中心部から周辺部に向かって小さくすることによって、正極格子体の周辺部ほど横桟及び縦桟が密に配列されるため、正極格子体の機械的強度が向上する。そのため、正極活物質が充電によって面方向に膨張した際の正極格子体の特に横方向への変形が抑制され、鉛蓄電池のサイクル特性が向上する。   Patent Document 6 discloses a lead-acid battery in which, in a positive electrode lattice body, the arrangement interval of the horizontal bars and vertical bars constituting the inner bone is reduced from the central part toward the peripheral part. In this way, the horizontal and vertical bars are arranged closer to the periphery of the positive grid by reducing the arrangement interval of the horizontal and vertical bars from the center to the periphery. The mechanical strength is improved. Therefore, especially the deformation | transformation to a horizontal direction of the positive electrode grid body when a positive electrode active material expand | swells to a surface direction by charge is suppressed, and the cycling characteristics of a lead storage battery improve.

特開2001−351671号公報JP 2001-351671 A 実開平5−45901号公報Japanese Utility Model Publication No. 5-45901 特開2012−079609号公報JP 2012-079609 A 特許第5103385号公報Japanese Patent No. 5103385 特開2013−16499号公報JP 2013-16499 A 特開平2−281563号公報JP-A-2-281563

しかしながら、特許文献1乃至3に記載の鉛蓄電池は、静置した状態で使用される据置電源用の鉛蓄電池を想定したものであり、激しい振動が想定される用途、例えば車載用の始動用電源としては耐久性に改良すべき点があった。特許文献1乃至3に記載の鉛蓄電池では、重量の大きい極板群がほぼ上側のストラップと接続した集電耳のみで支持・保持された状態となるため、激しい振動が加わると極板群が集電耳の部分で破断する虞がある。   However, the lead storage batteries described in Patent Documents 1 to 3 are intended for stationary storage power storage batteries that are used in a stationary state. There was a point that should be improved in durability. In the lead-acid batteries described in Patent Documents 1 to 3, since the heavy electrode plate group is supported and held only by the current collecting ear connected to the upper strap, the electrode plate group is formed when intense vibration is applied. There is a risk of breakage at the current collecting ear.

一方、特許文献4及び特許文献5に記載の鉛蓄電池では、正極格子体の一部に切り欠きやくびれを設けるため、当該部分において電気抵抗が局所的に大きくなり、充放電時の電位分布が不均一化して集電効率が低下し、出力特性等の低下を招く虞がある。また切り欠きやくびれ部分を設けると、正極格子体の製造に使用される金型の形状が複雑化し、製造コストの増大や歩留まりの悪化等を招く虞がある。特に、鋳造による正極格子体の製造においては、金型における溶融した鉛又は鉛合金の湯周り不良による目切れ等の鋳造欠陥も危惧される。   On the other hand, in the lead storage batteries described in Patent Literature 4 and Patent Literature 5, since a notch or a constriction is provided in a part of the positive electrode grid body, the electrical resistance locally increases in the part, and the potential distribution during charging and discharging is increased. There is a possibility that the current collection efficiency is lowered due to non-uniformity and the output characteristics and the like are lowered. In addition, when notches and constricted portions are provided, the shape of the mold used for manufacturing the positive electrode grid is complicated, which may increase manufacturing costs and yield. In particular, in the production of a positive electrode grid body by casting, there is also a risk of casting defects such as breakage due to poor hot water of molten lead or lead alloy in the mold.

特許文献6に記載の正極格子体のように、内骨を構成する横桟及び縦桟の配列間隔を、中心部から周辺部に向かって小さくすると、正極格子体の周辺部に位置する開口部は正極格子体の中心部に位置するものと比較して面積が小さくなり、正極格子体の中心部に位置する開口部の面積が大きくなる。一般的に、正極格子体における充放電時の電流密度は、上側の正極集電耳付近に位置するほど大きく、下側に位置するほど小さくなる。また正極活物質の膨張、収縮は充放電反応に伴って生じ、その充放電反応は電流密度に比例する。このため、正極格子体の上側では正極活物質の膨張、収縮が大きく、下側では小さくなる。その結果、特許文献6のように、開口部の面積の分布を正極格子体の中心部を基点として点対称的にすると、電流密度分布を考慮した場合、必ずしも正極活物質の膨張、収縮を最も効率的に防ぐ方法とはいえず、改良の余地があった。また、特許文献6にも記載されるように、横桟及び縦桟の本数を増やすことは鉛蓄電池自体の重量の増加に繋がる。そのため、正極活物質の膨張、収縮の防止に対して寄与の小さい正極格子体の下側まで横桟及び縦桟の配列間隔を密にすることは、鉛蓄電池の軽量化が損なわれる。   As in the positive electrode grid body described in Patent Document 6, when the arrangement interval between the horizontal bars and the vertical bars constituting the inner bone is reduced from the central part toward the peripheral part, openings located in the peripheral part of the positive electrode grid body Is smaller in area than that located at the center of the positive electrode grid, and the area of the opening located at the center of the positive grid is increased. Generally, the current density at the time of charging / discharging in the positive electrode grid body is larger as it is located near the upper positive electrode current collecting ear and smaller as it is located on the lower side. Further, the positive electrode active material expands and contracts with the charge / discharge reaction, and the charge / discharge reaction is proportional to the current density. For this reason, the expansion and contraction of the positive electrode active material are large on the upper side of the positive electrode lattice, and are small on the lower side. As a result, as in Patent Document 6, when the distribution of the area of the opening is made point-symmetric with respect to the center of the positive electrode grid, the expansion and contraction of the positive electrode active material is not necessarily maximized when the current density distribution is considered. It could not be said to be an efficient prevention method, and there was room for improvement. Moreover, as described in Patent Document 6, increasing the number of horizontal bars and vertical bars leads to an increase in the weight of the lead storage battery itself. Therefore, if the arrangement interval of the horizontal crosspieces and the vertical crosspieces is close to the lower side of the positive electrode grid body which has a small contribution to prevention of expansion and contraction of the positive electrode active material, weight reduction of the lead storage battery is impaired.

本発明は上記事情を鑑み、正極格子体のグロースに起因する内部短絡を防止でき、鉛蓄電池の寿命を向上し得る鉛蓄電池用正極格子体及び鉛蓄電池を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a positive electrode lattice body for a lead storage battery and a lead storage battery that can prevent an internal short circuit due to the growth of the positive electrode lattice body and improve the life of the lead storage battery.

上記の課題を解決するために、一つの実施形態によると、横方向に延びる第1の横枠骨及び第2の横枠骨と、縦方向に延びる第1の縦枠骨及び第2の縦枠骨とを備える矩形枠状の枠骨;枠骨内に配列され、枠骨と接続して格子状に設けられる複数本の横桟及び縦桟を備える内骨;枠骨と複数本の横桟及び縦桟によって囲まれる領域、並びに複数本の前記横桟及び前記縦桟によって囲まれる領域として規定される複数の開口部;及び第2の縦枠骨側に位置する第1の横枠骨と接続する正極集電耳;を備え、複数の前記開口部のうち、第2の横枠骨に隣接する複数の開口部を第1の開口部群とし、前記第1の開口部群を規定する複数の縦桟の少なくとも一部は、前記第1の開口部群と縦方向に隣接する複数の前記開口部を規定する縦桟に対して横方向にずれて配置され、前記第1の開口部群を除く、複数の前記開口部を平面視した面積は、前記第1の横枠骨と前記第2の横枠骨とを縦断する同一垂線上で比較した場合、前記第2の横枠骨側から前記第1の横枠骨側に向けて段階的に小さくなることを特徴とする鉛蓄電池用正極格子体が提供される。   In order to solve the above problems, according to one embodiment, a first horizontal frame bone and a second horizontal frame bone extending in the lateral direction, and a first vertical frame bone and a second vertical frame extending in the vertical direction are provided. A rectangular frame-shaped frame bone including a frame bone; an inner bone including a plurality of horizontal bars and vertical bars arranged in a lattice and connected to the frame bone; and a frame frame and a plurality of horizontal frames A region surrounded by the crosspieces and the vertical crosspieces, and a plurality of openings defined as a region surrounded by the plurality of horizontal crosspieces and the vertical crosspieces; and a first horizontal frame bone located on the second vertical frame bone side A plurality of openings adjacent to the second lateral frame bone are defined as a first opening group, and the first opening group is defined. At least a portion of the plurality of vertical bars that are lateral to the vertical bars that define the plurality of openings adjacent to the first opening group in the vertical direction. The areas of the plurality of openings excluding the first opening group, as viewed in plan, are arranged in the same direction to cut the first horizontal frame bone and the second horizontal frame bone vertically. When compared on a line, there is provided a positive electrode lattice body for a lead storage battery, characterized in that it gradually decreases from the second lateral frame bone side toward the first lateral frame bone side.

別の実施形態によると、上述する鉛蓄電池用正極格子体を備えることを特徴とする鉛蓄電池が提供される。   According to another embodiment, there is provided a lead storage battery comprising the positive electrode grid for a lead storage battery described above.

本発明によれば、正極格子体のグロースに起因する内部短絡を防止でき、鉛蓄電池の寿命を向上し得る鉛蓄電池用正極格子体及び鉛蓄電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the internal short circuit resulting from the growth of a positive electrode grid body can be prevented, and the positive electrode grid body for lead acid batteries and a lead acid battery which can improve the lifetime of a lead acid battery can be provided.

第1の実施形態に係る正極格子体の平面図である。It is a top view of the positive electrode grid concerning a 1st embodiment. 第2の実施形態に係る鉛蓄電池を示す斜視図である。It is a perspective view which shows the lead acid battery which concerns on 2nd Embodiment.

<第1の実施形態>
図1は、第1の実施形態に係る鉛蓄電池用正極格子体1の平面図である。
<First Embodiment>
FIG. 1 is a plan view of a positive electrode grid body 1 for a lead storage battery according to the first embodiment.

正極格子体1は、枠骨と、当該枠骨内に配列される内骨と、正極集電耳11Aとを備えている。枠骨は、矩形枠状であって、横方向Xに延び当該横方向Xの中間からずれた位置に正極集電耳11Aが接続される第1の横枠骨13a、及び第2の横枠骨13bと、縦方向Yに延びる第1の縦枠骨14aと第2の縦枠骨14bとを備えている。なお本明細書中では、図1に示すように、第1の横枠骨13a及び第2の横枠骨13bが延びる方向を横方向X、第1の縦枠骨14a及び第2の縦枠骨14bが延びる方向を縦方向Yと定義する。また、第1の横枠骨13aが配置される部位を上側、第2の横枠骨13bが配置される部位を下側、第1の縦枠骨14aが配置される部位を左側、第2の縦枠骨14bが配置される部位を右側と定義する。   The positive electrode lattice body 1 includes a frame bone, an inner bone arranged in the frame bone, and a positive electrode current collecting ear 11A. The frame bone has a rectangular frame shape, and extends in the horizontal direction X. The first horizontal frame bone 13a and the second horizontal frame to which the positive electrode current collecting ear 11A is connected at a position shifted from the middle of the horizontal direction X. A bone 13b, a first vertical frame bone 14a extending in the vertical direction Y, and a second vertical frame bone 14b are provided. In the present specification, as shown in FIG. 1, the direction in which the first horizontal frame bone 13a and the second horizontal frame bone 13b extend is the horizontal direction X, and the first vertical frame bone 14a and the second vertical frame. The direction in which the bone 14b extends is defined as the longitudinal direction Y. Further, the part where the first horizontal frame bone 13a is arranged is the upper side, the part where the second horizontal frame bone 13b is arranged is the lower side, the part where the first vertical frame bone 14a is arranged is the left side, the second The part where the vertical frame bone 14b is arranged is defined as the right side.

第2の縦枠骨14b側に位置する第1の横枠骨13aは、正極格子体1を外部に接続するための正極集電耳11Aが接続されている。正極集電耳11Aは、例えば矩形板状であり、図1における第1の横枠骨13aの右側から上方に延びるように接続されている。後述するように正極板と負極板とを積層して極板群を構成すると、正極集電耳11Aと負極集電耳11Bとは、極板群の積層方向に向かって透視した時、第1の横枠骨13aの長さ方向に互いにずれて配置され、同極性の集電耳同士のみ重なるように配置される。特に図1に示す例では、正極集電耳11Aと負極集電耳11Bとは、正極格子体1の横方向Xにおける中心線を基準にして互いに左右対称の位置に配置されている。   The first horizontal frame bone 13a located on the second vertical frame bone 14b side is connected to a positive electrode current collecting ear 11A for connecting the positive electrode grid body 1 to the outside. The positive electrode current collector ear 11A has, for example, a rectangular plate shape, and is connected so as to extend upward from the right side of the first horizontal frame bone 13a in FIG. When a positive electrode plate and a negative electrode plate are laminated to form an electrode plate group as will be described later, the positive electrode current collector ear 11A and the negative electrode current collector ear 11B are first viewed when viewed in the stacking direction of the electrode plate group. The horizontal frame bones 13a are arranged so as to be shifted from each other in the length direction, and are arranged so that only the current collecting ears of the same polarity overlap each other. In particular, in the example shown in FIG. 1, the positive electrode current collector ear 11 </ b> A and the negative electrode current collector ear 11 </ b> B are arranged at positions symmetrical to each other with respect to the center line in the horizontal direction X of the positive electrode grid 1.

枠骨内には、枠骨と接続して、格子状に配列される複数本の横桟15a及び縦桟15bを備える内骨が配列されている。複数本の横桟15aは、例えば、第1の縦枠骨14a及び第2の縦枠骨14bにそれぞれ接続して、横方向Xに延びている。複数本の縦桟15bは、第1の横枠骨13a及び第2の横枠骨13bにそれぞれ接続して縦方向Yに延びている。複数本の横桟15aは、例えば縦方向Yに互いに離間してそれぞれの軸を平行に、第2の横枠骨13b(すなわち、図1における下側)から第1の横枠骨13a(すなわち、図1における上側)に向けて、間隔が段階的に狭くなるように配列されている。複数本の縦桟15bは、例えば横方向Xに互いに離間してそれぞれの軸を平行に配列されている。複数本の縦桟15b及び複数本の横桟15aは、例えばそれぞれの軸を互いに直角に交差して配列されている。   In the frame bone, an inner bone is arranged which is connected to the frame bone and includes a plurality of horizontal bars 15a and vertical bars 15b arranged in a lattice pattern. The plurality of horizontal bars 15a are connected to, for example, the first vertical frame bone 14a and the second vertical frame bone 14b, respectively, and extend in the horizontal direction X. The plurality of vertical bars 15b are connected to the first horizontal frame bone 13a and the second horizontal frame bone 13b, respectively, and extend in the vertical direction Y. The plurality of horizontal rails 15a are separated from each other in, for example, the longitudinal direction Y and have their respective axes parallel to each other from the second horizontal frame bone 13b (that is, the lower side in FIG. 1) to the first horizontal frame bone 13a (that is, , The intervals are narrowed stepwise (upper side in FIG. 1). The plurality of vertical rails 15b are spaced apart from each other in the horizontal direction X, for example, and their axes are arranged in parallel. The plurality of vertical bars 15b and the plurality of horizontal bars 15a are arranged, for example, with their axes intersecting each other at right angles.

正極格子体1において、複数の開口部16は枠骨と複数本の横桟15a及び縦桟15bとによって囲まれる領域、及び複数本の横桟15a及び縦桟15bによって囲まれる領域、で規定される。特に当該複数の開口部16のうち、第2の横枠骨13bに隣接する複数の開口部16を第1の開口部群17とする。前記第1の開口部群17を除く複数の開口部16を平面視した面積は、上記のように複数の横桟15aの間隔が下側から上側に向けて狭くなるように配列されているので、第1の横枠骨13aと第2の横枠骨13bとを縦断する同一垂線上で比較した場合に、第2の横枠骨13b側から第1の横枠骨13a側に向けて段階的に小さくなる。すなわち、図1に示す例では、同一垂線上で上側から数えてy番目に位置する1つの開口部16の面積は、同一垂線上のy+1番目に位置する開口部16の面積に対して、小さくなる。ここで、同一垂線上において上下に連続して並ぶ複数の開口部16の面積は、第2の横枠骨13b側から前記第1の横枠骨13a側に向けて、第2の横枠骨13b側の開口部16の面積に対して0.85倍以上、0.99倍を超えない範囲で段階的に小さくすることが好ましい。加えて、第1の縦枠骨14a及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積は、その複数の開口部16を除く残りの複数の開口部16の平均面積と比較して小さくすることが好ましい。   In the positive electrode grid 1, the plurality of openings 16 are defined by a region surrounded by the frame bone and the plurality of horizontal beams 15a and vertical beams 15b, and a region surrounded by the plurality of horizontal beams 15a and vertical beams 15b. The In particular, among the plurality of openings 16, a plurality of openings 16 adjacent to the second lateral frame bone 13 b are defined as a first opening group 17. The area in plan view of the plurality of openings 16 excluding the first opening group 17 is arranged so that the intervals between the plurality of horizontal bars 15a become narrower from the lower side toward the upper side as described above. When the first horizontal frame bone 13a and the second horizontal frame bone 13b are compared on the same vertical line, the step is directed from the second horizontal frame bone 13b side to the first horizontal frame bone 13a side. Become smaller. That is, in the example shown in FIG. 1, the area of one opening 16 located on the same perpendicular from the upper side is smaller than the area of the opening 16 located on the same perpendicular to the y + 1th. Become. Here, the area of the plurality of openings 16 continuously arranged in the vertical direction on the same vertical line is the second horizontal frame bone from the second horizontal frame bone 13b side toward the first horizontal frame bone 13a side. It is preferable to reduce the size stepwise within a range not exceeding 0.85 times and 0.99 times the area of the opening 16 on the 13b side. In addition, the average area of the plurality of openings 16 adjacent to the first vertical frame bone 14 a and the second vertical frame bone 14 b in plan view is the average of the remaining plurality of openings 16 excluding the plurality of openings 16. It is preferable to make it smaller than the average area.

また、正極格子体1の第1の開口部群17を規定する複数の縦桟15b’の少なくとも一部は、第1の開口部群17と縦方向Yに隣接する複数の開口部16を規定する複数の縦桟15bに対して横方向Xにずれて配置されている。すなわち、この構成において、前記縦桟15bは前記第1の開口部群17の上辺を規定する横桟15aと、少なくとも一部で逆T字状に接続される。   In addition, at least a part of the plurality of vertical bars 15b ′ defining the first opening group 17 of the positive electrode grid body 1 defines the plurality of opening parts 16 adjacent to the first opening group 17 in the vertical direction Y. The plurality of vertical bars 15b are shifted in the horizontal direction X. That is, in this configuration, the vertical beam 15b is connected to the horizontal beam 15a defining the upper side of the first opening group 17 at least partially in an inverted T shape.

複数の開口部16を平面視した形状は、それぞれ四角形、例えば矩形状又は台形状を有する。なお、複数の開口部16を平面視した形状は上記に限定されず、例えば斜めの補強桟が入る場合などには、その他の四角形や三角形などの多角形、円形、又は矩形の四隅に丸みRを備えた形状に形成されていてもよい。   Each of the plurality of openings 16 in plan view has a quadrangle, for example, a rectangular shape or a trapezoidal shape. In addition, the shape of the plurality of openings 16 in plan view is not limited to the above. For example, when an oblique reinforcing bar is inserted, the shape is rounded at other corners such as a rectangle or a triangle, a circle, or four corners of the rectangle. It may be formed in the shape provided with.

次に、第1の実施形態に係る正極格子体1の作用を説明する。   Next, the operation of the positive electrode grid body 1 according to the first embodiment will be described.

背景技術で説明したように、鉛蓄電池の正極板を含む極板群は、上側においては、第1の横枠骨13aの右側に接続される正極集電耳11Aを介して蓋あるいは電槽の上部に固定されている。一方、前記極板群は下側においては、当該極板群を支持する電槽の底面、又は底面に設けた鞍部に当接している。そのため正極格子体1は、正極集電耳11Aによって固定されている右上側、及び電槽と当接している下側では、当該方向への膨張が制限されるためグロースが起こり難い。   As explained in the background art, the electrode plate group including the positive electrode plate of the lead-acid battery has a lid or a battery case on the upper side via the positive electrode current collecting ear 11A connected to the right side of the first lateral frame bone 13a. It is fixed at the top. On the other hand, on the lower side, the electrode plate group is in contact with the bottom surface of the battery case supporting the electrode plate group or a flange provided on the bottom surface. Therefore, the positive electrode grid body 1 is less likely to grow on the upper right side fixed by the positive electrode current collector ear 11A and the lower side in contact with the battery case because expansion in the direction is limited.

しかしながら、正極格子体1のうち、正極集電耳11Aによって固定されない左上側、及び左右側の電槽と当接していない箇所ではグロースが生じ易い。特に、正極格子体1の左上方向へのグロースによって正極板の上端が後述する負極ストラップ12B等の負極の一部に接触して内部短絡を生じる虞がある。   However, in the positive electrode grid body 1, growth is likely to occur at the left upper side that is not fixed by the positive electrode current collecting ear 11 </ b> A and the portions that are not in contact with the left and right battery cases. In particular, there is a possibility that the upper end of the positive electrode plate contacts a part of a negative electrode such as a negative electrode strap 12B (described later) due to the growth of the positive electrode grid 1 in the upper left direction, thereby causing an internal short circuit.

また、発明者等が見出した、グロースが助長されるメカニズムについて以下に述べる。グロースにより正極格子体が拡張するように変形すると、正極活物質が枠骨や内骨から剥離したり、開口部から脱落したり、隙間を生じたりする。当該隙間に電解液が侵入して正極格子体と接触すると、充放電に伴う正極格子体の腐食が促されるため、グロースが加速的に進行する。以下、このような正極格子体の縦枠骨に接した正極活物質の剥離又は脱落に伴うグロースの著しい進行を「加速的グロース」と表記する。一般的に、正極格子体の断面積が大きいほど、腐食時のグロース度合も大きくなることが知られている。従って、正極格子体の縦枠骨が外側に湾曲することにより正極活物質との剥離又は脱落を生じた場合、放電容量や出力特性のような電池性能の低下のみならず、上下方向への加速的グロースを招く。   Further, the mechanism found by the inventors and the like to promote growth will be described below. When the positive electrode lattice body is deformed so as to expand due to the growth, the positive electrode active material is peeled off from the frame bone and the inner bone, dropped from the opening, or a gap is generated. When the electrolytic solution enters the gap and comes into contact with the positive electrode grid body, corrosion of the positive electrode grid body accompanying charge / discharge is promoted, so that growth proceeds at an accelerated rate. Hereinafter, the remarkable progress of the growth accompanying the peeling or dropping off of the positive electrode active material in contact with the vertical frame bone of the positive electrode lattice body will be referred to as “accelerated growth”. In general, it is known that the larger the cross-sectional area of the positive electrode lattice body, the greater the degree of growth during corrosion. Therefore, when the vertical frame bone of the positive electrode grid body is bent outward, peeling or dropping from the positive electrode active material causes not only a decrease in battery performance such as discharge capacity and output characteristics, but also acceleration in the vertical direction. Invite a healthy growth.

加えて、正極活物質と正極格子体が密着した状態であれば、当該正極活物質と正極格子体表面との間に結合に必要な腐食層が形成される。正極活物質と正極格子体の間に腐食層が介在されると、正極活物質が正極格子体を引っ張る力が働くため、正極格子体のグロースを抑制する。しかしながら、剥離又は脱落が生じた状態では前記作用が働かず、加速的グロースが助長される。   In addition, if the positive electrode active material and the positive electrode grid are in close contact with each other, a corrosive layer necessary for bonding is formed between the positive electrode active material and the surface of the positive electrode grid. When the corrosive layer is interposed between the positive electrode active material and the positive electrode grid, the positive electrode active material exerts a force that pulls the positive electrode grid, thereby suppressing the growth of the positive electrode grid. However, in the state where peeling or dropping occurs, the above action does not work, and accelerated growth is promoted.

第1の実施形態に係る正極格子体1では、第1の開口部群17を除く、複数の開口部16を平面視した面積が、第1の横枠骨13aと第2の横枠骨13bとを縦断する同一垂線上で比較した場合に、第2の横枠骨13b側から第1の横枠骨13a側に向けて段階的に小さくなっている。言い換えると、第1の実施形態に係る正極格子体1では、第1の横枠骨13a側(上側)程、面積が小さい開口部が配置されている。   In the positive electrode grid body 1 according to the first embodiment, the areas of the plurality of openings 16 excluding the first opening group 17 in plan view are the first horizontal frame bone 13a and the second horizontal frame bone 13b. Are compared with each other on the same vertical line that cuts vertically, and gradually decreases from the second lateral frame bone 13b side toward the first lateral frame bone 13a side. In other words, in the positive electrode grid body 1 according to the first embodiment, an opening having a smaller area is arranged on the first lateral frame bone 13a side (upper side).

このように正極格子体1の上側の面積が小さい開口部16では、当該複数の開口部16に充填された正極活物質が、正極格子体1の一定の面積当たりに接する割合が正極格子体1の下側に位置する面積が大きい開口部16に比べて増加する。このため、当該開口部16に充填された正極活物質と正極格子体1との密着性が向上し、前記正極格子体1の加速的グロースを防止することが可能となる。ここで、上下に連続した複数の開口部16の面積比は、下側の開口部16に対して上側の開口部16の面積が0.85倍以上、0.99倍を超えない範囲、すなわち、(上側の開口部)/(下側の開口部)の面積比=0.85〜0.99にすることが、上記の加速的グロースの防止においてより望ましい。面積比が0.99倍を超える場合は、正極格子体1の上側と下側とでの面積差が小さいため、前記正極格子体1の上側の補強を選択的に高めることの効果が小さくなる。また面積比が0.85倍未満の場合は、正極格子体1の上側の開口部16を小さくしたことにより正極活物質の充填性が向上するものの、下側の開口部16が相対的に大きくなって出力特性や正極活物質の保持性の低下を招く虞がある。   As described above, in the openings 16 having a small area on the upper side of the positive electrode grid body 1, the ratio of the positive electrode active material filled in the plurality of openings 16 in contact with a certain area of the positive electrode grid body 1 It increases compared with the opening 16 having a large area located on the lower side. For this reason, the adhesiveness of the positive electrode active material with which the said opening part 16 was filled, and the positive electrode grid body 1 improves, and it becomes possible to prevent the accelerated growth of the said positive electrode grid body 1. FIG. Here, the area ratio of the plurality of openings 16 continuous vertically is such that the area of the upper opening 16 is not less than 0.85 times and not more than 0.99 times with respect to the lower opening 16, that is, The area ratio of (upper opening) / (lower opening) = 0.85 to 0.99 is more desirable in preventing the above accelerated growth. When the area ratio exceeds 0.99 times, the area difference between the upper side and the lower side of the positive electrode grid body 1 is small, so that the effect of selectively increasing the reinforcement on the upper side of the positive electrode grid body 1 is reduced. . When the area ratio is less than 0.85 times, filling of the positive electrode active material is improved by reducing the opening 16 on the upper side of the positive electrode grid 1, but the lower opening 16 is relatively large. As a result, the output characteristics and the retention of the positive electrode active material may be reduced.

また、第1の縦枠骨14aに隣接する複数の開口部16及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積は、当該複数の開口部16を除く残りの複数の開口部16の平均面積よりも小さくすることが好ましい。このように、少なくとも前記第1の縦枠骨14aに隣接する複数の開口部16及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積を、当該複数の開口部16を除く残りの複数の開口部16の平均面積よりも小さくすることによって、当該複数の開口部16に充填された正極活物質は、正極格子体1の一定面積当たりに接する割合が他の複数の開口部16に充填された正極活物質と比べて大きくなる。そのため、当該複数の開口部16に充填された正極活物質と正極格子体1との密着性が他の部分よりも向上し、当該正極活物質の剥離又は脱落を抑制できる。   The average area of the plurality of openings 16 adjacent to the first vertical frame bone 14a and the plurality of openings 16 adjacent to the second vertical frame bone 14b in plan view is the remainder excluding the plurality of openings 16 It is preferable to make it smaller than the average area of the plurality of openings 16. Thus, the average area of the plurality of openings 16 adjacent to at least the first vertical frame bone 14a and the plurality of openings 16 adjacent to the second vertical frame bone 14b in plan view is determined as the plurality of openings. By making it smaller than the average area of the remaining plurality of openings 16 excluding 16, the positive electrode active material filled in the plurality of openings 16 has a ratio of being in contact with a certain area of the positive electrode grid 1 to the other plurality. This is larger than the positive electrode active material filled in the opening 16. Therefore, the adhesiveness between the positive electrode active material filled in the plurality of openings 16 and the positive electrode grid body 1 is improved as compared with other portions, and separation or dropping of the positive electrode active material can be suppressed.

さらに、第1の実施形態に係る正極格子体1は、第1の開口部群17を規定する複数の縦桟15b’の少なくとも一部が、第1の開口部群17と縦方向Yに隣接する複数の開口部16を規定する複数の縦桟15bに対して横方向Xにずれて配置されている。   Furthermore, in the positive electrode grid body 1 according to the first embodiment, at least a part of the plurality of vertical bars 15b ′ defining the first opening group 17 is adjacent to the first opening group 17 in the vertical direction Y. The plurality of vertical bars 15b defining the plurality of openings 16 are arranged so as to be shifted in the lateral direction X.

第1の実施形態に係る正極格子体1では、このような構成を有するため、グロースが生じて複数本の縦桟15bが下側に向けて延伸しても、当該縦桟15bと第1の開口部群17の上辺を規定する横桟15aとが逆T字状に接続する交点において、当該横桟15aが近傍の縦桟15b’を支点として下側に湾曲してその延伸による変位を吸収できる。その結果、複数本の縦桟15bの下側への延伸が横桟15a及び縦桟15bを含む内骨により吸収されるため、正極格子体1全体の下側に向かうグロースを抑制できる。背景技術で述べたように、極板群を支持する電槽の底面、又は底面に設けた鞍部によって、下向きに生じたグロースは上向きに転じるため、正極板の上端が負極ストラップ12B等の負極の一部に接触して内部短絡を生じる虞がある。当該構成によれば、下側に向かうグロースを横桟15a及び縦桟15bを含む内骨により吸収させることによって、上側に向かうグロースを防止でき、正極板の上端と負極ストラップ等の負極の一部との接触による内部短絡を抑制できる。   Since the positive electrode grid body 1 according to the first embodiment has such a configuration, even when growth occurs and the plurality of vertical bars 15b extend downward, the vertical bars 15b and the first At the intersection where the horizontal beam 15a defining the upper side of the opening group 17 is connected in an inverted T shape, the horizontal beam 15a is bent downward with the adjacent vertical beam 15b 'as a fulcrum and absorbs displacement due to the extension. it can. As a result, since the downward extension of the plurality of vertical bars 15b is absorbed by the inner bones including the horizontal bars 15a and the vertical bars 15b, the growth toward the lower side of the entire positive electrode grid body 1 can be suppressed. As described in the background art, since the growth generated downward by the bottom surface of the battery case supporting the electrode plate group or the flange provided on the bottom surface turns upward, the upper end of the positive electrode plate is the negative electrode strap 12B or the like. There is a risk of causing an internal short circuit by contacting a part. According to this configuration, the upward growth can be prevented by absorbing the downward growth by the inner bone including the horizontal rail 15a and the vertical rail 15b, and the upper end of the positive electrode plate and a part of the negative electrode such as the negative strap. Can prevent internal short circuit due to contact with.

なお、図1に示す例では、第1の開口部群17を規定する複数の縦桟15b’の全てが、第1の開口部群17と縦方向Yに隣接する複数の開口部16を規定する縦桟15bに対して横方向Xにずれて配置されている例を説明したが、これに限定されない。   In the example shown in FIG. 1, all of the plurality of vertical bars 15 b ′ that define the first opening group 17 define a plurality of openings 16 adjacent to the first opening group 17 in the vertical direction Y. Although the example which has shifted | deviated and arrange | positioned in the horizontal direction X with respect to the vertical bar 15b to perform is demonstrated, it is not limited to this.

また、「第1の開口部群17を規定する複数の縦桟15b’の少なくとも一部」は、正極集電耳11Aの直下に位置する複数本の縦桟15b’を含み、横方向Xに配列される複数本の縦桟15b’の50%以上、好ましくは70%以上とすることが好ましい。   In addition, “at least a part of the plurality of vertical bars 15b ′ defining the first opening group 17” includes a plurality of vertical bars 15b ′ positioned immediately below the positive electrode current collector ear 11A, and in the horizontal direction X. 50% or more, preferably 70% or more, of the plurality of vertical bars 15b ′ arranged.

さらに、正極格子体1に形成された複数の開口部16を平面視した四隅を、丸みRを備えた形状に形成することが好ましい。このようにすることによって、当該開口部16への正極活物質の充填性を向上できる。また、当該開口部16内の四隅の機械的強度を向上するため、正極格子体1のグロースを防止でき、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡や、正極活物質の剥離又は脱落とそれに伴う加速的グロースを防止できる。   Furthermore, it is preferable to form the four corners in a plan view of the plurality of openings 16 formed in the positive electrode grid body 1 in a shape having roundness R. By doing in this way, the filling property of the positive electrode active material to the said opening part 16 can be improved. Moreover, in order to improve the mechanical strength of the four corners in the opening 16, it is possible to prevent the positive grid 1 from growing, and an internal short circuit due to contact between the positive electrode plate and a part of the negative electrode such as the negative electrode plate or the negative electrode strap, It is possible to prevent the positive electrode active material from peeling or dropping and the accompanying accelerated growth.

従って、第1の実施形態によれば、正極格子体1のグロースに起因する内部短絡を防止でき、鉛蓄電池の寿命を向上し得る鉛蓄電池用正極格子体及び鉛蓄電池を提供できる。   Therefore, according to 1st Embodiment, the internal short circuit resulting from the growth of the positive electrode grid 1 can be prevented, and the positive electrode grid for lead acid batteries and a lead acid battery which can improve the lifetime of a lead acid battery can be provided.

また、正極格子体1を構成する枠骨、複数本の横桟15a及び縦桟15bを備える内骨、及び正極集電耳11Aは、例えば鉛又は鉛合金からなり、一体成形されている。鉛合金に添加する金属元素は限定されず、公知のものを使用することができる。特に、Ca、Sn、Al又はAgを所定量添加した場合は、正極格子体1の機械的強度及び耐腐食性を向上できるため、グロースによる変形の抑制においてより好ましい。正極格子体1は、例えば、鉛又は鉛合金からなる圧延板の打ち抜き格子体やエキスパンド格子体、または圧延板を放電ワイヤーカット法等により切り抜いて作製することができる。また、ブックモールド法等により鋳造格子体として作製してもよい。特に、正極格子体1のグロースは鉛又は鉛合金を含む結晶粒が配向した圧延板から成形される格子体で生じやすい。このため、グロースを抑制する効果は、打ち抜き格子体やエキスパンド格子体、または放電ワイヤーカット法等により圧延板から作製された格子体に適用した場合、顕著に得られる。   Further, the frame bone constituting the positive grid 1, the inner bone including the plurality of horizontal bars 15a and the vertical bars 15b, and the positive electrode current collecting ear 11A are made of, for example, lead or a lead alloy and are integrally formed. The metal element added to the lead alloy is not limited, and a known element can be used. In particular, when a predetermined amount of Ca, Sn, Al, or Ag is added, the mechanical strength and corrosion resistance of the positive electrode grid 1 can be improved, which is more preferable in suppressing deformation due to growth. The positive electrode grid body 1 can be produced, for example, by cutting a punched grid body or an expanded grid body of a rolled plate made of lead or a lead alloy, or a rolled plate by a discharge wire cut method or the like. Further, it may be produced as a cast lattice body by a book mold method or the like. In particular, the growth of the positive electrode grid 1 is likely to occur in a grid formed from a rolled plate in which crystal grains containing lead or a lead alloy are oriented. For this reason, the effect of suppressing the growth is remarkably obtained when applied to a punched lattice body, an expanded lattice body, or a lattice body manufactured from a rolled plate by a discharge wire cutting method or the like.

上述した正極格子体1は、例えばCaが0.02〜0.08質量%、Snが0.4〜2.5質量%、Alが0.005〜0.04質量%、Agが0.001〜0.0049質量%、及び残部がPbと不可避の不純物からなる鉛合金から形成されている。   In the positive electrode grid 1 described above, for example, Ca is 0.02 to 0.08 mass%, Sn is 0.4 to 2.5 mass%, Al is 0.005 to 0.04 mass%, and Ag is 0.001. -0.0049 mass%, and the balance is formed from the lead alloy which consists of Pb and an unavoidable impurity.

Ca、Sn、Al、Agの成分元素を特定の範囲で添加すると、得られる鉛合金の耐食性と機械的強度の双方を向上させることが可能になる。Caの添加は正極格子体1の機械的強度を向上させる。Caの配合量が0.02質量%未満ではその効果が少なく、0.08質量%を超えると耐食性が低下する虞がある。Snの添加は鉛合金の溶湯の湯流れ性を向上させるとともに、正極格子体1の機械的強度を向上させる。Snの配合量が0.4質量%未満ではその効果が少なく、2.5質量%を超えると耐食性が低下する虞がある。Alの添加は溶湯の酸化によるCaの損失を防止し、さらに正極格子体1の機械的強度を向上させる。Alの添加量が0.005質量%未満ではその効果が少なく、0.04質量%を超えるとAlがドロスとして析出し易くなる。Agの添加は機械的強度を向上し、特に高温での耐クリープ特性を高める。Agの添加量が0.001質量%未満ではその効果が少なく、0.0049質量%を超えると添加量の増加に伴う効果の増大を期待できない。   When the component elements of Ca, Sn, Al, and Ag are added within a specific range, it is possible to improve both the corrosion resistance and the mechanical strength of the resulting lead alloy. The addition of Ca improves the mechanical strength of the positive electrode grid body 1. If the amount of Ca is less than 0.02% by mass, the effect is small, and if it exceeds 0.08% by mass, the corrosion resistance may decrease. The addition of Sn improves the flowability of the molten lead alloy and improves the mechanical strength of the positive grid 1. If the amount of Sn is less than 0.4% by mass, the effect is small, and if it exceeds 2.5% by mass, the corrosion resistance may be lowered. The addition of Al prevents Ca loss due to the oxidation of the molten metal, and further improves the mechanical strength of the positive electrode grid 1. If the added amount of Al is less than 0.005% by mass, the effect is small, and if it exceeds 0.04% by mass, Al tends to precipitate as dross. The addition of Ag improves the mechanical strength, and in particular improves the creep resistance at high temperatures. If the addition amount of Ag is less than 0.001% by mass, the effect is small, and if it exceeds 0.0049% by mass, an increase in the effect due to the increase in the addition amount cannot be expected.

なお、図1に示す例では、正極格子体1の横枠骨13a,13b及び複数本の横桟15aが平行に配列され、横枠骨13a,13b及び複数本の横桟15aが縦枠骨14a,14b及び複数本の縦桟15bに対して直角に配列された例を説明したが、これに限定されない。例えば、横枠骨13a,13b及び複数本の横桟15aは、互いに平行に配列されなくてもよく、互いに角度をなして配列されていてもよい。同様に、縦枠骨14a,14b及び複数本の縦桟15bとは、互いに平行に配列されなくてもよく、互いに所望の角度をなして配列されていてもよい。また、枠骨を構成する横枠骨13a,13b及び縦枠骨14a,14b、複数本の桟は、それぞれ直線状であるものを例に説明したが、これに限定されず曲線状や折れ線状でもよく、また分岐を有していてもよい。また、複数本の横桟15a及び複数本の縦桟15bは、同一の太さのものが一定間隔で配列されている例を説明したが、これに限定されずその太さ、配列される間隔は適宜変更されてよい。   In the example shown in FIG. 1, the horizontal frame bones 13 a and 13 b and the plurality of horizontal bars 15 a of the positive grid 1 are arranged in parallel, and the horizontal frame bones 13 a and 13 b and the plurality of horizontal bars 15 a are the vertical frame bones. Although the example arrange | positioned at right angle with respect to 14a, 14b and the several vertical crosspiece 15b was demonstrated, it is not limited to this. For example, the horizontal frame bones 13a and 13b and the plurality of horizontal bars 15a may not be arranged in parallel to each other, and may be arranged at an angle to each other. Similarly, the vertical frame bones 14a and 14b and the plurality of vertical bars 15b may not be arranged in parallel with each other, and may be arranged at a desired angle with each other. In addition, the horizontal frame bones 13a and 13b and the vertical frame bones 14a and 14b and the plurality of crosspieces constituting the frame bone have been described as being linear, but the present invention is not limited thereto, and is not limited to a curved shape or a broken line shape. It may also have a branch. Further, the example in which the plurality of horizontal bars 15a and the plurality of vertical bars 15b have the same thickness is arranged at a constant interval has been described, but the present invention is not limited thereto, and the thickness and the arrangement interval are not limited thereto. May be changed as appropriate.

また、開口部16を縦方向に限定されず、横方向、斜め方向、十字等に分割する補助桟についても同様である。   Further, the opening 16 is not limited to the vertical direction, and the same applies to the auxiliary bars that divide into the horizontal direction, the diagonal direction, the cross, and the like.

図1に示す例では、正極格子体1の開口部の面積を小さくする方法として、当該開口部16を規定する枠骨及び内骨を構成する複数の横桟15a及び縦桟15bを配列する間隔を狭くしたものを説明したが、これに限定されない。開口部16の面積を小さくするには、例えば、矩形状の開口部16の四隅に丸みRを設けてもよい。当該丸みRの曲率半径を適宜変更させることで、当該開口部16の面積を調節できる。あるいは開口部16の面積を小さくするため、当該開口部16を規定する枠骨及び内骨を構成する複数本の横桟15a及び縦桟15bの太さをその部分のみ太くしてもよい。また、上述する開口部16の面積小さくする方法は、適宜組み合わせてもよい。   In the example shown in FIG. 1, as a method of reducing the area of the opening of the positive electrode grid body 1, the intervals at which the plurality of horizontal beams 15 a and the vertical beams 15 b constituting the frame bone and the inner bone defining the opening 16 are arranged. Although what narrowed was demonstrated, it is not limited to this. In order to reduce the area of the opening 16, for example, roundness R may be provided at the four corners of the rectangular opening 16. By appropriately changing the radius of curvature of the roundness R, the area of the opening 16 can be adjusted. Or in order to make the area of the opening part 16 small, you may thicken only the part of the thickness of the several horizontal crosspiece 15a and the vertical crosspiece 15b which comprise the frame bone and inner bone which define the said opening part 16. As shown in FIG. Moreover, you may combine suitably the method of reducing the area of the opening part 16 mentioned above.

また、正極集電耳11Aは矩形板状である例を説明したが、これに限定されない。正極集電耳11Aの形状は、集電性能及び強度を考慮して適宜変更されてよく、例えば、扇型、三角形、又は角が丸みRを帯びた矩形状であり得る。図示した例では、複数本の縦桟15bの配列される間隔と同じ幅の正極集電耳11Aを説明したがこれに限定されず、その幅は適宜変更されてよい。負極集電耳11Bについても同様である。   Moreover, although the example in which the positive electrode current collecting ear 11A has a rectangular plate shape has been described, the present invention is not limited thereto. The shape of the positive electrode current collecting ear 11A may be appropriately changed in consideration of the current collecting performance and strength, and may be, for example, a fan shape, a triangle, or a rectangular shape with rounded corners R. In the illustrated example, the positive electrode current collector ear 11A having the same width as the interval between the plurality of vertical bars 15b has been described. However, the present invention is not limited to this, and the width thereof may be changed as appropriate. The same applies to the negative electrode current collecting ear 11B.

<第2の実施形態>
図2は、第2の実施形態に係る鉛蓄電池(図示せず)を構成する極板群10を示す斜視図である。第2の実施形態に係る鉛蓄電池は、第1の実施形態に係る正極格子体1を備えた極板群10を有する。第2の実施形態に係る鉛蓄電池の構成は、少なくとも正極板に第1の実施形態に係る正極格子体1を用いる点を除き、特に限定されるものではない。図2に示すように、鉛蓄電池は単一のセルからなる起電力2Vの鉛蓄電池であり、正極板P、負極板N、電解液としての希硫酸、セパレータS(ガラス繊維製のリテーナマット等)、電槽(図示せず)、蓋(図示せず)等の部材から製造される。例えば、正極板Pと負極板Nとの間にセパレータSを介在させながら、正極板Pと負極板Nとを1枚ずつ交互に積層して、正極集電耳11A同士及び負極集電耳11B同士をそれぞれ正極ストラップ12A及び負極ストラップ12Bで連結させ、極板群10を構成する。正極ストラップ12A及び負極ストラップ12Bには、上側に延びる正極極柱18A及び負極極柱18Bが接続されている。この極板群10を電槽の開口部から電槽の中に入れて蓋を嵌合し、当該蓋に設けられた中空の正極端子(図示せず)及び負極端子(図示せず)に対して、各正極極柱18A及び負極極柱18Bを挿入して溶接する。蓋に設けられた注液口から、電解液である希硫酸を注液した後に化成を行って起電力2Vの鉛蓄電池を完成する。
<Second Embodiment>
FIG. 2 is a perspective view showing an electrode plate group 10 constituting a lead storage battery (not shown) according to the second embodiment. The lead acid battery according to the second embodiment includes an electrode plate group 10 including the positive electrode grid body 1 according to the first embodiment. The configuration of the lead storage battery according to the second embodiment is not particularly limited, except that at least the positive electrode grid body 1 according to the first embodiment is used for the positive electrode plate. As shown in FIG. 2, the lead acid battery is a lead acid battery having an electromotive force of 2 V composed of a single cell. The positive electrode plate P, the negative electrode plate N, dilute sulfuric acid as an electrolyte, separator S (glass fiber retainer mat, etc.) ), A battery case (not shown), a lid (not shown) and the like. For example, while the separator S is interposed between the positive electrode plate P and the negative electrode plate N, the positive electrode plates P and the negative electrode plates N are alternately stacked one by one, and the positive electrode current collector ears 11A and the negative electrode current collector ears 11B are stacked. These are connected with each other by a positive electrode strap 12A and a negative electrode strap 12B to constitute an electrode plate group 10. A positive electrode pole column 18A and a negative electrode column 18B extending upward are connected to the positive electrode strap 12A and the negative electrode strap 12B. The electrode plate group 10 is put into the battery case from the opening of the battery case, and a lid is fitted to the hollow positive electrode terminal (not shown) and negative electrode terminal (not shown) provided on the cover. Then, each positive electrode pole 18A and negative electrode pole 18B are inserted and welded. After injecting dilute sulfuric acid, which is an electrolytic solution, from a liquid injection port provided on the lid, chemical conversion is performed to complete a lead storage battery with an electromotive force of 2V.

以上詳述したように、第1、第2の実施形態に係る正極格子体1及び鉛蓄電池によれば、正極格子体1のグロースに起因する正極板Pと負極板N又は負極ストラップ12B等の負極の一部との接触による内部短絡を防止し、鉛蓄電池の耐久性を向上し長寿命化を実現できる。   As described above in detail, according to the positive electrode grid body 1 and the lead storage battery according to the first and second embodiments, the positive electrode plate P and the negative electrode plate N or the negative electrode strap 12B caused by the growth of the positive electrode grid body 1 An internal short circuit due to contact with a part of the negative electrode can be prevented, the durability of the lead storage battery can be improved, and a longer life can be realized.

なお、第2の実施形態では鉛蓄電池として液式鉛蓄電池を例示したが、制御式鉛蓄電池であってもよい。   In addition, although liquid type lead acid battery was illustrated as lead acid battery in 2nd Embodiment, control type lead acid battery may be sufficient.

以上、本発明の実施形態について、具体的に説明したが、本発明はこれらの実施の形態及び実施例に限定されるものではなく、本発明の技術的思想に基づく種々の変更が可能である。   As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to these embodiment and Example, Various change based on the technical idea of this invention is possible. .

1…正極格子体、11A…正極集電耳、11B…負極集電耳、12A…正極ストラップ、12B…負極ストラップ、13a…第1の横枠骨、13b…第2の横枠骨、14a…第1の縦枠骨、14b…第2の縦枠骨、15a…横桟、15b、15b’…縦桟、16…開口部、17…第1の開口部群、18A…正極極柱、18B…負極極柱、P…正極板、N…負極板、S…セパレータ、10…極板群   DESCRIPTION OF SYMBOLS 1 ... Positive electrode grid body, 11A ... Positive electrode current collection ear, 11B ... Negative electrode current collection ear, 12A ... Positive electrode strap, 12B ... Negative electrode strap, 13a ... 1st horizontal frame bone, 13b ... 2nd horizontal frame bone, 14a ... 1st vertical frame bone, 14b ... 2nd vertical frame bone, 15a ... Horizontal beam, 15b, 15b '... Vertical beam, 16 ... Opening, 17 ... 1st opening group, 18A ... Positive electrode pole column, 18B ... Negative electrode pole, P ... Positive electrode plate, N ... Negative electrode plate, S ... Separator, 10 ... Pole plate group

Claims (7)

鉛蓄電池用正極格子体であって、
横方向に延びる第1の横枠骨及び第2の横枠骨と、縦方向に延びる第1の縦枠骨及び第2の縦枠骨とを備える矩形枠状の枠骨;
前記枠骨内に配列され、前記枠骨と接続して格子状に設けられる複数本の横桟及び縦桟を備える内骨;
前記枠骨と複数本の前記横桟及び前記縦桟とによって囲まれる領域、及び複数本の前記横桟及び前記縦桟によって囲まれる領域として規定される複数の開口部;及び
前記第2の縦枠骨側に位置する前記第1の横枠骨と接続する正極集電耳;
を備え、
複数の前記開口部のうち、前記第2の横枠骨に隣接する複数の前記開口部を第1の開口部群とし、
前記第1の開口部群を規定する複数の前記縦桟の少なくとも一部は、前記第1の開口部群と縦方向に隣接する複数の前記開口部を規定する縦桟に対して横方向にずれて配置され、
前記第1の開口部群を除く、複数の前記開口部を平面視した面積は、前記第1の横枠骨と前記第2の横枠骨とを縦断する同一垂線上で比較した場合、前記第2の横枠骨側から前記第1の横枠骨側に向けて段階的に小さくなることを特徴とする鉛蓄電池用正極格子体。
A positive electrode grid for a lead-acid battery,
A rectangular frame-shaped frame bone comprising a first horizontal frame bone and a second horizontal frame bone extending in the horizontal direction, and a first vertical frame bone and a second vertical frame bone extending in the vertical direction;
An inner bone provided with a plurality of horizontal bars and vertical bars arranged in a lattice and connected to the frame bone;
A plurality of openings defined as a region surrounded by the frame bone and the plurality of horizontal beams and the vertical beam, and a region surrounded by the plurality of horizontal beams and the vertical beam; and the second vertical A positive electrode current collecting ear connected to the first lateral frame bone located on the frame bone side;
With
Among the plurality of openings, the plurality of openings adjacent to the second lateral frame bone are set as a first opening group,
At least a part of the plurality of vertical bars defining the first opening group is in a lateral direction with respect to the vertical bars defining the plurality of openings adjacent to the first opening group in the vertical direction. Shifted,
The area in plan view of the plurality of openings excluding the first opening group is compared on the same vertical line that vertically cuts the first lateral frame bone and the second lateral frame bone, A positive electrode grid for a lead storage battery, wherein the positive electrode grid for a lead-acid battery decreases in a stepwise manner from the second lateral frame bone side toward the first lateral frame bone side.
前記第1の横枠骨と前記第2の横枠骨とを縦断する同一垂線上で比較した場合、前記第2の横枠骨側の前記開口部を平面視した面積に対する前記第1の横枠骨側の前記開口部を平面視した面積の比は0.85倍以上、0.99倍を超えない範囲であることを特徴とする請求項1に記載の鉛蓄電池用正極格子体。   When the first horizontal frame bone and the second horizontal frame bone are compared on the same vertical line, the first horizontal frame bone with respect to the area of the opening on the second horizontal frame bone side in plan view. 2. The positive electrode grid for a lead-acid battery according to claim 1, wherein the ratio of the area of the opening on the frame bone side in plan view is in a range not less than 0.85 times and not more than 0.99 times. 前記第1の縦枠骨及び前記第2の縦枠骨に隣接する複数の前記開口部を平面視した平均面積は、当該複数の開口部を除く残りの複数の開口部を平面視した平均面積と比較して小さいことを特徴とする請求項1又は2に記載の鉛蓄電池用正極格子体。   The average area in plan view of the plurality of openings adjacent to the first vertical frame bone and the second vertical frame bone is the average area in plan view of the remaining openings excluding the plurality of openings. The positive electrode lattice body for a lead storage battery according to claim 1 or 2, wherein the positive electrode lattice body is smaller than the positive electrode lattice body. 複数の前記開口部を平面視した四隅は、丸みRを有することを特徴とする請求項1〜3のいずれの1項に記載の鉛蓄電池用正極格子体。   4. The positive electrode grid body for a lead storage battery according to claim 1, wherein the four corners of the plurality of openings in plan view have roundness R. 5. 鉛又は鉛合金の圧延板の打ち抜き格子体であることを特徴とする請求項1〜4のいずれか1項に記載の鉛蓄電池用正極格子体。   5. The positive electrode grid for a lead storage battery according to claim 1, wherein the grid is a punched grid of a rolled plate of lead or a lead alloy. 前記鉛合金は、Caが0.02〜0.08質量%、Snが0.4〜2.5質量%、Alが0.005〜0.04質量%、Agが0.001〜0.0049質量%、及び残部がPbと不可避の不純物からなる組成を有することを特徴とする請求項5に記載の鉛蓄電池用正極格子体。   In the lead alloy, Ca is 0.02 to 0.08 mass%, Sn is 0.4 to 2.5 mass%, Al is 0.005 to 0.04 mass%, and Ag is 0.001 to 0.0049. The positive electrode lattice body for a lead storage battery according to claim 5, wherein the positive electrode lattice body has a composition comprising mass% and the balance being Pb and inevitable impurities. 請求項1〜6のいずれか1項に記載の鉛蓄電池用正極格子体を備えることを特徴とする鉛蓄電池。   A lead storage battery comprising the positive electrode grid for a lead storage battery according to any one of claims 1 to 6.
JP2018035609A 2018-02-28 2018-02-28 Positive electrode grid for lead-acid batteries and lead-acid batteries Active JP6762976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018035609A JP6762976B2 (en) 2018-02-28 2018-02-28 Positive electrode grid for lead-acid batteries and lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018035609A JP6762976B2 (en) 2018-02-28 2018-02-28 Positive electrode grid for lead-acid batteries and lead-acid batteries

Publications (2)

Publication Number Publication Date
JP2019153387A true JP2019153387A (en) 2019-09-12
JP6762976B2 JP6762976B2 (en) 2020-09-30

Family

ID=67946678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018035609A Active JP6762976B2 (en) 2018-02-28 2018-02-28 Positive electrode grid for lead-acid batteries and lead-acid batteries

Country Status (1)

Country Link
JP (1) JP6762976B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115526U (en) * 1975-03-17 1976-09-18
JPS5792751A (en) * 1980-11-29 1982-06-09 Shin Kobe Electric Mach Co Ltd Grid for lead acid battery
JPS57113557A (en) * 1980-12-29 1982-07-15 Shin Kobe Electric Mach Co Ltd Grid for lead acid battery
JPS6084770A (en) * 1983-10-14 1985-05-14 Japan Storage Battery Co Ltd Antimony free lead-acid battery
JPH02281563A (en) * 1989-04-24 1990-11-19 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH04301367A (en) * 1991-03-29 1992-10-23 Shin Kobe Electric Mach Co Ltd Lattice unit for plate of lead-acid battery
JP2001524736A (en) * 1997-11-26 2001-12-04 ジョンソン コントロールズ テクノロジー カンパニー Punched battery grid
JP2002260716A (en) * 2001-03-01 2002-09-13 Japan Storage Battery Co Ltd Lead battery
JP2006140032A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2007179898A (en) * 2005-12-28 2007-07-12 Shin Kobe Electric Mach Co Ltd Grid for wound type lead-acid storage battery
CN203312411U (en) * 2013-05-22 2013-11-27 双登集团股份有限公司 Positive grid of lead-acid storage battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115526U (en) * 1975-03-17 1976-09-18
JPS5792751A (en) * 1980-11-29 1982-06-09 Shin Kobe Electric Mach Co Ltd Grid for lead acid battery
JPS57113557A (en) * 1980-12-29 1982-07-15 Shin Kobe Electric Mach Co Ltd Grid for lead acid battery
JPS6084770A (en) * 1983-10-14 1985-05-14 Japan Storage Battery Co Ltd Antimony free lead-acid battery
JPH02281563A (en) * 1989-04-24 1990-11-19 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH04301367A (en) * 1991-03-29 1992-10-23 Shin Kobe Electric Mach Co Ltd Lattice unit for plate of lead-acid battery
JP2001524736A (en) * 1997-11-26 2001-12-04 ジョンソン コントロールズ テクノロジー カンパニー Punched battery grid
JP2002260716A (en) * 2001-03-01 2002-09-13 Japan Storage Battery Co Ltd Lead battery
JP2006140032A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2007179898A (en) * 2005-12-28 2007-07-12 Shin Kobe Electric Mach Co Ltd Grid for wound type lead-acid storage battery
CN203312411U (en) * 2013-05-22 2013-11-27 双登集团股份有限公司 Positive grid of lead-acid storage battery

Also Published As

Publication number Publication date
JP6762976B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP6762974B2 (en) Positive electrode grid for lead-acid batteries and lead-acid batteries
US11158861B2 (en) Positive electrode grid body for lead-acid battery, and lead-acid battery
EP1900048B1 (en) Battery grid
JP2019153387A (en) Positive electrode lattice body for lead acid battery and lead acid battery
JP2000173575A (en) Lead-acid battery
JP6762975B2 (en) Positive electrode grid for lead-acid batteries and lead-acid batteries
JP7149046B2 (en) liquid lead acid battery
JP2001126735A (en) Lead accumulator
JP7169724B2 (en) liquid lead acid battery
JP4654477B2 (en) Cylindrical sealed lead-acid battery
JP2002222662A (en) Lead storage battery
JP4461697B2 (en) Cathode grid of lead-acid battery and lead-acid battery using the same
WO1982001277A1 (en) Battery plate grids
JP2024050130A (en) Positive electrode current collector and lead-acid battery using said positive electrode current collector
JP4802903B2 (en) Lead acid battery
JPH041650Y2 (en)
JP2006032027A (en) Manufacturing method of expanded grid for lead acid storage battery, grid by this, and lead acid storage battery using this grid
MXPA97007174A (en) Grades of lead acid battery, positive, improved and electric batteries and batteries using such rejil
JPH0817439A (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6762976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150