JP2019147757A - Soil-borne disease mitigation material - Google Patents

Soil-borne disease mitigation material Download PDF

Info

Publication number
JP2019147757A
JP2019147757A JP2018033071A JP2018033071A JP2019147757A JP 2019147757 A JP2019147757 A JP 2019147757A JP 2018033071 A JP2018033071 A JP 2018033071A JP 2018033071 A JP2018033071 A JP 2018033071A JP 2019147757 A JP2019147757 A JP 2019147757A
Authority
JP
Japan
Prior art keywords
soil
infectious disease
carrier material
soil infectious
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018033071A
Other languages
Japanese (ja)
Other versions
JP6878751B2 (en
Inventor
佐藤 孝
Takashi Sato
孝 佐藤
史章 高階
Fumiaki Takashina
史章 高階
金田 吉弘
Yoshihiro Kaneda
吉弘 金田
智孝 浅野
Tomotaka Asano
智孝 浅野
美由紀 飯塚
Miyuki Iizuka
美由紀 飯塚
伸二 石川
Shinji Ishikawa
伸二 石川
英紀 松岡
Hidenori Matsuoka
英紀 松岡
貴志 見城
Takashi Kenjo
貴志 見城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
Asahi Sangyo Co Ltd
Asahi Industries Co Ltd
Original Assignee
Akita Prefectural University
Asahi Sangyo Co Ltd
Asahi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefectural University, Asahi Sangyo Co Ltd, Asahi Industries Co Ltd filed Critical Akita Prefectural University
Priority to JP2018033071A priority Critical patent/JP6878751B2/en
Publication of JP2019147757A publication Critical patent/JP2019147757A/en
Application granted granted Critical
Publication of JP6878751B2 publication Critical patent/JP6878751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

To provide a novel soil-borne disease mitigation material.SOLUTION: Provided is a soil-borne disease mitigation material that contains three types of bacteria belonging to the genus Bacillus having different characteristics in the carrier material. The three types of bacteria belonging to the genus Bacillus having different characteristics are Bacillus amyloliquefaciens (Accession Number: NITE P-02337), Bacillus subtilis (Accession Number: NITE P-02338), and Bacillus subtilis (Accession Number: NITE P-02354).SELECTED DRAWING: None

Description

この発明は土壌伝染性病害軽減材に関する。   The present invention relates to a soil infectious disease reducing material.

従来から土壌伝染性病害を防除する目的で種々の提案が行われている。   Various proposals have been made for the purpose of controlling soil-borne diseases.

例えば、特許文献1では、各種植物の根部に感染、共生可能で、土壌伝染性病害を防除する能力を持つとする新規糸状菌株、当該菌株の菌体または培養物を含む土壌伝染性病害防除資材、これを利用した植物の土壌伝染性病害防除法が提案されている。   For example, in Patent Document 1, a novel filamentous strain capable of infecting and symbiotic to the roots of various plants and having the ability to control soil infectious diseases, a soil infectious disease control material containing cells or cultures of the strains A method for controlling soil infectious diseases of plants using this has been proposed.

特許文献2では、光合成細菌とバチルス属(Bacillus)細菌を有効成分として含む植物病原糸状菌を原因とする土壌伝染性病害に対して高い防除効果を有し、環境に対する負荷が少なく、安全で薬害のないとする微生物農薬、及びその微生物農薬を用いて土壌伝染性病害を効果的に防除できるとする方法が提案されている。   Patent Document 2 has a high control effect on soil infectious diseases caused by phytopathogenic fungi that contain photosynthetic bacteria and Bacillus bacteria as active ingredients, has low environmental impact, is safe and phytotoxic There have been proposed microbial pesticides that are free of soil and methods that can effectively control soil-borne diseases using the microbial pesticides.

特許文献3では、作物生長促進を伴う土壌伝染性病害防除法が提案されている。   Patent Document 3 proposes a soil infectious disease control method accompanied by crop growth promotion.

特開2008−67667号公報JP 2008-67667 A 特開2015−39359号号公報JP2015-39359A 特開2015−61826号号公報Japanese Patent Laying-Open No. 2015-61826

この発明は、新規な土壌伝染性病害軽減材を提案することを目的にしている。   An object of this invention is to propose a novel soil infectious disease reducing material.

[1]
担体資材に特性の異なる3種類のBacillus属細菌を含ませてなる土壌伝染性病害軽減材。
[1]
A soil-borne disease mitigation material that contains three types of Bacillus bacteria with different characteristics in the carrier material.

[2]
前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である[1]の土壌伝染性病害軽減材。
[2]
The soil infectious disease reducing material according to [1], wherein the carrier material is a porous carrier material having a pore size of μm or more.

[3]
水分量5〜10%に乾燥処理されている[1]又は[2]の土壌伝染性病害軽減材。
[3]
[1] or [2] soil infectious disease reducing material that has been dried to a moisture content of 5 to 10%.

[4]
菌濃度が1.0×10cfu/g〜9.0×10cfu/gである[1]〜[3]のいずれかの土壌伝染性病害軽減材。
[4]
The soil infectious disease reducing material according to any one of [1] to [3], wherein the bacterial concentration is 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g.

[5]
あらかじめ成型されている担体資材に特性の異なる3種類のBacillus属細菌を含ませてなる土壌伝染性病害軽減材。
[5]
A soil infectious disease mitigation material that contains three types of Bacillus bacteria with different characteristics in a pre-molded carrier material.

[6]
あらかじめ成型されている前記担体資材は粒径2mm〜10mmの粒状に成型されている[5]の土壌伝染性病害軽減材。
[6]
[5] The soil infectious disease-reducing material according to [5], wherein the carrier material molded in advance is molded into a particle size of 2 mm to 10 mm.

[7]
前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である[5]又は[6]の土壌伝染性病害軽減材。
[7]
[5] or [6] soil infectious disease reducing material, wherein the carrier material is a porous carrier material having a pore size of μm or more.

[8]
水分量5〜10%に乾燥処理されている[5]〜[7]のいずれかの土壌伝染性病害軽減材。
[8]
The soil infectious disease reducing material according to any one of [5] to [7], which is dried to a moisture content of 5 to 10%.

[9]
菌濃度が1.0×10cfu/g〜9.0×10cfu/gである[5]〜[8]のいずれかの土壌伝染性病害軽減材。
[9]
The soil infectious disease reducing material according to any one of [5] to [8], wherein the bacterial concentration is 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g.

[10]
担体資材に特性の異なる3種類のBacillus属細菌を含ませたものを成型してなる土壌伝染性病害軽減材。
[10]
A soil infectious disease mitigation material formed by molding a carrier material containing three types of Bacillus bacteria with different characteristics.

[11]
粒径2mm〜10mmの粒状に成型されている[10]の土壌伝染性病害軽減材。
[11]
[10] soil infectious disease mitigation material molded into a particle size of 2 mm to 10 mm.

[12]
前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である[10]又は[11]の土壌伝染性病害軽減材。
[12]
[10] or [11] soil infectious disease reducing material, wherein the carrier material is a porous carrier material having a pore size of μm or more.

[13]
水分量5〜10%に乾燥処理されている[10]〜[12]のいずれかの土壌伝染性病害軽減材。
[13]
The soil infectious disease reducing material according to any one of [10] to [12], which is dried to a moisture content of 5 to 10%.

[14]
菌濃度が1.0×10cfu/g〜9.0×10cfu/gである[10]〜[13]のいずれかの土壌伝染性病害軽減材。
[14]
The soil infectious disease reducing material according to any one of [10] to [13], wherein the bacterial concentration is 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g.

[15]
前記担体資材は、乾燥鶏ふん、発酵鶏ふん、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種の組み合わせからなる[1]〜[14]のいずれかの土壌伝染性病害軽減材。
[15]
[1] to [14], wherein the carrier material is any one or a combination of dried chicken dung, fermented chicken dung, fermented beef dung, fermented pork dung, diatomaceous earth, zeolite, lightweight cellular concrete, and green pseudo-ashstone. Any soil infectious disease mitigation material.

[16]
前記担体資材は、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種と、乾燥鶏ふん及び/又は発酵鶏ふんとの組み合わせからなる、又は、乾燥鶏ふん及び/又は発酵鶏ふんからなる[1]〜[14]のいずれかの土壌伝染性病害軽減材。
[16]
The carrier material is a combination of one or more of fermented beef dung, fermented pork, diatomaceous earth, zeolite, lightweight cellular concrete, green pseudo-ashstone, and dried chicken dung and / or fermented chicken dung or dried The soil infectious disease reducing material according to any one of [1] to [14], comprising chicken dung and / or fermented chicken dung.

[17]
特性の異なる3種類のBacillus属細菌は、Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354)である[1]〜[16]のいずれかの土壌伝染性病害軽減材。
[17]
Three types of Bacillus bacteria having different characteristics are Bacillus amyloliquefaciens (Accession No .: NITE P-02337), Bacillus subtilis (Accession No .: NITE P-02338), and Bacillus subtilis (Accession No .: NITE P-02354) [1 ] The soil infectious disease reduction material in any one of [16].

この発明によれば新規な土壌伝染性病害軽減材を提供することができる。   According to this invention, a novel soil infectious disease reducing material can be provided.

本発明に使用されるBacillus属細菌についての16S-rRNA遺伝子による分子系統樹を示す図。The figure which shows the molecular phylogenetic tree by 16S-rRNA gene about Bacillus genus bacteria used for this invention. Bacillus amyloliquefaciens(APU-W01)、Bacillus subtilis(APU-O02) 、Bacillus subtilis(APU-T03)の黒根腐病原因菌Calonectria licicolaとの対峙培養を検討した結果を表す参考写真。Reference photograph showing the results of studying the counter-culture of Bacillus amyloliquefaciens (APU-W01), Bacillus subtilis (APU-O02) and Bacillus subtilis (APU-T03) with black root rot causative fungus Calonectria licicola. Bacillus amyloliquefaciens(APU-W01)菌株、Bacillus subtilis(APU-O02) 菌株のキチンに対する応答を検討した結果を表す参考写真。Reference photos showing the results of examining the response of Bacillus amyloliquefaciens (APU-W01) and Bacillus subtilis (APU-O02) to chitin. Pot試験による黒根腐病に対する抑制菌液の影響を検討した結果を表す参考写真。The reference photograph showing the result of having examined the influence of the inhibitory bacteria liquid with respect to black root rot by a Pot test. 土壌伝染性病害軽減材施用の有無がダイズの黒根腐病感染に及ぼす影響を検討した結果を表す参考写真。Reference photos showing the results of studying the effects of the application of soil-borne infectious disease mitigation materials on black root rot infection in soybeans. 土壌伝染性病害軽減材施用によるダイズ地下部の黒根腐病感染の有無を検討した結果を表す図。The figure showing the result of having examined the presence or absence of the black root rot infection of the soybean underground part by soil infectious disease mitigation material application. 各生育期における土壌伝染性病害軽減材施用によるダイズの黒根腐病発病度を検討した結果を表す図。The figure showing the result of having examined the black root rot incidence of soybean by the soil infectious disease reduction material application in each growth period. 土壌伝染性病害軽減材施用によるエダマメの黒根腐病発病度を検討した結果を表す図。The figure showing the result of having examined the black root rot onset degree of a green bean by the soil infectious disease reduction material application. 土壌伝染性病害軽減材施用の有無がダイズの乾物重の推移に及ぼす影響を検討した結果を表す図。The figure showing the result of having examined the influence which the presence or absence of soil infectious disease reduction material application has on the transition of the dry matter weight of soybean.

従来からBacillus属細菌は植物生育促進、病害抑制、臭気低減などの特性を有する有用菌であることが知られていた。   Conventionally, Bacillus bacteria have been known to be useful bacteria having properties such as plant growth promotion, disease suppression, and odor reduction.

本願の発明者等はこのBacillus属細菌の中から特性の異なる3種のBacillus属細菌を選抜し、植物に施用した場合の土壌伝染性病害への応答に関して検討を行った。   The inventors of the present application selected three types of Bacillus bacteria having different characteristics from the Bacillus bacteria and examined the response to soil-borne diseases when applied to plants.

この検討により、特性の異なる3種類のBacillus属細菌を同時に使用することで土壌伝染性病害を軽減する効果が発揮されることを見出した。   By this examination, it discovered that the effect which reduces soil infectious disease was exhibited by using simultaneously three types of Bacillus genus bacteria from which a characteristic differs.

また、この特性の異なる3種類のBacillus属細菌を担体資材に含ませて土壌伝染性病害軽減材とすることで土壌伝染性病害を軽減する効果を安定化することができ、土壌伝染性病害軽減材における菌数とその活性の安定化を図ることができることを見出した。   In addition, the effect of reducing soil infectious diseases can be stabilized by adding three types of Bacillus bacteria with different characteristics to the carrier material to reduce soil infectious diseases, thereby reducing soil infectious diseases. It was found that the number of bacteria in the wood and its activity can be stabilized.

更に、前記特性の異なる3種類のBacillus属細菌を担体資材に含ませて成型して土壌伝染性病害軽減材とする、あるいは、あらかじめ成型されている担体資材に前記特性の異なる3種類のBacillus属細菌を含ませて土壌伝染性病害軽減材とすることで、土壌伝染性病害を軽減する効果を安定化することができ、土壌伝染性病害軽減材における菌数とその活性の安定化を図ることができることを見出した。   Furthermore, three kinds of Bacillus bacteria having different characteristics are contained in a carrier material and molded into a soil infectious disease reducing material, or three kinds of Bacillus genus having different characteristics are added to a preformed carrier material. By adding bacteria to the soil infectious disease reducing material, the effect of reducing soil infectious disease can be stabilized, and the number of bacteria and the activity in the soil infectious disease reducing material can be stabilized. I found out that I can.

前記特性の異なる3種類のBacillus属細菌を含ませる担体資材としては、微小な孔径を有する多孔質の担体資材を使用することができる。特性の異なる3種類のBacillus属細菌を担持する上で微小な孔径を有する多孔質であることが望ましい。前記微小な孔径としてμm単位の孔径を有する多孔質の担体資材や、μm単位以上の孔径を有する多孔質の担体資材などを採用することができる。   As the carrier material containing the three types of Bacillus bacteria having different characteristics, a porous carrier material having a minute pore diameter can be used. In order to support three types of Bacillus bacteria having different characteristics, a porous material having a minute pore size is desirable. A porous carrier material having a pore size of μm as the minute pore size, a porous carrier material having a pore size of μm or more, and the like can be employed.

前記において、土壌伝染性病害軽減材は、水分量5〜10%に乾燥処理されているものにすることができる。他の菌の増殖を抑制し、土壌伝染性病害軽減材における菌数とその活性の安定化を図るという観点からこの水分量が望ましい。   In the above, the soil infectious disease reducing material can be dried to a moisture content of 5 to 10%. This water content is desirable from the viewpoint of suppressing the growth of other bacteria and stabilizing the number of bacteria and the activity in the soil infectious disease reducing material.

前記担体資材は、乾燥鶏ふん、発酵鶏ふん、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種の組み合わせからなるものにすることができる。   The carrier material can be any one or a combination of dry chicken dung, fermented chicken dung, fermented beef dung, fermented pork dung, diatomaceous earth, zeolite, lightweight cellular concrete, and green pseudocalcite.

あるいは、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種と、乾燥鶏ふん及び/又は発酵鶏ふんとの組み合わせから、又は、乾燥鶏ふん及び/又は発酵鶏ふんから前記担体資材を構成することもできる。   Or, a combination of any one or more of fermented beef dung, fermented pork, diatomaceous earth, zeolite, lightweight cellular concrete, green pseudo-ashstone, and dried chicken dung and / or fermented chicken dung, or dried chicken dung and / or The carrier material can also be constituted from fermented chicken dung.

なお、担体資材として上述したように、微小な孔径を有する多孔質の担体資材、例えば、μm単位の孔径を有する多孔質の担体資材や、μm単位以上の孔径を有する多孔質の担体資材などを採用する場合には、このような微小な孔径を有する多孔質体であるケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩の中のいずれか一種または複数種を、担体資材を構成する材料の中の一つに含ませておくことができる。   As described above, as a carrier material, a porous carrier material having a minute pore size, for example, a porous carrier material having a pore size of μm units, a porous carrier material having a pore size of μm units or more, etc. When adopting, one or more of diatomaceous earth, zeolite, lightweight cellular concrete and green pseudo-ashstone, which are porous bodies having such minute pore diameters, are used as the material constituting the carrier material. It can be included in one of them.

また、後述するように、特性の異なる3種類のBacillus属細菌として乾燥鶏糞から分離したBacillus属細菌が使用される場合には、土壌伝染性病害軽減材における前記3種類のBacillus属細菌の増殖率、製造ストレス耐性の高さという観点から、乾燥鶏ふん及び/又は発酵鶏ふんから担体資材を構成する、あるいは、少なくとも乾燥鶏ふん及び/又は発酵鶏ふんが含まれている担体資材とすることができる。   In addition, as described later, when Bacillus bacteria isolated from dried chicken manure are used as three kinds of Bacillus bacteria having different characteristics, the growth rate of the three kinds of Bacillus bacteria in a soil infectious disease reducing material From the viewpoint of high manufacturing stress resistance, the carrier material can be constituted from dried chicken dung and / or fermented chicken dung, or can be a carrier material containing at least dried chicken dung and / or fermented chicken dung.

前述した担体資材を用いて成型したものを成型されている担体資材(=成型資材)として用いることができる。例えば、粒径2mm〜10mmの粒状に成型されている担体資材(=成型資材)を用いることができる。   What was shape | molded using the carrier material mentioned above can be used as the carrier material (= molding material) currently shape | molded. For example, it is possible to use a carrier material (= molding material) that is molded into a particle size of 2 mm to 10 mm.

上述したように成型されている担体資材(=成型資材)を用いる他に、前述した担体資材に特性の異なる3種類のBacillus属細菌を含ませ、これを成型して土壌伝染性病害軽減材とすることもできる。例えば、粒径2mm〜10mmの粒状に成型することができる。   In addition to using the carrier material (= molding material) molded as described above, the carrier material described above contains three types of Bacillus bacteria having different characteristics, and is molded into a soil infectious disease reducing material. You can also For example, it can be molded into particles having a particle size of 2 mm to 10 mm.

この場合も、水分量5〜10%に乾燥処理して土壌伝染性病害軽減材とすることができる。例えば、水分量5〜10%に乾燥処理してから成型処理する、あるいは、成型処理した後に水分量5〜10%に乾燥処理する。   Also in this case, it is possible to obtain a soil infectious disease reducing material by drying to a moisture content of 5 to 10%. For example, the molding is performed after drying to a moisture content of 5 to 10%, or after the molding treatment, the moisture treatment is dried to 5 to 10%.

前述した担体資材に特性の異なる3種類のBacillus属細菌を含ませることで、あるいは、前述した担体資材を成型してなる担体資材、すなわち、成型されている担体資材(=成型資材)に特性の異なる3種類のBacillus属細菌を含ませることで、若しくは、前述した担体資材に特性の異なる3種類のBacillus属細菌を含ませ、それを成型することで、本発明の土壌伝染性病害軽減材とすることができる。   The carrier material described above contains three types of Bacillus bacteria having different characteristics, or the carrier material formed by molding the carrier material described above, that is, the molded carrier material (= molded material) has a characteristic. By including three different types of Bacillus genus bacteria, or by including three types of Bacillus genus bacteria having different characteristics in the carrier material described above and molding it, the soil infectious disease reducing material of the present invention and can do.

前記において、土壌伝染性病害軽減材における菌濃度は1.0×10cfu/g〜9.0×10cfu/gであることが望ましい。 In the above, it is desirable that the bacterial concentration in the soil infectious disease reducing material is 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g.

上述したように、特性の異なる3種類のBacillus属細菌を担体資材に含ませることにより土壌伝染性病害を軽減する効果を安定化することができる。また、土壌伝染性病害軽減材における菌数とその活性の安定化を図ることができる。   As described above, the effect of reducing soil infectious diseases can be stabilized by including three types of Bacillus bacteria having different characteristics in the carrier material. In addition, it is possible to stabilize the number of bacteria and the activity of the soil infectious disease reducing material.

担体資材に特性の異なる3種類のBacillus属細菌を含ませるにあたっては、例えば、特性の異なる3種類のBacillus属細菌をそれぞれ培養し、これを担体資材に含ませることができる。   In including three types of Bacillus bacteria having different characteristics in the carrier material, for example, three types of Bacillus bacteria having different characteristics can be cultured and included in the carrier material.

例えば、特性の異なる3種類のBacillus属細菌をそれぞれ培養し、これら3種を混合した混合液とし、これを質量比2〜40%の範囲で担体資材に添加し、その後、水分が5〜10%になるまで乾燥処理して土壌伝染性病害軽減材とすることができる。   For example, three types of Bacillus bacteria having different characteristics are cultured, and a mixed solution obtained by mixing these three types is added to the carrier material in a mass ratio range of 2 to 40%. It is possible to use it as a soil infectious disease reducing material by drying it until it reaches to%.

土壌伝染性病害軽減材はこれによる土壌伝染性病害軽減効果を発揮させる観点から、特性の異なる3種類のBacillus属細菌の菌濃度が1.0×10cfu/g〜9.0×10cfu/gであることが望ましい。 From the viewpoint of exhibiting the soil infectious disease reducing effect, the soil infectious disease reducing material has a concentration of bacteria of three types of genus Bacillus having different characteristics of 1.0 × 10 4 cfu / g to 9.0 × 10 7. cfu / g is desirable.

そこで、特性の異なる3種類のBacillus属細菌をそれぞれ培養し、これら3種を混合した混合液とし、これを質量比2〜40%の範囲で担体資材に添加する際には、最終製品の土壌伝染性病害軽減材において特性の異なる3種類のBacillus属細菌の菌濃度が1.0×10cfu/g〜9.0×10cfu/gになるように調整しながら行う。 Therefore, when three types of Bacillus genus bacteria having different characteristics are cultured, a mixture of these three types is mixed and added to the carrier material in a mass ratio of 2 to 40%. It is carried out while adjusting so that the bacterial concentration of three kinds of Bacillus genus bacteria having different characteristics in the infectious disease reducing material is 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g.

また、それぞれ培養した特性の異なる3種類のBacillus属細菌を混合して混合液にする際にも、最終製品の土壌伝染性病害軽減材において特性の異なる3種類のBacillus属細菌の菌濃度が1.0×10cfu/g〜9.0×10cfu/gになるように考慮しながら混合を行う。例えば、前記培養した特性の異なる3種類のBacillus属細菌を所定の質量比で混合することができる。所定の質量比での混合としては、例えば、前記培養した特性の異なる3種類のBacillus属細菌を均等の質量比で混合することができる。 In addition, even when three types of Bacillus bacteria having different characteristics cultured are mixed to form a mixed solution, the concentration of the three kinds of Bacillus bacteria having different characteristics in the soil infectious disease reducing material of the final product is 1 Mix while considering to be from 0.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g. For example, three types of Bacillus bacteria having different characteristics can be mixed at a predetermined mass ratio. As the mixing at a predetermined mass ratio, for example, the above-described three types of Bacillus bacteria having different characteristics can be mixed at an equal mass ratio.

土壌伝染性病害の一つとしてCalonectria ilicicolaによって引き起こされる土壌伝染性の立枯性病害であるダイズ黒根腐病が知られている。ダイズ黒根腐病は防除技術が確立されていないため深刻な問題になっている。   As one of the soil infectious diseases, soybean black root rot, a soil infectious disease caused by Calonectria ilicicola, is known. Soybean black root rot is a serious problem because no control technology has been established.

秋田県大館市に27年間ダイズを連作していながら高収量を維持し、ダイズ黒根腐病などの病害がほとんど発生していない圃場が存在している。この圃場では特定の乾燥鶏糞が毎年施用されていた。   In Odate City, Akita Prefecture, there is a field where soybeans have been continuously cropped for 27 years and have maintained high yields and have little disease such as soybean black root rot. In this field, specific dry chicken manure was applied every year.

そこで、本願の発明者等は、この乾燥鶏糞中にダイズ黒根腐病を抑制する微生物が存在するのではないかと推察し、当該乾燥鶏糞からダイズ黒根腐病を抑制する微生物の分離を試み、その分離株の利用について検討することで、特性の異なる3種類のBacillus属細菌を同時に使用することにより土壌伝染性病害を軽減することができ、これを土壌伝染性病害軽減材として使用できるという本願発明を完成させたものである。   Therefore, the inventors of the present application inferred that there is a microorganism that suppresses soybean black root rot in the dried chicken dung, and tried to isolate a microorganism that suppresses soybean black root rot from the dried chicken dung. By examining the use of isolates, it is possible to reduce soil infectious diseases by simultaneously using three types of Bacillus bacteria having different characteristics, and this invention can be used as a material for reducing soil infectious diseases Was completed.

このようにして、本願の発明者等が分離、選抜した特性の異なる3種のBacillus属細菌は、Bacillus amyloliquefaciens1菌株、Bacillus subtilis2菌株である。いずれも、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託しており、次のような受託番号を受けている。Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354)。   In this way, three types of Bacillus bacteria having different characteristics isolated and selected by the inventors of the present application are Bacillus amyloliquefaciens 1 strain and Bacillus subtilis 2 strain. All of these are deposited with the Patent Microorganism Deposit Center of the National Institute of Technology and Evaluation, and have received the following deposit numbers. Bacillus amyloliquefaciens (Accession number: NITE P-02337), Bacillus subtilis (Accession number: NITE P-02338), Bacillus subtilis (Accession number: NITE P-02354).

また、これらの3種のBacillus属細菌については、既に、関連する特許出願が行われている(特許出願番号: 特願2016−191581)。   A related patent application has already been filed for these three types of Bacillus bacteria (Patent Application Number: Japanese Patent Application No. 2006-191581).

(菌株の分類)
上記のようにBacillus属細菌の中から選抜した特性の異なる3種のBacillus属細菌の菌株について、それぞれ16S-rRNA遺伝子の塩基配列を解読して同定を行ったところ図1の結果を得た。
(Classification of strains)
As described above, each of the three strains of Bacillus bacteria having different characteristics selected from the bacteria belonging to the genus Bacillus was identified by decoding the base sequence of the 16S-rRNA gene, and the results shown in FIG. 1 were obtained.

この16sRNA解析の結果、表1のように、土壌伝染性病害に対して効果を有する前記3種類の菌株(Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354))が、それぞれ、Bacillus amyloliquefaciens(APU-W01、以下、本明細書、図面においてW-01と示す)、Bacillus subtilis (APU-O02、以下、本明細書、図面においてO-02と示す)、Bacillus subtilis (APU-T03、以下、本明細書、図面においてT-03 と示す)であることが示された。
As a result of the 16sRNA analysis, as shown in Table 1, the three strains (Bacillus amyloliquefaciens (accession number: NITE P-02337) and Bacillus subtilis (accession number: NITE P-02338) having an effect on soil-borne diseases are shown. ), Bacillus subtilis (accession number: NITE P-02354)), Bacillus amyloliquefaciens (APU-W01, hereinafter referred to as W-01 in the present specification and drawings), Bacillus subtilis (APU-O02, hereinafter referred to as this), respectively. In the specification and drawings), and Bacillus subtilis (APU-T03, hereinafter referred to as T-03 in the present specification and drawings).

(供試菌株および接種剤の調整)
供試菌株はW-01、O-02、T-03を使用した。菌液の調整はLB培地を蒸留水に溶解後、オートクレーブ滅菌した液体培地にそれぞれの単一の菌株を接種し、スターラーで攪拌しながら、インキュベーターを用いて35℃の条件で3日間培養することで行った。接種剤の調整は単一で培養した3種類の菌液を同一の重量比で混合し、調整した。
(Adjustment of test strain and inoculum)
The test strains used were W-01, O-02 and T-03. To prepare the bacterial solution, dissolve the LB medium in distilled water, inoculate each single strain into a liquid medium sterilized by autoclaving, and incubate with an incubator at 35 ° C for 3 days while stirring with a stirrer. I went there. The inoculum was prepared by mixing three types of bacterial solutions cultured in a single mixture at the same weight ratio.

(培地pHの影響)
LB培地と寒天を蒸留水に溶解後、塩酸と水酸化ナトリウムでpHを5.0〜9.0に調整し、オートクレーブ滅菌した後、プレートを調製した。調製されたプレートに菌株をそれぞれ塗布し、35℃、12時間の培養を行った。培養後のコロニー数を計数し、増殖性(実測値/理論値)を評価した。増殖性については、コロニー形成がないものを−、<0.5であるものを+、0.5≦x<1であるものを++、1=であるものを+++と示した。
(Influence of medium pH)
LB medium and agar were dissolved in distilled water, pH was adjusted to 5.0 to 9.0 with hydrochloric acid and sodium hydroxide, and autoclaved, and then a plate was prepared. Each strain was applied to the prepared plate and cultured at 35 ° C. for 12 hours. The number of colonies after culturing was counted and the proliferative property (actual value / theoretical value) was evaluated. With respect to the growth ability, − indicates no colony formation, − indicates <0.5, + indicates 0.5 ≦ x <1, ++ indicates 1 =, and + indicates +++.

評価結果(3種類の菌株の異なるpHにおける増殖性)は表2の通りであった。
Table 2 shows the evaluation results (proliferation at three different strains at different pHs).

(結果)
培地pHの影響を評価した結果(表2)、3菌株ともpHごとの増殖性は異なることが示された。特にW-01はpH7.0〜9.0とアルカリ側で増殖性が高く、T-03はpH6.0と7.0と特定のpHで増殖性が高くなっていた。また、O-02はpHが6.0〜9.0と適性範囲が広い特徴を有していた。一方、いずれの菌もpHが6.0以下では増殖性が低い結果が示された。以上の結果から、ダイズの生育至適pHである6.0〜6.5の範囲では増殖性が高いことが示唆され、3菌株の培地pHへの応答は異なることが明らかになった。
(result)
As a result of evaluating the influence of the medium pH (Table 2), it was shown that the three strains have different growth properties for each pH. In particular, W-01 was highly proliferative on the alkali side at pH 7.0 to 9.0, and T-03 was highly proliferative at a specific pH of 6.0 and 7.0. In addition, O-02 had a characteristic that the pH was 6.0 to 9.0 and the aptitude range was wide. On the other hand, all the bacteria showed low growth at pH 6.0 or lower. From the above results, it was suggested that the growth was high in the range of 6.0 to 6.5, which is the optimum pH for soybean growth, and it was revealed that the responses to the medium pH of the three strains were different.

(低温条件下の増殖性)
LB培地と寒天を蒸留水に溶解後(pH7.8)、オートクレーブ滅菌した後、プレートを調製した。調製されたプレートに菌株をそれぞれ塗布し、暗所、25℃、15℃、10℃の条件で培養し、コロニーが検出される日数を評価した。低温条件での増殖性については、コロニー形成がないものを−、培養2日以内にコロニーを形成したものを+++、5日以内にコロニーを形成したものを++、6日以内にコロニーを形成したものを+と示した。
(Proliferation under low temperature conditions)
After LB medium and agar were dissolved in distilled water (pH 7.8) and sterilized by autoclave, a plate was prepared. The strains were respectively applied to the prepared plates and cultured in the dark at 25 ° C., 15 ° C. and 10 ° C., and the number of days on which colonies were detected was evaluated. As for the growth property under low temperature conditions, those without colony formation were-, those with colonies formed within 2 days of culture were ++, those with colonies formed within 5 days were ++, and colonies were formed within 6 days. The thing was shown as +.

評価結果(3種類の菌株の低温時における増殖性)は表3の通りであった。
The evaluation results (proliferation properties at low temperatures of the three strains) were as shown in Table 3.

(結果)
低温条件による増殖性を検討した結果(表3)、いずれの株も15℃の条件では6日以内の培養でコロニーが検出された。特に、O-02とT-03は5日以内で検出され、低温感受性が高い可能性が示された。また、25℃の条件ではすべての菌株が2日以内に検出され、増殖性が高いことが示された。3種類の菌株を用いた土壌伝染性病害軽減材を低温時に土壌に鋤き込んだ場合でも、土壌中で3種類の菌株が増殖できる可能性が示された。
(result)
As a result of examining the growth ability under low temperature conditions (Table 3), colonies were detected in culture within 6 days under the condition of 15 ° C. In particular, O-02 and T-03 were detected within 5 days, indicating the possibility of high sensitivity to low temperatures. In addition, all strains were detected within 2 days under the condition of 25 ° C., indicating that the growth was high. Even when soil infectious disease mitigation materials using three types of strains were sown into the soil at low temperatures, the possibility that the three types of strains could grow in the soil was shown.

(対峙培養法)
それぞれの菌株をPDA培地上にダイズ黒根腐病菌と接種し、インキュベーターを用いて、25℃の条件で5日間対峙培養し、分離したそれぞれの菌株のダイズ黒根腐病に対する増殖抑制効果を検討した。検討結果は図2の参考写真の通りであった。写真中のシャーレは左側に黒根腐病菌、右側に抑制菌あるいは非抑制菌を接種した。
(Anti-culture method)
Each strain was inoculated with soybean black root rot fungus on PDA medium, cultured in an incubator at 25 ° C. for 5 days, and examined for the growth inhibitory effect of each isolate on soybean black root rot. The examination result was as shown in the reference photo of FIG. Petri dishes in the photo were inoculated with black root rot fungus on the left side and suppressor or non-inhibitory bacteria on the right side.

(結果)
3菌株とダイズ黒根腐病菌を対峙培養した結果、いずれの株も黒根腐病菌に対して増殖抑制効果を有することが示された。その程度はO-02>W-01>T-03であると推定された。以上の結果から、3菌株は黒根腐病菌に対して増殖抑制効果が有し、その程度に強弱があることから異なる機構で黒根腐病菌の増殖を抑制している可能性が示された。
(result)
As a result of opposing culture of the three strains and soybean black root rot fungus, it was shown that all the strains had a growth inhibitory effect against black root rot fungus. The degree was estimated to be O-02>W-01> T-03. From the above results, it was shown that the three strains have a growth inhibitory effect on black root rot fungi, and the strength of the three strains suppresses the growth of black root rot fungi by different mechanisms.

(機構の解明:キチンへの応答)
LB培地と寒天を蒸留水に溶解後(pH7.8)、オートクレーブ滅菌した後、プレートを調製した。調製されたプレートにキチン粉末を添加し、菌株をそれぞれ塗布した。それぞれの菌株が培地に添加したキチンを分解するかを観察することによって、キチナーゼ活性を推定した。接種した菌株が白色のキチンを透明化する程度を評価した。検討結果は図3の参考写真の通りであった。
(Elucidation of mechanism: response to chitin)
After LB medium and agar were dissolved in distilled water (pH 7.8) and sterilized by autoclave, a plate was prepared. Chitin powder was added to the prepared plate, and each strain was applied. The chitinase activity was estimated by observing whether each strain decomposes chitin added to the medium. The degree to which the inoculated bacterial strain cleared white chitin was evaluated. The examination results were as shown in the reference photo of FIG.

(結果)
菌株のキチナーゼ活性を推定した結果(図3)、いずれの菌株も培地中のキチンを分解することが示された。特にW-01株の活性が著しく高く、O-02には活性は有するがゆるやかに活性が維持される可能性(Date not shown)が示された。以上の結果から、いずれの菌株もキチナーゼ活性を有することが黒根腐病菌の増殖を抑制する要因の一つである可能性が示された。
(result)
As a result of estimating the chitinase activity of the strain (FIG. 3), it was shown that all strains degrade chitin in the medium. In particular, the activity of the W-01 strain was remarkably high, and it was shown that O-02 has the activity but the activity may be maintained gently (Date not shown). From the above results, the possibility that any strain having chitinase activity is one of the factors inhibiting the growth of black root rot fungi was shown.

(Pot試験)
供試植物はダイズ(Glycine max(L.)Merr )、品種はリュウホウを用いた。土壌は青森県の砂質壌土を用い、黒根腐病菌を10の8乗の濃度で添加し、感染区を設定した。
(Pot test)
The test plant was soybean (Glycine max (L.) Merr), and the cultivar was ryuhou. The soil used was sandy loam from Aomori Prefecture, and black root rot fungus was added at a concentration of 10 to the power of 8 to set an infection zone.

調製された培地に3種類の菌を混合した抑制菌液の接種の有無で処理区を設け(接種濃度:10の8条 cfu/ml)、70%エタノールと次亜塩素酸で表面殺菌した種子を播種した。播種後、植物培養機の中で、適宜蒸留水を添加し、明期/暗期:28℃/18℃(16h/8h)の条件で培養した。培養後、観察により、黒根腐病の影響を評価した。検討結果は図4の参考写真の通りであった。   Seeds that were treated with or without inoculation of a suppressive fungus mixed with 3 types of bacteria in the prepared medium (inoculation concentration: 8 article 8 cfu / ml) and surface-sterilized with 70% ethanol and hypochlorous acid Sowing. After sowing, distilled water was added as appropriate in a plant culturing machine, and the mixture was cultured under the conditions of light period / dark period: 28 ° C./18° C. (16 h / 8 h). After the culture, the influence of black root rot was evaluated by observation. The examination results were as shown in the reference photo of FIG.

(結果)
Pot試験において、3菌株の接種が黒根腐病に及ぼす影響を評価した結果(図4)、3菌株を混合した抑制菌を添加した区ではダイズの発芽、初期生育に影響しないことが示された。抑制菌液を添加しない区では黒根腐病菌の感染濃度が高い条件であるが、発芽、初期生育に著しく影響することが示された。
(result)
As a result of evaluating the effect of inoculation of 3 strains on black root rot in the Pot test (FIG. 4), it was shown that in the group to which the inhibitory bacteria mixed with 3 strains were added, germination and initial growth of soybean were not affected. . It was shown that the concentration of black root rot fungus was high in the group without the inhibitory bacteria solution, but it significantly affected germination and initial growth.

(資材化に関する検討)
担体資材として、発酵鶏ふんおよび軽量気泡コンクリート(ALC)、鶏ふん炭化物の検討を行った。3種類のBacillus amyloliquefaciens(APU-W01)、Bacillus subtilis(APU-O02)、Bacillus subtilis(APU-T03) 培養後、発酵鶏ふん単独、発酵鶏ふんおよびALC、発酵鶏ふんおよび鶏ふん炭化物を混合物に重量比で40%添加し、成型後、約60℃の条件で10時間の加熱処理を行った(7kg/バッチ)。
(Examination on materialization)
Fermented chicken dung, lightweight cellular concrete (ALC), and chicken dung carbide were examined as carrier materials. After culturing the three types of Bacillus amyloliquefaciens (APU-W01), Bacillus subtilis (APU-O02), Bacillus subtilis (APU-T03) %, And after molding, heat treatment was performed for 10 hours under the condition of about 60 ° C. (7 kg / batch).

得られた成型資材の菌数を計数し、担体資材の組み合わせによる影響を評価したところ表4(担体資材の組み合わせに関する検討1)、表5(担体資材の組み合わせに関する検討2)の通りであった。
The number of bacteria in the obtained molding material was counted, and the influence of the combination of carrier materials was evaluated. The results were as shown in Table 4 (Study 1 on the combination of carrier materials) and Table 5 (Study 2 on the combination of carrier materials). .

(結果)
検討の結果(表4、表5)、資材の組み合わせの影響はほとんど認められなかったが、発酵鶏ふん単独で成型するよりも、他の資材を組み合わせことにより菌数が増加する傾向が認められた。この結果は得られた成型資材の物性評価の値から(date not shown)、ALCや緑色擬灰岩を添加することにより、菌液の分散性が良化したためと考えられる。
(result)
As a result of the study (Tables 4 and 5), the effect of the combination of materials was hardly recognized, but the tendency to increase the number of bacteria by combining other materials was recognized rather than molding with fermented chicken dung alone . This result is considered to be due to the improved dispersibility of the bacterial solution by adding ALC and green pseudo-ashstone from the value of physical property evaluation of the obtained molding material (date not shown).

(長期保管の検討)
3種類のBacillus amyloliquefaciens(APU-W01)、Bacillus subtilis(APU-O02)、Bacillus subtilis(APU-T03) を培養後、発酵鶏ふん単独に重量比で40%添加し、成型・加熱処理を行った。得られた成型資材を恒温培養機で培養し、60日目の菌数を評価したところ表6(長期保管試験の検討結果)の通りであった。
(Examination of long-term storage)
After culturing three types of Bacillus amyloliquefaciens (APU-W01), Bacillus subtilis (APU-O02), and Bacillus subtilis (APU-T03), 40% by weight ratio was added to the fermented chicken dung alone, followed by molding and heat treatment. The obtained molding material was cultured in a constant temperature incubator, and the number of bacteria on the 60th day was evaluated.

(結果)
検討の結果(表6)、60日間の培養試験で菌数は約35%の減少が認められたが、軽減効果を示す10の4乗を上回っており、品質に与える影響は認めらないことが明らかになった。
(result)
As a result of the examination (Table 6), the number of bacteria decreased by about 35% in the 60-day culture test, but it exceeded the fourth power of 10 indicating the reduction effect, and no effect on quality was observed. Became clear.

(大規模製造機による製造ストレスの検討)
3種類のBacillus amyloliquefaciens(APU-W01)、Bacillus subtilis(APU-O02)、Bacillus subtilis(APU-T03) を培養後、発酵鶏ふん単独に質量比で2−10%添加し、大規模製造機器によって成型後、熱風温度約100℃の条件で30分間の加熱処理を行った(800kg/バッチ)。得られた成型資材の菌数を評価し、大規模製造機による製造ストレスの影響を評価したところ表7(大規模製造機による製造ストレスの影響)の通りであった。
(Examination of manufacturing stress by large-scale manufacturing machines)
After culturing three types of Bacillus amyloliquefaciens (APU-W01), Bacillus subtilis (APU-O02), and Bacillus subtilis (APU-T03), add 2-10% by weight to the fermented chicken dung alone, and mold with large-scale production equipment Thereafter, heat treatment was performed for 30 minutes at a hot air temperature of about 100 ° C. (800 kg / batch). The number of bacteria of the obtained molding material was evaluated, and the influence of manufacturing stress by a large-scale manufacturing machine was evaluated, and the results were as shown in Table 7 (Influence of manufacturing stress by a large-scale manufacturing machine).

(結果)
検討の結果(表7)、熱や圧力等、非常に大きなストレスがかかる造粒機、加熱処理は菌液の添加量(質量比の10%程度)を考慮すると初期菌数は10倍程度低下するが、いずれの処理区も10の4乗以上の菌数を維持することができることが示された。
(result)
As a result of the study (Table 7), granulators that are subject to very large stresses such as heat and pressure, and heat treatment, the initial bacterial count is reduced by a factor of about 10 considering the amount of bacterial solution added (about 10% of the mass ratio) However, it was shown that any treatment group can maintain the number of bacteria of 10 4 or more.

以上の結果から、乾燥鶏ふん、発酵鶏ふんの担体とする菌株のストレス耐性は著しく高いと考えられる。   From the above results, it is considered that the stress resistance of the strains used as a carrier for dried chicken manure and fermented chicken manure is extremely high.

植物が栽培される圃場に土壌伝染性病害軽減材を施用し、効果を確認した。   A soil infectious disease mitigation material was applied to the field where plants were grown, and the effect was confirmed.

供試植物はダイズ(Glycine max(L.)Merr )、品種はリュウホウを用いた。供試圃場は青森県の水田転換畑で、本年がダイズ2作目の圃場で行った。土壌タイプは砂質壌土で、土壌化学性(供試圃場の化学性)は表8に示した通りであった。
The test plant was soybean (Glycine max (L.) Merr), and the cultivar was ryuhou. The test field was a rice field conversion field in Aomori Prefecture, and this year was the second field of soybean. The soil type was sandy loam, and soil chemistry (test field chemistry) was as shown in Table 8.

処理区については慣行区として化成肥料を施用(N-PO-KO(%):14-18-14)、担体区として発酵鶏ふんを200kg施用、資材区として土壌伝染性病害軽減材を200kg施用した。 As for the treatment zone, chemical fertilizer is applied as a customary zone (NP 2 O 5 -K 2 O (%): 14-18-14), 200 kg of fermented chicken manure is applied as a carrier zone, and soil infectious disease mitigation material is used as a material zone. 200 kg was applied.

抑制菌3菌株(W-01、O-02、T-03)をそれぞれLB液体培地で大量培養した後、混合した。得られた混合液を発酵鶏ふんの質量比の40%を添加し、成型したものを土壌伝染性病害軽減材として用いた。微生物成型資材は粒状形状、大きさ2−4mmサイズに成型した。抑制菌3菌株の菌濃度は10の5乗〜6乗cfu/gであった。以下、この実施例では成型した土壌伝染性病害軽減材であるので「微生物成型資材」と表す。   Three inhibitory strains (W-01, O-02, T-03) were each cultured in LB liquid medium and mixed. 40% of the mass ratio of the fermented chicken dung was added to the obtained mixed liquid, and the molded product was used as a soil infectious disease reducing material. The microorganism molding material was molded into a granular shape and a size of 2-4 mm. The bacterial concentration of the three suppressor strains was 10 5 to 6 cfu / g. Hereinafter, in this example, since it is a molded soil infectious disease reducing material, it is referred to as “microorganism molding material”.

耕種概要は4月25日に担体区に発酵鶏ふん、資材区に微生物成型資材、6月6日に慣行区に化成肥料を施用した。   As for the outline of cultivation, fermented chicken manure was applied to the carrier zone on April 25, microbial molding material was applied to the material zone, and chemical fertilizer was applied to the customary zone on June 6.

播種は6月7日に畝間72cm、株間14cm、2粒播きで行った。   The sowing was performed on June 7 by sowing 72 cm between the ridges, 14 cm between the strains, and 2 grains.

調査項目としてはダイズ地下部の土壌伝染性病害の病徴調査およびダイズ黒根腐病菌の感染率、生育および収量を調査した。   The survey items were the symptom survey of soil infectious diseases in the subsurface of soybean and the infection rate, growth and yield of soybean black root rot fungus.

土壌伝染性の病徴調査については三葉期(7月8日)、開花期(7月29日)、最大繁茂期(以下最繁期とする)(9月2日)に採取した植物体の地下部の土壌伝染性病害(ダイズ黒根腐病、ダイズ茎疫病等)の病徴調査を行い、発病度を算出した。   About soil infectious disease symptom investigation, plant body collected in the trilobium (July 8), flowering period (July 29), maximum prosperity period (hereinafter referred to as the most prosperous period) (September 2) The symptom survey of soil infectious diseases (soybean black root rot, soybean stem rot, etc.) was conducted to calculate the severity of the disease.

感染率についてはダイズ根からDNAを抽出し、糸状菌のβ-tubulin遺伝子をターゲットしたダイズ黒根腐病菌に特異的なプライマーでPCRを行った。その後、アガロースゲル電気泳動でバンドの有無を確認することでダイズ黒根腐病菌の感染を評価した。   Regarding the infection rate, DNA was extracted from soybean roots, and PCR was performed with primers specific to soybean black root rot fungus targeting the β-tubulin gene of filamentous fungi. Then, the infection of soybean black root rot was evaluated by confirming the presence or absence of a band by agarose gel electrophoresis.

生育および収量については三葉期、開花期、最繁期に植物体を採取し、乾物重を測定した。   For growth and yield, plants were collected at the trilobal stage, flowering period, and the most prosperous period, and the dry weight was measured.

10月14日にダイズの坪刈りを行い、収量及び収量構成要素を調査した。   On October 14, soybeans were trimmed and the yield and yield components were investigated.

(結果)
ダイズ地下部の土壌伝染性病害の発病度を評価した結果、三葉期から最繁期まで資材区が他の2試験区よりも発病度が低く推移し、病害による被害が抑制していることが示された(図5、図7)。
(result)
As a result of evaluating the severity of soil infectious diseases in the soybean subterranean area, the disease level has been lower than the other two test zones from the trilobium to the most prosperous period, and damage caused by the disease has been suppressed. Was shown (FIGS. 5 and 7).

ダイズ黒根腐病菌の感染について検討した結果、資材区では三葉期においてダイズ黒根腐病菌に感染が認められないことが示され(図6)、開花期、最繁期においてもその感染が他の2試験区と比較して感染率が低いことが示された(表9「異なる生育期におけるダイズ黒根腐病菌の感染率」)。
As a result of examining the infection of soybean black root rot fungus, it was shown that the soybean black root rot fungus is not infected in the trilobium stage in the material zone (Fig. 6), and the infection is also observed in the flowering period and the most prosperous period. It was shown that the infection rate was low compared with 2 test plots (Table 9 “Infection rate of soybean black root rot fungus in different growth periods”).

以上のことから、微生物成型資材(土壌伝染性病害軽減材)がダイズ黒根腐病の軽減効果を有することが明らかになった。また、三葉期ではどの試験区においてもダイズ黒根腐病菌の感染は認められなかったが、資材区では慣行区、担体区と比べて顕著に病害の抑制が見られた(図7)。したがって、微生物成型資材はダイズ黒根腐病以外の土壌伝染性病害に対しても抑制効果を有することが推定された。   From the above, it has been clarified that the microbial molding material (soil infectious disease reducing material) has the effect of reducing soybean black root rot. In the trilobium, no infection with soybean black root rot was observed in any of the test plots, but in the material plot, the disease was significantly suppressed compared to the customary plot and the carrier plot (FIG. 7). Therefore, it was estimated that the microbial molding material has an inhibitory effect on soil infectious diseases other than soybean black root rot.

参考データとして、エダマメの試験結果を示す。晩酌茶豆とあきたさやかに微生物成型資材を施用した(200kg/10a)結果、資材を施用しない慣行区と比較して発病度が低い結果が示された(図8)。   Edamame test results are shown as reference data. As a result of applying microbial molding materials to supper tea beans and Akitaya Sayaka (200 kg / 10a), the results showed that the disease severity was low compared to the customary area where no materials were applied (FIG. 8).

生育を調査した結果、乾物重は開花期まで試験区間の差は認められなかったが、最繁期になると資材区で慣行区よりも有意に増加していることが示唆された(図9)。収量を調査した結果、微生物成型資材区は慣行区と比較して、百粒重が増加し、収量が増加することが示された(表10「土壌伝染性病害軽減材施用の有無がダイズの収量に及ぼす影響を検討した結果」)。
As a result of investigating the growth, there was no difference in the test weight until the flowering period, but it was suggested that the dry weight was significantly increased in the material group than in the conventional group in the best season (Fig. 9). . As a result of examining the yield, it was shown that the microbial molding material area increased in weight of 100 grains and increased in yield compared to the customary area (Table 10 “Soil infectious disease mitigation agent applied or not) Results of studying the effect on yield ").

以上の結果から、微生物成型資材(土壌伝染性病害軽減材)はダイズ黒根腐病菌に対する抑制効果を有し、病気の発病を軽減することで、ダイズの生育や収量を増加ないし安定化することができることが示された。また、他の土壌伝染性の病害に対しても軽減効果を有することが推定された。   From the above results, microbial molding materials (soil infectious disease mitigation materials) have an inhibitory effect against soybean black root rot fungi, and can reduce or increase the occurrence of disease, thereby increasing or stabilizing soybean growth and yield. It was shown that it can be done. Moreover, it was estimated that it had a mitigation effect also with respect to other soil infectious diseases.

以上、本発明の実施形態、実施例を説明したが本発明はこれらに限られることなく特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。   As mentioned above, although embodiment and the Example of this invention were described, this invention can be variously changed in the technical range grasped | ascertained from description of a claim, without being restricted to these.

この発明によれば、土壌伝染性病害の軽減効果を有する微生物の成型資材化についての新しい提案を行うことができる。特に、土壌伝染性病害の軽減効果を有する微生物の成型資材化について、その効果を安定化させる技術を提案することができる。   According to this invention, it is possible to make a new proposal for forming a microorganism-shaped molding material having an effect of reducing soil infectious diseases. In particular, it is possible to propose a technique for stabilizing the effect of making a microorganism-molding material having an effect of reducing soil infectious diseases.

特性の異なる3種類のBacillus属細菌を培養した後、所定の質量比、例えば、均等の質量比で混合し、担体資材(例えば、乾燥鶏ふんおよび発酵鶏ふんを主体とする担体資材)に質量比2〜40%の割合で封入後、水分が5〜10%になるまで乾燥処理して土壌伝染性病害軽減材にすることができる。   After culturing three types of bacteria belonging to the genus Bacillus having different characteristics, they are mixed at a predetermined mass ratio, for example, an equal mass ratio, and the mass ratio of 2 After encapsulating at a rate of ˜40%, it can be dried to a soil infectious disease reducing material until the water content becomes 5 to 10%.

本発明が提案する土壌伝染性病害軽減材は、25℃以上の保管条件であっても、菌数やその活性を6ヶ月以上維持することが可能であり、実際の農業現場での使用では土壌伝染性の病害軽減効果を安定化させる技術を提供することができる。例えば、ダイズの黒根腐病に対して、その病害を軽減する効果を安定化させることができる。   The soil infectious disease reducing material proposed by the present invention can maintain the number of bacteria and its activity for 6 months or more even under storage conditions of 25 ° C. or higher. A technique for stabilizing the infectious disease reduction effect can be provided. For example, it is possible to stabilize the effect of reducing the disease against soybean black root rot.

ダイズ黒根腐病の原因菌は土壌伝染性であり、その残存性が高いことが報告されている。その対策は行われているが、常に化学農薬を処理することができない又は処理しても効果が少ない状況にある。そこで、本発明のように継続的に使用する菌株の効果を安定化させることは重要であり、この技術を提供できる。   It has been reported that the causative fungus of soybean black root rot is soil-borne and its persistence is high. Although countermeasures have been taken, chemical pesticides cannot always be treated or are ineffective. Therefore, it is important to stabilize the effect of the strain continuously used as in the present invention, and this technique can be provided.

Claims (17)

担体資材に特性の異なる3種類のBacillus属細菌を含ませてなる土壌伝染性病害軽減材。   A soil-borne disease mitigation material that contains three types of Bacillus bacteria with different characteristics in the carrier material. 前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である請求項1記載の土壌伝染性病害軽減材。   The soil infectious disease reducing material according to claim 1, wherein the carrier material is a porous carrier material having a pore size of not less than µm. 水分量5〜10%に乾燥処理されている請求項1又は2記載の土壌伝染性病害軽減材。   The soil infectious disease reducing material according to claim 1 or 2, which has been dried to a moisture content of 5 to 10%. 菌濃度が1.0×10cfu/g〜9.0×10cfu/gである請求項1〜3のいずれか一項に記載の土壌伝染性病害軽減材。 The soil contagious disease reducing material according to any one of claims 1 to 3, wherein the bacterial concentration is 1.0 x 10 4 cfu / g to 9.0 x 10 7 cfu / g. あらかじめ成型されている担体資材に特性の異なる3種類のBacillus属細菌を含ませてなる土壌伝染性病害軽減材。   A soil infectious disease mitigation material that contains three types of Bacillus bacteria with different characteristics in a pre-molded carrier material. あらかじめ成型されている前記担体資材は粒径2mm〜10mmの粒状に成型されている請求項5記載の土壌伝染性病害軽減材。   The soil-borne disease mitigation material according to claim 5, wherein the carrier material molded in advance is molded into a particle size of 2 mm to 10 mm. 前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である請求項5又は6記載の土壌伝染性病害軽減材。   The soil infectious disease reducing material according to claim 5 or 6, wherein the carrier material is a porous carrier material having a pore size of μm or more. 水分量5〜10%に乾燥処理されている請求項5〜7のいずれか一項に記載の土壌伝染性病害軽減材。   The soil infectious disease reducing material according to any one of claims 5 to 7, which has been subjected to a drying treatment to a moisture content of 5 to 10%. 菌濃度が1.0×10cfu/g〜9.0×10cfu/gである請求項5〜8のいずれか一項に記載の土壌伝染性病害軽減材。 The soil contagious disease reducing material according to any one of claims 5 to 8, wherein the fungus concentration is 1.0 x 10 4 cfu / g to 9.0 x 10 7 cfu / g. 担体資材に特性の異なる3種類のBacillus属細菌を含ませたものを成型してなる土壌伝染性病害軽減材。   A soil infectious disease mitigation material formed by molding a carrier material containing three types of Bacillus bacteria with different characteristics. 粒径2mm〜10mmの粒状に成型されている請求項10記載の土壌伝染性病害軽減材。   The soil infectious disease-reducing material according to claim 10, which is molded into a granular shape having a particle size of 2 mm to 10 mm. 前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である請求項10又は11記載の土壌伝染性病害軽減材。   The soil infectious disease reducing material according to claim 10 or 11, wherein the carrier material is a porous carrier material having a pore size of not less than μm. 水分量5〜10%に乾燥処理されている請求項10〜12のいずれか一項に記載の土壌伝染性病害軽減材。   The soil infectious disease-reducing material according to any one of claims 10 to 12, which has been dried to a moisture content of 5 to 10%. 菌濃度が1.0×10cfu/g〜9.0×10cfu/gである請求項10〜13のいずれか一項に記載の土壌伝染性病害軽減材。 Bacterial concentration is 1.0 * 10 < 4 > cfu / g-9.0 * 10 < 7 > cfu / g, The soil infectious disease reduction material as described in any one of Claims 10-13. 前記担体資材は、乾燥鶏ふん、発酵鶏ふん、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種の組み合わせからなる請求項1〜14のいずれか一項に記載の土壌伝染性病害軽減材。   15. The carrier material according to any one of claims 1 to 14, wherein the carrier material is one or a combination of dried chicken dung, fermented chicken dung, fermented beef dung, fermented pork dung, diatomaceous earth, zeolite, lightweight cellular concrete, and green pseudo-ashstone. The soil infectious disease reducing material according to one item. 前記担体資材は、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種と、乾燥鶏ふん及び/又は発酵鶏ふんとの組み合わせからなる、又は、乾燥鶏ふん及び/又は発酵鶏ふんからなる請求項1〜14のいずれか一項に記載の土壌伝染性病害軽減材。   The carrier material is a combination of one or a plurality of fermented beef dung, fermented pork, diatomaceous earth, zeolite, lightweight cellular concrete, green pseudo-ashstone, and dried chicken dung and / or fermented chicken dung or dried. The soil infectious disease reducing material according to any one of claims 1 to 14, comprising chicken dung and / or fermented chicken dung. 特性の異なる3種類のBacillus属細菌は、Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354)である請求項1〜16のいずれか一項に記載の土壌伝染性病害軽減材。   The three types of Bacillus bacteria having different characteristics are Bacillus amyloliquefaciens (Accession number: NITE P-02337), Bacillus subtilis (Accession number: NITE P-02338), and Bacillus subtilis (Accession number: NITE P-02354). The soil infectious disease reducing material according to any one of 1 to 16.
JP2018033071A 2018-02-27 2018-02-27 Soil infectious disease mitigation material Active JP6878751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033071A JP6878751B2 (en) 2018-02-27 2018-02-27 Soil infectious disease mitigation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033071A JP6878751B2 (en) 2018-02-27 2018-02-27 Soil infectious disease mitigation material

Publications (2)

Publication Number Publication Date
JP2019147757A true JP2019147757A (en) 2019-09-05
JP6878751B2 JP6878751B2 (en) 2021-06-02

Family

ID=67849112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033071A Active JP6878751B2 (en) 2018-02-27 2018-02-27 Soil infectious disease mitigation material

Country Status (1)

Country Link
JP (1) JP6878751B2 (en)

Also Published As

Publication number Publication date
JP6878751B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
CN110669676B (en) Metarrhizium leydii MRJCBT190808 and application thereof in control of spodoptera frugiperda
CN111100805B (en) Rice sheath blight disease bactericide prepared by using boron-resistant lysine bacillus as chassis cells
RU2724464C1 (en) Strains, biopreparation, biopreparation production method and method for biological protection of crops against fusariosis
CN111647518A (en) Bacillus belgii microbial agent and preparation method thereof
CN115261283B (en) Bacillus cereus and application thereof in prevention and control of disease of dry farming potatoes
CN110923154B (en) Beauveria bassiana bh001 for preventing and treating quercus pernyi pests and application thereof
CN108048360B (en) Bacillus subtilis with dual functions of degrading organic phosphorus and preventing diseases
KR101996530B1 (en) Bacillus amyloliquefaciens nbc241 and composition comprising the same for control of insect pathogens
CN111662829B (en) Metarhizium anisopliae CHMA-005 and application thereof in prevention and control of tea geometrid
CN107043719B (en) bacillus amyloliquefaciens HMB28353 and application thereof
JP3665295B2 (en) Microbial preparation for biological control using novel Trichoderma microbial strain and method for producing the same
CN115747130B (en) Culture medium for promoting destruxin Mr006 to produce spores, preparation and application thereof
CN114032182B (en) Fungus with functions of antagonizing pathogenic bacteria of garlic root rot and promoting growth
KR101489865B1 (en) Novel strain Burkholderia cepacia JBK9 having antifungial activity against phytopathogenic fungi, its culture, and composition containg them for controlling phytopathogenic fungi
KR101905058B1 (en) Bacillus amyloliquefaciens strain AK-0 and microbial agent for prevention of ginseng root rot pathogens comprising the same
KR20130016917A (en) Serratia nematodiphila wcu338 strain, composition for control plant disease and control method of plant disease with same
CN115851479A (en) Bacterium with antagonistic effect on botrytis cinerea and application thereof
JP2019147757A (en) Soil-borne disease mitigation material
KR101573584B1 (en) Composition comprising Tsukamurella tyrosinosolvens strain YJR102 for controlling plant diseases and plant-growth promiting effect
CN110679611A (en) Application of fusarium proliferatum in prevention and control of invasive plant xanthium sibiricum
KR20150079323A (en) Composition comprising Pseudomonas otitidis strain YJR27 for controlling plant diseases and plant-growth promiting effect
CN114672423B (en) Aspergillus tubingensis, preparation and application thereof
CN113925064B (en) Application of B-lysine-resistant bacillus in inhibition of growth of pitaya soft rot germs
CN116814513B (en) Biocontrol strain HZ109 and application thereof in preventing rice grain smut
Nguyen et al. Isolation of Antagonistic Rhizosphere Bacteria Toward Phytophthora capsici Induce Phytophthora Blight in Pepper (Piper nigrum)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200430

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R150 Certificate of patent or registration of utility model

Ref document number: 6878751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150