JP2019151406A - Silicon packaging bag, silicon packaging body, and silicon packaging method - Google Patents

Silicon packaging bag, silicon packaging body, and silicon packaging method Download PDF

Info

Publication number
JP2019151406A
JP2019151406A JP2019032468A JP2019032468A JP2019151406A JP 2019151406 A JP2019151406 A JP 2019151406A JP 2019032468 A JP2019032468 A JP 2019032468A JP 2019032468 A JP2019032468 A JP 2019032468A JP 2019151406 A JP2019151406 A JP 2019151406A
Authority
JP
Japan
Prior art keywords
silicon
packaging bag
polycrystalline silicon
inclusion
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019032468A
Other languages
Japanese (ja)
Other versions
JP7211154B2 (en
Inventor
成人 大野
Naruto Ono
成人 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2019151406A publication Critical patent/JP2019151406A/en
Application granted granted Critical
Publication of JP7211154B2 publication Critical patent/JP7211154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Packages (AREA)
  • Silicon Compounds (AREA)

Abstract

To provide a silicon packaging bag, a silicon packaging body and a silicon packaging method capable of suppressing generation of fine powder derived from a packaging bag due to contact between the packaging bag and lump polycrystalline silicon, and reducing carbon contamination on silicon surface.SOLUTION: A silicon packaging bag 1 for containing the lump polycrystalline silicon, comprises a bottom surface portion 4 and a side surface portion 2, 3 rising from periphery of the bottom surface portion, and also comprises an intervening member 20 contained in the silicon packaging bag and disposed between the lump polycrystalline silicon and the silicon packaging bag, in which the intervening member is arranged at least facing the bottom surface portion when the lump polycrystalline silicon is deemed to be a silicon packaging body stored in the silicon packaging bag.SELECTED DRAWING: Figure 1

Description

本発明は、単結晶シリコン等を製造する際に溶融原料として用いるシリコンを包装するシリコン用包装袋、シリコン包装体及びシリコンの包装方法に関する。   The present invention relates to a silicon packaging bag, a silicon packaging body, and a silicon packaging method for packaging silicon used as a melting raw material when manufacturing single crystal silicon or the like.

従来、シリコン半導体原料や太陽電池原料等に使用される多結晶シリコンは、例えば、シーメンス法による気相法によってロッド状に製造され、その後、原料として使用しやすいように切断や破砕されることにより、塊状の多結晶シリコン(以下、塊状多結晶シリコンという場合がある)とされる。この塊状多結晶シリコンは、洗浄や乾燥などの処理がなされ、包装や梱包されて出荷される。   Conventionally, polycrystalline silicon used for silicon semiconductor raw materials, solar cell raw materials, etc. is manufactured in a rod shape by, for example, a gas phase method by the Siemens method, and then cut or crushed so as to be easily used as a raw material. , Bulk polycrystalline silicon (hereinafter sometimes referred to as bulk polycrystalline silicon). The bulk polycrystalline silicon is subjected to processing such as washing and drying, and is packaged or packed before being shipped.

これら塊状多結晶シリコンにおいては、近年、品質要求が高まっており、その要求の1つとして、塊状多結晶シリコン表面の金属不純物や炭素不純物の低減が挙げられる。これらの不純物は、いずれも塊状多結晶シリコンを処理する過程において、該不純物を含有する装置や部品、部材などとの接触や当接によりその表面に付着するものが大半を占めるが、これらの不純物は最終工程での洗浄などにより除去されることで、品質が保たれている。しかしながら、有機物による塊状多結晶シリコン表面の汚染は、回避が困難である。このような有機物による塊状多結晶シリコン表面の汚染を抑制する方法としては、例えば、特許文献1及び2に記載された方法が知られている。   In recent years, quality requirements for these bulk polycrystalline silicon have increased, and one of the requirements is reduction of metal impurities and carbon impurities on the surface of the bulk polycrystalline silicon. Most of these impurities adhere to the surface by contact or contact with devices, parts, members, etc. containing the impurities in the process of processing bulk polycrystalline silicon. Is removed by washing in the final process, so that the quality is maintained. However, it is difficult to avoid contamination of the surface of the bulk polycrystalline silicon with organic substances. For example, methods described in Patent Documents 1 and 2 are known as methods for suppressing the contamination of the surface of the bulk polycrystalline silicon due to such organic substances.

特許文献1に記載の多結晶シリコンのクリーニング方法では、不活性ガス(例えば、アルゴン等)雰囲気下で350℃〜600℃で30秒間熱処理を行うことにより、塊状多結晶シリコンの表面炭素濃度を低減させている。
また、特許文献2に記載の多結晶シリコンの表面洗浄化方法では、塊状多結晶シリコンを不活性ガス雰囲気中で、180℃〜350℃の範囲の温度で熱処理を行うことにより、塊状多結晶シリコンの表面の有機物を除去している。
In the polycrystalline silicon cleaning method described in Patent Document 1, the surface carbon concentration of the bulk polycrystalline silicon is reduced by performing heat treatment at 350 ° C. to 600 ° C. for 30 seconds in an inert gas (eg, argon) atmosphere. I am letting.
In the method for cleaning the surface of polycrystalline silicon described in Patent Document 2, the bulk polycrystalline silicon is subjected to a heat treatment at a temperature in the range of 180 ° C. to 350 ° C. in an inert gas atmosphere. The organic matter on the surface is removed.

上述したように例えば、特許文献1及び2の方法を用いて表面上の有機物を除去し、シリコンを処理する工程において炭素不純物を洗浄などにより取り除いても、梱包された塊状多結晶シリコンの搬送時に炭素不純物が発生する場合がある。この炭素不純物は、主に炭素を原料とするプラスチックや樹脂の一部が塊状多結晶シリコン表面と接触して、塊状多結晶シリコン表面に付着することにより発生する。特に、塊状の多結晶シリコンは、脆性材料であることから切断や破砕などの加工がなされると、その端部やエッジ部が鋭利状態となることが多く、これらが上記プラスチック等に接触や当接した場合に汚染(プラスチック材の微粉末の発生)の原因となりやすい。特に、上記プラスチックや樹脂などで構成される包装材により塊状多結晶シリコンを包装・梱包した後の輸送段階において、塊状多結晶シリコンと包装材との接触は避けられず、輸送時の衝撃や振動により、塊状多結晶シリコンと包装材とが擦れ合うことにより上記微粉末の発生を招いている。
このような問題を解決するため、輸送時における塊状多結晶シリコンと包装材との擦れ合いや、削れ等による微粉末による汚染を低減する方法として、例えば、特許文献3、4及び5に記載の方法が知られている。
As described above, for example, when organic substances on the surface are removed using the methods of Patent Documents 1 and 2 and carbon impurities are removed by washing or the like in the process of treating silicon, the packed bulk polycrystalline silicon is transported. Carbon impurities may be generated. This carbon impurity is generated mainly when a part of plastic or resin made of carbon is in contact with the surface of the bulk polycrystalline silicon and adheres to the surface of the bulk polycrystalline silicon. In particular, lump-like polycrystalline silicon is a brittle material, and when it is cut or crushed, its ends and edges are often sharpened. When contacted, it tends to cause contamination (generation of fine powder of plastic material). In particular, contact between the bulk polycrystalline silicon and the packaging material is unavoidable in the transportation stage after the bulk polycrystalline silicon is wrapped and packed with the packaging material composed of the above-mentioned plastic or resin. As a result, the lump of polycrystalline silicon and the packaging material rub against each other, resulting in the generation of the fine powder.
In order to solve such a problem, as a method of reducing contamination by fine powder due to rubbing between the bulk polycrystalline silicon and the packaging material during transportation, scraping, etc., for example, described in Patent Documents 3, 4 and 5 The method is known.

特許文献3に記載の多結晶シリコンの輸送方法では、ロッド状の多結晶シリコンをガス難透過性フィルムにより密着固定した状態で輸送することで、輸送時の包装材と多結晶シリコンとが擦れることにより生じる包装材からの粉末の発生を抑制している。
また、特許文献4に記載のシリコンの梱包方法では、内側袋と外側袋とからなる二重構造の梱包体の内側袋に塊状多結晶シリコンを梱包し、該塊状多結晶シリコンを梱包した内側袋を、折り込み部をずらして外側袋に収容することにより、輸送中の塊状多結晶シリコンと包装袋との擦れによる微粉末の発生を低減している。
さらに、特許文献5に記載の多結晶シリコンの梱包方法では、多結晶シリコンと梱包材との接触面積を単位重量当たり一定以下とすることで、梱包材と塊状多結晶シリコンとの擦れによる微粉末を低減している。
In the method for transporting polycrystalline silicon described in Patent Document 3, the packaging material and the polycrystalline silicon at the time of transportation are rubbed by transporting the rod-shaped polycrystalline silicon in a state where the rod-shaped polycrystalline silicon is tightly fixed by the gas-permeable film. The generation | occurrence | production of the powder from the packaging material produced by is suppressed.
In addition, in the silicon packing method described in Patent Document 4, massive polycrystalline silicon is packaged in an inner bag of a double-structured packing body composed of an inner bag and an outer bag, and the inner bag is packed with the massive polycrystalline silicon. Is stored in the outer bag by shifting the folding portion, thereby reducing generation of fine powder due to rubbing between the bulk polycrystalline silicon being transported and the packaging bag.
Furthermore, in the method of packing polycrystalline silicon described in Patent Document 5, the fine powder caused by rubbing between the packing material and the bulk polycrystalline silicon is obtained by setting the contact area between the polycrystalline silicon and the packing material to be constant or less per unit weight. Is reduced.

特開2013−170122号公報JP2013-170122A 特開2016−56066号公報Japanese Patent Laid-Open No. 2006-56066 特開2002−68725号公報JP 2002-68725 A 特開2010−36981号公報JP 2010-36981 A 特開2006−143552号公報JP 2006-143552 A

しかしながら、特許文献3〜5に記載の方法では、塊状多結晶シリコン等を包装した後の輸送時の振動で生じる包装袋と塊状多結晶シリコン等との接触により生じる包装材の微粉発生レベルを抑制するものであり、それによる汚染を抑制する一定の効果は得られるものの、塊状多結晶シリコンの表面炭素汚染の観点による汚染の防止までは言及されていない。   However, in the methods described in Patent Documents 3 to 5, the generation level of fine powder generated in the packaging material due to the contact between the packaging bag and the bulk polycrystalline silicon caused by vibration during transportation after the bulk polycrystalline silicon is packaged is suppressed. However, there is no mention of prevention of contamination from the viewpoint of surface carbon contamination of the bulk polycrystalline silicon, although a certain effect of suppressing contamination by it can be obtained.

本発明は、このような事情に鑑みてなされたもので、包装袋と塊状多結晶シリコンとの接触による包装袋由来の微粉の発生を抑制するとともに、シリコン表面の炭素不純物汚染を低減できるシリコン用包装袋、シリコン包装体及びシリコンの包装方法を提供することを目的とする。   This invention was made in view of such a situation, and while suppressing generation | occurrence | production of the fine powder derived from a packaging bag by contact with a packaging bag and lump polycrystal silicon, it is for silicon | silicone which can reduce the carbon impurity contamination on the silicon surface. An object is to provide a packaging bag, a silicon package, and a silicon packaging method.

本発明のシリコン用包装袋は、底面部と該底面部の周縁から立ち上がる側面部とを有する塊状多結晶シリコンを収容するための包装袋本体と、前記包装袋本体に収容され、前記塊状多結晶シリコンと前記包装袋本体との間に配置される介在物と、を有し、前記介在物は、前記塊状多結晶シリコンが前記包装袋本体に収容されたシリコン包装体とされたときに、少なくとも前記底面部に対向して配置される。   The silicon packaging bag of the present invention includes a packaging bag main body for housing the bulk polycrystalline silicon having a bottom surface portion and a side surface portion rising from the peripheral edge of the bottom surface portion, and is accommodated in the packaging bag main body. An inclusion disposed between the silicon and the packaging bag body, and the inclusion is at least when the bulk polycrystalline silicon is a silicon packaging body accommodated in the packaging bag body. It arrange | positions facing the said bottom face part.

本発明では、包装袋本体内に収容される塊状多結晶シリコンと包装袋本体との間に介在物が配置され、短時間の輸送時などに最も擦れやすい包装袋本体の底面部に対向して介在物が配置されているので、塊状多結晶シリコンが包装袋本体の底面部に接触することを抑制できる。したがって、包装袋本体の底面部と塊状多結晶シリコンとの接触によるシリコン用包装袋由来の微粉の発生を抑制できる。これにより、微粉が塊状多結晶シリコン表面に付着することにより生じる塊状多結晶シリコン表面の炭素汚染を低減できる。   In the present invention, an inclusion is disposed between the bulk polycrystalline silicon accommodated in the packaging bag body and the packaging bag body, and faces the bottom surface of the packaging bag body that is most likely to be rubbed during short-time transportation. Since the inclusion is arranged, it is possible to suppress the massive polycrystalline silicon from coming into contact with the bottom surface portion of the packaging bag body. Therefore, generation | occurrence | production of the fine powder derived from the packaging bag for silicon | silicone by the contact of the bottom face part of a packaging bag main body and lump polycrystal silicon can be suppressed. Thereby, the carbon contamination of the bulk polycrystalline silicon surface which arises when fine powder adheres to the bulk polycrystalline silicon surface can be reduced.

本発明のシリコン用包装袋の好ましい態様としては、前記介在物は、前記塊状多結晶シリコンが前記包装袋本体に収容されたシリコン包装体とされたときに、前記底面部、前記側面部及び前記シリコン包装体の天面部のそれぞれに対向して配置されるとよい。   As a preferred embodiment of the packaging bag for silicon according to the present invention, the inclusion includes the bottom surface portion, the side surface portion, and the side portion when the bulk polycrystalline silicon is a silicon package body accommodated in the packaging bag body. It is good to arrange | position facing each of the top | upper surface part of a silicon | silicone package.

上記態様では、介在物が包装袋本体の底面部、側面部及びシリコン包装体の天面部のそれぞれに対向して配置されているので、塊状多結晶シリコンが包装袋本体の内表面に接触することを抑制できる。したがって、包装袋本体の内表面と塊状多結晶シリコンとの接触によるシリコン用包装袋由来の微粉の発生を抑制できる。これにより、微粉が塊状多結晶シリコン表面に付着することにより生じる塊状多結晶シリコン表面の炭素汚染をさらに低減できる。   In the said aspect, since inclusions are arrange | positioned facing each of the bottom face part of a packaging bag main body, a side surface part, and the top | upper surface part of a silicon | silicone packaging body, massive polycrystal silicon contacts the inner surface of a packaging bag main body. Can be suppressed. Therefore, generation | occurrence | production of the fine powder derived from the packaging bag for silicon | silicone by the contact of the inner surface of a packaging bag main body and lump polycrystalline silicon can be suppressed. Thereby, carbon contamination of the massive polycrystalline silicon surface caused by the fine powder adhering to the massive polycrystalline silicon surface can be further reduced.

本発明のシリコン用包装袋の好ましい態様としては、前記介在物は、板状に形成されているとよい。
上記態様では、介在物が板状に形成されているので、包装袋内に収容された塊状多結晶シリコンは、包装袋外部からの衝撃を介在物を通して受ける、すなわち、該衝撃を直接受けることがないため、包装袋の突き刺し破れなどが起きにくく、包装袋の損傷を軽減できる。
As a preferable aspect of the silicon packaging bag of the present invention, the inclusions may be formed in a plate shape.
In the above aspect, since the inclusion is formed in a plate shape, the massive polycrystalline silicon accommodated in the packaging bag receives an impact from the outside of the packaging bag through the inclusion, that is, directly receives the impact. Therefore, the packaging bag is not easily pierced and broken, and damage to the packaging bag can be reduced.

本発明のシリコン包装体は、上記シリコン用包装袋内にシリコンを収容し、封止してなる。   The silicon package of the present invention is formed by containing silicon in the silicon packaging bag and sealing it.

本発明のシリコンの包装方法は、底面部と該底面部の周縁から立ち上がる側面部とを有する包装袋本体内に、塊状多結晶シリコンとともに、該塊状多結晶シリコンと前記包装袋本体との間に配置される介在物を収容して封止し、前記介在物は、少なくとも前記底面部に対向するように前記包装袋本体内に配置される。   The silicon packaging method of the present invention includes a bulky polycrystal silicon and a bulk polycrystal silicon between the bulk polycrystal silicon and the packaging bag main body in a packaging bag main body having a bottom surface portion and a side surface portion rising from the periphery of the bottom surface portion. The inclusions to be arranged are accommodated and sealed, and the inclusions are arranged in the packaging bag body so as to face at least the bottom surface.

本発明のシリコンの包装方法の好ましい態様としては、前記介在物は、前記底面部、前記側面部及び前記塊状多結晶シリコンの収容後に形成される天面部のそれぞれに対向するように前記包装袋本体内に配置されるとよい。   As a preferable aspect of the silicon packaging method of the present invention, the inclusion is such that the inclusion is opposed to each of the bottom surface portion, the side surface portion, and the top surface portion formed after the bulk polycrystalline silicon is accommodated. It is good to arrange in.

本発明のシリコン用包装袋によれば、包装袋と塊状多結晶シリコンとの接触による包装袋由来の微粉の発生を抑制するとともに、シリコン表面の炭素不純物汚染を低減できる。   According to the packaging bag for silicon of the present invention, generation of fine powder derived from the packaging bag due to contact between the packaging bag and massive polycrystalline silicon can be suppressed, and contamination of carbon impurities on the silicon surface can be reduced.

本発明の第1実施形態に係るシリコン用包装袋の斜視図である。It is a perspective view of the packaging bag for silicon | silicone which concerns on 1st Embodiment of this invention. 上記実施形態におけるシリコン用包装袋を構成する包装袋本体の斜視図である。It is a perspective view of the packaging bag main body which comprises the packaging bag for silicon | silicone in the said embodiment. 上記実施形態におけるシリコンをシリコン用包装袋に収容する際の手順を説明する図である。It is a figure explaining the procedure at the time of accommodating the silicon | silicone in the said embodiment in the packaging bag for silicon | silicone. 本発明の第2実施形態に係るシリコン用包装袋の斜視図である。It is a perspective view of the packaging bag for silicon | silicone which concerns on 2nd Embodiment of this invention. 上記実施形態における包装袋本体内に配置される状態の介在物を示す斜視図である。It is a perspective view which shows the inclusion of the state arrange | positioned in the packaging bag main body in the said embodiment.

以下、本発明に係るシリコン用包装袋、シリコン包装体及びシリコン包装方法の実施形態について図面を用いて説明する。
[第1実施形態]
図1は、本実施形態のシリコン用包装袋1を示す斜視図である。
本実施形態では、シリコン用包装袋1は、図1に示すように、1枚の包装袋本体10と、該包装袋本体10内に収容される介在物20とにより構成されている。
[包装袋本体の構成]
シリコン用包装袋1の包装袋本体10は、例えばポリエチレンなどの合成樹脂等の透明フィルムから構成され、図2に示すように、4つの側面部2,2,3,3と底面部4とを備えた横断面略長方形状の形状を有しており、4つの側面部2,2,3,3のうち対向する一対の側面部3,3には、該包装袋1を小さく折り畳むことができるようにするため内側に向かって折り目が設けられている。未使用時においては、包装袋本体10はこの折り目に沿って畳まれてコンパクトなものとされており、使用時に広げることによって袋状になるようにされている。
Hereinafter, embodiments of a silicon packaging bag, a silicon packaging body, and a silicon packaging method according to the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a perspective view showing a silicon packaging bag 1 of the present embodiment.
In this embodiment, the packaging bag 1 for silicon | silicone is comprised by the one packaging bag main body 10 and the inclusion 20 accommodated in this packaging bag main body 10, as shown in FIG.
[Configuration of the packaging bag body]
The packaging bag main body 10 of the packaging bag 1 for silicon is comprised from transparent films, such as synthetic resins, such as polyethylene, for example, and as shown in FIG. 2, four side surface parts 2,2,3,3 and the bottom face part 4 are comprised. The packaging bag 1 can be folded small into a pair of opposing side surface portions 3 and 3 among the four side surface portions 2, 2, 3 and 3. In order to do so, a crease is provided inward. When not in use, the packaging bag main body 10 is folded along the crease to be compact, and is formed into a bag shape by spreading when used.

この包装袋本体10においては、底面部4はフィルムの一端において、一対の側面部2の端部の内側面同士が合掌するように重ね合わさられ、これらをシール装置により封止することによって、底シール部6が形成される。
また、本実施形態においては、単結晶シリコンの原料となる塊状多結晶シリコンWを主な梱包対象としている。
In this packaging bag body 10, the bottom surface portion 4 is overlapped at one end of the film so that the inner surfaces of the end portions of the pair of side surface portions 2 are joined together, and these are sealed by a sealing device. A seal portion 6 is formed.
In the present embodiment, bulk polycrystalline silicon W, which is a raw material for single crystal silicon, is mainly targeted for packing.

[介在物の構成]
介在物20は、図1に示すように、包装袋本体10に収容され、塊状多結晶シリコンWと包装袋本体10との間に配置される部材である。このような介在物20は、図1に示すように、塊状多結晶シリコンWが包装袋本体10に収容されたシリコン包装体100とされたときに、包装袋本体10の底面部4、4つの側面部2,2,3,3及びシリコン包装体100(図3(c)参照)の天面部5のそれぞれに対向されて配置される。
[Composition of inclusions]
As shown in FIG. 1, the inclusion 20 is a member that is accommodated in the packaging bag body 10 and disposed between the bulk polycrystalline silicon W and the packaging bag body 10. As shown in FIG. 1, the inclusion 20 has a bottom surface portion 4, four pieces of the packaging bag body 10 when the bulk polycrystalline silicon W is formed into the silicon package 100 accommodated in the packaging bag body 10. It arrange | positions facing each of the side part 2,2,3,3 and the top | upper surface part 5 of the silicon | silicone package 100 (refer FIG.3 (c)).

このような介在物20は、厚さ約3mm〜約7mmの板状のシリコンにより構成されており、図3(a)に示すように、底面部4に対向する底板21、4つの側面部2,2,3,3のそれぞれに対向する側板22〜25及び天面部5に対向する天板26が配置される。具体的には、各板21〜26は、矩形状に形成され、底板21の各辺に対して各側板22〜25の一辺が沿うように配置される。これら各側板22〜25の上部には、天板26が配置されている。   Such inclusions 20 are made of plate-like silicon having a thickness of about 3 mm to about 7 mm. As shown in FIG. 3A, the bottom plate 21 facing the bottom surface portion 4, the four side surface portions 2. , 2, 3, 3 are arranged on the side plates 22 to 25 and the top plate 26 facing the top surface 5. Specifically, each of the plates 21 to 26 is formed in a rectangular shape, and is arranged so that one side of each of the side plates 22 to 25 is along each side of the bottom plate 21. A top plate 26 is disposed above the side plates 22 to 25.

[塊状多結晶シリコンの包装方法]
次に、塊状多結晶シリコンWの包装方法の具体的手順について説明する。まず、図3(a)に示すように、包装袋本体10に介在物20を収納する。この際、包装袋本体10の底面部4に対向する位置に介在物20の底板21を配置する。その後、底板21の各辺に沿うように各側板22、23、24、25を順次包装袋本体10の側面部2,3に対向する位置にそれぞれ配置する。この時点で包装袋本体10内には介在物20で囲まれた空間が形成される。そして、包装袋本体10の内表面に極力擦れなどが生じないように所定量(例えば、5kg)の塊状多結晶シリコンWを充填する。この塊状多結晶シリコンWを投入した後、介在物20の天板26を各側板22〜25の上部側に配置する。これにより、塊状多結晶シリコンWの包装袋本体10の内表面への接触が抑制される。
[Packaging method for bulk polycrystalline silicon]
Next, a specific procedure of the packaging method for the bulk polycrystalline silicon W will be described. First, as shown in FIG. 3A, the inclusion 20 is stored in the packaging bag body 10. At this time, the bottom plate 21 of the inclusion 20 is disposed at a position facing the bottom surface portion 4 of the packaging bag body 10. Thereafter, the side plates 22, 23, 24, and 25 are sequentially disposed at positions facing the side surface portions 2 and 3 of the packaging bag body 10 along the sides of the bottom plate 21. At this time, a space surrounded by the inclusions 20 is formed in the packaging bag body 10. Then, a predetermined amount (for example, 5 kg) of massive polycrystalline silicon W is filled so that the inner surface of the packaging bag body 10 is not rubbed as much as possible. After the massive polycrystalline silicon W is introduced, the top plate 26 of the inclusion 20 is disposed on the upper side of each side plate 22-25. Thereby, the contact of the massive polycrystalline silicon W to the inner surface of the packaging bag body 10 is suppressed.

次に、図3(b)に示すように、包装袋本体10の上端の開口部において、折り目のついていない一対の側面部2,2の内側面同士を合掌するように重ね合わせて余長部8を形成する。その後、余長部8の上端部の水平方向に沿って熱シールすることで、包装袋本体10は封止される。そして、図4(c)に示すように、この余長部8を複数回折り畳むことにより帯状の折り畳み部9を形成し、塊状多結晶シリコンWの包装袋本体10への充填手順が終了する。
このようにしてシリコン用包装袋1に塊状多結晶シリコンWが収容されることにより、シリコン包装体100が形成される。
なお、上記の塊状多結晶シリコンWの包装方法において、配置する介在物20のサイズに関して、包装袋本体10の底面部4の大きさに合わせて底板21のサイズは適宜大きさを選定できる。また、包装袋本体10内に充填する塊状多結晶シリコンWの充填量や底板21の大きさに合わせて、配置する側板22〜25の大きさも適宜選定できる。また、天板26のサイズについても同様に、底板21のサイズに合わせて適宜大きさを選定できるものとする。
また、包装袋本体10内に配置する介在物20(各板21〜26)は、包装袋本体10の内表面側のエッジ部が面取りされていることが好ましい。エッジ部の面取りを施すことで、介在物20の包装袋本体10内への配置時などにおいて、介在物20が包装袋本体10の内表面との接触などにより包装袋本体10内において微粉などが生じにくくなるため、収容された塊状多結晶シリコンWへの付着も回避することができる。
Next, as shown in FIG.3 (b), in the opening part of the upper end of the packaging bag main body 10, it overlaps so that the inner side surfaces of a pair of side surface parts 2 and 2 which are not creased may be palm-joined, and a surplus length part 8 is formed. Then, the packaging bag main body 10 is sealed by heat-sealing along the horizontal direction of the upper end part of the extra length part 8. FIG. Then, as shown in FIG. 4 (c), a plurality of the extra length portions 8 are folded to form a band-like folded portion 9, and the filling procedure of the bulk polycrystalline silicon W into the packaging bag body 10 is completed.
In this way, when the bulk polycrystalline silicon W is accommodated in the silicon packaging bag 1, the silicon package 100 is formed.
In addition, in the packaging method for the bulk polycrystalline silicon W, the size of the bottom plate 21 can be appropriately selected according to the size of the bottom surface portion 4 of the packaging bag body 10 with respect to the size of the inclusions 20 to be arranged. Further, the sizes of the side plates 22 to 25 to be arranged can be appropriately selected according to the filling amount of the bulk polycrystalline silicon W filled in the packaging bag body 10 and the size of the bottom plate 21. Similarly, the size of the top plate 26 can be appropriately selected according to the size of the bottom plate 21.
Moreover, it is preferable that the inclusion 20 (each board 21-26) arrange | positioned in the packaging bag main body 10 is chamfered at the edge part of the inner surface side of the packaging bag main body 10. FIG. By chamfering the edge portion, when the inclusion 20 is placed in the packaging bag main body 10, fine particles etc. are generated in the packaging bag main body 10 due to contact of the inclusion 20 with the inner surface of the packaging bag main body 10. Since it becomes difficult to occur, adhesion to the accommodated bulk polycrystalline silicon W can also be avoided.

本実施形態では、包装袋本体10内に収容される塊状多結晶シリコンWと包装袋本体10との間に介在物20が配置され、介在物20が包装袋本体10の底面部4、側面部2,2,3,3及びシリコン包装体100の天面部5のそれぞれに対向して配置されているので、塊状多結晶シリコンWが包装袋本体10の表面に接触することを抑制できる。したがって、包装袋本体10と塊状多結晶シリコンWとの接触によるシリコン用包装袋1由来の微粉の発生を抑制できる。また、この微粉の発生の抑制により、該微粉が塊状多結晶シリコンWの表面に付着することにより生じる塊状多結晶シリコンWの表面の炭素汚染を低減できる。   In the present embodiment, the inclusion 20 is disposed between the bulk polycrystalline silicon W accommodated in the packaging bag main body 10 and the packaging bag main body 10, and the inclusion 20 is the bottom surface portion 4 and the side surface portion of the packaging bag main body 10. Since 2, 2, 3, 3 and the top surface portion 5 of the silicon package 100 are arranged to face each other, it is possible to suppress the massive polycrystalline silicon W from contacting the surface of the packaging bag body 10. Therefore, generation | occurrence | production of the fine powder derived from the packaging bag 1 for silicon | silicone by the contact with the packaging bag main body 10 and the lump polycrystalline silicon W can be suppressed. Further, by suppressing the generation of fine powder, carbon contamination of the surface of the bulk polycrystalline silicon W caused by the fine powder adhering to the surface of the bulk polycrystalline silicon W can be reduced.

また、介在物20が板状に形成されているので、シリコン用包装袋1内に収容された塊状多結晶シリコンWは、シリコン用包装袋1の外部からの衝撃をシリコン用包装袋1を通して受ける、すなわち、該衝撃を直接受けることがないため、シリコン用包装袋1(包装袋本体10)の突き刺し破れなどが起きにくく、包装袋本体10の損傷を軽減できる。また、底板21も板状の介在物20により構成されているため、その取扱い等において、シリコン用包装袋1を載置する際の安定性が確保できる。このため、シリコン用包装袋1の倒れ防止や輸送時等の梱包体内での揺れなどが起きにくくなることで、シリコン用包装袋1の側面部2,3や側面部2,3及び天面部5と包装袋を収容する梱包箱やその内部の仕切板との接触も低減できるため、シリコン用包装袋1の側面部2,3からの微粉の発生を抑制できる。さらに、梱包箱内での揺れが起こりにくくなることで、シリコン用包装袋1内での塊状多結晶シリコンW同士の接触部におけるシリコン微粉の発生も抑制される。   Further, since the inclusion 20 is formed in a plate shape, the massive polycrystalline silicon W accommodated in the silicon packaging bag 1 receives an impact from the outside of the silicon packaging bag 1 through the silicon packaging bag 1. That is, since the impact is not directly received, the silicon packaging bag 1 (packaging bag body 10) is not easily pierced and broken, and damage to the packaging bag body 10 can be reduced. Further, since the bottom plate 21 is also composed of the plate-like inclusions 20, it is possible to ensure stability when the silicon packaging bag 1 is placed in handling or the like. For this reason, the side parts 2, 3 and the side parts 2, 3 and the top part 5 of the silicon packaging bag 1 are prevented by preventing the silicon packaging bag 1 from collapsing and being less likely to be shaken in the packaging body during transportation. Since the contact with the packaging box for storing the packaging bag and the partition plate inside the packaging bag can also be reduced, generation of fine powder from the side surface portions 2 and 3 of the packaging bag 1 for silicon can be suppressed. Furthermore, since it becomes difficult for the shaking in the packing box to occur, generation of silicon fine powder at the contact portion between the massive polycrystalline silicon Ws in the silicon packaging bag 1 is also suppressed.

[第2実施形態]
次に、本発明の第2実施形態について図面を用いて説明する。
図4は、第2実施形態に係るシリコン用包装袋1Aを示す斜視図であり、図5は、図4に示すシリコン用包装袋1Aを構成する介在物20Aを示す斜視図である。
本実施形態に係るシリコン用包装袋1Aは、介在物20Aが6枚の略円形状の板状部材201により構成されている。
なお、以下の説明では、第1実施形態と同一又は略同一の構成については、同じ番号を付し、説明を省略又は簡略化して説明する。
シリコン用包装袋1Aは、包装袋本体10と介在物20Aを備える。介在物20Aは、6枚の略円形状の板状部材201を備えている。板状部材201のそれぞれは、例えば、多結晶シリコンロッドから切り出された厚さ約5mm〜10mmの多結晶シリコン板により構成されている。
ここで、本実施形態で使用する介在物20Aの不純物濃度は、包装袋本体10に収容する塊状多結晶シリコンWと同等かそれより不純物濃度が低いものが望ましい。塊状多結晶シリコンWの包装袋本体10内への収容時、及び収容後の介在物20Aとの接触により、塊状多結晶シリコンW表面の汚染を発生させないようにするためである。このため、介在物20Aを包装袋本体10内へ配置する前には、酸性系のエッチング液(例えば、弗酸および硝酸)による表面エッチングや純水による表面リンスなどを行うことにより、表面の不純物を除去することが望ましい。
これにより、塊状多結晶シリコンW表面の不純物濃度(例えば、炭素不純物濃度)と、板状部材201の表面の不純物濃度とは同程度の品質を維持できる。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 4 is a perspective view showing a silicon packaging bag 1A according to the second embodiment, and FIG. 5 is a perspective view showing an inclusion 20A constituting the silicon packaging bag 1A shown in FIG.
In the silicon packaging bag 1A according to the present embodiment, the inclusion 20A is composed of six substantially circular plate-like members 201.
In the following description, the same or substantially the same configuration as that of the first embodiment will be denoted by the same reference numeral, and description thereof will be omitted or simplified.
The silicon packaging bag 1A includes a packaging bag body 10 and inclusions 20A. The inclusion 20A includes six substantially circular plate-like members 201. Each of the plate-like members 201 is composed of, for example, a polycrystalline silicon plate having a thickness of about 5 mm to 10 mm cut out from a polycrystalline silicon rod.
Here, the impurity concentration of the inclusion 20A used in the present embodiment is preferably the same as or lower than that of the bulk polycrystalline silicon W housed in the packaging bag body 10. This is to prevent contamination of the surface of the bulk polycrystalline silicon W when it is accommodated in the packaging bag body 10 and in contact with the inclusions 20A after the storage. For this reason, before the inclusion 20A is disposed in the packaging bag body 10, surface impurities can be obtained by performing surface etching with an acidic etching solution (for example, hydrofluoric acid and nitric acid) or surface rinsing with pure water. It is desirable to remove.
Thereby, the quality of the impurity concentration (for example, carbon impurity concentration) on the surface of the bulk polycrystalline silicon W and the impurity concentration on the surface of the plate-like member 201 can be maintained at the same level.

このような板状部材201は、図4及び図5に示すように、包装袋本体10の底面部4、側面部2,2,3,3及び天面部5のそれぞれに対向する位置に配置される。すなわち、板状部材201のそれぞれは、本発明の底板、側板及び天板に相当する。
また、各板状部材201は、シリコン用包装袋1Aに塊状多結晶シリコンWを収容する際には、包装袋本体10内の底面部4及び側面部2,2,3,3のそれぞれに対向する位置に本発明の底板及び側板に相当する5枚の板状部材201を配置した後、塊状多結晶シリコンWを充填し、介在物20Aの天板に相当する板状部材201を各側板に相当する板状部材201の上部側に配置する。
As shown in FIGS. 4 and 5, such a plate-like member 201 is disposed at a position facing the bottom surface portion 4, the side surface portions 2, 2, 3, 3 and the top surface portion 5 of the packaging bag body 10. The That is, each of the plate-like members 201 corresponds to the bottom plate, the side plate, and the top plate of the present invention.
Each plate-like member 201 is opposed to each of the bottom surface portion 4 and the side surface portions 2, 2, 3, and 3 in the packaging bag body 10 when the bulk polycrystalline silicon W is accommodated in the silicon packaging bag 1A. After placing the five plate-like members 201 corresponding to the bottom plate and the side plate of the present invention at the position to be filled, the bulk polycrystalline silicon W is filled, and the plate-like member 201 corresponding to the top plate of the inclusion 20A is placed on each side plate. It arrange | positions at the upper part side of the corresponding plate-shaped member 201. FIG.

本実施形態では、介在物20A(各板状部材201)を多結晶シリコンロッドから切り出された多結晶シリコン板により構成することとしているので、その加工処理を容易にできる。また、介在物20A(各板状部材201)が多結晶シリコンにより構成され、介在物20A自体が包装袋本体10内に収容される塊状多結晶シリコンWと同質であるので、介在物20Aの品質を維持し易い。また、介在物20Aにおける包装袋本体10の内表面と接触する側のエッジ部を面取りすることで、包装袋本体10との接触時の包装袋本体10の摩耗も低減でき、包装袋本体10からの微粉末の発生もさらに抑制できる。
なお、本実施形態において、介在物20A自体の品質が塊状多結晶シリコンWとそん色ない場合には、介在物20Aを塊状多結晶シリコンWと同様に、シリコン半導体原料や太陽電池原料の一部として利用してもよい。
In the present embodiment, the inclusion 20A (each plate-like member 201) is made of a polycrystalline silicon plate cut out from the polycrystalline silicon rod, so that the processing can be facilitated. Further, since the inclusions 20A (each plate-like member 201) are made of polycrystalline silicon, and the inclusions 20A themselves are the same as the bulk polycrystalline silicon W accommodated in the packaging bag body 10, the quality of the inclusions 20A Easy to maintain. Further, by chamfering the edge portion of the inclusion 20A that comes into contact with the inner surface of the packaging bag body 10, the wear of the packaging bag body 10 at the time of contact with the packaging bag body 10 can be reduced. The generation of fine powder can be further suppressed.
In this embodiment, when the quality of the inclusion 20A itself is not comparable to the bulk polycrystalline silicon W, the inclusion 20A is a part of the silicon semiconductor raw material or the solar cell raw material, like the bulk polycrystalline silicon W. It may be used as

なお、本発明は上記各実施形態に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、底板21の塊状多結晶シリコンWの収容側の面(上面)には、溝加工が形成されていてもよい。包装袋本体10内に収容された塊状多結晶シリコンWは、包装後の移動や輸送に際し、包装袋本体10内でシリコン同士が接触・衝突などにより、シリコン粉やかけらが発生する。これらは、塊状多結晶シリコンWの使用に際しては、不純物の要因にもなることから、極力塊状多結晶シリコンWへの付着は避けることが望ましい。この場合、底板21の上面に溝が形成されているので、発生したシリコン小片やシリコン粉を溝内に移動させて塊状多結晶シリコンW表面への付着を低減できる。なお、底板21への溝加工は、底板21の強度が低下しない程度に底板21内方面に対してV字溝や矩形状溝、U字形溝を複数形成することでもよい。
In addition, this invention is not limited to said each embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, a groove process may be formed on the surface (upper surface) of the bottom plate 21 on the side where the massive polycrystalline silicon W is accommodated. When the bulk polycrystalline silicon W accommodated in the packaging bag body 10 is moved or transported after packaging, silicon powder or fragments are generated in the packaging bag body 10 due to contact or collision between the silicon. Since these also cause impurities when the bulk polycrystalline silicon W is used, it is desirable to avoid adhesion to the bulk polycrystalline silicon W as much as possible. In this case, since the groove is formed on the upper surface of the bottom plate 21, it is possible to reduce the adhesion to the surface of the bulk polycrystalline silicon W by moving the generated silicon pieces and silicon powder into the groove. The groove processing on the bottom plate 21 may be performed by forming a plurality of V-shaped grooves, rectangular grooves, and U-shaped grooves on the inner surface of the bottom plate 21 so that the strength of the bottom plate 21 does not decrease.

上記第2実施形態では、塊状多結晶シリコンW表面の不純物濃度(例えば、炭素不純物濃度)と、板状部材201(介在物20A)の表面の不純物濃度とは同程度の品質を有していることとしたが、これに限らず、板状部材201の表面の不純物濃度は、塊状多結晶シリコンW表面の不純物濃度より低くてもよい。この場合、塊状多結晶シリコンWが該塊状多結晶シリコンWの炭素不純物濃度と同等かそれよりも低いレベルの炭素不純物濃度の介在物を介して包装袋本体10内に充填されているため、塊状多結晶シリコンが介在物と接触した際に炭素不純物汚染が発生しない。
なお、上記第2実施形態では、包装袋本体10内に板状部材201(介在物20A)を収容する前にエッチングや純水等による表面リンス処理を行うこととしたが、これに限らず、介在物20Aの表面品質が塊状多結晶シリコンWと同等以上であればこれらのエッチングや表面リンス処理を行うことなく、介在物20Aを包装袋本体10内に収容してもよい。これは、第1実施形態においても同様である。
In the second embodiment, the impurity concentration (for example, carbon impurity concentration) on the surface of the bulk polycrystalline silicon W and the impurity concentration on the surface of the plate-like member 201 (inclusion 20A) have the same quality. However, the present invention is not limited to this, and the impurity concentration on the surface of the plate-like member 201 may be lower than the impurity concentration on the surface of the bulk polycrystalline silicon W. In this case, since the bulk polycrystalline silicon W is filled in the packaging bag body 10 via inclusions having a carbon impurity concentration equal to or lower than the carbon impurity concentration of the bulk polycrystalline silicon W, Carbon impurity contamination does not occur when polycrystalline silicon comes into contact with inclusions.
In the second embodiment, the surface rinsing process such as etching or pure water is performed before the plate-like member 201 (inclusion 20A) is accommodated in the packaging bag body 10, but not limited thereto. If the surface quality of the inclusion 20A is equal to or higher than that of the bulk polycrystalline silicon W, the inclusion 20A may be accommodated in the packaging bag body 10 without performing these etching and surface rinsing processes. The same applies to the first embodiment.

上記第1実施形態では、介在物20をシリコン板により構成することとしたが、これに限らず、例えば、石英製板により介在物20を構成し、その表面にシリコンをコーティングしたものを介在物として用いてもよい。
上記各実施形態では、介在物20,20Aを板状物としたが、これに限らず、例えば、シリカクロスのような板状物以外のもので介在物を構成してもよい。すなわち、収容する塊状多結晶シリコンWと包装袋本体10の内表面との接触がない状態で包装封止できるものであれば、その形状は問わない。なお、シリカクロスとしては、耐熱性、熱衝撃性、柔軟性、及び断熱性が高く、化学的に安定しているシリカファイバー紡績品を例示できる。
In the first embodiment, the inclusion 20 is made of a silicon plate. However, the present invention is not limited to this. For example, the inclusion 20 is made of a quartz plate and the surface thereof is coated with silicon. It may be used as
In each said embodiment, although the inclusions 20 and 20A were made into the plate-shaped object, it is not restricted to this, For example, you may comprise an inclusion with things other than plate-shaped objects like a silica cloth. That is, the shape is not limited as long as it can be packaged and sealed without contact between the bulk polycrystalline silicon W to be accommodated and the inner surface of the packaging bag body 10. In addition, as a silica cloth, the heat-resistant, thermal shock property, a softness | flexibility, and heat insulation are high, and the silica fiber spinning product which is chemically stable can be illustrated.

なお、上記実施形態では、介在物20,20Aを包装袋本体10の底面部4、天面部5及び側面部2,3のそれぞれに対向して配置することとしたが、これに限らず、例えば、底面部4及び天面部5のそれぞれに対向して配置してもよいし、底面部4及び側面部2,3のそれぞれに対向して配置することとしてもよい。すなわち、介在物20,20Aは、少なくとも底面部4に対向して配置されていればよい。   In the above-described embodiment, the inclusions 20 and 20A are disposed to face the bottom surface portion 4, the top surface portion 5 and the side surface portions 2 and 3 of the packaging bag body 10, respectively. The bottom surface portion 4 and the top surface portion 5 may be disposed to face each other, or the bottom surface portion 4 and the side surface portions 2 and 3 may be disposed to face each other. In other words, the inclusions 20 and 20 </ b> A only need to be disposed to face at least the bottom surface portion 4.

上記各実施形態では、包装袋本体10内には塊状多結晶シリコンWが略5kg充填されることとしたが、これに限らず、塊状多結晶シリコンWの包装袋本体10への充填量は、適宜変更できる。   In each of the embodiments described above, the packaging bag body 10 is filled with approximately 5 kg of massive polycrystalline silicon W. However, the present invention is not limited to this, and the filling amount of the massive polycrystalline silicon W into the packaging bag body 10 is as follows. It can be changed appropriately.

長辺のサイズが略5〜15mmの塊状多結晶シリコンを底面のサイズが略140mm角、高さが略400mm、厚さ略0.3mmのポリエチレン製のシリコン用包装袋に充填し、充填後の包装袋に対し、以下の実験を行った。なお、シリコン用包装袋に収容した塊状多結晶シリコンとしては、硝酸及びフッ酸からなる薬液により表面をエッチングし、純水によりリンスして乾燥させた後、約700℃で60分加熱して、表面の有機物を除去したものを使用した。   The polycrystal silicon having a long side size of about 5 to 15 mm is filled in a polyethylene silicon packaging bag having a bottom size of about 140 mm square, a height of about 400 mm, and a thickness of about 0.3 mm. The following experiment was performed on the packaging bag. The bulk polycrystalline silicon contained in the silicon packaging bag is etched with a chemical solution composed of nitric acid and hydrofluoric acid, rinsed with pure water, dried, heated at about 700 ° C. for 60 minutes, What removed the organic substance on the surface was used.

実施例1及び2については、多結晶シリコンロッドから切り出した厚さ5mm、平面視で直径130mm、角部が面取りされた円柱型の板状物をフッ酸及び硝酸の混合液からなる薬液で表面をエッチングした後、純水で薬液を除去し、乾燥させたシリコン板からなる介在物をシリコン用包装袋内に配置した後、略5kgの塊状多結晶シリコンを充填して、シリコン包装体を形成した。具体的には、実施例1では、シリコン用包装袋の底面にのみ介在物(底板)を配置して塊状多結晶シリコンを充填した後、包装袋本体の上端の開口部において、折り目のついていない一対の側面部の内側面同士を合掌するように重ね合わせて余長部を形成した後、余長部の上端部を水平方向に沿って熱シールすることで、包装袋本体を封止し、余長部を複数回折り畳むことにより帯状の折り畳み部を形成して、シリコン包装体を形成した。また、実施例2では、上記介在物(底板、側板)をシリコン用包装袋の底面及び側面に対向するように配置した後、略5kgの塊状多結晶シリコンを充填して、各側面に対向して配置した介在物(側板)の上部側に介在物(天板)を配置して、シリコン包装体を形成した。なお、熱シールの方法は、実施例1と同じである。
一方、比較例1では、シリコン用包装袋内に介在物を配置することなく、略5kgの塊状多結晶シリコンを各実施例と同様に充填し、実施例1と同じ方法で熱シールすることにより、シリコン包装体を形成した。なお、実施例1、2及び比較例1の各包装体は、それぞれ2袋ずつ作製し、一方のシリコン包装体をサンプル1とし、他方のシリコン包装体をサンプル2とした。
For Examples 1 and 2, a cylindrical plate having a thickness of 5 mm cut from a polycrystalline silicon rod, a diameter of 130 mm in plan view, and chamfered corners is treated with a chemical solution composed of a mixture of hydrofluoric acid and nitric acid. After etching, the chemical solution is removed with pure water, and inclusions made of dried silicon plates are placed in a silicon packaging bag, and then filled with about 5 kg of bulk polycrystalline silicon to form a silicon package. did. Specifically, in Example 1, the inclusion (bottom plate) is disposed only on the bottom surface of the silicon packaging bag and filled with massive polycrystalline silicon, and then there is no crease in the opening at the upper end of the packaging bag body. After overlapping the inner side surfaces of the pair of side surface portions to form a surplus length portion, the upper end portion of the surplus length portion is heat-sealed along the horizontal direction to seal the packaging bag body, A band-shaped folded part was formed by folding the surplus part a plurality of times to form a silicon package. Further, in Example 2, the inclusions (bottom plate, side plate) are disposed so as to face the bottom and side surfaces of the silicon packaging bag, and then filled with approximately 5 kg of massive polycrystalline silicon and face each side surface. The inclusions (top plate) were arranged on the upper side of the inclusions (side plates) arranged to form a silicon package. The heat sealing method is the same as in the first embodiment.
On the other hand, in Comparative Example 1, without placing inclusions in the silicon packaging bag, approximately 5 kg of bulk polycrystalline silicon was filled in the same manner as in each Example, and heat sealed in the same manner as in Example 1. A silicon package was formed. In addition, each packaging body of Examples 1 and 2 and Comparative Example 1 was produced by two bags each, and one silicon packaging body was set as sample 1 and the other silicon packaging body was set as sample 2.

実験内容としては、上述したように作製した実施例1、2及び比較例1のシリコン包装体(サンプル1及び2)を段ボール製の梱包箱に収容し、それぞれの梱包箱をトラックの荷台に乗せて、平均時速50kmで2時間走行した後、シリコン包装体のシリコン用包装袋を開封してシリコン製のトレーに全ての塊状多結晶シリコンを取り出し、各2袋のシリコン包装体のシリコン製のトレーに取り出した全ての塊状多結晶シリコンのそれぞれから任意の3個の塊状多結晶シリコンについて加熱温度約700℃で3分の燃焼により発生するCO及びCOについて、IR(Infrared spectroscopic analysis)測定を行って、これら3個の塊状多結晶シリコンに含まれる炭素濃度を分析し、その平均値を表1に示した。 As experimental contents, the silicon packaging bodies (Samples 1 and 2) of Examples 1 and 2 and Comparative Example 1 produced as described above are accommodated in a cardboard packaging box, and each packaging box is placed on a truck bed. After running for 2 hours at an average speed of 50 km, the silicon packaging bag of the silicon package is opened and all the bulk polycrystalline silicon is taken out of the silicon tray, and each of the two silicon bags is made of silicon. IR (Infrared spectroscopic analysis) measurement is performed on CO and CO 2 generated by combustion for 3 minutes at a heating temperature of about 700 ° C. for any three pieces of bulk polycrystalline silicon extracted from The carbon concentration contained in these three bulk polycrystalline silicon was analyzed, and the average value is shown in Table 1. .

Figure 2019151406
Figure 2019151406

表1に示すように、介在物を配置した場合、配置しない場合に比べて塊状シリコンの表面炭素濃度が高い傾向を示すことが確認された。また、介在物の配置場所については、底板のみでも効果はあるが、底板、側板及び天板を設置することによって、表面炭素濃度の低減により大きな効果を発揮することが確認された。また、表面炭素濃度の分析用塊状シリコンのサンプリング時に袋の状態を確認したところ、表面炭素濃度の高いものほど、充填時や輸送時の袋と塊状シリコンの擦れによると思われる押圧跡や削れ跡が多くあった。   As shown in Table 1, it was confirmed that when inclusions were arranged, the surface carbon concentration of massive silicon tends to be higher than when no inclusions were arranged. Moreover, about the arrangement | positioning location of an inclusion, although only a bottom plate has an effect, it was confirmed by installing a bottom plate, a side plate, and a top plate that a big effect is exhibited by reduction of surface carbon concentration. In addition, the state of the bag was confirmed during sampling of the bulk silicon for analysis of the surface carbon concentration. The higher the surface carbon concentration, the more likely the press marks and scraped traces are thought to be due to rubbing between the bag and the bulk silicon during filling and transportation. There were many.

1 シリコン用包装袋
2、3 側面部
4 底面部
5 天面部
6 底シール部
8 余長部
9 折り畳み部
10 包装袋本体
20 20A 介在物
21 底板
22 23 24 25 側板
26 天板
100 シリコン包装体
201 板状部材
W 塊状多結晶シリコン
DESCRIPTION OF SYMBOLS 1 Silicon packaging bag 2, 3 Side surface part 4 Bottom surface part 5 Top surface part 6 Bottom seal part 8 Excess length part 9 Folding part 10 Packaging bag main body 20 20A Inclusion 21 Bottom plate 22 23 24 25 Side plate 26 Top plate 100 Silicon packaging body 201 Plate member W Lumped polycrystalline silicon

Claims (6)

底面部と該底面部の周縁から立ち上がる側面部とを有する塊状多結晶シリコンを収容するための包装袋本体と、
前記包装袋本体に収容され、前記塊状多結晶シリコンと前記包装袋本体との間に配置される介在物と、を有し、
前記介在物は、前記塊状多結晶シリコンが前記包装袋本体に収容されたシリコン包装体とされたときに、少なくとも前記底面部に対向して配置されることを特徴とするシリコン用包装袋。
A packaging bag body for containing bulk polycrystalline silicon having a bottom surface and a side surface rising from the periphery of the bottom surface;
Contained in the packaging bag body, and has inclusions disposed between the bulk polycrystalline silicon and the packaging bag body,
The said inclusion is arrange | positioned facing the said bottom face part at least when the said polycrystal silicon is made into the silicon package body accommodated in the said packaging bag main body, The packaging bag for silicon | silicone characterized by the above-mentioned.
前記介在物は、前記塊状多結晶シリコンが前記包装袋本体に収容されたシリコン包装体とされたときに、前記底面部、前記側面部及び前記シリコン包装体の天面部のそれぞれに対向して配置されることを特徴とする請求項1に記載のシリコン用包装袋。   The inclusion is disposed to face each of the bottom surface portion, the side surface portion, and the top surface portion of the silicon package body when the bulk polycrystalline silicon is a silicon package body accommodated in the packaging bag body. The silicon packaging bag according to claim 1, wherein the packaging bag is made of silicon. 前記介在物は、板状に形成されていることを特徴とする請求項1又は2に記載のシリコン用包装袋。   The said inclusion is formed in plate shape, The packaging bag for silicon | silicone of Claim 1 or 2 characterized by the above-mentioned. 請求項1から3のいずれか一項に記載のシリコン用包装袋内に塊状多結晶シリコンを収容し、封止してなることを特徴とするシリコン包装体。   4. A silicon package comprising a silicon-containing packaging bag according to claim 1, wherein bulk polycrystalline silicon is accommodated and sealed. 5. 底面部と該底面部の周縁から立ち上がる側面部とを有する包装袋本体内に、塊状多結晶シリコンとともに、該塊状多結晶シリコンと前記包装袋本体との間に配置される介在物を収容して封止し、前記介在物は、少なくとも前記底面部に対向するように前記包装袋本体内に配置されることを特徴とするシリコンの包装方法。   In the packaging bag body having a bottom surface portion and a side surface portion rising from the periphery of the bottom surface portion, together with the massive polycrystalline silicon, contain inclusions disposed between the massive polycrystalline silicon and the packaging bag body. Sealing, and the inclusion is disposed in the packaging bag body so as to face at least the bottom surface portion. 前記介在物は、前記底面部、前記側面部及び前記塊状多結晶シリコンの収容後に形成される天面部のそれぞれに対向するように前記包装袋本体内に配置されることを特徴とする請求項5に記載のシリコンの包装方法。   The said inclusion is arrange | positioned in the said packaging bag main body so as to oppose each of the bottom face part, the said side part, and the top | upper surface part formed after accommodation of the said bulk polycrystalline silicon. The silicon packaging method according to claim 1.
JP2019032468A 2018-02-28 2019-02-26 Silicone packaging bag, silicone package, and silicone packaging method Active JP7211154B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018034543 2018-02-28
JP2018034543 2018-02-28

Publications (2)

Publication Number Publication Date
JP2019151406A true JP2019151406A (en) 2019-09-12
JP7211154B2 JP7211154B2 (en) 2023-01-24

Family

ID=67948049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019032468A Active JP7211154B2 (en) 2018-02-28 2019-02-26 Silicone packaging bag, silicone package, and silicone packaging method

Country Status (1)

Country Link
JP (1) JP7211154B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153340A1 (en) * 2019-01-25 2020-07-30 株式会社トクヤマ Polycrystalline silicon lump, packaging body thereof, and method for producing same
JP2021059367A (en) * 2019-10-08 2021-04-15 大日本印刷株式会社 Bag for shipping silicon material and silicon material package

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594187U (en) * 1992-05-26 1993-12-21 高純度シリコン株式会社 Container for polycrystalline silicon
JP2010036981A (en) * 2007-08-27 2010-02-18 Mitsubishi Materials Corp Packaging method and packaging body of silicon
JP2017052552A (en) * 2015-09-11 2017-03-16 大日本印刷株式会社 Freezing storage container, freezing storage container kit, and base material for freezing storage container
JP2017052522A (en) * 2015-09-07 2017-03-16 富士電機株式会社 Cold/heat insulation interior body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594187U (en) * 1992-05-26 1993-12-21 高純度シリコン株式会社 Container for polycrystalline silicon
JP2010036981A (en) * 2007-08-27 2010-02-18 Mitsubishi Materials Corp Packaging method and packaging body of silicon
JP2017052522A (en) * 2015-09-07 2017-03-16 富士電機株式会社 Cold/heat insulation interior body
JP2017052552A (en) * 2015-09-11 2017-03-16 大日本印刷株式会社 Freezing storage container, freezing storage container kit, and base material for freezing storage container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153340A1 (en) * 2019-01-25 2020-07-30 株式会社トクヤマ Polycrystalline silicon lump, packaging body thereof, and method for producing same
JP2021059367A (en) * 2019-10-08 2021-04-15 大日本印刷株式会社 Bag for shipping silicon material and silicon material package

Also Published As

Publication number Publication date
JP7211154B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
JP2019151406A (en) Silicon packaging bag, silicon packaging body, and silicon packaging method
KR20090023136A (en) Method of packing silicon and packing body
KR102159518B1 (en) Method for producing polycrystalline silicon rod, polycrystalline silicon rod, and polycrystalline silicon mass
JP2012532610A5 (en)
JP2000142874A (en) Storage container and storage method
US20050189253A1 (en) Glass substrate transport box containing disposable support boards
EP3782917B1 (en) Packaging method for polycrystalline silicon, double-packaging method for polycrystalline silicon, and production method for raw material for monocrystalline silicon
CN109094861A (en) A kind of packing method of chunk polysilicon
KR101198030B1 (en) Closure for silica glass crucible, silica glass crucible and method of handling the same
JP5343619B2 (en) Package for silicon and packing method
KR20010075387A (en) Wafer storing method and storing container therefor and wafer transferring method for transferring wafer to the storing container
KR20050050612A (en) Wrapping member for a glass substrate for fpd and a method of transferring a glass substrate for fpd
JP3496021B2 (en) Transport method of polycrystalline silicon
JPH11265875A (en) Vacuum drying device and method of semiconductor part material
JPH0594187U (en) Container for polycrystalline silicon
US20210031980A1 (en) Transport packaging for containers and method of unpacking containers
CN110015453B (en) Packaging method of finished polycrystalline silicon rod
JP2006151435A (en) Glass substrate packing method using vacuum pack, and its package
JP2007033325A (en) Packing method of micro mass measuring sensor
CN110129892A (en) Reduce the method for silico briquette surface organic matter and the preparation method of monocrystalline silicon
JP6203959B2 (en) Method for making polycrystalline silicon
JP2022113562A (en) Storage container of polycrystal silicon raw material after washing, storage apparatus, and storage method
JP2008155975A (en) Packaging vessel
JP2019016679A (en) Wafer case for single crystal substrate intermediate product and method for storing single crystal substrate intermediate product
JPS60502051A (en) Dust-free packaging container and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7211154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350