JP2019150875A - Steel pipe and manufacturing method thereof - Google Patents

Steel pipe and manufacturing method thereof Download PDF

Info

Publication number
JP2019150875A
JP2019150875A JP2019033331A JP2019033331A JP2019150875A JP 2019150875 A JP2019150875 A JP 2019150875A JP 2019033331 A JP2019033331 A JP 2019033331A JP 2019033331 A JP2019033331 A JP 2019033331A JP 2019150875 A JP2019150875 A JP 2019150875A
Authority
JP
Japan
Prior art keywords
steel pipe
bending
processing
pipe
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019033331A
Other languages
Japanese (ja)
Other versions
JP6835118B2 (en
Inventor
俊輔 佐々木
Shunsuke Sasaki
俊輔 佐々木
勝村 龍郎
Tatsuro Katsumura
龍郎 勝村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019150875A publication Critical patent/JP2019150875A/en
Application granted granted Critical
Publication of JP6835118B2 publication Critical patent/JP6835118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

To provide a method capable of manufacturing a fine crystal grain structure material having desired strength, fatigue strength and low-temperature toughness without requiring a large-sized facility or excessive power.SOLUTION: In a manufacturing method of a steel pipe, a working temperature is set at 300°C or higher and below Actransformation point, and two or more spots on the steel pipe outer surface side are pinched by a tool; and in a warm working for deforming the steel pipe into a flat shape, one-time or more bending/return bending process is performed to a steel pipe circumferential direction, by moving the tool to the pipe tangent direction in the state where the steel pipe is flattened.SELECTED DRAWING: Figure 2

Description

本発明は、鋼管およびその製造方法に関し、特に、表面に微細な組織を有することにより機械的特性が優れる鋼管およびその製造方法に関する。   The present invention relates to a steel pipe and a method for manufacturing the steel pipe, and more particularly to a steel pipe having a fine structure on the surface and excellent mechanical characteristics and a method for manufacturing the steel pipe.

金属材料は、その組織の結晶サイズを変化させることにより、その特性が大きく変化する。特に、結晶粒径が10μm以下となるように結晶粒を微細化することにより、構造用部材として有用な材料の引張強度や疲労強度を上昇させたり、低温靱性を向上させたりすることができる。材料の結晶粒を微細化するために、材料の加工と熱処理をうまく組み合わせる手法が多く研究されており、材料を加工する際に、材料全体に大きなひずみを与えることが必要とされている。   The characteristics of the metal material are greatly changed by changing the crystal size of the structure. In particular, by making the crystal grains fine so that the crystal grain size is 10 μm or less, it is possible to increase the tensile strength and fatigue strength of a material useful as a structural member, and to improve low-temperature toughness. In order to refine crystal grains of a material, many techniques for successfully combining material processing and heat treatment have been studied, and it is necessary to apply a large strain to the entire material when processing the material.

従来、材料の結晶粒を微細化するために材料全体に大きなひずみを与える手法として、Equal channel angular pressing(ECAP)や異形等断面積の金型による繰り返し鍛造法、Accumulative Roll Bonding法(繰り返し板圧延法)が提案されている。   Conventionally, as a method of giving large strain to the entire material in order to make the crystal grains of the material finer, Equal channel angular pressing (ECAP), repetitive forging method using a die having an irregular cross section, Accumulator Roll Bonding method (repeated plate rolling) Law) has been proposed.

例えば、特許文献1には、丸棒鋼材の製造技術として、温度範囲を350〜800℃として、オーバル形状の孔型を有する水平圧延機を用いて2〜6パスの圧延を行い、大きなひずみを与えることで結晶粒を微細化し、降伏強さ、引張強さを上昇させ、かつ、通常材料の強度と相反する特性であるシャルピー試験における吸収エネルギーを上昇させる手法が開示されている。   For example, in Patent Document 1, as a manufacturing technique of a round bar steel material, a temperature range is set to 350 to 800 ° C., and rolling is performed for 2 to 6 passes using a horizontal rolling mill having an oval-shaped hole mold. There is disclosed a technique for making crystal grains finer, increasing yield strength and tensile strength, and increasing absorbed energy in a Charpy test, which is a characteristic that is contrary to the strength of ordinary materials.

また、特許文献2には、金属管の一部を加熱する加熱部と、前記金属管を中心軸線回りに回転させる回転部と、前記金属管の加熱された部位を曲げる曲げ部と、を備える装置により、加熱部を回転させながら曲げることで結晶粒を微細化する方法が開示されている。   Patent Document 2 includes a heating unit that heats a part of the metal tube, a rotating unit that rotates the metal tube around a central axis, and a bending unit that bends the heated portion of the metal tube. A method of refining crystal grains by bending while rotating a heating unit with an apparatus is disclosed.

また、特許文献3には、400℃〜Ac3の間の温度域で1パス当たりの縮径率が6%以上の圧延パスを少なくとも1パス以上含む累積縮径率20%以上の絞り圧延を行うことで結晶粒を微細化し、強度‐延性バランスに優れた鋼管を製造する方法が開示されている。 Patent Document 3 discloses a drawing rolling with a cumulative reduction ratio of 20% or more including at least one rolling pass with a reduction ratio of 6% or more per pass in a temperature range between 400 ° C. and Ac 3. There is disclosed a method for producing a steel pipe excellent in strength-ductility balance by refining crystal grains.

また、最近では、円盤板状に加工した鉄鋼材料の上下面をダイスで固定し、ダイスに高圧を与えながら回転させることで円盤板状の材料に大きなせん断変形ひずみを与え結晶粒を微細化する手法として、High−pressure torsion(HPT)法が報告されている。   Recently, the upper and lower surfaces of a steel material processed into a disk shape are fixed with a die and rotated while applying high pressure to the die, thereby applying a large shear deformation strain to the disk shape material to refine the crystal grains. As a technique, a high-pressure torsion (HPT) method has been reported.

特許第4221497号公報Japanese Patent No. 4221497 特開2009−233731号公報JP 2009-233731 A 特許第3760640号公報Japanese Patent No. 3760640

従来から知られているEqual channel angular pressing(ECAP)や異形等断面積の金型による繰り返し鍛造法、Accumulative Roll Bonding法(繰り返し板圧延法)、High−pressure torsion(HPT)法などの種々の手法は、いずれの方法もバッチ式の加工となるため、大きなひずみを与える目的で繰り返しひずみを与えるには生産性が悪く、加えて、対象とする材料の形状は、薄板材や棒材に限定される。   Various methods such as known Equal channel angular pressing (ECAP), repetitive forging method using a die having an irregular cross-sectional area, accumulative roll bonding method (repeated plate rolling method), high-pressure torsion (HPT) method, etc. However, since both methods are batch-type processing, productivity is poor to apply repeated strain for the purpose of giving large strain, and in addition, the shape of the target material is limited to thin plates and rods. The

特許文献1に記載のオーバル型の孔型を有する水平圧延機による2〜6パスの圧延を行う手法は、2パス目以降の圧延に圧延前の材料の長辺側を圧下することで圧下と幅広がりに伴うせん断変形を効率よく与え、かつ圧延であるため連続化が可能であり、生産効率を向上させることが可能であると考えられる。しかし、この手法は、あくまで水平圧延であるため、材料の圧延方向への変形が避けがたく、微細粒組織を得るためのひずみ量を確保するために圧延を繰り返すと、断面積が小さくなるので、大型の構造部材を得ることが難しい。また、圧下による変形を利用しているため、材料にひずみを与えるには、材料が中実であることが要求される。さらに、ロール圧延では静水圧応力場の発生が避けられず、特に低温で圧延する際には、温度低下に伴う高い変形抵抗に対抗可能な巨大な設備が必要になり、動力に多大なエネルギーを要するという問題がある。   The method of rolling 2 to 6 passes by a horizontal rolling mill having an oval perforation described in Patent Document 1 is reduced by rolling down the long side of the material before rolling in the rolling after the second pass. It is considered that the shear deformation accompanying the widening can be efficiently given, and since it is rolling, it can be continuous and the production efficiency can be improved. However, since this method is only horizontal rolling, deformation of the material in the rolling direction is unavoidable, and if rolling is repeated to ensure the amount of strain to obtain a fine grain structure, the cross-sectional area becomes small. It is difficult to obtain a large structural member. In addition, since deformation due to rolling is used, the material is required to be solid in order to give strain to the material. Furthermore, the generation of hydrostatic stress fields is unavoidable in roll rolling, and especially when rolling at low temperatures, huge equipment that can resist high deformation resistance accompanying the temperature drop is necessary, and a large amount of energy is consumed for power. There is a problem that it takes.

特許文献2に記載の方法では、金属管を加熱する加熱部と、管軸中心軸周りに回転させる回転部と、連続的に組織を微細化するには、管軸方向に管を押し出す押し出し部と、が必要となる。つまり、この方法では、金属管を軸方向に曲げるための2か所の掴み部と加熱部が必須であり、連続的に加工するには押し出し部が必要となる。掴み部は、金属管を回転させるために必要となり、また、掴み部と加熱部は、管径に合わせて適切な大きさを有するものを別途準備する必要がある。さらに、金属管の径が大きくなると、掴み部の大きさのみならず、配置する距離すら変更する必要がある。したがって、加工する管形状が変化すると、各構成要素の大幅な交換が必要となり、設備コストが増加するという問題がある。また、特許文献2に記載の方法では、金属管の掴み部が必要なため、金属管の端部は原理的に加工できず、この部分において、所望の硬度、疲労強度、および低温靭性を実現することができないという問題がある。さらに、大型の金属管になるほど、上記特性が得られない端部部分の重量が増加してしまう。   In the method described in Patent Document 2, a heating unit that heats a metal tube, a rotating unit that rotates around the central axis of the tube axis, and an extrusion unit that extrudes the tube in the tube axis direction in order to continuously refine the structure And are required. That is, in this method, two grip portions and a heating portion for bending the metal tube in the axial direction are essential, and an extrusion portion is necessary for continuous processing. The gripping part is necessary for rotating the metal tube, and the gripping part and the heating part need to be separately prepared having an appropriate size according to the tube diameter. Furthermore, when the diameter of the metal tube is increased, it is necessary to change not only the size of the grip portion but also the distance to be arranged. Therefore, when the shape of the pipe to be processed is changed, there is a problem that a large replacement of each component is required and the equipment cost increases. In addition, since the method described in Patent Document 2 requires a grip portion of the metal tube, the end portion of the metal tube cannot be processed in principle, and desired hardness, fatigue strength, and low temperature toughness are realized in this portion. There is a problem that you can not. Furthermore, the larger the metal tube, the greater the weight of the end portion where the above characteristics cannot be obtained.

特許文献3に記載の方法では、管軸方向に垂直な回転軸を持つ孔型ロール(孔型ロールによる水平圧延)を管周方向に配置し、鋼管をロール間に引き込んでAc3変態点〜400℃で累積縮径率が20%以上となる絞り圧延を行うことで微細な結晶粒を得ており、ロールにより鋼管を管軸方向に送るので、連続した加工が可能である。しかし、この方法では、微細化に必要なひずみを得るために縮径を利用しており、微細化に必要な大きなひずみを得るためには20%以上の大きな縮径と、それに伴う大きな断面減少が発生するため、製造可能なサイズが限定されるという問題がある。また、基本的に水平圧延であるため、入側の素管外径の最大値は、孔型ロールでロールバイト内に引き込める範囲までとなるため、一度に絞り加工を行うことが可能な縮径量の範囲が狭く、累積縮径率を20%以上とするには、圧延機を多段とすることが普通であり、設備の巨大化や設備コストの増加が発生するという問題がある。 In the method described in Patent Literature 3, a hole roll (horizontal rolling by a hole roll) having a rotation axis perpendicular to the pipe axis direction is arranged in the pipe circumferential direction, and the steel pipe is drawn between the rolls to obtain an Ac 3 transformation point. Fine crystal grains are obtained by carrying out drawing rolling at a cumulative reduction ratio of 20% or more at 400 ° C., and the steel pipe is sent in the tube axis direction by a roll, so that continuous processing is possible. However, in this method, the diameter reduction is used to obtain the strain necessary for miniaturization, and in order to obtain the large strain necessary for miniaturization, a large diameter reduction of 20% or more and a large reduction in cross-section accompanying it. Therefore, there is a problem that the manufacturable size is limited. In addition, since it is basically horizontal rolling, the maximum value of the outer diameter of the inlet side pipe is the range that can be drawn into the roll bite with a hole-type roll, so that it is possible to perform drawing at once. In order to make the diameter range narrow and make the cumulative reduction ratio 20% or more, it is usual to use a multi-stage rolling mill, and there is a problem that the equipment is enlarged and the equipment cost is increased.

また、特許文献1、3に記載の方法は原理的に圧延であるため、圧延方向(軸方向)に延びた組織(集合組織)が発達する。そのため、周方向と軸方向の特性が大きく異なり、特に低温靭性の特性の差が問題になる。すなわち、延びた組織の延び方向に対して垂直方向への亀裂伝播は抑制されるが、平行方向へのき裂は延びた組織の界面を伝って伝播しやすい。鋼管の場合、周方向への引張応力や、周断面へ垂直に衝撃が加わると、竹状に亀裂が伸展してしまう。つまり、微細粒鋼であっても方向によって低温靭性が劣ってしまう。また、鋼管の場合、様々な用途で使用される際に曲げ加工や偏平加工による変形を受ける。これらの変形では、管周方向に引張応力が発生することは避けがたく、軸方向に竹割れが発生する。また、強度の特性の差は、低温靭性ほど発生しないが、管周方向に発生する引張応力は、管全体が微細粒化で高強度化した鋼管を変形させるほど大きくなるため、微細化で強度を高めるほど、低温靭性の特性の差との乖離が起き、変形時において軸方向に割れるリスクが高まってしまう。   Further, since the methods described in Patent Documents 1 and 3 are in principle rolling, a structure (a texture) extending in the rolling direction (axial direction) develops. Therefore, the characteristics in the circumferential direction and the axial direction are greatly different, and the difference in the characteristics of low temperature toughness becomes a problem. That is, crack propagation in the direction perpendicular to the extending direction of the extended tissue is suppressed, but a crack in the parallel direction is likely to propagate along the interface of the extended tissue. In the case of a steel pipe, if a tensile stress is applied in the circumferential direction or an impact is applied perpendicularly to the circumferential section, the crack extends into a bamboo shape. That is, even if it is a fine grain steel, low temperature toughness will be inferior by a direction. In the case of a steel pipe, it is deformed by bending or flattening when used for various purposes. In these deformations, it is inevitable that tensile stress is generated in the pipe circumferential direction, and bamboo cracks occur in the axial direction. In addition, the difference in strength characteristics does not occur as much as low temperature toughness, but the tensile stress generated in the pipe circumferential direction increases as the entire pipe is deformed and the strength of the steel pipe is increased. The higher the is, the greater the deviation from the difference in properties of low temperature toughness, and the higher the risk of cracking in the axial direction during deformation.

さらに、上述した方法は、材料全体を微細粒化することを目的としており、材料全体に大きなひずみを与える必要性から、材料に大きなエネルギーを与えている。   Further, the above-described method aims to make the entire material fine, and gives a large energy to the material because it is necessary to apply a large strain to the entire material.

本発明は、上記課題に鑑み、所望の硬度、疲労強度、および低温靭性を有する鋼管を提供することを目的とする。また、本発明は、所望の引張強度、疲労強度、および低温靭性を有する鋼管を、所望の引張強度、疲労強度、および低温靭性を有する鋼管を、大型の設備や多大なエネルギー、工具の交換、設備の配置換えを必要とせずとも、単一の設備により連続して製造することが可能な製造方法を提供することを目的とする。   An object of this invention is to provide the steel pipe which has desired hardness, fatigue strength, and low temperature toughness in view of the said subject. Further, the present invention provides a steel pipe having a desired tensile strength, fatigue strength, and low temperature toughness, a steel pipe having a desired tensile strength, fatigue strength, and low temperature toughness, a large facility, a large amount of energy, and tool replacement. It is an object of the present invention to provide a manufacturing method that can be continuously manufactured by a single facility without requiring rearrangement of the facility.

上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]鋼管の内外表面からそれぞれ、肉厚に対し10%以上30%以下の厚さまでの平均結晶粒径が10μm以下であることを特徴とする鋼管。
The gist configuration of the present invention for solving the above-described problems is as follows.
[1] A steel pipe characterized in that the average crystal grain size from the inner and outer surfaces of the steel pipe to a thickness of 10% to 30% of the wall thickness is 10 μm or less.

[2]前記平均結晶粒径が10μm以下である領域の厚さは、前記鋼管の前記内外表面からそれぞれ3000μm以下である、上記[1]に記載の鋼管。   [2] The steel pipe according to [1], wherein the thickness of the region where the average crystal grain size is 10 μm or less is 3000 μm or less from the inner and outer surfaces of the steel pipe.

[3]加工温度を300℃以上Ac3変態点以下として、鋼管外面側の2か所以上を工具で挟み、鋼管を偏平形状に変形させる温間加工において、前記鋼管を偏平させた状態で前記工具を管周接線方向へ移動させて、鋼管周方向へ1回以上の曲げ曲げ戻し加工を行うことを特徴とする鋼管の製造方法。 [3] In warm working in which the processing temperature is set to 300 ° C. or more and the Ac 3 transformation point or less and two or more portions on the outer surface side of the steel pipe are sandwiched with tools and the steel pipe is deformed into a flat shape, the steel pipe is flattened in the state A method of manufacturing a steel pipe, characterized in that the tool is moved in a pipe tangential direction to perform one or more bending and bending back processes in the steel pipe circumferential direction.

[4]前記温間加工後、150℃以上Ac3変態点以下に加熱する熱処理を行う、上記[3]に記載の鋼管の製造方法。 [4] The method for manufacturing a steel pipe according to the above [3], wherein after the warm working, a heat treatment is performed by heating to 150 ° C. or more and an Ac 3 transformation point or less.

[5]前記温間加工後および/または前記熱処理後、0.5℃/s以上の冷却速度で冷却する、上記[3]または[4]に記載の鋼管の製造方法。   [5] The method for manufacturing a steel pipe according to [3] or [4], wherein the steel pipe is cooled at a cooling rate of 0.5 ° C./s or more after the warm working and / or the heat treatment.

本発明によれば、大型の設備や多大な動力を必要とせずとも微細結晶粒を有する鋼管または棒鋼材の製造が可能となり、所望の強度や靭性を得ることができる。また、製造時に必要となる加工ひずみは主に曲げによるせん断であるため、加工中の材料内部への静水圧応力場発生を抑制でき、小さな加工力で加工可能である。さらに、曲げ加工は容易に連続化することが可能なため、生産効率が高い。さらにまた、得られた鋼管や棒鋼材は加工前後で大きな減厚変化をしないことから、工業製品として用いる際のサイズ制約が少ない。   According to the present invention, it is possible to produce a steel pipe or steel bar having fine crystal grains without requiring a large facility or a large amount of power, and desired strength and toughness can be obtained. In addition, since the processing strain required at the time of manufacture is mainly shear due to bending, generation of a hydrostatic pressure field inside the material being processed can be suppressed, and processing can be performed with a small processing force. Furthermore, since the bending process can be easily continued, the production efficiency is high. Furthermore, since the obtained steel pipe and bar steel material do not undergo a great thickness change before and after processing, there are few size restrictions when used as an industrial product.

本発明の製造方法における、曲げ曲げ戻し加工の一例を示す模式図である。It is a schematic diagram which shows an example of the bending bending back process in the manufacturing method of this invention. 図1Aの鋼管の圧延方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the rolling direction of the steel pipe of FIG. 1A. 図1AのB−B矢視断面図である。It is BB arrow sectional drawing of FIG. 1A. 図1A〜Cのロール3に替えて用いることが可能なロールの模式図である。It is a schematic diagram of the roll which can be used instead of the roll 3 of FIG. 鋼管の変形時における中立線の位置の変化を示す模式図である。It is a schematic diagram which shows the change of the position of the neutral line at the time of a deformation | transformation of a steel pipe. 本発明の製造方法における、変形加工の一例を示す模式図である。It is a schematic diagram which shows an example of a deformation | transformation process in the manufacturing method of this invention. 本発明の製造方法における、変形加工の一例を示す模式図である。It is a schematic diagram which shows an example of a deformation | transformation process in the manufacturing method of this invention. 本発明の製造方法における、変形加工の一例を示す模式図である。It is a schematic diagram which shows an example of a deformation | transformation process in the manufacturing method of this invention. 水平圧延機を用いて板圧延を実施した場合と、本発明の扁平加工の場合における、ひずみと圧延荷重との関係を示すグラフである。It is a graph which shows the relationship between a distortion | strain and a rolling load in the case where plate rolling is implemented using a horizontal rolling mill, and the case of the flat process of this invention.

以下、図面を適宜参照して、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate.

[鋼管]
本実施形態による鋼管は、その内外表面からそれぞれ、肉厚に対し10%以上30%以下の厚さまでの平均結晶粒径が10μm以下であることを特徴とする。これにより、硬度、疲労強度、及び低温靭性を向上させることができる。以下、この技術的意義を説明する。なお、本明細書において「平均結晶粒径(dave)」とは、以下の方法にて定義される。すなわち、走査型電子顕微鏡(測定倍率:1000倍)で、深さt〜t+δでの鋼管断面における結晶粒径(円相当直径)を複数視野観察して、これらの算術平均をd(t)とする。同様の操作を表面(t=0)から深さt=t1まで繰り返す。続いてd(t)を用いて、積分(1/t1)∫d(t)dtを実行し(積分区間はt:0〜t1)、得られた積分値を「表面から深さt1までの平均結晶粒径dave」とする。また、「平均結晶粒径が10μm以下である領域」を「微細化領域」とも称する。
[Steel pipe]
The steel pipe according to this embodiment is characterized in that the average crystal grain size from the inner and outer surfaces to a thickness of 10% to 30% of the wall thickness is 10 μm or less. Thereby, hardness, fatigue strength, and low temperature toughness can be improved. The technical significance of this will be described below. In this specification, “average crystal grain size (d ave )” is defined by the following method. That is, with a scanning electron microscope (measurement magnification: 1000 times), the crystal grain size (equivalent circle diameter) in the cross section of the steel pipe at the depth t to t + δ is observed in a plurality of fields, and the arithmetic average of these is d (t). To do. The same operation is repeated from the surface (t = 0) to the depth t = t1. Subsequently, using d (t), integral (1 / t1) ∫d (t) dt is executed (integration interval is t: 0 to t1), and the obtained integral value is expressed as “from surface to depth t1. Average crystal grain size d ave ”. Further, the “region where the average crystal grain size is 10 μm or less” is also referred to as “miniaturized region”.

結晶粒の微細化による材料の特性変化は、結晶粒径と強度の関係を示す一般的な式であるホールペッチの関係に基づくと、結晶粒径が10μmを下回ることで硬度、疲労強度、及び低温靭性の向上が期待できることが知られている。一方、実用上で最も過酷な使用環境に曝されるのは鋼管の内外表面であることが多く、構造材の破壊や損傷の程度は内外表面に発生した損傷起点に依存することが多い。つまり、鋼管全体を微細化しなくとも、内外表面層を微細化すれば、上述した損傷起点の発生を抑制することができる。本発明は、このような着想に基づくものであり、本発明者らは、内外表面における損傷起点の発生を抑制するためには、鋼管の内外表面からそれぞれ所定の厚さまでを微細化領域とすることが重要であることを知見した。すなわち、本発明では、鋼管の内外表面からそれぞれ、肉厚に対し10%以上、30%以下の厚さまでを微細化領域とすることが重要である。10%未満の場合、結晶粒の微細化が不十分で、十分な硬度、疲労強度、低温靱性が得られない。一方、30%超えの場合、鋼管全体が硬質化し、伸び(均一延び性)が低下する。つまり、同じ形状へ成形するにも大きな加工荷重が必要になり、また、均一伸び性の低下に伴う加工時の割れ欠陥の発生につながる。このように、本発明では、内外表面を微細化することで過酷な環境での損傷を防ぐことができるという特性を鋼管に与えることができるとともに、微細化領域の厚さを適切に制御することで、同時に用途別への成形性も向上する。   The change in material characteristics due to the refinement of crystal grains is based on the relationship between Hall Petch, which is a general expression showing the relationship between crystal grain size and strength. When the crystal grain size falls below 10 μm, hardness, fatigue strength, and low temperature It is known that an improvement in toughness can be expected. On the other hand, it is often the inner and outer surfaces of steel pipes that are exposed to the most severe use environment in practice, and the degree of destruction and damage of the structural material often depends on the damage starting points generated on the inner and outer surfaces. That is, if the inner and outer surface layers are made finer without making the entire steel pipe finer, the occurrence of the damage starting point can be suppressed. The present invention is based on such an idea, and in order to suppress the occurrence of damage starting points on the inner and outer surfaces, the present inventors define a refined region from the inner and outer surfaces of the steel pipe to a predetermined thickness. I found out that it was important. That is, in the present invention, it is important to make the region from 10% to 30% of the thickness from the inner and outer surfaces of the steel pipe into the refined region. If it is less than 10%, the crystal grains are not sufficiently refined, and sufficient hardness, fatigue strength, and low temperature toughness cannot be obtained. On the other hand, when it exceeds 30%, the whole steel pipe is hardened and elongation (uniform elongation) is lowered. That is, a large processing load is required to form the same shape, and a crack defect is generated during processing due to a decrease in uniform elongation. Thus, in the present invention, it is possible to give the steel pipe the characteristic that damage in a harsh environment can be prevented by miniaturizing the inner and outer surfaces, and appropriately control the thickness of the miniaturized region. At the same time, the moldability for each application is also improved.

微細化領域の厚さは、鋼管の内外表面からそれぞれ3000μm以下とすることが好ましい。3000μm以下であれば、加工荷重を大きくする必要がないので工具寿命が低下することもなく、設備制約の上限を超えることもなく、また、十分な成形性が得られる。   The thickness of the miniaturized region is preferably 3000 μm or less from the inner and outer surfaces of the steel pipe. If it is 3000 micrometers or less, since it is not necessary to make a processing load large, a tool life does not fall, it does not exceed the upper limit of equipment restrictions, and sufficient moldability is obtained.

本実施形態による鋼管の成分組成は、特に限定されず、例えばS15C、SS400などの一般的な炭素鋼管やCrやNi、Moが添加された一般的なステンレス鋼管を挙げることができる。   The component composition of the steel pipe by this embodiment is not specifically limited, For example, common carbon steel pipes, such as S15C and SS400, and the general stainless steel pipe to which Cr, Ni, and Mo were added can be mentioned.

[鋼管の製造方法]
以下では、上述した鋼管の製造方法の一例を説明する。本実施形態による鋼管の製造方法は、加工温度を300℃以上Ac3変態点以下として、鋼管外面側の2か所以上を工具で挟み、鋼管を偏平形状に変形させる温間加工において、前記鋼管を偏平させた状態で前記工具を管周接線方向へ移動させて、鋼管周方向へ1回以上の曲げ曲げ戻し加工を行うことを特徴とする。
[Manufacturing method of steel pipe]
Below, an example of the manufacturing method of the steel pipe mentioned above is demonstrated. In the method of manufacturing a steel pipe according to the present embodiment, the processing temperature is set to 300 ° C. or more and the Ac 3 transformation point or less, and two or more places on the outer surface side of the steel pipe are sandwiched with tools, and the steel pipe is deformed into a flat shape. The tool is moved in the pipe tangential direction in a flattened state, and the bending and unbending process is performed one or more times in the steel pipe circumferential direction.

本明細書における「曲げ曲げ戻し加工」とは、素管の初期曲率に対して、素管の一部、または全体が素管の初期曲率と異なる曲率を有するように、素管を周方向に変形させる加工を意味する。本実施形態では、図1A〜Cに示すように「曲げ曲げ戻し加工」を行いつつ、素管1を全長分だけ回転させながら管軸方向に移動させる。なお、鋼管2の外径は、素管1の外径からさほど変化しない。ロール3としては、図1A〜Cに示すものの他、図1Dに示す樽型ロール又はコーン型ロールを用いることもできる。上述した曲げ曲げ戻し加工では、加工後の曲率が初期曲率よりも大きくなった部分では、管内面周方向に圧縮、外面周方向に引張が生じる。一方、加工後の曲率が初期曲率よりも小さくなった部分では、管内面周方向に引張、外面周方向に圧縮が生じる。すなわち、「工具を管周接線方向へ移動させる」とは、曲げ曲げ戻し加工前後で、工具に対して鋼管を相対的に移動させることにより、鋼管を管周接線方向の異なる位置に移動させることに対応する。   In this specification, “bending and bending back processing” means that the pipe is circumferentially arranged so that a part or the whole of the pipe has a curvature different from the initial curvature of the pipe with respect to the initial curvature of the pipe. It means processing to deform. In the present embodiment, as shown in FIGS. 1A to 1C, while performing “bending and bending back processing”, the raw tube 1 is moved in the tube axis direction while being rotated by the entire length. In addition, the outer diameter of the steel pipe 2 does not change so much from the outer diameter of the raw pipe 1. As the roll 3, in addition to those shown in FIGS. 1A to 1C, a barrel-type roll or a cone-type roll shown in FIG. 1D can also be used. In the bending and bending back processing described above, in the portion where the curvature after processing is larger than the initial curvature, compression occurs in the pipe inner surface circumferential direction and tension occurs in the outer surface circumferential direction. On the other hand, in a portion where the curvature after processing is smaller than the initial curvature, tension occurs in the circumferential direction of the pipe inner surface and compression occurs in the outer circumferential direction. That is, “to move the tool in the pipe tangential direction” means to move the steel pipe to a different position in the pipe tangential direction by moving the steel pipe relative to the tool before and after bending and bending back. Corresponding to

図2に、曲げ曲げ戻し加工を行う際に生じる、鋼管の肉厚方向で引張と圧縮とが入れ替わる点線(中立線)を示す。鋼管の曲げ曲げ戻し加工では、図2に示すように閉断面であるため、一部を偏平させると連続体である鋼管が様々な曲率で変形する。中立線の位置は曲率により変化し、中立線を境にして、引張と圧縮の応力の値が一度でも反転すれば、曲げ曲げ戻し加工によるひずみが鋼管に与えられたということになり、そのひずみの量は鋼管の中立線から内外表面に近づくほど大きくなるため、鋼管の内外表面の組織を効率的に微細化できるのである。さらに、本加工法は、特許文献1、3のような圧延とは異なっており、繰り返しせん断変形となるので組織の延伸が発生せず、加工後の鋼管における特性の差が抑制される。   FIG. 2 shows a dotted line (neutral line) in which tension and compression are interchanged in the thickness direction of the steel pipe, which occurs when bending and bending back processing is performed. In the bending and bending back processing of a steel pipe, since it has a closed cross section as shown in FIG. 2, when a part is flattened, the steel pipe which is a continuous body is deformed with various curvatures. The position of the neutral line changes depending on the curvature, and if the tensile and compressive stress values are reversed even once with the neutral line as a boundary, the strain due to bending and unbending is given to the steel pipe. Since the amount of increases from the neutral line of the steel pipe toward the inner and outer surfaces, the structure of the inner and outer surfaces of the steel pipe can be efficiently refined. Furthermore, this processing method is different from rolling as in Patent Documents 1 and 3, and since it repeatedly undergoes shear deformation, stretching of the structure does not occur, and a difference in properties in the steel pipe after processing is suppressed.

図4に、特許文献1に記載されているような水平圧延機を用いて板圧延を実施した場合と、本発明の曲げ曲げ戻し加工を実施した場合における、ひずみと圧延荷重との関係を示す。図4において、曲げ曲げ戻し加工に用いた鋼管は、φ70mm、肉厚8mmとし、板圧延に用いた鋼板は、肉厚20mm、幅100mmとして、それぞれの荷重は圧延機に取り付けたロードセルで直接測定した。なお、熱間加工では大きなひずみを与えると加工中にひずみの回復や再結晶が発生しやすく、これらが発生すると冶金的な理由で荷重が変動するため、異なる圧延手法間での、ひずみの増加に伴う荷重増加の関係を定量的に比較することが難しくなる。そこで、本検討ではひずみの回復が無い冷間鋼材を用いて実験を行った。また、板圧延のひずみ量については、圧延理論の公知の式である1.15×ln(1−r)×(−1)を用いて求めた。なお、rは圧下率であり、r=(入側肉厚−出側肉厚)/入側肉厚である。扁平加工のひずみ量については、変形を有限要素法により計算し、肉厚全体を平均化したひずみの量を使用した。
図4に示されるとおり、本発明では小さな圧延荷重でより効率的にひずみを与えられる。これは、本発明の曲げ曲げ戻し加工が、鋼材をより小さな力で変形させることができるせん断ひずみを主体とした加工になるためである。また、従来のように鋼管全体を微細化するのではなく、素管に対して機械的特性の向上効果が顕著な内外表面層のみを微細化するため、ひずみ付与に必要な投入エネルギーが少なくて済み、コストダウンに繋がる。さらに、通常の板圧延では、ひずみ量に応じて圧延後の肉厚、断面積が小さくなるのに対し、本発明では、繰り返しせん断変形を与えるが、肉厚を減ずることは無いので、加工前後の形状変化が少ない。
FIG. 4 shows the relationship between strain and rolling load when plate rolling is performed using a horizontal rolling mill as described in Patent Document 1 and when bending and bending back processing according to the present invention is performed. . In FIG. 4, the steel pipe used for bending and bending back processing has a diameter of 70 mm and a thickness of 8 mm, the steel sheet used for plate rolling has a thickness of 20 mm and a width of 100 mm, and each load is directly measured with a load cell attached to the rolling mill. did. In addition, if a large strain is applied in hot processing, strain recovery and recrystallization are likely to occur during processing, and if these occur, the load fluctuates for metallurgical reasons, so the increase in strain between different rolling methods. It becomes difficult to quantitatively compare the relationship between the load increase associated with. Therefore, in this study, an experiment was conducted using a cold steel material with no strain recovery. Moreover, about the distortion amount of plate rolling, it calculated | required using 1.15 * ln (1-r) * (-1) which is a well-known formula of rolling theory. In addition, r is a rolling reduction, and r = (input side thickness−output side thickness) / input side thickness. For the amount of strain in flattening, deformation was calculated by the finite element method, and the amount of strain averaged over the entire thickness was used.
As shown in FIG. 4, in the present invention, strain can be applied more efficiently with a small rolling load. This is because the bending and bending back process of the present invention is a process mainly composed of shear strain that can deform the steel material with a smaller force. In addition, the entire steel pipe is not made finer as in the past, but only the inner and outer surface layers, which have a remarkable effect of improving mechanical properties, are made finer. It leads to cost reduction. Furthermore, in normal plate rolling, the thickness and cross-sectional area after rolling are reduced according to the amount of strain, whereas in the present invention, repeated shear deformation is given, but the thickness is not reduced, so before and after processing There is little change in shape.

鋼管外面側から鋼管を曲げ曲げ戻し変形させる加工を行うことにより、鋼管の内外表面に効率的にひずみが蓄積され、結晶粒を微細化することができる。鋼管の管周方向への曲げ曲げ戻し加工は1回以上であればよく、2回以上行ってもよい。本発明によれば、加工前後の鋼管の形状変化が少ないため、複数回の加工が行いやすく、加工時外径/初期外径、加工温度、及び加工回数を適宜制御することにより、粒径10μm以下の結晶粒径を有する厚さを調整することができる。   By performing a process of bending and bending back and deforming the steel pipe from the outer surface side of the steel pipe, strain is efficiently accumulated on the inner and outer surfaces of the steel pipe, and the crystal grains can be refined. The bending and returning of the steel pipe in the pipe circumferential direction may be performed once or more, and may be performed twice or more. According to the present invention, since there is little change in the shape of the steel pipe before and after processing, it is easy to perform multiple times of processing. The thickness having the following crystal grain size can be adjusted.

図3A〜Cは、本実施形態における温間加工について、工具を用いて鋼管を鋼管外面から曲げ曲げ戻し加工する例を示す模式図である。図3A、Bは、工具の接触箇所を2か所とする場合の断面図であり、図3Cは、工具の接触箇所を3か所とする場合の断面図である。なお、図3A〜Cにおける太い矢印は、鋼管に曲げ曲げ戻し加工を行う際に力が掛かる方向を示す。図3A〜Cに示すように、2回目の曲げ曲げ戻し加工を行う際、1回目の曲げ曲げ戻し加工を施していない箇所に工具が接触するように、鋼管を回転させるように工具を動かしたり、工具の位置をずらしたりなどの工夫をすればよい。なお、図3A〜C中の斜線部は1回目の曲げ箇所を示す。   3A to 3C are schematic diagrams illustrating an example in which a steel pipe is bent and bent back from the outer surface of the steel pipe using a tool in the warm working in the present embodiment. 3A and 3B are cross-sectional views in the case where there are two tool contact locations, and FIG. 3C is a cross-sectional view in which the tool contact locations are three locations. In addition, the thick arrow in FIG.3A-C shows the direction where force is applied when performing a bending bending return process to a steel pipe. As shown in FIGS. 3A to 3C, when the second bending / bending process is performed, the tool is moved so as to rotate the steel pipe so that the tool comes into contact with the portion where the first bending / bending process is not performed. What is necessary is just to devise, such as shifting the position of a tool. 3A to 3C indicate the first bent portion.

図3A〜Cのように、鋼管を曲げ曲げ戻しさせる温間加工を、管周方向の全体に間欠的、または連続的に与えることで、鋼管の曲率の最大値付近で曲げによるひずみが加えられ、鋼管の曲率の最小値に向けて曲げ戻しによるひずみが加わる。その結果、鋼管の結晶粒微細化に必要な曲げ曲げ戻し変形によるひずみが効率よく鋼管の内外表面に蓄積される。また、この加工形態を用いる場合、鋼管の肉厚や外径を圧縮して行う加工形態とは異なり、多大な動力を必要とせず、曲げ曲げ戻しによる変形であるため、加工前後の形状変化を最小限にとどめながら加工可能な点が特徴的である。   As shown in FIGS. 3A to 3C, the bending due to bending is applied in the vicinity of the maximum value of the curvature of the steel pipe by applying the warm working for bending and returning the steel pipe intermittently or continuously to the entire pipe circumferential direction. The strain due to bending back is added toward the minimum value of the curvature of the steel pipe. As a result, strain due to bending and bending back deformation necessary for grain refinement of the steel pipe is efficiently accumulated on the inner and outer surfaces of the steel pipe. Also, when using this machining mode, unlike the machining mode that compresses the wall thickness and outer diameter of the steel pipe, it does not require a large amount of power and is deformed by bending and bending back, so the shape change before and after machining It is characteristic that it can be processed while minimizing it.

図3A〜Cのような鋼管の曲げ曲げ戻しに用いる工具の形状について、ロールを用いてもよく、鋼管周方向に2個以上配置したロール間で鋼管を回転させれば、容易に繰り返し曲げ曲げ戻し変形によるひずみを与えることが可能である。さらにロールの回転軸を管の回転軸に対し、90°以内で傾斜させれば、鋼管は偏平加工を受けながら管回転軸方向に進行するため、容易に加工の連続化が可能となる。また、このロールを用いて連続的に行う加工は、例えば、鋼管の進行に対して曲げ曲げ戻し量を変化させるように、適切にロールの間隔を変化させれば、容易に一度目、二度目の鋼管の曲率を変更でき、内外表面層における組織の微細化に必要なひずみ量を制御することができる。   As for the shape of the tool used for bending and bending back the steel pipe as shown in FIGS. 3A to 3C, a roll may be used, and if the steel pipe is rotated between two or more rolls arranged in the circumferential direction of the steel pipe, it is easily repeatedly bent and bent. It is possible to give strain due to back deformation. Further, if the roll axis of rotation is tilted within 90 ° with respect to the axis of rotation of the pipe, the steel pipe advances in the direction of the pipe rotation axis while undergoing flattening, so that the processing can be easily continued. In addition, the processing performed continuously using this roll can be easily performed once, second time, for example, by appropriately changing the roll interval so as to change the bending / bending return amount with respect to the progress of the steel pipe. The curvature of the steel pipe can be changed, and the amount of strain required to refine the structure in the inner and outer surface layers can be controlled.

なお、ロールを用いて、鋼管を軸方向に送りながら加工する装置として矯正機があるが、通常の矯正機による加工では微細組織は得られない。すなわち、矯正機では、いわゆる3点曲げの原理を利用して鋼管の曲りを矯正するため、軸方向に3つのロール対を有する設備のパスラインを僅かに曲げて鋼管へ曲げモーメントを与える。その際にロール間隔を鋼管外径より小さくして鋼管を挟み込むことで鋼管を扁平させる。ただし、あくまで矯正を目的にしたロール間隔は、高々鋼管外径の5%程度である。さらに、ロールの傾斜角も搬送速度を向上させる目的でパスラインに対し20〜40°程度であり、らせん状に管軸方向にひずみ量のムラが生じる。そのため、十分に扁平させることができず、かつ、低ひずみ部で結晶粒微細化に必要なひずみが不足するので、外内表面に微細粒を有する鋼管を得ることができない。本発明を達成するには、少なくともロール間隔(クラッシュ)を管外径に対し6%以上小さく設定し、加えて、傾斜角度を10°未満とすることが必要である。微細粒の厚みを最適化しつつ、生産性を確保する観点では、ロール間隔を管外径に対し10%以上とし、傾斜角度を3〜5°とすることが好ましい。なお、ロール間隔が過剰に狭いと内周部の割れや形状に問題が生じるおそれがあるため、ロール間隔を30%未満とすることが好ましい。   In addition, although there exists a straightening machine as an apparatus which processes it, feeding a steel pipe to an axial direction using a roll, a fine structure cannot be obtained by the process by a normal straightening machine. That is, in the straightening machine, in order to correct the bending of the steel pipe using the so-called three-point bending principle, a bending moment is given to the steel pipe by slightly bending the pass line of the equipment having three roll pairs in the axial direction. At that time, the steel pipe is flattened by sandwiching the steel pipe with the roll interval smaller than the outer diameter of the steel pipe. However, the roll interval for the purpose of correction is at most about 5% of the outer diameter of the steel pipe. Further, the inclination angle of the roll is also about 20 to 40 ° with respect to the pass line for the purpose of improving the conveying speed, and unevenness in the amount of strain occurs in a spiral shape in the tube axis direction. Therefore, it cannot be sufficiently flattened, and the strain required for crystal grain refinement is insufficient at the low strain portion, so that a steel pipe having fine grains on the outer and inner surfaces cannot be obtained. In order to achieve the present invention, it is necessary to set at least the roll interval (crash) to be 6% or more smaller than the outer diameter of the pipe and to make the inclination angle less than 10 °. From the viewpoint of ensuring productivity while optimizing the thickness of the fine particles, the roll interval is preferably 10% or more with respect to the outer diameter of the tube, and the inclination angle is preferably 3 to 5 °. In addition, since there exists a possibility that a problem may arise in the crack and shape of an inner peripheral part when a roll space | interval is too narrow, it is preferable to make a roll space | interval less than 30%.

また、鋼管にひずみを与える温度(加工温度)は、金属材料がひずみにより再結晶を起こすために必要な温度範囲で管理する必要がある。本実施形態では、結晶粒の再結晶による微細化と更に相変態や高温保持時の粒成長を抑制するため、加工温度を300℃以上Ac3変態点(Ac3変態点:加熱時にフェライト相がオーステナイト相に完全に変態する温度)以下として温間加工することが重要である。なお、Ac3変態点は材料により異なり、Ac3変態点はフォーマスタ試験により求めることが可能である。 Moreover, it is necessary to manage the temperature (processing temperature) which gives a strain to a steel pipe within a temperature range necessary for the metal material to recrystallize due to the strain. In the present embodiment, in order to suppress refinement by recrystallization of crystal grains and further phase transformation and grain growth during holding at a high temperature, the processing temperature is set to 300 ° C. or higher, and the Ac 3 transformation point (Ac 3 transformation point: the ferrite phase is not heated. It is important to warm work as below the temperature that completely transforms into the austenite phase. The Ac 3 transformation point varies depending on the material, and the Ac 3 transformation point can be obtained by a four master test.

また、上述した温間加工後に熱処理を行うこともでき、その場合、150℃以上Ac3変態点以下に加熱する熱処理を行うことが好ましい。熱処理を行うことで、曲げ曲げ戻し変形によるひずみの導入で微細結晶化した組織内にたまった余剰なひずみを解放し、製品に残留する応力を、成形後に得られる機械的特性を変化させることなく除去することができ、ねじり疲労強度および低温靱性の向上に効果的である。熱処理温度を150℃以上とすることで余剰なひずみの活動が活発化し、解放することができる。一方で、熱処理温度をAc3変態点以上とすると、オーステナイト相変態が生じ、温間加工で与えたひずみがすべてリセットされてしまうため、Ac3変態点以下が好ましい。なお、熱処理時の加熱速度は、遅すぎると造り込んだ組織の粗大化や不要な析出物発生により、機械的特性に悪い影響を与える。このため、加熱速度は0.2℃/s以上が好ましく、IHなどを用いた急速加熱方式による加熱が好ましい。一方で、加熱速度が速くなりすぎると、設備が高額化することに加え、高温での温度制御が困難になるため、加熱速度は100℃/s以下とすることが好ましい。なお、温間加工後に150℃以下の温度まで冷却し、その後熱処理を行ってもよい。 In addition, heat treatment can be performed after the above-described warm working. In that case, it is preferable to perform heat treatment by heating to 150 ° C. or more and Ac 3 transformation point or less. By performing heat treatment, the excess strain accumulated in the microcrystallized structure by the introduction of strain due to bending and bending back deformation is released, and the stress remaining in the product is changed without changing the mechanical properties obtained after molding. This is effective for improving torsional fatigue strength and low temperature toughness. By setting the heat treatment temperature to 150 ° C. or higher, excessive strain activity is activated and can be released. On the other hand, if the heat treatment temperature Ac 3 transformation point or higher, cause the austenite phase transformation, since the strain given by warm working is thus resets all, following Ac 3 transformation point is preferred. If the heating rate during the heat treatment is too slow, the mechanical properties are adversely affected due to coarsening of the built-in structure and generation of unnecessary precipitates. For this reason, the heating rate is preferably 0.2 ° C./s or more, and heating by a rapid heating method using IH or the like is preferable. On the other hand, if the heating rate becomes too fast, the equipment becomes expensive and it becomes difficult to control the temperature at a high temperature. Therefore, the heating rate is preferably 100 ° C./s or less. In addition, after warm processing, it cools to the temperature of 150 degrees C or less, and may heat-process after that.

本発明は、鋼板や棒鋼に対する水平ロール圧延のように、主に肉厚圧下を用いた大減面によりひずみを導入する加工形態と異なり、加工前後に肉厚を積極的に減じない。したがって、加工前後で、肉厚が大きく減厚変化しないので、加工前の素材サイズや加工後の材料の形状制約が少ない。また、工具の接触位置を工夫することで、結晶粒微細化に必要な曲げ曲げ戻し変形によるひずみを与えつつ、加工後の管肉厚を増加させることも可能である。例えば、図3Cに示すように、3つのロールを用いて管周方向全体に圧縮応力を付与しながら曲げ曲げ戻し変形によるひずみを与えることにより、周断面の管外径を減じ、その分の体積を肉厚方向へ流動させることが可能になり、最終製品時にさらに形状自由度が増える効果がある。   The present invention does not actively reduce the wall thickness before and after the processing, unlike the processing mode in which strain is mainly introduced by large surface reduction using thickness reduction, such as horizontal roll rolling on steel plates and steel bars. Therefore, since the thickness does not change greatly before and after the processing, the material size before processing and the shape restrictions of the material after processing are few. Further, by devising the contact position of the tool, it is possible to increase the tube thickness after processing while giving strain due to bending and bending back deformation necessary for crystal grain refinement. For example, as shown in FIG. 3C, the outer diameter of the pipe in the circumferential section is reduced by applying strain due to bending and bending back deformation while applying compressive stress to the entire pipe circumferential direction using three rolls, and the volume corresponding thereto. Can be made to flow in the thickness direction, and there is an effect that the degree of freedom in shape is further increased in the final product.

また、温間加工後や熱処理後の冷却について、通常の大気放冷で問題ないものの、冷却速度が遅すぎると造り込んだ組織の粗大化や不要な析出物発生により機械的特性に悪い影響を与える。本発明では、温間加工後および/または熱処理後に強制空冷や水冷などの急冷をすることが好ましく、冷却速度は、0.5℃/s以上とすることが好ましく、3.0〜15.0℃/sとすることがより好ましい。なお、冷却には、圧縮した空気や水などの流体、または空気と流体を混合したミスト状のものが利用可能である。   Although cooling after warm processing or heat treatment is not a problem with normal air cooling, if the cooling rate is too slow, the mechanical properties will be adversely affected by coarsening of the built-in structure and generation of unnecessary precipitates. give. In the present invention, it is preferable to perform rapid cooling such as forced air cooling or water cooling after warm working and / or heat treatment, and the cooling rate is preferably 0.5 ° C./s or more, and 3.0 to 15.0. More preferably, it is set to ° C / s. For cooling, a fluid such as compressed air or water, or a mist-like mixture of air and fluid can be used.

なお、上記した温間加工以外の製造条件については特に限定されない。温間加工する鋼管については、素材となる金属棒を機械加工による切削により穴あけする手法や、圧延による塑性変形を利用した穴あけの手法により得られる鋼管を用いることができ、さらに、板を丸め、端部を溶接でつないだ鋼管も利用できる。   In addition, it does not specifically limit about manufacturing conditions other than the above-mentioned warm processing. For steel pipes that are to be warm-worked, steel pipes obtained by drilling a metal rod as a material by machining or drilling techniques using plastic deformation by rolling can be used. Steel pipes with welded ends can also be used.

以下、実施例に基づいて本発明をより詳細に説明する。
S15C(機械構造用炭素鋼鋼板JIS G 4051相当、C量:0.15mass%)に対して機械加工を施し、外径が58mmであり、肉厚が2mm、5mm、10mmであり、長さが250mmである素管(鋼管)を得た。
表1に示す加工条件にて素管に加工を施した。温間加工については、対向設置した一対のロール、または周断面で120°間隔で配置した3つのロールを、各ロールの回転軸が加工進行方向に対して4°傾くように配置し、各ロールで素管を挟み込んだ状態で、素管を回転させつつ、進行させる(通管速度:1.2m/s)ことで、管全長にわたって連続的に曲げ曲げ戻し加工を与えた。なお、温間加工時の曲げ量の評価として、曲げ曲げ戻し時の最小外径(最小ロール間隔)を初期外径で除した値を使用し、その量はロールギャップを変化させることで調整した。また、一部については温間加工後に熱処理を行い、一部については空冷または水冷(冷却速度;25℃/s)も行った。
なお、表1における「加工回数」とは、鋼管が単スタンドを通過する回数を指し、複数回の加工を行う場合は、加工温度を保ちながら、鋼管を単スタンド通過後に再び単スタンドの入側に配置し、再び単スタンドを通過させる場合を指す。
Hereinafter, the present invention will be described in more detail based on examples.
Machined to S15C (equivalent to JIS G 4051, carbon steel plate for mechanical structure, C amount: 0.15 mass%), outer diameter is 58 mm, wall thickness is 2 mm, 5 mm, 10 mm, length is An element pipe (steel pipe) having a diameter of 250 mm was obtained.
The raw tube was processed under the processing conditions shown in Table 1. For warm processing, a pair of opposed rolls or three rolls arranged at 120 ° intervals in the circumferential section are arranged so that the rotation axis of each roll is inclined 4 ° with respect to the processing progress direction. In the state where the raw pipe was sandwiched between the pipes, the raw pipe was rotated and advanced (pipe speed: 1.2 m / s) to continuously bend and bend back the entire length of the pipe. In addition, as an evaluation of the bending amount at the time of warm working, a value obtained by dividing the minimum outer diameter (minimum roll interval) at the time of bending and bending back by the initial outer diameter was used, and the amount was adjusted by changing the roll gap. . Some were heat-treated after warm working, and some were air-cooled or water-cooled (cooling rate; 25 ° C./s).
The “number of machining operations” in Table 1 refers to the number of times a steel pipe passes through a single stand. When performing multiple times of processing, the steel pipe passes through the single stand again while maintaining the processing temperature. This refers to the case where it is placed in and passed through a single stand again.

[組織の観察]
得られた鋼管の組織を以下の方法により観察して、平均結晶粒径daveを算出した。まず、走査型電子顕微鏡(測定倍率:1000倍)で、深さt〜t+δでの鋼管断面における結晶粒径(円相当直径)を複数視野観察して、これらの算術平均をd(t)とする。同様の操作を表面(t=0)から深さt=t1まで繰り返す。なお、δは100μmとした。続いてd(t)を用いて、積分(1/t1)∫d(t)dtを実行し(積分区間はt:0〜t1)、得られた積分値を「表面から深さt1までの平均結晶粒径dave」とした。表1に結果を示す。
[Tissue observation]
The structure of the obtained steel pipe was observed by the following method, and the average crystal grain size d ave was calculated. First, with a scanning electron microscope (measurement magnification: 1000 times), the crystal grain size (equivalent circle diameter) in the cross section of the steel pipe at a depth of t to t + δ is observed in a plurality of fields, and the arithmetic average of these is d (t). To do. The same operation is repeated from the surface (t = 0) to the depth t = t1. Note that δ was 100 μm. Subsequently, using d (t), integral (1 / t1) ∫d (t) dt is executed (integration interval is t: 0 to t1), and the obtained integral value is expressed as “from surface to depth t1. Average grain size d ave ”. Table 1 shows the results.

[機械的特性の評価]
以下の方法により、ビッカース硬度、ねじり疲労強度、低温靱性、及び伸びを測定することにより、鋼管の機械的特性を評価した。
[Evaluation of mechanical properties]
The mechanical properties of the steel pipe were evaluated by measuring Vickers hardness, torsional fatigue strength, low temperature toughness, and elongation by the following methods.

得られた鋼管の内外表面からそれぞれ500μmの深さ位置におけるビッカース硬度(HV)を、JIS Z 2244に準拠して、荷重:4.9N(500g)で測定した。測定結果を表1に示す。ビッカース硬度が200HV以上であれば、硬度に優れると評価することができる。   Vickers hardness (HV) at a depth position of 500 μm from the inner and outer surfaces of the obtained steel pipe was measured according to JIS Z 2244 at a load of 4.9 N (500 g). Table 1 shows the measurement results. If Vickers hardness is 200HV or more, it can be evaluated that it is excellent in hardness.

得られた鋼管のねじり疲労強度(MPa)をISO 1352:2011に準拠して、応力比(=最小応力/最大応力)−1の条件で測定した。測定結果を表1に示す。ねじり疲労強度が200MPa以上であれば、疲労強度に優れると評価することができる。   The torsional fatigue strength (MPa) of the obtained steel pipe was measured under the condition of stress ratio (= minimum stress / maximum stress) −1 in accordance with ISO 1352: 2011. Table 1 shows the measurement results. If the torsional fatigue strength is 200 MPa or more, it can be evaluated that the fatigue strength is excellent.

鋼管と試験片の長手方向が一致するように、得られた鋼管から全肉厚の試験片を採取して、JIS Z 2242に準拠するシャルピー衝撃試験を−120℃〜常温(25℃)の範囲で行い、靱性が急激に低下する温度である遷移温度(℃)を測定した。測定結果を表1に示す。遷移温度が0℃を下回る温度であれば、低温靱性に優れると評価することができる。   A full-thickness test piece is sampled from the obtained steel pipe so that the longitudinal direction of the steel pipe and the test piece coincide with each other, and a Charpy impact test according to JIS Z 2242 is performed in a range of −120 ° C. to normal temperature (25 ° C.). The transition temperature (° C.), which is a temperature at which the toughness rapidly decreases, was measured. The measurement results are shown in Table 1. If the transition temperature is lower than 0 ° C., it can be evaluated that the low temperature toughness is excellent.

得られた鋼管の伸びをJIS G 4051に準拠して破断までの公称伸びで測定した。測定結果を表1に示す。S15Cでは、伸びが30%超えであれば均一伸び性に優れると評価することができる。   The elongation of the obtained steel pipe was measured by the nominal elongation until breakage according to JIS G4051. The measurement results are shown in Table 1. In S15C, if the elongation exceeds 30%, it can be evaluated that the uniform elongation is excellent.

[生産性の評価]
本発明による投入エネルギーの低減効果を確認するため、本発明により結晶粒組織を微細化するのに必要な投入エネルギーと、板圧延により結晶粒組織を微細化するのに必要な投入エネルギーを比較した。投入エネルギーは、[加工時の投入電力(kW)]×[加工に要した時間(s)]と定義した。比較した結果、曲げ加工を主体とし、かつ鋼管の内外表面に着目した本発明は、板圧延に比べて、投入エネルギーを10〜30%に抑えることができていた。
[Evaluation of productivity]
In order to confirm the effect of reducing the input energy according to the present invention, the input energy required for refining the crystal grain structure according to the present invention was compared with the input energy required for refining the crystal grain structure by plate rolling. . The input energy was defined as [input power during processing (kW)] × [time required for processing (s)]. As a result of comparison, the present invention, which is mainly composed of bending work and focused on the inner and outer surfaces of the steel pipe, was able to suppress the input energy to 10 to 30% as compared with plate rolling.

Figure 2019150875
Figure 2019150875

表1の結果から、結晶粒組織を微細化することができなかった比較例に対して、発明例は、硬度、疲労強度、および低温靱性を向上させることができており、また、投入エネルギーが少なく、コストを抑えることができることがわかった。   From the results in Table 1, the invention example can improve the hardness, fatigue strength, and low temperature toughness compared to the comparative example in which the crystal grain structure could not be refined, and the input energy was It was found that the cost could be reduced.

Claims (5)

鋼管の内外表面からそれぞれ、肉厚に対し10%以上30%以下の厚さまでの平均結晶粒径が10μm以下であることを特徴とする鋼管。   A steel pipe having an average crystal grain size of 10 μm or less from the inner and outer surfaces of the steel pipe to a thickness of 10% to 30% of the wall thickness. 前記平均結晶粒径が10μm以下である領域の厚さは、前記鋼管の前記内外表面からそれぞれ3000μm以下である、請求項1に記載の鋼管。   2. The steel pipe according to claim 1, wherein the thickness of the region in which the average crystal grain size is 10 μm or less is 3000 μm or less from the inner and outer surfaces of the steel pipe. 加工温度を300℃以上Ac3変態点以下として、鋼管外面側の2か所以上を工具で挟み、鋼管を偏平形状に変形させる温間加工において、前記鋼管を偏平させた状態で前記工具を管周接線方向へ移動させて、鋼管周方向へ1回以上の曲げ曲げ戻し加工を行うことを特徴とする鋼管の製造方法。 In warm working where the processing temperature is set to 300 ° C or more and the Ac 3 transformation point or less and two or more locations on the outer surface side of the steel pipe are sandwiched with a tool and the steel pipe is deformed into a flat shape, the tool is piped with the steel pipe flattened. A method of manufacturing a steel pipe, wherein the steel pipe is moved in a circumferential tangential direction and is bent or bent back one or more times in the circumferential direction of the steel pipe. 前記温間加工後、150℃以上Ac3変態点以下に加熱する熱処理を行う、請求項3に記載の鋼管の製造方法。 After the warm working, a heat treatment of heating to below Ac 3 transformation point 0.99 ° C. or higher, a manufacturing method of a steel pipe according to claim 3. 前記温間加工後および/または前記熱処理後、0.5℃/s以上の冷却速度で冷却する、請求項3または4に記載の鋼管の製造方法。   The manufacturing method of the steel pipe of Claim 3 or 4 which cools with the cooling rate of 0.5 degree-C / s or more after the said warm processing and / or the said heat processing.
JP2019033331A 2018-02-28 2019-02-26 Steel pipe and its manufacturing method Active JP6835118B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018034014 2018-02-28
JP2018034014 2018-02-28

Publications (2)

Publication Number Publication Date
JP2019150875A true JP2019150875A (en) 2019-09-12
JP6835118B2 JP6835118B2 (en) 2021-02-24

Family

ID=67947691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033331A Active JP6835118B2 (en) 2018-02-28 2019-02-26 Steel pipe and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6835118B2 (en)

Also Published As

Publication number Publication date
JP6835118B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US7601232B2 (en) α-β titanium alloy tubes and methods of flowforming the same
JP4019772B2 (en) Seamless pipe manufacturing method
JP6084565B2 (en) Alpha / beta titanium alloy processing
JP4990531B2 (en) A method for producing a titanium material for sputtering.
JP6432614B2 (en) Cold rolling method and manufacturing method of metal tube
CN109097713B (en) A kind of Ultra-fine Grained Ta material and preparation method thereof
CN105441713A (en) A titanium alloy seamless tube and a manufacturing method thereof
Zhbankov et al. New schemes of forging plates, shafts, and discs
KR20170106973A (en) High tensile strength steel wire
WO2015088388A1 (en) Method for manufacturing cold rolled pipes from alpha- and pseudo-αlpha titanium alloys
WO2007080750A1 (en) Process for production of titanium material for sputtering
Kashi et al. Microstructure and mechanical properties of the ultrafine-grained copper tube produced by severe plastic deformation
JPWO2018030231A1 (en) Method of manufacturing pure titanium metal sheet and method of manufacturing speaker diaphragm
JP6835118B2 (en) Steel pipe and its manufacturing method
Shao et al. Microstructure and finite element analysis of hot continuous rolling of doped tungsten rod
CN108637012A (en) The roll spacings milling methods such as the helical tapered roll of large scale high temperature alloy ultra fine grained steel bar
CN108277446A (en) A kind of isometric helix milling method of large scale high temperature alloy ultra fine grained steel bar
JP2016517915A (en) Steel product and method for producing the product
KR101622395B1 (en) Metalworking process using severe shear deformation by repetitive torsion
CN113528893A (en) TC4ELI titanium alloy for ultrasonic scalpel and production method of titanium alloy bar
Reda Constrained groove pressing (CGP): die design, material processing and mechanical characterization
RU2251588C2 (en) Method for making ultrafine-grain titanium blanks
JP5589669B2 (en) Method for producing titanium alloy forging
Mariana et al. Thermomechanical analysis of plastic deformation behaviour in dieless drawing of metallic materials
CN108285950A (en) A kind of heat treatment method of control sendzimir mill working roll quenching distortion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6835118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250