JPWO2018030231A1 - Method of manufacturing pure titanium metal sheet and method of manufacturing speaker diaphragm - Google Patents

Method of manufacturing pure titanium metal sheet and method of manufacturing speaker diaphragm Download PDF

Info

Publication number
JPWO2018030231A1
JPWO2018030231A1 JP2018532967A JP2018532967A JPWO2018030231A1 JP WO2018030231 A1 JPWO2018030231 A1 JP WO2018030231A1 JP 2018532967 A JP2018532967 A JP 2018532967A JP 2018532967 A JP2018532967 A JP 2018532967A JP WO2018030231 A1 JPWO2018030231 A1 JP WO2018030231A1
Authority
JP
Japan
Prior art keywords
titanium metal
pure titanium
manufacturing
thin plate
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018532967A
Other languages
Japanese (ja)
Other versions
JP7168210B2 (en
Inventor
博己 三浦
博己 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Publication of JPWO2018030231A1 publication Critical patent/JPWO2018030231A1/en
Application granted granted Critical
Publication of JP7168210B2 publication Critical patent/JP7168210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

巨大ひずみ加工法の1 つである多軸鍛造法を純チタン金属材料に施し、その後圧延処理して、微細粒組織を有するチタン金属材料薄板に加工し、室温以上で再結晶化が始まらない温度以下において張出成形することで、高強度を保ち且つ優れた加工性に富む曲面形状のチタン金属材料薄板を安価に製造する、薄板製造方法。Multi-axial forging, one of the giant straining methods, is applied to a pure titanium metal material, and then rolled to form a fine-grained titanium metal sheet, which does not start recrystallization beyond room temperature A thin plate manufacturing method for inexpensively manufacturing a titanium metal thin material plate having a curved surface shape which maintains high strength and is excellent in processability by stretch forming in the following.

Description

本発明は、チタン金属材料薄板の製造方法に関し、特に高強度かつ、高延性を有する純度99%以上の純チタンからなるチタン金属材料薄板であって曲面を有する薄板の製造方法に関するものである。  The present invention relates to a method of manufacturing a titanium metal material thin plate, and more particularly to a method of manufacturing a titanium metal material thin plate having high strength and high ductility and made of pure titanium having a purity of 99% or more and having a curved surface.

チタン金属材料の動的機械特性から楽器や音響関係のスピーカ等の振動板部材として注目され、製造技術研究が進められている。具体的に振動板に求められる厚さは通常200μm以下で、特にツイータ用として厚さは数10μm以下が必要とされている。純チタン金属材料は加工性、強度の面で要求仕様を満たすことが困難であるため、他の金属材料との合金で要求を満たすための研究が行われているが、純チタンと比較し、特性が劣ったり、コストアップになったりして実用化には至っていない。  From the dynamic mechanical properties of titanium metal materials, it has attracted attention as a diaphragm member such as a musical instrument or a speaker relating to acoustics, and research on manufacturing technology has been advanced. Specifically, the thickness required for the diaphragm is usually 200 μm or less, and for the tweeter in particular, a thickness of several tens of μm or less is required. Since pure titanium metal materials are difficult to meet the required specifications in terms of workability and strength, studies have been conducted to meet the requirements with alloys with other metal materials, but in comparison with pure titanium, It has not been put to practical use due to inferior characteristics and cost increase.

また、生体適合性の観点から、チタン金属材料は人工骨への適用が期待されているが、振動板と同様に加工性を改善するため純チタン材料に他の金属材料を添加したチタン合金材料が提案されている。しかしながら、添加する金属材料によっては生体への影響が懸念される。  Also, from the viewpoint of biocompatibility, titanium metal materials are expected to be applied to artificial bones, but like titanium diaphragms, titanium alloy materials in which other metal materials are added to pure titanium materials to improve processability Has been proposed. However, depending on the metal material to be added, there is a concern about the influence on the living body.

これら振動板や人工骨などの用途では、コストや生体適合性から、他の金属材料の添加によって課題解決するのではなく、純チタン材料を用いて製造方法による課題解決のアプローチが望ましい。そこで、純チタン薄板の曲面への加工性に着目して従来技術について説明する。  In applications such as these diaphragms and artificial bones, it is desirable from the viewpoint of cost and biocompatibility not to solve the problem by addition of other metal materials, but to approach the problem solving by the manufacturing method using pure titanium material. Therefore, the prior art will be described focusing on the processability of the pure titanium thin plate to the curved surface.

従来の純チタン製薄板は変形限界に近い過酷な成形による割れが問題とされてきた。非特許文献1では、0.6mm〜1.0mm程度のチタン薄板を対象として、酸素含有量が低いほど、また結晶粒径が大きいほど張出成形性が良好になることを実験的に確かめている。  Conventional pure titanium thin sheets have been considered to suffer from severe forming cracking near the deformation limit. In Non-Patent Document 1, it is experimentally confirmed that the lower the oxygen content and the larger the crystal grain size, the better the stretchability and formability for a titanium thin plate of about 0.6 mm to 1.0 mm. There is.

非特許文献2では、板厚25μmのチタン薄板材料を対象として、結晶粒径が4μmの時に加工性が高いことが報告されている。具体的にはJIS1種相当の純チタン薄板を板厚25μmに冷間圧延したものを連続焼鈍設備にて、620〜740℃まで温度を変えての焼鈍を繰り返して結晶粒径をコントロールし、エリクセン試験を行った結果、結晶粒径が80μmを超えると成形性が低下することが示されている。  Non-Patent Document 2 reports that the workability is high when the grain size is 4 μm, for a titanium thin plate material having a thickness of 25 μm. Specifically, cold rolling of a pure titanium thin plate equivalent to JIS type 1 to a plate thickness of 25 μm is repeated at different temperatures up to 620 to 740 ° C. in a continuous annealing facility to control the crystal grain size, and Erichsen is controlled. As a result of conducting the test, it is shown that when the crystal grain size exceeds 80 μm, the formability is reduced.

特許文献1には、200μm以下チタン薄板で表面が硬く内部が軟質であるチタン薄板とその製造方法を開示している。具体的にはバルク中の鉄が0.1mass%以下、酸素が0.1mass%以下であり、板厚(mm)/粒径(mm)≧3でかつ粒径≧2.5μmを満たし、表面に200nm〜2μmの硬化層を有した材料を開示している。製造方法としては、JISH4600に規定された純チタン材料を冷間圧延および中間焼鈍を行ったあと、Ar雰囲気で更に焼鈍を行うことにより結晶粒をコントロールするものであった。また、表面の硬化層は圧延油や焼鈍炉のガス雰囲気によって酸素、窒素、炭素のいずれかを濃化させて形成するものであった。  Patent Document 1 discloses a titanium thin plate having a surface of 200 μm or less and having a hard surface and a soft inside, and a method of manufacturing the same. Specifically, iron in the bulk is 0.1 mass% or less, oxygen is 0.1 mass% or less, plate thickness (mm) / particle diameter (mm) ≧ 3 and particle diameter ≧ 2.5 μm are satisfied, and the surface is Discloses a material having a hardened layer of 200 nm to 2 .mu.m. As a manufacturing method, after performing the cold rolling and intermediate | middle annealing of the pure titanium material prescribed | regulated to JISH4600, the crystal grain was controlled by further annealing by Ar atmosphere. In addition, the hardened layer on the surface is formed by concentrating oxygen, nitrogen, or carbon by a rolling oil or a gas atmosphere of an annealing furnace.

本願の発明者によって開発された技術は特許文献2に開示されるが、この技術ではブロック状の純チタン材料を出発原料として多軸鍛造(Multi-Directional Forging:MDF)を行った後、圧延率65%以上で圧延処理を行うことで平均結晶粒径が500nmの厚さ数mm程度チタン板を実現している。多軸鍛造では、純チタン製の矩形上の被加工体を3軸のそれぞれの軸方向から順次鍛造するパスを複数回繰り返すことで被加工体の結晶粒径の平均値が500nm以下の超微粒の組織が得られる。多軸鍛造後に被加工体の強度をより一層高めるために圧延処理が行われ、室温以下の温度条件で、圧延率は65%以上となるよう条件で施されることが示されている。  Although a technology developed by the inventor of the present application is disclosed in Patent Document 2, in this technology, rolling ratio is obtained after multi-axial forging (MDF) using a block-shaped pure titanium material as a starting material. By rolling at 65% or more, a titanium plate with an average crystal grain size of 500 nm and a thickness of several mm is realized. In multi-axis forging, ultrafine particles with an average value of the crystal grain size of 500 nm or less can be obtained by repeating a pass of sequentially forging a work piece on a pure titanium rectangular from the respective axial directions of three axes a plurality of times Organization is obtained. It is shown that the rolling process is performed to further increase the strength of the workpiece after multi-axis forging, and the rolling ratio is 65% or more under the temperature condition of room temperature or less.

WO2014/027657号公報WO 2014/027657 WO2014/038487号公報WO2014 / 038487

鋸屋正喜,私市 優,石山成志,鉄と鋼 第72年第6号 115-122 (1986)Sawaya Masaki, I-City Yu, Ishiyama Seiji, Iron and Steel 72nd No. 6 115-122 (1986) 松本啓, 喜多勇人, 新日鐵住金技法, 第396号, 117-122 (2013)Kei Matsumoto, Yuto Kita, Shin Nippon Steel & Sumikin Technique, No. 396, 117-122 (2013)

しかしながら、前掲の非特許文献1、2および特許文献1、2では、10μm〜200μm程度の厚さで曲面を有しておらず、スピーカの振動板として硬さやヤング率などの必要な機械特性を発現しうる薄板が提供できていない。また、非特許文献2には加工例としてスピーカ振動板が掲載されているが、その製造方法については何ら開示されておらず、当該板厚におけるチタン金属材料による曲面形状の加工性についての評価もなされていないことから、良好な曲面形状への加工方法は確立されていない状況であった。  However, in Non-Patent Documents 1 and 2 and Patent Documents 1 and 2 described above, no curved surface is provided with a thickness of about 10 μm to 200 μm, and necessary mechanical characteristics such as hardness and Young's modulus are used as a diaphragm of a speaker. It has not been possible to provide a thin sheet that can be developed. Moreover, although the speaker diaphragm is published as a processing example in the nonpatent literature 2, it is not disclosed at all about the manufacturing method, The evaluation about the workability of the curved surface shape by the titanium metal material in the said plate thickness is also carried out As it has not been done, it has not been established how to process it into a good curved surface shape.

本発明は上記問題点に鑑みてなされたものであって、その目的とするところは、高強度で且つ優れた加工性を有する曲面形状のチタン金属材料薄板を安価に製造するための製造方法を提供するところにある。  The present invention has been made in view of the above problems, and an object of the present invention is to provide a manufacturing method for inexpensively manufacturing a curved surface titanium metal thin plate having high strength and excellent workability. It is in the place to offer.

この目的を達成するために純チタン金属製薄板の製造方法にかかる第1の発明は、純チタン金属材料に強ひずみ加工を施す予備加工工程と、該予備加工工程で加工された純チタン金属製薄板を所定形状に変形する変形加工工程とを含み、前記予備加工工程は、ひずみ量を0.1〜0.8の範囲内として三次元方向に少なくとも各1回以上の鍛造を施す多軸鍛造処理工程と、65%以上の圧延率で圧延処理する圧延工程とを含み、前記変形加工工程は、室温以上400℃以下の条件下において張出成形する成形工程を含むことを特徴とする。  In order to achieve this object, the first invention according to the method for producing a pure titanium metal thin plate comprises a pre-processing step of subjecting a pure titanium metal material to strong strain processing, and the pure titanium metal processed in the pre-processing step Multi-axis forging in which forging is performed at least once each in a three-dimensional direction with a strain amount falling within a range of 0.1 to 0.8. The method includes a processing step and a rolling step of rolling at a rolling ratio of 65% or more, and the deformation processing step includes a forming step of stretch forming at a temperature of room temperature or more and 400 ° C. or less.

純チタン金属製薄板の製造方法にかかる第2の発明は、第1の発明において、前記変形加工工程が、さらに、チタンが再結晶化しない温度に加熱する熱処理工程を含むものである。  A second invention according to the method for manufacturing a pure titanium metal thin plate is the method according to the first invention, wherein the deformation processing step further includes a heat treatment step of heating to a temperature at which titanium does not recrystallize.

純チタン金属製薄板の製造方法にかかる第3の発明は、第1または第2の発明において、前記成形工程が、100℃以上300℃以下の条件下において張出成形するものである。  According to a third invention of the method of manufacturing a pure titanium metal thin plate, in the first or second invention, the forming step is performed by stretch forming under conditions of 100 ° C. or more and 300 ° C. or less.

純チタン金属製薄板の製造方法にかかる第4の発明は、第1または第2の発明において、前記変形加工工程が、金型およびダイスを室温以上400℃以下に加熱した状態が維持されているものである。  According to a fourth invention of the method of manufacturing a pure titanium metal thin plate, in the first or second invention, the deformation processing step maintains a state in which the mold and the die are heated to room temperature or more and 400 ° C. or less It is a thing.

純チタン金属製薄板の製造方法にかかる第5の発明は、第3の発明において、前記変形加工工程が、金型およびダイスを100℃以上300℃以下に加熱した状態が維持されているものである。  The fifth invention according to the method for producing a pure titanium metal thin plate is the third invention wherein in the deformation processing step, a state in which the mold and the die are heated to 100 ° C. or more and 300 ° C. or less is maintained. is there.

純チタン金属製薄板の製造方法にかかる第6の発明は、第1ないし第5の発明において、前記予備加工工程が、多軸鍛造工程で製造された純チタン金属材料を、前記圧延工程により肉厚を10μm〜300μm とするものであり、前記成形加工工程は、該肉厚の純チタン金属材料を曲面に変形するものである。  The sixth invention according to the method for manufacturing a pure titanium metal thin plate according to the first to fifth inventions is characterized in that the preliminary processing step comprises processing the pure titanium metal material manufactured in the multiaxial forging step by the rolling step. The thickness is set to 10 μm to 300 μm, and the forming process is to deform the thick titanium metal material into a curved surface.

純チタン金属製薄板の製造方法にかかる第7の発明は、第6の発明において、前記加工方法が、前記曲面が前記張出成形によって加工される範囲の長さに対する張出方向長さの割合が1/16〜1/4に変形されるものである。  A seventh invention according to a method of manufacturing a pure titanium metal thin plate according to the sixth invention, wherein the processing method includes a ratio of a length in the overhanging direction to a length of a range in which the curved surface is processed by the overhang forming. Is transformed to 1/16 to 1/4.

スピーカ振動板の製造方法にかかる発明は、純チタン金属製薄板の製造方法にかかる第6または第7に記載の製造方法によって、10μm〜300μmの肉厚による純チタン金属薄膜を球面状に加工してなることを特徴とするものである。  The invention according to the method for manufacturing a speaker diaphragm is processed into a spherical shape by processing a pure titanium metal thin film having a thickness of 10 μm to 300 μm by the manufacturing method according to the sixth or seventh method for manufacturing a pure titanium metal thin plate. It is characterized by

本発明の曲面を有するチタン金属材料薄板の加工方法によれば、純チタン金属材料を用いて、結晶組織をコントロールすることで、強度と延性を有するチタン金属材料を安価に製造できるという効果がある。  According to the processing method of a titanium metal material thin plate having a curved surface of the present invention, there is an effect that titanium metal material having strength and ductility can be manufactured inexpensively by controlling crystal structure using pure titanium metal material. .

チタン金属材料薄板の製造工程を示した図である。It is the figure which showed the manufacturing process of the titanium metal material thin plate. 成形された曲面を有する純チタン金属材料薄板の模式図である。(a)はスピーカのツイータ用に成形された振動板、(b)は頭蓋骨に使う人工骨である。It is a schematic diagram of the pure titanium metal material thin plate which has the shape | molded curved surface. (A) is a diaphragm formed for a speaker tweeter, and (b) is an artificial bone used for a skull. 熱処理前の組織写真(TEM 像)の一例である。It is an example of the structure | tissue photograph (TEM image) before heat processing. 張出成形温度とエリクセン値の関係を示した図である。It is the figure which showed the relationship between overhang molding temperature and an Erichsen value. 20μm薄板を用いた張出成形時の温度とT.D.面硬さとヤング率の変化を示した図である。It is a figure showing change of temperature at the time of stretch forming using a 20 micrometer thin sheet, T.D. surface hardness, and Young's modulus. 薄板の厚さとエリクセン値の関係である。It is the relationship between the thickness of the thin plate and the Erichsen value. 張出し成形工程後の変形部の厚さ分布である。It is thickness distribution of the deformation | transformation part after an overstretching formation process. 熱処理(温度300℃×1h)後の組織写真(TEM 像)の一例である。It is an example of the structure | tissue photograph (TEM image) after heat processing (temperature 300 degreeC x 1 h). 熱処理(温度350℃×1h)後の組織写真(TEM 像)の一例である。It is an example of the structure | tissue photograph (TEM image) after heat processing (temperature 350 degreeC x 1 h). 熱処理(温度400℃×1h)後の組織写真(TEM 像)の一例である。It is an example of the structure | tissue photograph (TEM image) after heat processing (temperature 400 degreeC x 1 h). 熱処理(温度500℃×1h)後の組織写真(TEM 像)の一例である。It is an example of the structure | tissue photograph (TEM image) after heat processing (temperature 500 degreeC x 1 h). 熱処理工程の温度と平均結晶粒径の関係である。It is the relationship between the temperature of the heat treatment process and the average grain size. 熱処理温度における硬さとヤング率の変化を示した図である。It is a figure showing change of hardness and Young's modulus in heat treatment temperature.

以下に本発明の実施形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.

本発明に用いるチタン金属材料は不純物が少ないチタン材料(JISの2種のCPチタン)でどのような形状のものを用いてもよく、例えば、棒状、丸棒などのブロック形状のものが用いられる。原料に用いるチタン金属材料の結晶の平均結晶粒径は約33μm程度、ヤング率は106.4GPaであるものが一般的である。  The titanium metal material used in the present invention may be a titanium material having few impurities (two types of CP titanium of JIS), and any shape may be used, for example, a block shape such as a rod or a round bar may be used . Generally, the average crystal grain size of crystals of titanium metal material used as a raw material is about 33 μm and the Young's modulus is 106.4 GPa.

製造方法の一実施形態を図1に示す。S1工程は多軸鍛造工程である。S1工程の後に、S2工程の圧延工程で所定の厚さの薄板に圧延する。S3工程は張出成形工程である。S4工程は成形品の熱処理工程である。ここで、S1、S2工程を予備加工工程と呼び、S3工程を変形加工工程と呼ぶ。S4工程の熱処理は加工品の要求特性に応じ省略することができる。  One embodiment of the manufacturing method is shown in FIG. The S1 process is a multiaxial forging process. After the step S1, the sheet is rolled to a predetermined thickness in the rolling step S2. The step S3 is a stretch forming step. Step S4 is a heat treatment step of the molded article. Here, the steps S1 and S2 are referred to as a preliminary processing step, and the step S3 is referred to as a deformation processing step. The heat treatment in the step S4 can be omitted according to the required characteristics of the processed product.

S1工程の多軸鍛造(MDF)法を説明する。多軸鍛造法は、ブロック状加工体に所定の鍛造加工ひずみを付与し、鍛造パス毎に90度ずつ試料を回転させる方法である。具体的には、最初に矩形状被加工体を準備する。この被加工体が第1の方向に沿って鍛造される(第1回目のパス)。次に被加工体の第1の方向と直角の方向となる第2の方向に沿って鍛造される(第2回目のパス)。さらに、被加工体が第1と第2の方向と直角の方向となる第3の方向に沿って鍛造される(第3回目のパス)。3回のパスによって、被加工体は外観上、実質的に最初と同じ形状に戻ることになる。この各方向における(各パスでの)鍛造によって被加工体に加えられる加工ひずみ量は、同じであっても異なっていてもよい。また、鍛造工程中、鍛造をより行いやすくするために被加工体を切削加工しても良い。このような多軸鍛造によって各方向からの鍛造パスを順次繰り返すことにより、結果的に被加工体に多量のひずみを導入することができる。純チタン材料は室温での活動すべり系が少ないため、塑性加工性が低いことが知られており、1回のパスで大きなひずみを導入しようとすると、容易に割れや欠陥が生じる。このため、各1回の鍛造パスで導入されるひずみ量を少なくして各方向の鍛造を実施する。1回のパスで与えるひずみ量は0.1〜0.8の範囲であり、0.2〜0.4の範囲であることが好ましい。この工程により、材料組織の超微細粒化が可能となり、チタン金属材料の平均結晶粒径をより小さくできる。多軸鍛造により、被加工体には、大きなひずみが累積して導入される。S1工程後に被加工体に導入される累積ひずみ量は、例えば、1.0〜40の範囲である。累積ひずみ量は2.0〜10が好ましい。  The multi-axial forging (MDF) method of step S1 will be described. The multi-axial forging method is a method of applying a predetermined forging strain to a block-shaped workpiece and rotating a sample by 90 degrees for each forging pass. Specifically, first, a rectangular workpiece is prepared. The workpiece is forged along the first direction (first pass). Next, it is forged along a second direction which is a direction perpendicular to the first direction of the workpiece (a second pass). Furthermore, the workpiece is forged along a third direction perpendicular to the first and second directions (third pass). After three passes, the workpiece returns in appearance to substantially the same shape as the initial one. The amount of processing strain applied to the workpiece by forging (in each pass) in each direction may be the same or different. Moreover, in order to make it easier to forge during the forging process, the workpiece may be cut. By sequentially repeating the forging pass from each direction by such multiaxial forging, a large amount of strain can be introduced as a result to the workpiece. It is known that a pure titanium material has low plastic formability because there is less active slip system at room temperature, and if it is attempted to introduce a large strain in one pass, a crack or a defect easily occurs. For this reason, the amount of strain introduced in each one forging pass is reduced and forging in each direction is performed. The amount of strain given in one pass is in the range of 0.1 to 0.8, and preferably in the range of 0.2 to 0.4. This process makes it possible to make the material structure ultrafine and to make the average grain size of the titanium metal material smaller. By multi-axis forging, large strains are accumulated and introduced into the workpiece. The accumulated strain amount introduced into the workpiece after the step S1 is, for example, in the range of 1.0 to 40. The accumulated strain amount is preferably 2.0-10.

多軸鍛造工程は室温(300K前後)で実施されるが、例えば−196℃(77K:液体窒素雰囲気)のような、室温より低い温度で実施されてもよい。低温での鍛造処理により、一度の鍛造で、より多くの変形誘起組織(変形双晶、せん断帯、マイクロバンド、変形帯、転位等)を被加工体に導入しより早く結晶粒を微細化することができるメリットがある。本発明において多軸鍛造処理の温度は、主として被加工体がさらされる環境の温度を意味するものとする。これは、被加工体の温度が鍛造の実施によってある程度上昇するため、被加工体の温度で温度を規定すると、その値が曖昧になるためである。  The multi-axial forging process is performed at room temperature (about 300 K), but may be performed at a temperature lower than room temperature such as, for example, -196 ° C. (77 K: liquid nitrogen atmosphere). At low temperature forging, more deformation-induced structures (deformation twins, shear bands, micro bands, deformation bands, dislocations, etc.) are introduced to a workpiece by a single forging, and crystal grains are refined more quickly There is a merit that can be done. In the present invention, the temperature of the multiaxial forging treatment mainly refers to the temperature of the environment to which the workpiece is exposed. This is because the temperature of the object to be processed rises to a certain extent by the execution of forging, so if the temperature is defined by the temperature of the object to be processed, the value becomes ambiguous.

S2工程の圧延工程では、MDF工程によって材料の塑性加工性が良くなっていることから低い温度で圧延することができ、室温〜再結晶化が始まらない温度で行うことが好ましい。好ましくは400℃以下の温度である。更に好適には300℃以下の温度である。圧延温度が300℃より高いでは結晶粒径が大きくなりやすく、場合によっては再結晶化して好ましくない(後述する図8〜図12参照)。  In the rolling step of the S2 step, since the plastic formability of the material is improved by the MDF step, rolling can be performed at a low temperature, and it is preferable to carry out at room temperature to a temperature at which recrystallization does not start. Preferably, the temperature is 400 ° C. or less. More preferably, the temperature is 300 ° C. or less. If the rolling temperature is higher than 300 ° C., the crystal grain size tends to be large, and in some cases, it is not preferable because of recrystallization (see FIGS. 8 to 12 described later).

S3工程の張出成形方法を詳細に説明する。予備加工工程のS2工程まで製作した薄板を均一な厚さの曲面状に成形する工程で温度管理が重要な要素であるため、曲面に成形するための金型のパンチ・ダイスおよび被加工体の薄板は、成形開始前に加熱炉を用いて成形温度として定めた所定温度まで昇温し、それぞれが所定温度となるまで十分に保持する。張出成形工程の温度は、室温から再結晶化が始まらない温度以下である。好ましくは400℃以下である。さらに好適には300℃以下である。300℃以上の温度では、予備加工工程で超微細結晶化されたチタン金属材料の粒成長が始まり、さらに高温域では再結晶化が始まり、好ましくない。薄板の成形では成形品寸法、形状、金型などの機械的成形条件により応力状態、変形形状、破断形態が多種多様な変化を示すため、成形方法ごとに区分して考える必要がある。金属材料に適用される成形方法のひとつである張出成形法を本発明では、適用したが、この方法では伸び変形の最も大きい部分から破断する傾向にある。この破断限界を向上させるためには、薄板の延性を向上させることと、ひずみ分布の一様性を確保する必要がある。すなわち、変形が局所に集中することを避け、できるだけ薄板全体に分散する条件を適用することである。スピーカのツイータの振動板として適用するためには、成形後の肉厚分布の均一性も要求される。張出性は張出試験で通常剛体ポンチによって張出し成形を行い、割れが発生したときの張出量をエリクセン値として表示される。エリクセン値は薄板上の圧延方向とその直角方向の2軸に対してほぼ等ひずみの変形下の割れ限界値である。  The overhang forming method in step S3 will be described in detail. Since temperature control is an important factor in the step of forming the thin plate manufactured up to the S2 step of the preliminary processing step into a curved surface with a uniform thickness, the punch / die and die of the die for forming the curved surface The thin plate is heated to a predetermined temperature determined as a molding temperature using a heating furnace before the start of molding, and is sufficiently held until each reaches a predetermined temperature. The temperature of the extrusion molding step is equal to or less than the temperature at which recrystallization does not start from room temperature. Preferably it is 400 degrees C or less. More preferably, it is 300 ° C. or less. At temperatures above 300 ° C., grain growth of the ultrafine-crystallized titanium metal material begins in the preliminary processing step, and recrystallization begins in the high temperature range, which is not preferable. In forming a thin plate, the stress state, deformed shape, and fracture mode show various changes depending on the mechanical forming conditions such as the size of the molded product, the shape and the mold, so it is necessary to think separately for each forming method. In the present invention, a stretch forming method, which is one of the forming methods applied to metal materials, is applied, but in this method, it tends to break from the largest part of the elongation deformation. In order to improve the fracture limit, it is necessary to improve the ductility of the thin plate and to ensure the uniformity of the strain distribution. That is, it is necessary to avoid the concentration of deformation locally, and to apply the condition to disperse as much as possible across the thin plate. In order to apply it as a diaphragm of a speaker tweeter, uniformity of thickness distribution after molding is also required. The overhang property is usually formed by overhang using a rigid body punch in an overhang test, and the amount of overhang when a crack occurs is displayed as an Erichsen value. The Erichsen value is a crack limit value under deformation of approximately equal strain with respect to two axes of rolling direction and its perpendicular direction on a thin plate.

S4工程は熱処理工程である。熱処理温度は400℃(573K)であり、好ましくは300℃(573K)以下の温度範囲にて行うことで、強度(硬度)および加工性のどちらの特性も熱処理前に対して劣化させることなく、塑性変形が可能となるため、S3の張出成形工程で曲面に成形した後の加工性が改善される。400℃以上の温度では結晶粒径が急激に大きくなるため、好ましくない。  Step S4 is a heat treatment step. The heat treatment temperature is 400 ° C. (573 K), preferably 300 ° C. (573 K) or less, so that both the strength (hardness) and the workability are not deteriorated with respect to those before the heat treatment. Since plastic deformation is possible, the processability after forming on a curved surface in the overhang forming step of S3 is improved. At a temperature of 400 ° C. or more, the crystal grain size rapidly increases, which is not preferable.

S1〜S4の工程を経て製造された曲面を有するチタン金属材料薄板であって、スピーカのツイータの振動板および頭蓋骨の一部として使う人工骨の斜視図を図2に示す。図2(a)は、スピーカのツイータに使用する振動板で、図2(b)は頭蓋骨の人工骨の模式図である。ツイータの振動板は肉厚が10μm〜300μm程度の範囲のもので、加工された範囲の直径に対して張出方向の長さの割合は1/16〜1/4が実現できる。  FIG. 2 shows a perspective view of an artificial bone which is a thin plate of titanium metal material having a curved surface manufactured through the steps S1 to S4 and which is used as a part of a diaphragm and a skull of a tweeter of a speaker. Fig.2 (a) is a diaphragm used for the tweeter of a speaker, FIG.2 (b) is a schematic diagram of the artificial bone of a skull. The diaphragm of the tweeter has a thickness in the range of about 10 μm to 300 μm, and the ratio of the length in the extension direction to the diameter of the processed range can be realized to 1/16 to 1/4.

評価試験について説明する。評価試験において、結晶構造は、供試材のND(圧延面法線方向)からの透過型電子顕微鏡(Transmission Electron Microscopy/TEM)を観察する。機械特性として行う張出し試験では、延性を評価するためヤング率とエリクセン値を調査し、強度試験では、ビッカース硬度を評価する。  The evaluation test will be described. In the evaluation test, the crystal structure is observed by transmission electron microscopy (TEM) from the ND (rolled surface normal direction) of the test material. In the stretch test performed as a mechanical property, Young's modulus and Erichsen value are investigated to evaluate ductility, and in the strength test, Vickers hardness is evaluated.

TEM観察で結晶組織を観察し、そのTEM像からラインインターセプト法により平均結晶粒径を求める。強度試験は、20μm薄板のT.D.面(圧延面垂直方向の面)に対する硬さをダイナミック微小硬度計で測定する。20μm薄板のT.D.面に対する硬さの測定を行うために、20μmの薄板を樹脂に埋め埋め込んだ後、エメリー紙研磨、バフ研磨を順に行って試験試料を作成する。エメリー紙研磨では、回転研磨盤に耐水ペーパーを敷き、粒度#180〜#4000まで順次交換しながら機械研磨を行う。また、#4000の研磨方向がR.D.方向(圧延方向)と平行になるように機械研磨方向を調整する。続くバフ研磨では、回転研磨盤にバフを敷き、粒度0.1μmのアルミナペーストを用いて、N.D.方向(圧延面法線方向)と平行になるように鏡面状態になるまで研磨を行う。硬さ試験では、試験力を10mNまたは 20mN、負荷保持時間5秒、除荷保持時間を5秒に設定して、鏡面状態の箇所で動的硬さ試験する。  The crystal structure is observed by TEM observation, and the average grain size is determined from the TEM image by the line intercept method. The strength test measures the hardness of a 20 μm thin plate to the T.D. surface (the surface in the direction perpendicular to the rolling surface) with a dynamic microhardness tester. In order to measure the hardness of a 20 μm thin plate with respect to the T.D. surface, a 20 μm thin plate is embedded in a resin and embedded, and then emery paper polishing and buff polishing are sequentially performed to prepare a test sample. In emery paper polishing, water resistant paper is placed on a rotary polishing machine, and mechanical polishing is performed while sequentially changing the particle size from # 180 to # 4000. Also, the mechanical polishing direction is adjusted so that the # 4000 polishing direction is parallel to the RD direction (rolling direction). In the subsequent buffing, a buff is placed on a rotary polishing machine, and polishing is performed using an alumina paste with a particle size of 0.1 μm until the mirror surface becomes parallel to the N.D. direction (the rolling surface normal direction). . In the hardness test, the dynamic hardness test is performed at the mirror surface with the test force set to 10 mN or 20 mN, the load holding time 5 seconds, and the unloading holding time 5 seconds.

以下、本発明の製造方法および効果を検証するための実験例を説明する。  Hereinafter, experimental examples for verifying the manufacturing method and the effect of the present invention will be described.

出発材料は直径約60mmの市販の丸棒状純チタン試料(JISの2種のCPチタン)である。その平均結晶粒径は約33μm程度、ヤング率は106.4GPaである。ここで、JISH4600に定められている2種の純チタンの化学組成を表1に示す。  The starting material is a commercially available round rod-shaped pure titanium sample (2 types of CP titanium of JIS) having a diameter of about 60 mm. The average grain size is about 33 μm, and the Young's modulus is 106.4 GPa. Here, the chemical compositions of two types of pure titanium specified in JISH4600 are shown in Table 1.

Figure 2018030231
Figure 2018030231

出発材料を矩形状の被加工体に切断加工後、S1工程でMDF法で多軸鍛造を行った。  After cutting the starting material into a rectangular workpiece, multiaxial forging was performed by the MDF method in step S1.

MDF法の条件について説明する。室温で、被加工体の第1の方向(X方向、主として出発材料の長手方向)に沿って、被加工体を鍛造した(第1パス)。第1パスにより導入されるひずみ量△εは、0.2とした。次に、被加工体の第2の方向(Y方向)に沿って、被加工体を鍛造した(第2パス)。第2パスにより導入されるひずみ量△εは、0.2とした。次に、被加工体の第3の方向(Z方向)に沿って、被加工体を鍛造した(第3パス)。第3パスにより導入されるひずみ量△εは、0.2とした。このように、X方向→Y方向→Z方向の順番で、鍛造処理を合計10回(10パス)繰り返すことにより、被加工体に累積ひずみΣ△ε=2.0を導入した。また、本発明において、各パスにおけるひずみ速度は、1×10−3/秒〜10/秒の範囲であることが好ましい。なお、多軸鍛造処理後の被加工体には、ワレや欠陥の発生は認められなかった。The conditions of the MDF method will be described. The workpiece was forged (first pass) at room temperature along the first direction (X direction, mainly the longitudinal direction of the starting material) of the workpiece. The strain amount Δε introduced by the first pass is 0.2. Next, the workpiece was forged along the second direction (Y direction) of the workpiece (second pass). The strain amount Δε introduced by the second pass is 0.2. Next, the workpiece was forged (third pass) along the third direction (Z direction) of the workpiece. The strain amount Δε introduced by the third pass is 0.2. Thus, cumulative strain 鍛造 Δε = 2.0 was introduced into the workpiece by repeating the forging process 10 times in total (10 passes) in the order of X direction → Y direction → Z direction. In the present invention, the strain rate in each pass is preferably in the range of 1 × 10 −3 / sec to 10 / sec. In addition, generation | occurrence | production of a crack or defect was not recognized by the to-be-processed body after multi-axial forging processing.

つぎに、多軸鍛造処理を施した矩形状の被加工体に対して、S2工程の圧延処理を室温で実施した。また、圧延による被加工体の圧延率は、95%以上とし、複数回圧延を繰り返すことで13μm、20μm、30μm、50μm、100μmの5種類の厚さの薄板(箔)を作製した。それぞれ13μm箔、20μm箔、30μm箔、50μm箔、100μm箔と呼ぶ。圧延処理後の薄板には、ワレや欠陥が箔端に認められたが、切断除去した。  Next, the rolling process of S2 process was implemented at room temperature with respect to the rectangular to-be-processed object which gave the multi-axial forging process. The rolling ratio of the object to be processed by rolling was 95% or more, and rolling was repeated a plurality of times to produce thin plates (foils) of five thicknesses of 13 μm, 20 μm, 30 μm, 50 μm, and 100 μm. It is called 13 μm foil, 20 μm foil, 30 μm foil, 50 μm foil and 100 μm foil, respectively. In the thin sheet after the rolling process, cracks and cracks were observed at the foil end, but were cut and removed.

図3はS1→S2工程によって作製した20μm箔の結晶構造のTEM観察像である。ラインインターセプト法により平均結晶粒径を測定した結果、69nmであった。黒色コントラスト部が複数点在しており、MDFによって転位下部組織が発達していることが観察される。組織は必ずしも等軸では無く、ラメラ状組織も一部に残存しているが、微細粒組織であることがわかる。図3の左上には、SAD(selected area diffraction)パターンも記した。微視組織観察の結果、転位のタングル及び転位セルの存在が顕著に見られた。  FIG. 3 is a TEM observation image of the crystal structure of a 20 μm foil produced by the steps S1 → S2. As a result of measuring an average crystal grain size by the line intercept method, it was 69 nm. It is observed that there are a plurality of black contrast parts, and that the substructure of dislocation is developed by MDF. The tissue is not necessarily equiaxed, and a lamellar structure remains in part, but it can be seen that it is a fine grain structure. In the upper left of FIG. 3, a SAD (selected area diffraction) pattern is also described. As a result of microscopic texture observation, the presence of tangles and dislocation cells of dislocation was clearly observed.

S3工程の押出成形工程でスピーカのコーン状の曲面形状に成形した。被加工体の大きさは圧延方向(R.D.)の長さ×垂直方向(T.D.)の長さを 30mm×18mmとし、押出成形の雄型のパンチには直径8mmの鋼球を用いた。雌型は成形対象の薄板の厚さの2倍に直径8mmを加算した直径の半球状の凹みを有する金属性の型である。これらの雄雌型および薄板を小型炉の槽内に入れ、5分間、所定の成形温度に昇温・保持し、型および被加工体が所定の温度になっていることを確かめた。押出成形は、亀裂の発生がない、設計上の深さまで行い押し込みは手動で行った。20μmの薄板では、直径8mmに対して、曲面の深さ(くぼみ変形深さ)は0.5mm〜2mmであった。この直径に対するくぼみ変形深さの比は1/4〜1/16まで成形できた。  It shape | molded in the cone-shaped curved-surface shape of the speaker by the extrusion molding process of S3 process. The size of the workpiece was 30 mm × 18 mm in length in the rolling direction (R.D.) × vertical direction (T.D.), and a steel ball with a diameter of 8 mm was used for the extrusion-formed male punch. The female mold is a metallic mold having a hemispherical recess having a diameter of 8 mm in diameter, which is twice the thickness of the thin sheet to be molded. These male and female molds and thin plates were placed in the tank of a small-sized furnace, and heated for 5 minutes at a predetermined molding temperature and maintained, and it was confirmed that the mold and the workpiece were at a predetermined temperature. The extrusion was performed to the design depth without cracking, and the pressing was performed manually. For a thin plate of 20 μm, the depth of the curved surface (recess deformation depth) was 0.5 mm to 2 mm for a diameter of 8 mm. The ratio of the indentation deformation depth to this diameter could be formed to 1/4 to 1/16.

張出成形工程の成形条件を求めるために張出試験を行った。20μm薄板を使って張出成形時の温度とエリクセン値の測定結果を図4に示す。エリクセン値は破壊限界の張出成形量を示したものであることから、成形条件の温度を決めることができる。張出成型性を示すエリクセン値は温度の上昇に伴って上昇し、温度により成形性が向上している。特に300℃(573K)でのエリクセン値の上昇は顕著であり、スピーカに用いるツイータ用振動板の製造にとって十分大きな値であった。MDFを施し結晶粒が微細化され粒界すべりが生じるようになったことと、温間成形による活動すべり系の増加が主な原因と考えられる。また、張出成形工程後のくぼみ変形部の硬さとヤング率を図5に示す。張出成形後の変形による大きな強度の低下はなかった。ヤング率は300℃(573K)で最も低下し、さらに77℃(350K)から177℃(450K)の間でヤング率の極小点が存在する傾向にあることが分かった。これらの結果から、スピーカのツイータとして薄板加工が可能な張出成形温度は300℃(573K)から27℃(300K)である。ただし、わずかな結晶粒の成長を許容するならば(後述の図12参照)、粒界すべりと活動すべり系の増加の観点から400℃以下と考えられる。  An overhang test was performed to determine the forming conditions of the overhang forming process. The measurement results of temperature and Erichsen value at the time of stretch forming using a 20 μm thin plate are shown in FIG. Since the Erichsen value indicates the amount of extrusion forming at the fracture limit, the temperature of the forming conditions can be determined. The Erichsen value indicating the overhang formability increases with the temperature rise, and the formability is improved by the temperature. In particular, the rise of the Erichsen value at 300 ° C. (573 K) is remarkable, which is a sufficiently large value for the production of the tweeter diaphragm used for the speaker. It is thought that the main reason is that the MDF has been applied to refine the crystal grains and grain boundary slip has occurred, and the increase of the active slip system by warm forming. Moreover, the hardness and Young's modulus of the hollow deformation portion after the overhang forming step are shown in FIG. There was no significant drop in strength due to deformation after stretch forming. It was found that the Young's modulus decreased most at 300 ° C. (573 K), and there was a tendency for a minimum of Young's modulus to be present between 77 ° C. (350 K) and 177 ° C. (450 K). From these results, the overhang forming temperature at which thin plate processing can be performed as a speaker tweeter is 300 ° C. (573 K) to 27 ° C. (300 K). However, if slight crystal grain growth is allowed (see FIG. 12 described later), it is considered to be 400 ° C. or less from the viewpoint of increase in grain boundary sliding and active slip system.

成形前の薄板の厚さとエリクセン値の関係を図6に示す。300℃(573K)におけるエリクセン値は室温27℃(300K)に対して約2.3倍以上のエリクセン値を示した。特に、13μm箔は約3.6倍のエリクセン値を示した。また、厚さ50μmの薄板でも13μmと同等のエリクセン値0.5mmが得られており、50μm厚さでもスピーカのツイータの振動板をつくることができることが分かった。  The relationship between the thickness of the thin plate before forming and the Erichsen value is shown in FIG. The Erichsen value at 300 ° C. (573 K) showed an Erichsen value of about 2.3 or more times that of room temperature 27 ° C. (300 K). In particular, the 13 μm foil exhibited an Erichsen value of about 3.6 times. In addition, it was found that an Erichsen value of 0.5 mm equivalent to 13 μm was obtained even with a thin plate with a thickness of 50 μm, and a diaphragm of a speaker tweeter can be formed even with a thickness of 50 μm.

張出成形後のくぼみ変形部分の厚さの分布を図7に示す。試験片のくぼみ変形部分の中心を通る線分の両端を0と11とし、11等分する。線分の間の点を左から順に1〜10とし、この10点の部分の厚さを測定した。測定点の1と10である両端付近でわずかに厚さが減少しているものの成形温度27℃から300℃の範囲では顕著な厚さバラツキがみられない。  The distribution of the thickness of the depressed portion after overhang forming is shown in FIG. The two ends of the line passing through the center of the depressed portion of the test piece are 0 and 11, and equally divided into 11. The points between the line segments were sequentially 1 to 10 from the left, and the thickness of the portion of these 10 points was measured. Although there is a slight decrease in thickness near both ends which are 1 and 10 of the measurement point, no remarkable thickness variation is observed in the molding temperature range of 27 ° C to 300 ° C.

S4工程の熱処理を行った。真空中で熱処理の温度の最適な範囲を求めるため、室温から500℃(773K)までの範囲で試験をおこなった。300℃、350℃、400℃、500℃で熱処理した後の試験片の組織をTEMで観察した写真を図8〜図11に示す。同図の左上には、SAD(selected area diffraction)パターンも記した。熱処理前および熱処理温度300℃では転位のタングルおよび転位セルの存在が顕著に見られ、熱処理の影響はない。350℃、400℃、500℃の熱処理後の組織は、いずれも再結晶したとみられる結晶粒組織が多数観察された。図12の熱処理温度と平均結晶粒径の関係から、300℃(573K)以下の熱処理では結晶粒径は69nm〜100nmの値を示し、それ以上で急激に結晶成長し平均結晶粒径が大きくなった。このことから、S4工程の熱処理温度は結晶粒径に影響を与えない300℃以下が好ましい。ただし、500℃の熱処理温度でもその平均結晶粒径は1μm以下で、超微細粒組織であり通常のチタン組織と比較して著しく微細である。  Heat treatment in step S4 was performed. In order to determine the optimum range of the heat treatment temperature in vacuum, the test was performed in the range from room temperature to 500 ° C. (773 K). The photograph which observed the structure | tissue of the test piece after heat processing at 300 degreeC, 350 degreeC, 400 degreeC, and 500 degreeC by TEM is shown in FIGS. In the upper left of the figure, the SAD (selected area differential) pattern is also described. Before heat treatment and at a heat treatment temperature of 300 ° C., the presence of dislocation tangles and dislocation cells is remarkably observed, and there is no influence of heat treatment. In the structures after heat treatment at 350 ° C., 400 ° C., and 500 ° C., many crystal grain structures that appeared to be recrystallized were observed. From the relationship between the heat treatment temperature in FIG. 12 and the average crystal grain size, the crystal grain size shows a value of 69 nm to 100 nm in heat treatment at 300 ° C. (573 K) or less. The From this, the heat treatment temperature in the step S4 is preferably 300 ° C. or less which does not affect the crystal grain size. However, even at a heat treatment temperature of 500 ° C., the average crystal grain size is 1 μm or less, and it has an ultrafine grain structure, which is extremely fine compared to a normal titanium structure.

熱処理温度を変えて熱処理を行った20μmの薄板の硬さとヤング率の測定結果を図13に示す。熱処理温度が27℃(300K)〜500℃(773K)の範囲ではヤング率は、68GPa〜90GPaであった。また、この温度範囲では強度(硬度)が高い値を示している。スピーカ用の振動板への利用する場合、比弾性率(E/ρ、E:ヤング率、ρ:密度)は高い方が材料の分割振動に起因するノイズが低減されるため、同一材料でヤング率は高いほうが良い。300℃(573K)までは硬さとヤング率が上昇し、300℃(573K)をピークに、熱処理温度の上昇に伴い硬さとヤング率が低下することがわかった。熱処理温度300℃(573K)以上では,TEM写真でも確認できているように粒成長と再結晶が進むためであると言える。  The measurement results of the hardness and Young's modulus of a thin plate of 20 μm heat treated at different heat treatment temperatures are shown in FIG. When the heat treatment temperature was in the range of 27 ° C. (300 K) to 500 ° C. (773 K), the Young's modulus was 68 GPa to 90 GPa. Also, in this temperature range, the strength (hardness) shows a high value. When used as a diaphragm for a speaker, the higher the specific modulus (E / ρ, E: Young's modulus, ρ: density), the lower the noise due to material division vibration, so the same material is used for Young The higher the rate, the better. It was found that the hardness and the Young's modulus increased up to 300 ° C. (573 K), and the hardness and the Young's modulus decreased with the increase of the heat treatment temperature, with the peak at 300 ° C. (573 K). It can be said that, at a heat treatment temperature of 300 ° C. (573 K) or more, grain growth and recrystallization proceed as shown in the TEM photograph.

純チタン金属製薄板の製造方法にかかる本発明により製造される純チタン金属製薄板は、板厚13μm〜50μmにおいてエリクセン値0.5mm以上となることから、成形性に優れたものとなり、前掲のスピーカ振動板(ツイータ)または頭蓋骨用人工骨に使用することができるほか、金属光沢による審美性を有するという利点から、薄板を用いた携帯電話用筐体や、その他の各種製品の筐体としても利用でき、さらに、生体適合性の観点から、人工関節などにも使用することができる。  The pure titanium metal thin plate manufactured according to the present invention according to the method for manufacturing a pure titanium metal thin plate has an Erichsen value of 0.5 mm or more at a plate thickness of 13 μm to 50 μm, and therefore becomes excellent in formability. It can be used as a speaker diaphragm (tweeter) or for artificial bones for skulls, and also has an advantage of having a metallic luster for aesthetics, and it can also be used as a casing for mobile phones using thin plates and casings for other various products. It can be used and, furthermore, from the viewpoint of biocompatibility, it can be used for artificial joints and the like.

また、純チタン金属製であることから、耐食性および熱伝導率を考慮すれば、薄板によって構成する伝熱管、熱交換器、エンジン周辺部品などに使用することができ、IT機器にも使用し得る。  In addition, because it is made of pure titanium metal, it can be used for heat transfer tubes, heat exchangers, engine peripheral parts, etc. made of thin plates, considering corrosion resistance and thermal conductivity, and can also be used for IT equipment .

Claims (8)

純チタン金属製薄板の製造方法であって、
純チタン金属材料に強ひずみ加工を施す予備加工工程と、
該予備加工工程で加工された純チタン金属製薄板を所定形状に変形する変形加工工程とを含み、
前記予備加工工程は、ひずみ量を0.1〜0.8の範囲内として三次元方向に少なくとも各1回以上の鍛造を施す多軸鍛造処理工程と、
65%以上の圧延率で圧延処理する圧延工程とを含み、
前記変形加工工程は、室温以上400℃以下の条件下において張出成形する成形工程を含むことを特徴とする純チタン金属製薄板の製造方法。
A method of manufacturing a pure titanium metal thin plate,
A preliminary processing step of subjecting a pure titanium metal material to strong strain processing;
And d) deforming the pure titanium metal thin plate processed in the preliminary processing step into a predetermined shape;
The pre-machining step is a multi-axial forging treatment step in which forging is performed at least once each in a three-dimensional direction with a strain amount in a range of 0.1 to 0.8;
And a rolling process for rolling at a rolling ratio of 65% or more,
The method of manufacturing a pure titanium metal thin plate, wherein the deformation processing step includes a forming step of forming by stretching under conditions of room temperature or more and 400 ° C. or less.
前記変形加工工程は、さらに、チタンが再結晶化しない温度に加熱する熱処理工程を含む請求項1に記載の純チタン金属製薄板の製造方法。  The method according to claim 1, wherein the deformation processing step further includes a heat treatment step of heating to a temperature at which titanium does not recrystallize. 前記成形工程は、100℃以上300℃以下の条件下において張出成形するものである請求項1または2に記載の純チタン金属製薄板の製造方法。  The method for producing a pure titanium metal thin plate according to claim 1, wherein the forming step is performed by stretch forming under conditions of 100 ° C. or more and 300 ° C. or less. 前記変形加工工程は、金型およびダイスを室温以上400℃以下に加熱した状態が維持されている請求項1または2に記載の純チタン金属製薄板の製造方法。  The method for producing a pure titanium metal thin plate according to claim 1 or 2, wherein the deformation processing step maintains a state in which the mold and the die are heated to room temperature or more and 400 ° C or less. 前記変形加工工程は、金型およびダイスを100℃以上300℃以下に加熱した状態が維持されている請求項3に記載の純チタン金属製薄板の製造方法。  The method of manufacturing a pure titanium metal thin plate according to claim 3, wherein the deformation processing step maintains a state in which the mold and the die are heated to 100 ° C to 300 ° C. 前記予備加工工程は、多軸鍛造工程で製造された純チタン金属材料を、前記圧延工程により肉厚を10μm〜300μmとするものであり、前記成形加工工程は、該肉厚の純チタン金属材料を曲面に変形するものである請求項1ないし5のいずれかに記載の純チタン金属製薄板の製造方法。  The preliminary processing step is to make the pure titanium metal material manufactured in the multi-axial forging step 10 μm to 300 μm in thickness by the rolling step, and the forming step is a pure titanium metal material having the thickness The method for producing a pure titanium metal thin plate according to any one of claims 1 to 5, wherein the flat plate is deformed into a curved surface. 前記曲面は、前記張出成形によって加工される範囲の長さに対する張出方向長さの割合が1/16〜1/4に変形されるものである請求項6に記載の純チタン金属製薄板の製造方法。  The pure titanium metal thin plate according to claim 6, wherein the curved surface is such that the ratio of the extension direction length to the length of the range processed by the extension forming is changed to 1/16 to 1/4. Manufacturing method. 純チタンによるスピーカ振動板の製造方法であって、請求項6または7に記載の製造方法によって、10μm〜300μmの肉厚による純チタン金属薄膜を球面状に加工してなることを特徴とするスピーカ振動板の製造方法。  A method of manufacturing a speaker diaphragm using pure titanium, comprising: forming a pure titanium metal thin film having a thickness of 10 μm to 300 μm into a spherical shape by the manufacturing method according to claim 6 or 7 Method of manufacturing diaphragm.
JP2018532967A 2016-08-08 2017-08-02 Manufacturing method of pure titanium metal material thin plate and manufacturing method of speaker diaphragm Active JP7168210B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016155721 2016-08-08
JP2016155721 2016-08-08
PCT/JP2017/028009 WO2018030231A1 (en) 2016-08-08 2017-08-02 Method for producing pure titanium metal material thin sheet and method for producing speaker diaphragm

Publications (2)

Publication Number Publication Date
JPWO2018030231A1 true JPWO2018030231A1 (en) 2019-06-06
JP7168210B2 JP7168210B2 (en) 2022-11-09

Family

ID=61162576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018532967A Active JP7168210B2 (en) 2016-08-08 2017-08-02 Manufacturing method of pure titanium metal material thin plate and manufacturing method of speaker diaphragm

Country Status (2)

Country Link
JP (1) JP7168210B2 (en)
WO (1) WO2018030231A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109750185B (en) * 2019-03-20 2021-05-25 中国科学院金属研究所 Preparation method of 650 ℃ high-temperature titanium alloy sheet for superplastic forming
CN111014333A (en) * 2019-12-12 2020-04-17 西安圣泰金属材料有限公司 Processing method of medical Ti6Al4V titanium alloy plate
JP7368798B2 (en) 2019-12-25 2023-10-25 国立大学法人豊橋技術科学大学 Processing method of pure titanium metal material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539820A (en) * 2010-09-15 2013-10-28 エイティーアイ・プロパティーズ・インコーポレーテッド Processing routes for titanium and titanium alloys
WO2014038487A1 (en) * 2012-09-04 2014-03-13 国立大学法人電気通信大学 Member-manufacturing process and biomaterial

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539820A (en) * 2010-09-15 2013-10-28 エイティーアイ・プロパティーズ・インコーポレーテッド Processing routes for titanium and titanium alloys
WO2014038487A1 (en) * 2012-09-04 2014-03-13 国立大学法人電気通信大学 Member-manufacturing process and biomaterial

Also Published As

Publication number Publication date
WO2018030231A1 (en) 2018-02-15
JP7168210B2 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
Zhao et al. The processing of pure titanium through multiple passes of ECAP at room temperature
WO2019100809A1 (en) High strength and toughness filamentous grain pure titanium and preparation method therefor
Zhao et al. Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature
Toroghinejad et al. On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083
Stolyarov et al. Influence of post-deformation on CP-Ti processed by equal channel angular pressing
CN107574394B (en) A kind of preparation method of medical ultra-fine grain TC4 titanium alloy plate
CN104726803A (en) Method for preparing nanocrystalline metal material containing nano-sized precipitates within crystal
JPWO2018030231A1 (en) Method of manufacturing pure titanium metal sheet and method of manufacturing speaker diaphragm
Meng et al. Deformation behavior and microstructure evolution in thermal-aided mesoforming of titanium dental abutment
Khodabakhshi et al. 3D finite element analysis and experimental validation of constrained groove pressing–cross route as an SPD process for sheet form metals
CN112281025A (en) TC4 titanium alloy wire and preparation method thereof
Song et al. Effects of annealing on microstructure evolution and mechanical properties of constrained groove pressed pure titanium
Chang et al. Influence of grain size and temperature on micro upsetting of copper
Kurzydlowski et al. Effect of severe plastic deformation on the microstructure and mechanical properties of Al and Cu
Kumar et al. Grain refinement in commercial purity titanium sheets by constrained groove pressing
Palán et al. The microstructure and mechanical properties evaluation of UFG Titanium Grade 4 in relation to the technological aspects of the CONFORM SPD process
CN112342431B (en) High-thermal-stability equiaxial nanocrystalline Ti6Al4V-Cu alloy and preparation method thereof
Valiev Recent developments of severe plastic deformation techniques for processing bulk nanostructured materials
Kusuma et al. EFFECT OF ANNEALING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRAFINE GRAINED BRASS PRODUCED BY EQUAL CHANNEL ANGULAR PRESSING.
JP2006257528A (en) Method for manufacturing thin sheet of pure molybdenum or molybdenum alloy superior in deep drawability
Ertan et al. Effect of deformation temperature on mechanical properties, microstructure, and springback of Ti-6Al-4V sheets
Krishnaiah et al. Mechanical properties of commercially pure aluminium subjected to repetitive bending and straightening process
Avinash et al. Microstructure and mechanical properties evolution of AA 2024 alloy subjected to RCS
CN112251635B (en) High-thermal-stability equiaxed nanocrystalline Ti6Al4V-Ni alloy and preparation method thereof
KR102582659B1 (en) Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220629

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220714

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7168210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150