JP2019147919A - Lubricant composition - Google Patents

Lubricant composition Download PDF

Info

Publication number
JP2019147919A
JP2019147919A JP2018034886A JP2018034886A JP2019147919A JP 2019147919 A JP2019147919 A JP 2019147919A JP 2018034886 A JP2018034886 A JP 2018034886A JP 2018034886 A JP2018034886 A JP 2018034886A JP 2019147919 A JP2019147919 A JP 2019147919A
Authority
JP
Japan
Prior art keywords
lubricating oil
formula
friction
oil composition
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018034886A
Other languages
Japanese (ja)
Other versions
JP7061481B2 (en
Inventor
中村 俊貴
Toshiki Nakamura
俊貴 中村
靖之 大沼田
Yasuyuki Onumata
靖之 大沼田
長谷川 慎治
Shinji Hasegawa
慎治 長谷川
康聖 鹿島
Yasumasa Kashima
康聖 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2018034886A priority Critical patent/JP7061481B2/en
Publication of JP2019147919A publication Critical patent/JP2019147919A/en
Application granted granted Critical
Publication of JP7061481B2 publication Critical patent/JP7061481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a lubricant composition that can maintain a high coefficient of friction between metals in a boundary lubrication area, and can keep the coefficient of the friction between the metals low in an area with a high rotation and a mild lubrication condition.SOLUTION: The lubricant composition comprises a lubricating base oil, a friction modifier having a specific structure, and an antiwear agent having a specific structure, wherein a content of the antiwear agent is 50 to 950 mass ppm in terms of phosphorus elements based on a total amount of the lubricant composition.SELECTED DRAWING: None

Description

本発明は、潤滑油組成物に関する。   The present invention relates to a lubricating oil composition.

自動変速機、無段変速機等の変速機には、エンジンから変速機に動力を伝達するための潤滑油(変速機用潤滑油)が用いられている。変速機用潤滑油には、その摩擦特性を調整するために摩擦調整剤が配合される。摩擦調整剤としては、例えば、脂肪酸アミド等が知られている(下記特許文献1を参照)。   Lubricating oil (transmission lubricating oil) for transmitting power from the engine to the transmission is used in transmissions such as automatic transmissions and continuously variable transmissions. A friction modifier is blended with the lubricating oil for the transmission in order to adjust its friction characteristics. For example, fatty acid amides are known as friction modifiers (see Patent Document 1 below).

特開2014−177608号公報JP 2014-177608 A

変速機は、構成部品として、ベルト・プーリー、ベアリング、オイルポンプ等を有しており、その構成部品によって潤滑領域が異なるため、これらに使用される変速機用潤滑油においては、構成部品ごとに異なる性能が要求される。例えば、ベルト・プーリーにおいては、動力伝達のため、境界潤滑域での金属間摩擦係数を高く維持することが求められる。一方で、省燃費化を達成するためには、高回転で作動するベアリングやオイルポンプのような潤滑条件がマイルドな領域において、金属間摩擦係数を低く抑えることが求められる。しかしながら、従来の変速機用潤滑油は、これら要求特性について必ずしも満足できているとはいえない。   The transmission has belts, pulleys, bearings, oil pumps, etc. as components, and the lubrication area varies depending on the components. Therefore, the transmission lubricant used for these components is different for each component. Different performance is required. For example, in a belt and a pulley, it is required to maintain a high coefficient of friction between metals in a boundary lubrication region for power transmission. On the other hand, in order to achieve fuel saving, it is required to keep the coefficient of friction between metals low in a region where the lubrication conditions are mild, such as a bearing or oil pump that operates at high speed. However, it cannot be said that the conventional transmission lubricants are always satisfied with these required characteristics.

本発明は、このような実情に鑑みてなされたものであり、境界潤滑域において金属間摩擦係数を高く維持しつつ、高回転で潤滑条件がマイルドな領域においては金属間摩擦係数を低く抑えることができる潤滑油組成物を提供することを目的とする。   The present invention has been made in view of such circumstances, and maintains a high coefficient of friction between metals in the boundary lubrication region, while keeping the coefficient of friction between metals low in a region where the lubrication condition is high at high speed. It is an object of the present invention to provide a lubricating oil composition that can be used.

本発明は、潤滑油基油と、下記一般式(1)で表される摩擦調整剤と、下記一般式(2−1)及び下記一般式(2−2)からなる群より選ばれる少なくとも1種の摩耗防止剤と、を含み、摩耗防止剤の含有量が、潤滑油組成物全量を基準として、リン元素換算で50〜950質量ppmである、潤滑油組成物を提供する。   The present invention is at least one selected from the group consisting of a lubricating base oil, a friction modifier represented by the following general formula (1), the following general formula (2-1) and the following general formula (2-2). A lubricating oil composition comprising: a seed antiwear agent, wherein the content of the antiwear agent is 50 to 950 mass ppm in terms of phosphorus element based on the total amount of the lubricating oil composition.

Figure 2019147919

[式(1)中、Rは炭素数3〜30の炭化水素基を示し、R’は水素原子又は下記一般式(1’)で表される基を示し、nは1〜3の整数を示す。
Figure 2019147919

(式(1’)中、mは1〜3の整数を示す。)]
Figure 2019147919

[In the formula (1), R represents a hydrocarbon group having 3 to 30 carbon atoms, R ′ represents a hydrogen atom or a group represented by the following general formula (1 ′), and n represents an integer of 1 to 3. Show.
Figure 2019147919

(In Formula (1 ′), m represents an integer of 1 to 3)]

Figure 2019147919

[式(2−1)中、R及びRはそれぞれ独立に、水素原子又は炭素数4〜20の炭化水素基を示す。]
Figure 2019147919

[In Formula (2-1), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 4 to 20 carbon atoms. ]

Figure 2019147919

[式(2−2)中、Rは水素原子、硫黄を含んでいてもよい炭素数4〜20の炭化水素基又は芳香族基を示し、Rは硫黄を含んでいてもよい炭素数4〜20の炭化水素基又は芳香族基を示す。]
Figure 2019147919

[In Formula (2-2), R 3 represents a hydrogen atom or a hydrocarbon group or aromatic group having 4 to 20 carbon atoms which may contain sulfur, and R 4 represents a carbon number which may contain sulfur. 4-20 hydrocarbon groups or aromatic groups are shown. ]

本発明によれば、境界潤滑域において金属間摩擦係数を高く維持しつつ、高回転で潤滑条件がマイルドな領域においては金属間摩擦係数を低く抑えることができる潤滑油組成物を提供することができる。   According to the present invention, it is possible to provide a lubricating oil composition that can maintain a high coefficient of friction between metals in a boundary lubrication region, and can keep the coefficient of friction between metals low in a region where the lubrication condition is high at a high rotation speed. it can.

本実施形態に係る潤滑油組成物は、潤滑油基油と、摩擦調整剤と、摩耗防止剤と、を含む。以下、各成分について詳細に説明する。   The lubricating oil composition according to this embodiment includes a lubricating base oil, a friction modifier, and an antiwear agent. Hereinafter, each component will be described in detail.

[潤滑油基油]
本実施形態において用いられる潤滑油基油としては特に制限されず、鉱油及び合成油のいずれも使用することができる。
[Lubricant base oil]
The lubricating base oil used in the present embodiment is not particularly limited, and any of mineral oil and synthetic oil can be used.

鉱油としては、原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理を単独又は2つ以上適宜組み合わせて精製したパラフィン系、ナフテン系等の鉱油、ノルマルパラフィン、イソパラフィン等が挙げられる。   As mineral oils, lubricating oil fractions obtained by atmospheric distillation and vacuum distillation of crude oil are removed from solvents, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, clay. Examples thereof include paraffinic and naphthenic mineral oils, normal paraffins, isoparaffins, and the like, which are purified by combining purification treatments such as treatment alone or in combination of two or more.

合成油としては、従来公知の種々のものが使用可能である。例えば、ポリα−オレフィン(α−オレフィン共重合体を含む)、ポリブテン、ポリオールエステル、二塩基酸エステル、リン酸エステル、ポリフェニルエーテル、アルキルベンゼン、アルキルナフタレン、ポリオキシアルキレングリコール、ネオペンチルグリコール、シリコーンオイル、トリメチロールプロパン、ペンタエリスリトール、ヒンダードエステル等を用いることができる。   As the synthetic oil, various conventionally known oils can be used. For example, poly α-olefin (including α-olefin copolymer), polybutene, polyol ester, dibasic acid ester, phosphate ester, polyphenyl ether, alkylbenzene, alkylnaphthalene, polyoxyalkylene glycol, neopentyl glycol, silicone Oil, trimethylolpropane, pentaerythritol, hindered ester, and the like can be used.

これらの潤滑油基油は、1種を単独で、又は2種以上を組み合わせて使用することができ、鉱油と合成油を組み合わせて使用してもよい。潤滑油基油は、本発明の効果をより高レベルで発揮させる観点から、炭化水素系基油を用いることが好ましい。また、潤滑油基油としてエステル系基油を用いる場合、本発明の効果をより高レベルで発揮させる観点から、エステル系基油の含有量は、潤滑油基油全量を基準として、30質量%以下が好ましく、10質量%以下がより好ましい。   These lubricating base oils can be used singly or in combination of two or more, and may be used in combination of mineral oil and synthetic oil. As the lubricating base oil, a hydrocarbon base oil is preferably used from the viewpoint of exhibiting the effects of the present invention at a higher level. When using an ester base oil as the lubricating base oil, the content of the ester base oil is 30% by mass based on the total amount of the lubricating base oil from the viewpoint of exhibiting the effects of the present invention at a higher level. The following are preferable and 10 mass% or less is more preferable.

潤滑油基油の動粘度は、潤滑油組成物の用途・目的に応じて適宜選定することができる。例えば、本実施形態に係る潤滑油組成物を駆動系潤滑油として用いる場合、潤滑油基油の100℃における動粘度の上限値は、好ましくは30mm/s以下、より好ましくは20mm/s以下、更に好ましくは10mm/s以下である。一方、潤滑油基油の100℃における動粘度の下限値は、特に限定されないが、例えば、1mm/s以上、2mm/s以上、又は3mm/s以上である。100℃における動粘度が上記範囲にあると、変速機の摺動部における摩擦を十分に低減し得るとともに低温特性も良好となる。一方、100℃における動粘度が30mm/sを超えると、燃費が悪化し、また低温粘度が高くなりすぎる傾向にある。また、100℃における動粘度が1mm/s未満であると、自動変速機の摺動部において磨耗量が増加し、潤滑性能が低下するおそれや、蒸発性が高くなり潤滑油消費量が多くなるおそれがある。 The kinematic viscosity of the lubricating base oil can be appropriately selected according to the use and purpose of the lubricating oil composition. For example, when the lubricating oil composition according to the present embodiment is used as a drive system lubricating oil, the upper limit value of the kinematic viscosity at 100 ° C. of the lubricating base oil is preferably 30 mm 2 / s or less, more preferably 20 mm 2 / s. Hereinafter, it is more preferably 10 mm 2 / s or less. On the other hand, the lower limit value of the kinematic viscosity at 100 ° C. of the lubricating base oil is not particularly limited, and is, for example, 1 mm 2 / s or more, 2 mm 2 / s or more, or 3 mm 2 / s or more. When the kinematic viscosity at 100 ° C. is in the above range, the friction at the sliding portion of the transmission can be sufficiently reduced and the low temperature characteristics are also improved. On the other hand, if the kinematic viscosity at 100 ° C. exceeds 30 mm 2 / s, the fuel efficiency deteriorates and the low-temperature viscosity tends to be too high. Further, if the kinematic viscosity at 100 ° C. is less than 1 mm 2 / s, the amount of wear increases in the sliding portion of the automatic transmission, the lubrication performance may be reduced, and the evaporability increases and the amount of lubricating oil consumption increases. There is a risk.

本発明における動粘度は、JIS K2283:2000に準拠して測定された動粘度を意味する。   The kinematic viscosity in the present invention means a kinematic viscosity measured according to JIS K2283: 2000.

その他、本実施形態において用いられる潤滑油基油の粘度指数、NOACK蒸発量等の各物性は、当該潤滑油組成物の用途に応じて適宜設定することが可能である。   In addition, the physical properties such as the viscosity index and the NOACK evaporation amount of the lubricating base oil used in the present embodiment can be appropriately set according to the use of the lubricating oil composition.

潤滑油基油の含有量は、潤滑油組成物全量を基準として、例えば50質量%以上、70質量%以上、90質量%以上であってよい。   The content of the lubricating base oil may be, for example, 50% by mass or more, 70% by mass or more, or 90% by mass or more based on the total amount of the lubricating oil composition.

[摩擦調整剤]
本実施形態において用いられる摩擦調整剤は、下記一般式(1)で表される。
[Friction modifier]
The friction modifier used in this embodiment is represented by the following general formula (1).

Figure 2019147919
Figure 2019147919

式(1)中、Rは炭素数3〜30の炭化水素基を示す。Rで表される炭化水素基は、好ましくは直鎖アルキル基、分岐鎖アルキル基、直鎖アルケニル基又は分岐鎖アルケニル基であり、より好ましくは直鎖アルキル基又は直鎖アルケニル基であり、更に好ましくは直鎖アルケニル基である。Rで表される炭化水素基の炭素数は、好ましくは6〜24、より好ましくは8〜20、更に好ましくは10〜18である。Rで表される炭素数3〜30の炭化水素基としては、例えば、ステアリル基、イソステアリル基、オレイル基等が挙げられ、中でも、潤滑油組成物の摩擦特性を更に向上させる観点から、Rはイソステアリル基又はオレイル基であることが好ましい。   In the formula (1), R represents a hydrocarbon group having 3 to 30 carbon atoms. The hydrocarbon group represented by R is preferably a linear alkyl group, a branched alkyl group, a linear alkenyl group or a branched alkenyl group, more preferably a linear alkyl group or a linear alkenyl group, A straight chain alkenyl group is preferable. The carbon number of the hydrocarbon group represented by R is preferably 6 to 24, more preferably 8 to 20, and still more preferably 10 to 18. Examples of the hydrocarbon group having 3 to 30 carbon atoms represented by R include a stearyl group, an isostearyl group, and an oleyl group. Among these, from the viewpoint of further improving the friction characteristics of the lubricating oil composition, R Is preferably an isostearyl group or an oleyl group.

式(1)中、R’は水素原子又は下記一般式(1’)で表される基を示し、好ましくは下記一般式(1’)で表される基を示す。   In formula (1), R ′ represents a hydrogen atom or a group represented by the following general formula (1 ′), preferably a group represented by the following general formula (1 ′).

Figure 2019147919
Figure 2019147919

式(1’)中、mは1〜3の整数を示す。mは、好ましくは1〜2の整数を示し、より好ましくは2である。   In the formula (1 ′), m represents an integer of 1 to 3. m preferably represents an integer of 1 to 2, and more preferably 2.

式(1)中、nは1〜3の整数を示す。nは、好ましくは1〜2の整数を示し、より好ましくは2である。   In formula (1), n shows the integer of 1-3. n preferably represents an integer of 1 to 2, and more preferably 2.

上述した式(1)で表される摩擦調整剤としては、例えば下記式(1a)〜(1h)で表される化合物が挙げられる。   Examples of the friction modifier represented by the formula (1) described above include compounds represented by the following formulas (1a) to (1h).

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

潤滑油組成物において、上記一般式(1)で表される摩擦調整剤は、1種単独であっても、2種以上を組み合わせて用いられてもよい。   In the lubricating oil composition, the friction modifier represented by the general formula (1) may be used alone or in combination of two or more.

式(1)で表される摩擦調整剤の含有量は、潤滑油組成物の摩擦特性を十分に確保する観点から、潤滑油組成物全量を基準として、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上である。当該含有量は、境界潤滑域において金属間摩擦係数を高く維持しつつ、高回転で潤滑条件がマイルドな領域においては金属間摩擦係数を低く抑える効果をより発揮する観点から、潤滑油組成物全量を基準として、好ましくは5質量%以下、より好ましくは1質量%以下、更に好ましくは0.8質量%以下、特に好ましくは0.5質量%以下である。なお、式(1)で表される摩擦調整剤を2種以上組み合わせて用いる場合、これらの含有量の合計が上記数値範囲内であればよい。   The content of the friction modifier represented by the formula (1) is preferably 0.01% by mass or more, based on the total amount of the lubricating oil composition, from the viewpoint of sufficiently ensuring the friction characteristics of the lubricating oil composition. Preferably it is 0.1 mass% or more, More preferably, it is 0.3 mass% or more. The content of the lubricating oil composition is the total amount of the lubricating oil composition from the viewpoint of more effectively maintaining the intermetallic friction coefficient in the boundary lubrication region while maintaining the effect of reducing the intermetallic friction coefficient low in the high rotation and mild lubrication region. Is preferably 5% by mass or less, more preferably 1% by mass or less, still more preferably 0.8% by mass or less, and particularly preferably 0.5% by mass or less. In addition, when using 2 or more types of friction modifiers represented by Formula (1) in combination, the total of these content should just be in the said numerical range.

[摩耗防止剤]
本実施形態に係る潤滑油組成物は、下記一般式(2−1)及び後述する一般式(2−2)からなる群より選ばれる少なくとも1種の摩耗防止剤を含む。
[Antiwear]
The lubricating oil composition according to the present embodiment includes at least one wear inhibitor selected from the group consisting of the following general formula (2-1) and a general formula (2-2) described later.

Figure 2019147919
Figure 2019147919

式(2−1)中、R及びRはそれぞれ独立に、水素原子又は炭素数4〜20の炭化水素基を示す。R及びRで表される炭素数4〜20の炭化水素基は、好ましくは炭素数4〜20のアルキル基である。R及びRで表される炭素数4〜20の炭化水素基としては、例えばブチル基等が挙げられる。 In formula (2-1), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 4 to 20 carbon atoms. The hydrocarbon group having 4 to 20 carbon atoms represented by R 1 and R 2 is preferably an alkyl group having 4 to 20 carbon atoms. Examples of the hydrocarbon group having 4 to 20 carbon atoms represented by R 1 and R 2 include a butyl group.

式(2−1)で表される摩耗防止剤としては、例えば、リン酸、炭素数4〜20のアルキルアシッドホスフェートなどが挙げられ、中でも、潤滑油組成物の摩擦特性をより効果的に発揮させ、更にロックアップクラッチの容量を十分に確保させる観点から、リン酸及びジブチルホスフェートからなる群より選ばれる少なくとも1種であることが好ましい。   Examples of the antiwear agent represented by the formula (2-1) include phosphoric acid and alkyl acid phosphates having 4 to 20 carbon atoms. Among them, the friction characteristics of the lubricating oil composition are more effectively exhibited. Furthermore, from the viewpoint of sufficiently securing the capacity of the lockup clutch, it is preferably at least one selected from the group consisting of phosphoric acid and dibutyl phosphate.

Figure 2019147919
Figure 2019147919

式(2−2)中、Rは水素原子、硫黄を含んでいてもよい炭素数4〜20の炭化水素基又は芳香族基を示す。Rで示される硫黄を含んでいてもよい炭素数4〜20の炭化水素基としては、例えば、3−チオペンチル基等が挙げられる。Rで示される芳香族基としては、例えば、フェニル基等が挙げられる。 In Formula (2-2), R 3 represents a hydrogen atom or a hydrocarbon group having 4 to 20 carbon atoms or an aromatic group that may contain sulfur. Examples of the hydrocarbon group R 3 may 4 to 20 carbon atoms also include sulfur represented by, for example, 3-thiopentyl group. Examples of the aromatic group represented by R 3 include a phenyl group.

式(2−2)中、Rは硫黄を含んでいてもよい炭素数4〜20の炭化水素基又は芳香族基を示す。Rで示される硫黄を含んでいてもよい炭素数4〜20の炭化水素基、及び芳香族基、並びにこれらの好ましい態様としては、上記Rで説明したものと同様のものが挙げられる。 In formula (2-2), R 4 represents a hydrocarbon group having 4 to 20 carbon atoms or an aromatic group which may contain sulfur. Examples of the hydrocarbon group having 4 to 20 carbon atoms which may contain sulfur represented by R 4 , an aromatic group, and preferred embodiments thereof include the same as those described for R 3 above.

式(2−2)で表される摩耗防止剤は、潤滑油組成物の摩擦特性をより効果的に発揮させ、更にロックアップクラッチの容量を十分に確保させる観点から、Rが水素原子又は芳香族基であり、Rが硫黄を含んでいてもよい炭素数4〜20の炭化水素基又は芳香族基であることが好ましく、Rが水素原子であり且つRが硫黄を含んでいてもよい炭素数4〜20の炭化水素基であるか、R及びRがともに芳香族基であることがより好ましい。 The antiwear agent represented by formula (2-2) exhibits the friction characteristics of the lubricating oil composition more effectively, and further from the viewpoint of sufficiently securing the capacity of the lockup clutch, R 3 is a hydrogen atom or an aromatic group, preferably R 4 is a hydrocarbon group or an aromatic group which may having 4 to 20 carbon atoms also contain sulfur, R 3 is a hydrogen atom and R 4 is contains sulfur More preferably, it is a hydrocarbon group having 4 to 20 carbon atoms, or R 3 and R 4 are both aromatic groups.

式(2−2)で表される摩耗防止剤としては、例えば、ジフェニルハイドロゲンホスファイト、3−チオペンチルハイドロゲンホスファイト等が挙げられる。   Examples of the antiwear agent represented by the formula (2-2) include diphenyl hydrogen phosphite and 3-thiopentyl hydrogen phosphite.

潤滑油組成物において、一般式(2−1)及び一般式(2−2)で表される摩耗防止剤は、1種単独であっても、2種以上を組み合わせて用いられてもよい。   In the lubricating oil composition, the antiwear agents represented by General Formula (2-1) and General Formula (2-2) may be used singly or in combination of two or more.

上述した摩耗防止剤の含有量は、潤滑油組成物全量を基準として、リン元素換算で50〜950質量ppmである。当該摩耗防止剤の含有量が上記範囲内であれば、潤滑油組成物の摩擦特性をより効果的に発揮させ、更にロックアップクラッチの容量を十分に確保させることができる。一方、上記摩耗防止剤の含有量が、潤滑油組成物全量を基準として50質量ppm未満であると、所望の摩耗防止効果が得られにくいおそれがあり、950質量ppm超であると、摩耗防止剤の阻害効果により、上述した摩擦調整剤による摩擦特性の効果が十分に得られないおそれがある。このような観点から、上記摩耗防止剤の含有量は、潤滑油組成物全量を基準として、リン元素換算で好ましくは100質量ppm以上、より好ましくは300質量ppm以上、更に好ましくは500質量ppm以上であり、好ましくは900質量ppm以下、より好ましくは800質量ppm以下、更に好ましくは700質量ppm以下である。なお、上記摩耗防止剤を2種以上組み合わせて用いる場合、これらの含有量の合計が上記数値範囲内であればよい。   The content of the antiwear agent described above is 50 to 950 mass ppm in terms of phosphorus element, based on the total amount of the lubricating oil composition. When the content of the antiwear agent is within the above range, the friction characteristics of the lubricating oil composition can be exhibited more effectively, and the capacity of the lockup clutch can be sufficiently secured. On the other hand, if the content of the anti-wear agent is less than 50 ppm by mass based on the total amount of the lubricating oil composition, the desired anti-wear effect may not be obtained. Due to the inhibitory effect of the agent, there is a possibility that the effect of the friction characteristics by the friction modifier described above cannot be sufficiently obtained. From such a viewpoint, the content of the antiwear agent is preferably 100 mass ppm or more, more preferably 300 mass ppm or more, and further preferably 500 mass ppm or more in terms of phosphorus element, based on the total amount of the lubricating oil composition. Preferably, it is 900 mass ppm or less, More preferably, it is 800 mass ppm or less, More preferably, it is 700 mass ppm or less. In addition, when using the said antiwear agent in combination of 2 or more types, the sum total of these content should just be in the said numerical range.

[その他の添加剤]
本実施形態に係る潤滑油組成物は、その性能を更に向上させる目的で、必要に応じて、上記摩擦調整剤及び摩耗防止剤の他に、任意の添加剤を更に含有することができる。
[Other additives]
The lubricating oil composition according to the present embodiment may further contain an optional additive in addition to the friction modifier and the wear inhibitor as necessary for the purpose of further improving the performance.

添加剤は、例えば変速機に用いられる潤滑油組成物に添加し得る添加剤を特に制限なく用いることができる。添加剤としては、例えば、粘度指数向上剤、上記一般式(1)で表される摩擦調整剤以外の無灰分散剤及び/又は摩擦調整剤、上記一般式(2−1)及び一般式(2−2)で表される摩耗防止剤以外の摩耗防止剤、金属系清浄剤、極圧剤、酸化防止剤、消泡剤等が挙げられる。これらの添加剤は、1種を単独で、又は2種以上を組み合わせて使用することができる。   As the additive, for example, an additive that can be added to a lubricating oil composition used in a transmission can be used without particular limitation. Examples of the additive include a viscosity index improver, an ashless dispersant and / or a friction modifier other than the friction modifier represented by the general formula (1), the general formula (2-1), and the general formula (2). -2), antiwear agents other than the antiwear agent, metal detergents, extreme pressure agents, antioxidants, antifoaming agents, and the like. These additives can be used individually by 1 type or in combination of 2 or more types.

粘度指数向上剤としては、非分散型又は分散型の粘度指数向上剤が挙げられる。具体的には、非分散型又は分散型ポリ(メタ)アクリレート類、非分散型又は分散型エチレン−α−オレフィン共重合体又はその水素化物、ポリイソブチレン又はその水素化物、スチレン−ジエン水素化共重合体、スチレン−無水マレイン酸エステル共重合体、ポリ(メタ)アクリレート−スチレン共重合体、ポリ(メタ)アクリレート−オレフィン共重合体、ポリアルキルスチレン等が挙げられる。これらの粘度指数向上剤の重量平均分子量は特に制限はなく、通常1万〜100万である。粘度指数向上剤の含有量も特に制限されないが、潤滑油組成物全量を基準として、通常0.5〜35質量%である。   Examples of the viscosity index improver include non-dispersed or dispersed viscosity index improvers. Specifically, non-dispersed or dispersed poly (meth) acrylates, non-dispersed or dispersed ethylene-α-olefin copolymers or hydrides thereof, polyisobutylene or hydrides thereof, styrene-diene hydrogenation copolymers. Examples thereof include a polymer, a styrene-maleic anhydride ester copolymer, a poly (meth) acrylate-styrene copolymer, a poly (meth) acrylate-olefin copolymer, and a polyalkylstyrene. The weight average molecular weight of these viscosity index improvers is not particularly limited, and is usually 10,000 to 1,000,000. The content of the viscosity index improver is not particularly limited, but is usually 0.5 to 35% by mass based on the total amount of the lubricating oil composition.

一般式(1)で表される摩擦調整剤以外の無灰分散剤及び/又は摩擦調整剤としては、アミン化合物、イミド化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル、モリブデンジチオホスフェート(MoDTP)、モリブデンジチオカーバメート(MoDTC)等の有機モリブデン化合物、グラファイト、二硫化モリブデン、硫化アンチモン、ホウ素化合物、ポリテトラフルオロエチレン等が挙げられる。無灰分散剤及び/又は摩擦調整剤の含有量は特に制限されないが、潤滑油組成物全量を基準として、通常0.1〜10質量%であり、0.5〜8質量%又は1〜7質量%であってもよい。   Ashless dispersants and / or friction modifiers other than the friction modifier represented by the general formula (1) include amine compounds, imide compounds, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, aliphatic ethers, molybdenum dithiols. Examples thereof include organic molybdenum compounds such as phosphate (MoDTP) and molybdenum dithiocarbamate (MoDTC), graphite, molybdenum disulfide, antimony sulfide, boron compounds, polytetrafluoroethylene, and the like. The content of the ashless dispersant and / or the friction modifier is not particularly limited, but is usually 0.1 to 10% by mass, 0.5 to 8% by mass, or 1 to 7% by mass based on the total amount of the lubricating oil composition. %.

一般式(2−1)及び一般式(2−2)で表される摩耗防止剤以外の摩耗防止剤としては、例えば、硫黄系摩耗防止剤が挙げられる。硫黄系摩耗防止剤としては、ジスルフィド類、硫化油脂類、硫化エステル、ジチオカーバメート、ジチオカルバミン酸亜鉛等の硫黄含有化合物などが挙げられる。これらの摩耗防止剤の含有量は特に制限されないが、潤滑油組成物全量を基準として、通常0.01〜10質量%である。   Examples of the antiwear agent other than the antiwear agent represented by the general formula (2-1) and the general formula (2-2) include a sulfur-based antiwear agent. Examples of the sulfur-based antiwear agent include sulfur-containing compounds such as disulfides, sulfurized fats and oils, sulfurized esters, dithiocarbamates, and zinc dithiocarbamates. The content of these antiwear agents is not particularly limited, but is usually 0.01 to 10% by mass based on the total amount of the lubricating oil composition.

金属系清浄剤としては、例えば、カルシウムスルホネート、マグネシウムスルホネート、バリウムスルホネート、カルシウムサリチレート、マグネシウムサリチレート、カルシウムフェネート、バリウムフェネート等の正塩、塩基性塩又は過塩基性塩などが挙げられる。金属系清浄剤の含有量は特に制限されないが、潤滑油組成物全量を基準として、通常0.1〜10質量%である。また、金属系清浄剤としてカルシウム系清浄剤を用いる場合、カルシウム系清浄剤の含有量は、潤滑油組成物全量を基準として、カルシウム元素換算で、10〜1500質量ppm、100〜1300質量ppm又は200〜800質量ppmであってよい。   Examples of metal detergents include calcium sulfonate, magnesium sulfonate, barium sulfonate, calcium salicylate, magnesium salicylate, calcium phenate, barium phenate, and other normal salts, basic salts, and overbased salts. Can be mentioned. The content of the metal detergent is not particularly limited, but is usually 0.1 to 10% by mass based on the total amount of the lubricating oil composition. Moreover, when using a calcium-type detergent as a metal-type detergent, content of a calcium-type detergent is 10-1500 mass ppm, 100-1300 mass ppm in conversion of a calcium element on the basis of the lubricating oil composition whole quantity, or It may be 200 to 800 ppm by mass.

極圧剤としては、例えば、チアジアゾール、ポリサルファイド、硫化オレフィン等が挙げられる。極圧剤含有量は特に制限されないが、潤滑油組成物全量を基準として、通常0.01〜10質量%である。また、例えば極圧剤としてチアジアゾール等の硫黄系極圧剤を用いる場合、硫黄系極圧剤の含有量は、潤滑油組成物全量を基準として、硫黄元素換算で、1〜1500質量ppm、10〜1000質量ppm、100〜800質量ppm又は300〜600質量ppmであってよい。   Examples of extreme pressure agents include thiadiazole, polysulfide, sulfurized olefin, and the like. The extreme pressure agent content is not particularly limited, but is usually 0.01 to 10% by mass based on the total amount of the lubricating oil composition. Further, for example, when a sulfur-based extreme pressure agent such as thiadiazole is used as the extreme pressure agent, the content of the sulfur-based extreme pressure agent is 1 to 1500 ppm by mass in terms of sulfur element, based on the total amount of the lubricating oil composition. It may be -1000 mass ppm, 100-800 mass ppm, or 300-600 mass ppm.

酸化防止剤としては、フェノール系、アミン系、銅系、モリブデン系等の酸化防止剤が挙げられる。具体的には、アルキル化ジフェニルアミン、フェニル−α−ナフチルアミン、アルキル化−α−ナフチルアミン等のアミン系酸化防止剤、2,6−ジ−t−ブチル−4−メチルフェノール、4,4’−メチレンビス(2,6−ジ−t−ブチルフェノール)等のヒンダードフェノール系酸化防止剤などが挙げられる。酸化防止剤の含有量は特に制限されないが、潤滑油組成物全量を基準として、通常0.05〜5質量%である。   Examples of the antioxidant include phenol-based, amine-based, copper-based, and molybdenum-based antioxidants. Specifically, amine-based antioxidants such as alkylated diphenylamine, phenyl-α-naphthylamine, alkylated-α-naphthylamine, 2,6-di-t-butyl-4-methylphenol, 4,4′-methylenebis And hindered phenol antioxidants such as (2,6-di-t-butylphenol). The content of the antioxidant is not particularly limited, but is usually 0.05 to 5% by mass based on the total amount of the lubricating oil composition.

消泡剤としては、潤滑油用の消泡剤として通常用いられる任意の化合物が使用可能であり、例えば、ジメチルシリコーン、フルオロシリコーン等のシリコーン類が挙げられる。これらの中から任意に選ばれた1種又は2種以上の化合物を任意の量で配合することができる。   As the antifoaming agent, any compound usually used as an antifoaming agent for lubricating oil can be used, and examples thereof include silicones such as dimethyl silicone and fluorosilicone. One or two or more compounds arbitrarily selected from these can be blended in any amount.

本実施形態に係る潤滑油組成物は、境界潤滑域において金属間摩擦係数を高く維持しつつ、高回転で潤滑条件がマイルドな領域においては金属間摩擦係数を低く抑えることができるため、伝達トルク容量を高くしつつ、省燃費を達成することができる。更に本実施形態に係る潤滑油組成物は、ロックアップクラッチ(LC)のトルク容量(ペーパー材の摩擦特性)を確保することができる。そのため、自動変速機、無段変速機(特に、ベルト式無段変速機)等の変速機用の潤滑油組成物として好適である。また、湿式クラッチ、湿式ブレーキを有する変速機を備えた建設機械や農機、手動変速機、二輪車ガソリンエンジン、ディーゼルエンジン、ガスエンジン、ショックアブソーバー等の潤滑油としても用いることができる。   The lubricating oil composition according to the present embodiment can maintain a high coefficient of friction between metals in the boundary lubrication region, and can keep the coefficient of friction between metals low in a region where the lubrication condition is high at a high rotation speed. Fuel consumption can be achieved while increasing the capacity. Furthermore, the lubricating oil composition according to the present embodiment can ensure the torque capacity of the lockup clutch (LC) (friction characteristics of the paper material). Therefore, it is suitable as a lubricating oil composition for transmissions such as automatic transmissions and continuously variable transmissions (particularly belt type continuously variable transmissions). Moreover, it can also be used as lubricating oil for construction machines, agricultural machines, manual transmissions, motorcycle gasoline engines, diesel engines, gas engines, shock absorbers, etc., equipped with transmissions having wet clutches and wet brakes.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、以下の実施例は本発明を限定することを意図するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, the following Examples are not intended to limit this invention.

[実施例1〜18、比較例1〜8]
以下に示す基油及び添加剤を用い、表1〜表6に示す組成を有する潤滑油組成物を調製した。表1〜表6において、各成分の含有量は、潤滑油組成物全量基準での含有割合を示す。
[Examples 1 to 18, Comparative Examples 1 to 8]
Lubricating oil compositions having the compositions shown in Tables 1 to 6 were prepared using the base oils and additives shown below. In Tables 1 to 6, the content of each component indicates the content ratio based on the total amount of the lubricating oil composition.

(基油)
A:水素化分解鉱油(100℃における動粘度:3.3mm/s)
(Base oil)
A: Hydrocracked mineral oil (kinematic viscosity at 100 ° C .: 3.3 mm 2 / s)

(摩擦調整剤)
B1:下記式(1a)で表される化合物。

Figure 2019147919
(Friction modifier)
B1: Compound represented by the following formula (1a).
Figure 2019147919

B2:下記式(1b)で表される化合物。

Figure 2019147919
B2: Compound represented by the following formula (1b).
Figure 2019147919

B3:下記式(1c)で表される化合物。

Figure 2019147919
B3: A compound represented by the following formula (1c).
Figure 2019147919

B4:下記式(1d)で表される化合物。

Figure 2019147919
B4: Compound represented by the following formula (1d).
Figure 2019147919

B5:下記式(1e)で表される化合物。

Figure 2019147919
B5: A compound represented by the following formula (1e).
Figure 2019147919

B6:下記式(1f)で表される化合物。

Figure 2019147919
B6: Compound represented by the following formula (1f).
Figure 2019147919

B7:下記式(1g)で表される化合物。

Figure 2019147919
B7: A compound represented by the following formula (1 g).
Figure 2019147919

B8:下記式(1h)で表される化合物。

Figure 2019147919
B8: Compound represented by the following formula (1h).
Figure 2019147919

B9:下記式(1i)で表される化合物。

Figure 2019147919
B9: A compound represented by the following formula (1i).
Figure 2019147919

B10:下記式(1j)で表される化合物。

Figure 2019147919
B10: Compound represented by the following formula (1j).
Figure 2019147919

B11:下記式(1k)で表される化合物。

Figure 2019147919
B11: Compound represented by the following formula (1k).
Figure 2019147919

B12:下記式(1l)で表され、式(1l)中、各Rがそれぞれ独立にC1225基及びC1429基である化合物(混合物:ココアミン)。

Figure 2019147919
B12: a compound represented by the following formula (1l), in which each R is independently a C 12 H 25 group or a C 14 H 29 group (mixture: cocoamine).
Figure 2019147919

B13:下記式(1m)で表される化合物。

Figure 2019147919
B13: A compound represented by the following formula (1m).
Figure 2019147919

(摩耗防止剤)
C1:ジブチルホスフェート(リン元素含有量:15.5質量%)
C2:ジフェニルハイドロゲンホスファイト(リン元素含有量:13.2質量%)
C3:リン酸(リン元素含有量:30.0質量%)
C4:3−チオペンチルハイドロゲンホスファイト(リン元素含有量:8.4質量%)
C5:テトラコシルアシッドホスフェート(リン元素含有量:5.3質量%)
(Antiwear agent)
C1: Dibutyl phosphate (phosphorus element content: 15.5% by mass)
C2: Diphenyl hydrogen phosphite (phosphorus element content: 13.2% by mass)
C3: phosphoric acid (phosphorus element content: 30.0% by mass)
C4: 3-thiopentyl hydrogen phosphite (phosphorus element content: 8.4% by mass)
C5: Tetracosyl acid phosphate (phosphorus element content: 5.3 mass%)

(無灰分散剤)
D:ホウ素含有ポリブテニルコハク酸イミド
(Ashless dispersant)
D: Boron-containing polybutenyl succinimide

(金属系清浄剤)
E:カルシウムスルホネート(カルシウム元素含有量:11.4質量%、塩基価:300mgKOH/g)
(Metal-based detergent)
E: Calcium sulfonate (calcium element content: 11.4% by mass, base number: 300 mgKOH / g)

(極圧剤)
F:チアジアゾール(硫黄元素含有量:36質量%)
(Extreme pressure agent)
F: Thiadiazole (Sulfur element content: 36% by mass)

(酸化防止剤)
G:フェノール系酸化防止剤
(Antioxidant)
G: Phenolic antioxidant

(粘度指数向上剤)
H:ポリメタクリレート(重量平均分子量:35000)
(Viscosity index improver)
H: Polymethacrylate (weight average molecular weight: 35000)

(消泡剤)
I:ポリジメチルシロキサン
(Defoamer)
I: Polydimethylsiloxane

[潤滑油組成物の評価試験]
(金属間摩擦係数)
ASTM D 2174に記載のブロックオンリング試験機(LFW−1)を用いて、潤滑油組成物の摩擦係数(μ)を以下の条件により測定し、潤滑油組成物の摩擦係数を評価した。
試験片(リング)::Falex S−10 Test Ring(SAE4620 Steel)
試験片(ブロック):Falex H−60 Test Block(SAE01 Steel)
油温:80℃
荷重:400N
[Evaluation test of lubricating oil composition]
(Coefficient of friction between metals)
Using a block-on-ring tester (LFW-1) described in ASTM D 2174, the friction coefficient (μ) of the lubricating oil composition was measured under the following conditions to evaluate the friction coefficient of the lubricating oil composition.
Test piece (ring) :: Falex S-10 Test Ring (SAE 4620 Steel)
Test piece (block): Falex H-60 Test Block (SAE01 Steel)
Oil temperature: 80 ° C
Load: 400N

試験は、1m/sの周速(すべり速度)で20分間ならし運転を行い、その後、すべり速度0.1m/sでの摩擦係数(境界潤滑域における摩擦係数:μ1)及びすべり速度3.5m/sでの摩擦係数(高回転での摩擦係数:μ2)をそれぞれ測定し、μ2/μ1の値を算出した。結果を表1〜表6に示す。μ2/μ1の値が低いほど、境界潤滑域において金属間摩擦係数を高く維持しつつ、高回転で潤滑条件がマイルドな領域においては金属間摩擦係数を低く抑えることができる潤滑油組成物であるといえる。   The test is carried out for 20 minutes at a peripheral speed (sliding speed) of 1 m / s, and then the friction coefficient at the sliding speed of 0.1 m / s (friction coefficient in the boundary lubrication region: μ1) and the sliding speed. The friction coefficient at 5 m / s (friction coefficient at high rotation: μ2) was measured, and the value of μ2 / μ1 was calculated. The results are shown in Tables 1-6. The lower the μ2 / μ1 value, the higher the friction coefficient between metals in the boundary lubrication region, and the lower the friction coefficient between metals in the region where the lubrication conditions are high and the rotation speed is mild. It can be said.

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

(トルク容量)
上記実施例1〜18で調製した潤滑油組成物のトルク容量は、低速すべり試験装置(LVFA)を用いて、潤滑油組成物の80℃におけるμ−V特性をJASO M349:2010に準拠して算出し、当該μ−V特性におけるすべり速度0.06m/sでの摩擦係数μ(μ0.06)を算出することにより求めた。
(Torque capacity)
The torque capacities of the lubricating oil compositions prepared in Examples 1 to 18 described above are based on JASO M349: 2010 in terms of the μ-V characteristics of the lubricating oil composition at 80 ° C. using a low speed slip test device (LVFA). The friction coefficient μ (μ0.06) at the sliding speed of 0.06 m / s in the μ-V characteristic was calculated.

得られたμ0.06の値と、上記金属間摩擦係数の測定で得られたμ2の値から、μ2/μ0.06を算出した。結果を表7〜表9に示す。μ2/μ0.06の値が小さいほど、ロックアップクラッチのトルク容量が確保できており、省燃費性及びLC性能(ペーパー材の摩擦特性)に優れているといえる。   Μ2 / μ0.06 was calculated from the obtained value of μ0.06 and the value of μ2 obtained by the measurement of the intermetal friction coefficient. The results are shown in Tables 7-9. It can be said that the smaller the value of μ2 / μ0.06, the greater the torque capacity of the lock-up clutch, and the better the fuel economy and LC performance (friction characteristics of the paper material).

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Figure 2019147919
Figure 2019147919

Claims (1)

潤滑油基油と、下記一般式(1)で表される摩擦調整剤と、下記一般式(2−1)及び下記一般式(2−2)からなる群より選ばれる少なくとも1種の摩耗防止剤と、を含み、
前記摩耗防止剤の含有量が、潤滑油組成物全量を基準として、リン元素換算で50〜950質量ppmである、潤滑油組成物。
Figure 2019147919

[式(1)中、Rは炭素数3〜30の炭化水素基を示し、R’は水素原子又は下記一般式(1’)で表される基を示し、nは1〜3の整数を示す。
Figure 2019147919

(式(1’)中、mは1〜3の整数を示す。)]
Figure 2019147919

[式(2−1)中、R及びRはそれぞれ独立に、水素原子又は炭素数4〜20の炭化水素基を示す。]
Figure 2019147919

[式(2−2)中、Rは水素原子、硫黄を含んでいてもよい炭素数4〜20の炭化水素基又は芳香族基を示し、Rは硫黄を含んでいてもよい炭素数4〜20の炭化水素基又は芳香族基を示す。]
At least one type of wear prevention selected from the group consisting of a lubricating base oil, a friction modifier represented by the following general formula (1), the following general formula (2-1) and the following general formula (2-2) An agent,
Lubricating oil composition whose content of said antiwear agent is 50-950 mass ppm in conversion of phosphorus element on the basis of lubricating oil composition whole quantity.
Figure 2019147919

[In the formula (1), R represents a hydrocarbon group having 3 to 30 carbon atoms, R ′ represents a hydrogen atom or a group represented by the following general formula (1 ′), and n represents an integer of 1 to 3. Show.
Figure 2019147919

(In Formula (1 ′), m represents an integer of 1 to 3)]
Figure 2019147919

[In Formula (2-1), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 4 to 20 carbon atoms. ]
Figure 2019147919

[In Formula (2-2), R 3 represents a hydrogen atom or a hydrocarbon group or aromatic group having 4 to 20 carbon atoms which may contain sulfur, and R 4 represents a carbon number which may contain sulfur. 4-20 hydrocarbon groups or aromatic groups are shown. ]
JP2018034886A 2018-02-28 2018-02-28 Lubricating oil composition Active JP7061481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018034886A JP7061481B2 (en) 2018-02-28 2018-02-28 Lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018034886A JP7061481B2 (en) 2018-02-28 2018-02-28 Lubricating oil composition

Publications (2)

Publication Number Publication Date
JP2019147919A true JP2019147919A (en) 2019-09-05
JP7061481B2 JP7061481B2 (en) 2022-04-28

Family

ID=67849210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018034886A Active JP7061481B2 (en) 2018-02-28 2018-02-28 Lubricating oil composition

Country Status (1)

Country Link
JP (1) JP7061481B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111178A1 (en) * 2018-11-29 2020-06-04 日産化学株式会社 Alcohol compound
CN112708492A (en) * 2019-10-24 2021-04-27 雅富顿化学公司 Synergistic lubricants with reduced electrical conductivity
CN114907900A (en) * 2022-05-31 2022-08-16 东莞市嘉丰润滑科技有限公司 Automatic transmission oil, I-type metal cutting fluid and novel lubricating oil
WO2023223965A1 (en) * 2022-05-16 2023-11-23 出光興産株式会社 Lubricating oil composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227832A (en) * 1985-04-01 1986-10-09 Nippon Oil & Fats Co Ltd Solid dispersant in nonaqueous system
JP2004123938A (en) * 2002-10-03 2004-04-22 Asahi Denka Kogyo Kk Lubrication oil composition containing hydrophobic silica
WO2006120923A1 (en) * 2005-05-11 2006-11-16 Idemitsu Kosan Co., Ltd. Refrigerating-machine oil composition and compressor and refrigerating apparatus both employing the same
WO2016039235A1 (en) * 2014-09-10 2016-03-17 Jx日鉱日石エネルギー株式会社 Lubricating oil additive and lubricating oil composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227832A (en) * 1985-04-01 1986-10-09 Nippon Oil & Fats Co Ltd Solid dispersant in nonaqueous system
JP2004123938A (en) * 2002-10-03 2004-04-22 Asahi Denka Kogyo Kk Lubrication oil composition containing hydrophobic silica
WO2006120923A1 (en) * 2005-05-11 2006-11-16 Idemitsu Kosan Co., Ltd. Refrigerating-machine oil composition and compressor and refrigerating apparatus both employing the same
WO2016039235A1 (en) * 2014-09-10 2016-03-17 Jx日鉱日石エネルギー株式会社 Lubricating oil additive and lubricating oil composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111178A1 (en) * 2018-11-29 2020-06-04 日産化学株式会社 Alcohol compound
CN112708492A (en) * 2019-10-24 2021-04-27 雅富顿化学公司 Synergistic lubricants with reduced electrical conductivity
EP3812445A1 (en) * 2019-10-24 2021-04-28 Afton Chemical Corporation Synergistic lubricants with reduced electrical conductivity
JP2021066876A (en) * 2019-10-24 2021-04-30 アフトン・ケミカル・コーポレーションAfton Chemical Corporation Synergistic lubricants with reduced electrical conductivity
US11066622B2 (en) 2019-10-24 2021-07-20 Afton Chemical Corporation Synergistic lubricants with reduced electrical conductivity
JP7094339B2 (en) 2019-10-24 2022-07-01 アフトン・ケミカル・コーポレーション Synergistic lubricating oil with reduced electrical conductivity
CN112708492B (en) * 2019-10-24 2022-07-08 雅富顿化学公司 Synergistic lubricants with reduced conductivity
WO2023223965A1 (en) * 2022-05-16 2023-11-23 出光興産株式会社 Lubricating oil composition
CN114907900A (en) * 2022-05-31 2022-08-16 东莞市嘉丰润滑科技有限公司 Automatic transmission oil, I-type metal cutting fluid and novel lubricating oil

Also Published As

Publication number Publication date
JP7061481B2 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
KR101636103B1 (en) Continuously variable transmission oil composition
CN109415646B (en) Lubricating composition and engine oil composition containing same
JP3613530B2 (en) Lubricating oil composition
US8129319B2 (en) Lubricating composition
JP7061481B2 (en) Lubricating oil composition
WO2010110442A1 (en) Gear oil composition
JP6721230B2 (en) Lubricating oil composition, lubricating method, and transmission
JP6088305B2 (en) Antifoam composition, lubricating oil composition and method for producing the same
JP2016193997A (en) Lubricating oil composition
JP2021169632A (en) Lubricant composition, method for lubricating, and gear
JP6917359B2 (en) Lubricating oil composition, lubricating method, and transmission
JP5542322B2 (en) Lubricating oil composition for agricultural machinery
JP5877199B2 (en) Lubricating oil additive and lubricating oil composition
JP2021155740A (en) Lubricant composition
WO2018074128A1 (en) Lubricating oil composition, lubrication method, and transmission
JP7126357B2 (en) lubricating oil composition
WO2016136872A1 (en) Lubricating oil composition for gear oil
CN113906070B (en) Acrylic acid ester copolymer, method for producing the same, friction inhibitor comprising the same, and lubricating oil composition containing the friction inhibitor
JP6702612B2 (en) Lubricating oil composition, lubricating method, and transmission
JP5033610B2 (en) Lubricating oil composition for agricultural machinery
JP7034921B2 (en) Lubricating oil composition
US11162049B2 (en) Lubricant composition, mechanical device including lubricant composition, and method of producing lubricant composition
JP5875952B2 (en) Lubricating oil composition for agricultural machinery
JP5396299B2 (en) Continuously variable base oil composition
JP2002038180A (en) Lubricating oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7061481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150