JP6878751B2 - Soil infectious disease mitigation material - Google Patents

Soil infectious disease mitigation material Download PDF

Info

Publication number
JP6878751B2
JP6878751B2 JP2018033071A JP2018033071A JP6878751B2 JP 6878751 B2 JP6878751 B2 JP 6878751B2 JP 2018033071 A JP2018033071 A JP 2018033071A JP 2018033071 A JP2018033071 A JP 2018033071A JP 6878751 B2 JP6878751 B2 JP 6878751B2
Authority
JP
Japan
Prior art keywords
soil
reducing material
nite
carrier material
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018033071A
Other languages
Japanese (ja)
Other versions
JP2019147757A (en
Inventor
佐藤 孝
孝 佐藤
史章 高階
史章 高階
金田 吉弘
吉弘 金田
智孝 浅野
智孝 浅野
美由紀 飯塚
美由紀 飯塚
伸二 石川
伸二 石川
英紀 松岡
英紀 松岡
貴志 見城
貴志 見城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
Original Assignee
Akita Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefectural University filed Critical Akita Prefectural University
Priority to JP2018033071A priority Critical patent/JP6878751B2/en
Publication of JP2019147757A publication Critical patent/JP2019147757A/en
Application granted granted Critical
Publication of JP6878751B2 publication Critical patent/JP6878751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

この発明は土壌伝染性病害軽減材に関する。 The present invention relates to a soil infectious disease reducing material.

従来から土壌伝染性病害を防除する目的で種々の提案が行われている。 Various proposals have been made for the purpose of controlling soil-borne diseases.

例えば、特許文献1では、各種植物の根部に感染、共生可能で、土壌伝染性病害を防除する能力を持つとする新規糸状菌株、当該菌株の菌体または培養物を含む土壌伝染性病害防除資材、これを利用した植物の土壌伝染性病害防除法が提案されている。 For example, in Patent Document 1, a new filamentous strain that can infect and coexist with the roots of various plants and has an ability to control soil-borne diseases, and a soil-borne disease control material containing cells or cultures of the strain. , A soil-borne disease control method for plants using this has been proposed.

特許文献2では、光合成細菌とバチルス属(Bacillus)細菌を有効成分として含む植物病原糸状菌を原因とする土壌伝染性病害に対して高い防除効果を有し、環境に対する負荷が少なく、安全で薬害のないとする微生物農薬、及びその微生物農薬を用いて土壌伝染性病害を効果的に防除できるとする方法が提案されている。 In Patent Document 2, it has a high control effect against soil-borne diseases caused by phytopathogenic filamentous fungi containing photosynthetic bacteria and Bacillus bacteria as active ingredients, has a low environmental load, is safe and has chemical damage. There have been proposed microbial pesticides that do not exist and methods that can effectively control soil-borne diseases by using the microbial pesticides.

特許文献3では、作物生長促進を伴う土壌伝染性病害防除法が提案されている。 Patent Document 3 proposes a soil infectious disease control method that promotes crop growth.

特開2008−67667号公報Japanese Unexamined Patent Publication No. 2008-67667 特開2015−39359号号公報Japanese Unexamined Patent Publication No. 2015-39359 特開2015−61826号号公報Japanese Unexamined Patent Publication No. 2015-61826

この発明は、新規な土壌伝染性病害軽減材を提案することを目的にしている。 An object of the present invention is to propose a novel soil-borne disease reducing material.

[1]
担体資材に特性の異なる3種類のBacillus属細菌を含ませてなる土壌伝染性病害軽減材。
[1]
A soil-borne disease-reducing material containing three types of Bacillus bacteria with different characteristics in a carrier material.

[2]
前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である[1]の土壌伝染性病害軽減材。
[2]
The carrier material is a soil-borne disease reducing material according to [1], which is a porous carrier material having a pore size of μm or more.

[3]
水分量5〜10%に乾燥処理されている[1]又は[2]の土壌伝染性病害軽減材。
[3]
The soil infectious disease reducing material of [1] or [2] which has been dried to a water content of 5 to 10%.

[4]
菌濃度が1.0×10cfu/g〜9.0×10cfu/gである[1]〜[3]のいずれかの土壌伝染性病害軽減材。
[4]
A soil-borne disease reducing material according to any one of [1] to [3], which has a bacterial concentration of 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g.

[5]
あらかじめ成型されている担体資材に特性の異なる3種類のBacillus属細菌を含ませてなる土壌伝染性病害軽減材。
[5]
A soil-borne disease-reducing material that contains three types of Bacillus bacteria with different characteristics in a pre-molded carrier material.

[6]
あらかじめ成型されている前記担体資材は粒径2mm〜10mmの粒状に成型されている[5]の土壌伝染性病害軽減材。
[6]
The carrier material that has been molded in advance is the soil-borne disease reducing material according to [5], which is molded into granules having a particle size of 2 mm to 10 mm.

[7]
前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である[5]又は[6]の土壌伝染性病害軽減材。
[7]
The carrier material is a soil-borne disease reducing material according to [5] or [6], which is a porous carrier material having a pore size of μm or more.

[8]
水分量5〜10%に乾燥処理されている[5]〜[7]のいずれかの土壌伝染性病害軽減材。
[8]
The soil infectious disease reducing material according to any one of [5] to [7], which has been dried to a water content of 5 to 10%.

[9]
菌濃度が1.0×10cfu/g〜9.0×10cfu/gである[5]〜[8]のいずれかの土壌伝染性病害軽減材。
[9]
A soil-borne disease reducing material according to any one of [5] to [8], which has a bacterial concentration of 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g.

[10]
担体資材に特性の異なる3種類のBacillus属細菌を含ませたものを成型してなる土壌伝染性病害軽減材。
[10]
A soil-borne disease-reducing material formed by molding a carrier material containing three types of Bacillus bacteria with different characteristics.

[11]
粒径2mm〜10mmの粒状に成型されている[10]の土壌伝染性病害軽減材。
[11]
[10] Soil-borne disease reducing material molded into granules having a particle size of 2 mm to 10 mm.

[12]
前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である[10]又は[11]の土壌伝染性病害軽減材。
[12]
The carrier material is a soil-borne disease reducing material according to [10] or [11], which is a porous carrier material having a pore size of μm or more.

[13]
水分量5〜10%に乾燥処理されている[10]〜[12]のいずれかの土壌伝染性病害軽減材。
[13]
The soil infectious disease reducing material according to any one of [10] to [12], which has been dried to a water content of 5 to 10%.

[14]
菌濃度が1.0×10cfu/g〜9.0×10cfu/gである[10]〜[13]のいずれかの土壌伝染性病害軽減材。
[14]
A soil-borne disease reducing material according to any one of [10] to [13], which has a bacterial concentration of 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g.

[15]
前記担体資材は、乾燥鶏ふん、発酵鶏ふん、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種の組み合わせからなる[1]〜[14]のいずれかの土壌伝染性病害軽減材。
[15]
The carrier material comprises any one or a combination of one or more of dried chicken manure, fermented chicken manure, fermented cow manure, fermented pork manure, diatomaceous earth, zeolite, lightweight aerated concrete, and green pseudo-ashite [1] to [14]. Any soil-borne disease mitigation material.

[16]
前記担体資材は、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種と、乾燥鶏ふん及び/又は発酵鶏ふんとの組み合わせからなる、又は、乾燥鶏ふん及び/又は発酵鶏ふんからなる[1]〜[14]のいずれかの土壌伝染性病害軽減材。
[16]
The carrier material comprises one or more of fermented beef manure, fermented pork manure, diatomaceous earth, zeolite, lightweight bubble concrete, green pseudo-ashite, and a combination of dried chicken manure and / or fermented chicken manure, or dried. A soil-borne disease reducing material according to any one of [1] to [14], which comprises chicken manure and / or fermented chicken manure.

[17]
特性の異なる3種類のBacillus属細菌は、Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354)である[1]〜[16]のいずれかの土壌伝染性病害軽減材。
[17]
The three types of Bacillus bacteria with different characteristics are Bacillus amyloliquefaciens (accession number: NITE P-02337), Bacillus subtilis (accession number: NITE P-02338), and Bacillus subtilis (accession number: NITE P-02354) [1]. ] To [16], a soil-borne disease reducing material.

この発明によれば新規な土壌伝染性病害軽減材を提供することができる。 According to the present invention, it is possible to provide a novel soil-borne disease reducing material.

本発明に使用されるBacillus属細菌についての16S-rRNA遺伝子による分子系統樹を示す図。The figure which shows the molecular phylogenetic tree by the 16S-rRNA gene about the bacterium of the genus Bacillus used in this invention. Bacillus amyloliquefaciens(APU-W01)、Bacillus subtilis(APU-O02) 、Bacillus subtilis(APU-T03)の黒根腐病原因菌Calonectria licicolaとの対峙培養を検討した結果を表す参考写真。A reference photograph showing the results of confrontational culture of Bacillus amyloliquefaciens (APU-W01), Bacillus subtilis (APU-O02), and Bacillus subtilis (APU-T03) with Calonectria licicola, the causative agent of black root rot. Bacillus amyloliquefaciens(APU-W01)菌株、Bacillus subtilis(APU-O02) 菌株のキチンに対する応答を検討した結果を表す参考写真。A reference photograph showing the results of examining the response of Bacillus amyloliquefaciens (APU-W01) strain and Bacillus subtilis (APU-O02) strain to chitin. Pot試験による黒根腐病に対する抑制菌液の影響を検討した結果を表す参考写真。A reference photograph showing the results of examining the effect of the inhibitory bacterial solution on black root rot by the Pot test. 土壌伝染性病害軽減材施用の有無がダイズの黒根腐病感染に及ぼす影響を検討した結果を表す参考写真。A reference photograph showing the results of examining the effect of the application of soil-borne disease mitigation materials on soybean black root rot infection. 土壌伝染性病害軽減材施用によるダイズ地下部の黒根腐病感染の有無を検討した結果を表す図。The figure which shows the result of having examined the presence or absence of the black root rot infection in the underground part of soybean by applying the soil infectious disease reducing material. 各生育期における土壌伝染性病害軽減材施用によるダイズの黒根腐病発病度を検討した結果を表す図。The figure which shows the result of having examined the incidence of black root rot of soybean by the application of the soil infectious disease reducing material in each growing season. 土壌伝染性病害軽減材施用によるエダマメの黒根腐病発病度を検討した結果を表す図。The figure which shows the result of having examined the incidence of black root rot of green soybean by applying a soil infectious disease reducing material. 土壌伝染性病害軽減材施用の有無がダイズの乾物重の推移に及ぼす影響を検討した結果を表す図。The figure which shows the result of having examined the influence which the presence or absence of the application of the soil infectious disease reducing material has on the transition of the dry matter weight of soybean.

従来からBacillus属細菌は植物生育促進、病害抑制、臭気低減などの特性を有する有用菌であることが知られていた。 Conventionally, Bacillus bacteria have been known to be useful bacteria having characteristics such as plant growth promotion, disease control, and odor reduction.

本願の発明者等はこのBacillus属細菌の中から特性の異なる3種のBacillus属細菌を選抜し、植物に施用した場合の土壌伝染性病害への応答に関して検討を行った。 The inventors of the present application selected three species of Bacillus bacteria having different characteristics from the Bacillus bacteria, and examined the response to soil-borne diseases when applied to plants.

この検討により、特性の異なる3種類のBacillus属細菌を同時に使用することで土壌伝染性病害を軽減する効果が発揮されることを見出した。 Through this study, it was found that the simultaneous use of three types of Bacillus bacteria having different characteristics exerts an effect of reducing soil-borne diseases.

また、この特性の異なる3種類のBacillus属細菌を担体資材に含ませて土壌伝染性病害軽減材とすることで土壌伝染性病害を軽減する効果を安定化することができ、土壌伝染性病害軽減材における菌数とその活性の安定化を図ることができることを見出した。 In addition, by incorporating three types of Bacillus bacteria with different characteristics into the carrier material to make a soil-borne disease reducing material, the effect of reducing soil-borne diseases can be stabilized, and soil-borne diseases can be reduced. It was found that the number of bacteria in the wood and its activity can be stabilized.

更に、前記特性の異なる3種類のBacillus属細菌を担体資材に含ませて成型して土壌伝染性病害軽減材とする、あるいは、あらかじめ成型されている担体資材に前記特性の異なる3種類のBacillus属細菌を含ませて土壌伝染性病害軽減材とすることで、土壌伝染性病害を軽減する効果を安定化することができ、土壌伝染性病害軽減材における菌数とその活性の安定化を図ることができることを見出した。 Further, three types of Bacillus bacteria having different characteristics are impregnated in a carrier material and molded to obtain a soil infectious disease reducing material, or three types of Bacillus spp. By including bacteria to make a soil-borne disease reducing material, the effect of reducing soil-borne diseases can be stabilized, and the number of bacteria and their activity in the soil-borne disease reducing material can be stabilized. I found that I could do it.

前記特性の異なる3種類のBacillus属細菌を含ませる担体資材としては、微小な孔径を有する多孔質の担体資材を使用することができる。特性の異なる3種類のBacillus属細菌を担持する上で微小な孔径を有する多孔質であることが望ましい。前記微小な孔径としてμm単位の孔径を有する多孔質の担体資材や、μm単位以上の孔径を有する多孔質の担体資材などを採用することができる。 As the carrier material containing the three types of Bacillus bacteria having different characteristics, a porous carrier material having a minute pore size can be used. It is desirable that it is porous with a minute pore size in order to support three types of Bacillus bacteria having different characteristics. As the minute pore diameter, a porous carrier material having a pore diameter of μm unit, a porous carrier material having a pore diameter of μm unit or more, and the like can be adopted.

前記において、土壌伝染性病害軽減材は、水分量5〜10%に乾燥処理されているものにすることができる。他の菌の増殖を抑制し、土壌伝染性病害軽減材における菌数とその活性の安定化を図るという観点からこの水分量が望ましい。 In the above, the soil infectious disease reducing material can be dried to a water content of 5 to 10%. This water content is desirable from the viewpoint of suppressing the growth of other bacteria and stabilizing the number of bacteria and their activity in the soil infectious disease reducing material.

前記担体資材は、乾燥鶏ふん、発酵鶏ふん、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種の組み合わせからなるものにすることができる。 The carrier material may consist of any one or a combination of dried chicken manure, fermented chicken manure, fermented cow manure, fermented pork manure, diatomaceous earth, zeolite, lightweight aerated concrete, and green pseudo-ashite.

あるいは、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種と、乾燥鶏ふん及び/又は発酵鶏ふんとの組み合わせから、又は、乾燥鶏ふん及び/又は発酵鶏ふんから前記担体資材を構成することもできる。 Alternatively, from a combination of one or more of fermented beef manure, fermented pork manure, diatomaceous earth, zeolite, lightweight bubble concrete, green pseudo-ashiwa and dried chicken manure and / or fermented chicken manure, or dried chicken manure and / or. The carrier material can also be composed of fermented chicken manure.

なお、担体資材として上述したように、微小な孔径を有する多孔質の担体資材、例えば、μm単位の孔径を有する多孔質の担体資材や、μm単位以上の孔径を有する多孔質の担体資材などを採用する場合には、このような微小な孔径を有する多孔質体であるケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩の中のいずれか一種または複数種を、担体資材を構成する材料の中の一つに含ませておくことができる。 As the carrier material, as described above, a porous carrier material having a minute pore size, for example, a porous carrier material having a pore size of μm unit, a porous carrier material having a pore size of μm unit or more, and the like can be used. When adopted, any one or more of diatomaceous earth, zeolite, lightweight aerated concrete, and green pseudoashite, which are porous bodies having such a minute pore size, are used as the material constituting the carrier material. It can be included in one of them.

また、後述するように、特性の異なる3種類のBacillus属細菌として乾燥鶏糞から分離したBacillus属細菌が使用される場合には、土壌伝染性病害軽減材における前記3種類のBacillus属細菌の増殖率、製造ストレス耐性の高さという観点から、乾燥鶏ふん及び/又は発酵鶏ふんから担体資材を構成する、あるいは、少なくとも乾燥鶏ふん及び/又は発酵鶏ふんが含まれている担体資材とすることができる。 Further, as will be described later, when Bacillus bacteria isolated from dried chicken manure are used as the three types of Bacillus bacteria having different characteristics, the growth rate of the three types of Bacillus bacteria in the soil-borne disease reducing material. From the viewpoint of high resistance to production stress, the carrier material can be composed of dried chicken manure and / or fermented chicken manure, or can be a carrier material containing at least dried chicken manure and / or fermented chicken manure.

前述した担体資材を用いて成型したものを成型されている担体資材(=成型資材)として用いることができる。例えば、粒径2mm〜10mmの粒状に成型されている担体資材(=成型資材)を用いることができる。 A product molded using the above-mentioned carrier material can be used as a molded carrier material (= molding material). For example, a carrier material (= molding material) that is molded into particles having a particle size of 2 mm to 10 mm can be used.

上述したように成型されている担体資材(=成型資材)を用いる他に、前述した担体資材に特性の異なる3種類のBacillus属細菌を含ませ、これを成型して土壌伝染性病害軽減材とすることもできる。例えば、粒径2mm〜10mmの粒状に成型することができる。 In addition to using the carrier material (= molding material) molded as described above, the carrier material described above contains three types of Bacillus bacteria having different characteristics, and this is molded to form a soil-borne disease reducing material. You can also do it. For example, it can be molded into granules having a particle size of 2 mm to 10 mm.

この場合も、水分量5〜10%に乾燥処理して土壌伝染性病害軽減材とすることができる。例えば、水分量5〜10%に乾燥処理してから成型処理する、あるいは、成型処理した後に水分量5〜10%に乾燥処理する。 In this case as well, it can be dried to a water content of 5 to 10% to obtain a soil-borne disease reducing material. For example, it is dried to a water content of 5 to 10% and then molded, or after the molding treatment, it is dried to a water content of 5 to 10%.

前述した担体資材に特性の異なる3種類のBacillus属細菌を含ませることで、あるいは、前述した担体資材を成型してなる担体資材、すなわち、成型されている担体資材(=成型資材)に特性の異なる3種類のBacillus属細菌を含ませることで、若しくは、前述した担体資材に特性の異なる3種類のBacillus属細菌を含ませ、それを成型することで、本発明の土壌伝染性病害軽減材とすることができる。 By including three types of Bacillus bacteria having different characteristics in the above-mentioned carrier material, or by molding the above-mentioned carrier material, that is, the molded carrier material (= molding material) has characteristics. By incorporating three different types of Bacillus bacteria, or by impregnating the above-mentioned carrier material with three types of Bacillus bacteria having different characteristics and molding it, the soil-borne disease reducing material of the present invention can be obtained. can do.

前記において、土壌伝染性病害軽減材における菌濃度は1.0×10cfu/g〜9.0×10cfu/gであることが望ましい。 In the above, it is desirable that the bacterial concentration in the soil infectious disease reducing material is 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g.

上述したように、特性の異なる3種類のBacillus属細菌を担体資材に含ませることにより土壌伝染性病害を軽減する効果を安定化することができる。また、土壌伝染性病害軽減材における菌数とその活性の安定化を図ることができる。 As described above, by incorporating three types of Bacillus bacteria having different characteristics into the carrier material, the effect of reducing soil-borne diseases can be stabilized. In addition, it is possible to stabilize the number of bacteria and their activity in the soil infectious disease reducing material.

担体資材に特性の異なる3種類のBacillus属細菌を含ませるにあたっては、例えば、特性の異なる3種類のBacillus属細菌をそれぞれ培養し、これを担体資材に含ませることができる。 In order to include three types of Bacillus bacteria having different characteristics in the carrier material, for example, three types of Bacillus bacteria having different characteristics can be cultured and included in the carrier material.

例えば、特性の異なる3種類のBacillus属細菌をそれぞれ培養し、これら3種を混合した混合液とし、これを質量比2〜40%の範囲で担体資材に添加し、その後、水分が5〜10%になるまで乾燥処理して土壌伝染性病害軽減材とすることができる。 For example, three types of Bacillus bacteria having different characteristics are cultivated to prepare a mixed solution in which these three types are mixed, and this is added to the carrier material in the range of 2 to 40% by mass ratio, and then the water content is 5 to 10. It can be dried to% to be a soil-borne disease-reducing material.

土壌伝染性病害軽減材はこれによる土壌伝染性病害軽減効果を発揮させる観点から、特性の異なる3種類のBacillus属細菌の菌濃度が1.0×10cfu/g〜9.0×10cfu/gであることが望ましい。 From the viewpoint of exerting the effect of reducing soil-borne diseases, the soil-borne disease reducing material has a bacterial concentration of 1.0 × 10 4 cfu / g to 9.0 × 10 7 of three types of Bacillus bacteria having different characteristics. It is desirable to be cfu / g.

そこで、特性の異なる3種類のBacillus属細菌をそれぞれ培養し、これら3種を混合した混合液とし、これを質量比2〜40%の範囲で担体資材に添加する際には、最終製品の土壌伝染性病害軽減材において特性の異なる3種類のBacillus属細菌の菌濃度が1.0×10cfu/g〜9.0×10cfu/gになるように調整しながら行う。 Therefore, when three types of Bacillus bacteria having different characteristics are cultivated to prepare a mixed solution in which these three types are mixed, and this is added to the carrier material in the range of 2 to 40% by mass ratio, the soil of the final product is used. cell concentration of bacteria belonging to the genus Bacillus three having different characteristics in infectious disease relief material performed while adjusted to 1.0 × 10 4 cfu / g~9.0 × 10 7 cfu / g.

また、それぞれ培養した特性の異なる3種類のBacillus属細菌を混合して混合液にする際にも、最終製品の土壌伝染性病害軽減材において特性の異なる3種類のBacillus属細菌の菌濃度が1.0×10cfu/g〜9.0×10cfu/gになるように考慮しながら混合を行う。例えば、前記培養した特性の異なる3種類のBacillus属細菌を所定の質量比で混合することができる。所定の質量比での混合としては、例えば、前記培養した特性の異なる3種類のBacillus属細菌を均等の質量比で混合することができる。 In addition, when three types of Bacillus bacteria having different characteristics are mixed to form a mixed solution, the concentration of the three types of Bacillus bacteria having different characteristics in the final product soil-borne disease reducing material is 1. Mixing is performed while considering the ratio of 0.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g. For example, the three types of Bacillus bacteria having different cultured characteristics can be mixed in a predetermined mass ratio. As the mixing at a predetermined mass ratio, for example, the three types of Bacillus bacteria having different cultured characteristics can be mixed at an equal mass ratio.

土壌伝染性病害の一つとしてCalonectria ilicicolaによって引き起こされる土壌伝染性の立枯性病害であるダイズ黒根腐病が知られている。ダイズ黒根腐病は防除技術が確立されていないため深刻な問題になっている。 As one of the soil-borne diseases, soybean black root rot, which is a soil-borne wilt disease caused by Calonectria ilicicola, is known. Soybean black root rot has become a serious problem because control technology has not been established.

秋田県大館市に27年間ダイズを連作していながら高収量を維持し、ダイズ黒根腐病などの病害がほとんど発生していない圃場が存在している。この圃場では特定の乾燥鶏糞が毎年施用されていた。 In Odate City, Akita Prefecture, there is a field where soybeans have been continuously cultivated for 27 years, yet high yields have been maintained, and diseases such as soybean black root rot have hardly occurred. Certain dried cow dung was applied annually in this field.

そこで、本願の発明者等は、この乾燥鶏糞中にダイズ黒根腐病を抑制する微生物が存在するのではないかと推察し、当該乾燥鶏糞からダイズ黒根腐病を抑制する微生物の分離を試み、その分離株の利用について検討することで、特性の異なる3種類のBacillus属細菌を同時に使用することにより土壌伝染性病害を軽減することができ、これを土壌伝染性病害軽減材として使用できるという本願発明を完成させたものである。 Therefore, the inventors of the present application speculate that there may be a microorganism that suppresses soybean black root rot in the dried chicken manure, and attempt to separate the microorganism that suppresses soybean black root rot from the dried chicken manure. By examining the use of the isolate, the soil infectious disease can be reduced by simultaneously using three types of Bacillus bacteria having different characteristics, and this can be used as a soil infectious disease reducing material. Is completed.

このようにして、本願の発明者等が分離、選抜した特性の異なる3種のBacillus属細菌は、Bacillus amyloliquefaciens1菌株、Bacillus subtilis2菌株である。いずれも、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託しており、次のような受託番号を受けている。Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354)。 In this way, the three Bacillus spp. Bacteria with different characteristics isolated and selected by the inventors of the present application are the Bacillus amyloliquefaciens1 strain and the Bacillus subtilis2 strain. All of them have been deposited at the Patent Microorganisms Depositary Center of the National Institute of Technology and Evaluation, and have received the following deposit numbers. Bacillus amyloliquefaciens (accession number: NITE P-02337), Bacillus subtilis (accession number: NITE P-02338), Bacillus subtilis (accession number: NITE P-02354).

また、これらの3種のBacillus属細菌については、既に、関連する特許出願が行われている(特許出願番号: 特願2016−191581)。 In addition, related patent applications have already been filed for these three species of Bacillus bacteria (Patent Application Number: Japanese Patent Application No. 2016-191581).

(菌株の分類)
上記のようにBacillus属細菌の中から選抜した特性の異なる3種のBacillus属細菌の菌株について、それぞれ16S-rRNA遺伝子の塩基配列を解読して同定を行ったところ図1の結果を得た。
(Classification of strains)
As described above, three strains of Bacillus bacteria having different characteristics selected from Bacillus bacteria were identified by decoding the nucleotide sequences of the 16S-rRNA genes, and the results shown in FIG. 1 were obtained.

この16sRNA解析の結果、表1のように、土壌伝染性病害に対して効果を有する前記3種類の菌株(Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354))が、それぞれ、Bacillus amyloliquefaciens(APU-W01、以下、本明細書、図面においてW-01と示す)、Bacillus subtilis (APU-O02、以下、本明細書、図面においてO-02と示す)、Bacillus subtilis (APU-T03、以下、本明細書、図面においてT-03 と示す)であることが示された。

Figure 0006878751
As a result of this 16sRNA analysis, as shown in Table 1, the above three strains (Bacillus amyloliquefaciens (accession number: NITE P-02337), Bacillus subtilis (accession number: NITE P-02338), which are effective against soil-borne diseases. ), Bacillus subtilis (accession number: NITE P-02354)), Bacillus amyloliquefaciens (APU-W01, hereinafter referred to as W-01 in the present specification and drawings), Bacillus subtilis (APU-O02, hereinafter referred to as this), respectively. It was shown to be O-02 in the specification and drawings) and Bacillus subtilis (APU-T03, hereinafter referred to as T-03 in the present specification and drawings).
Figure 0006878751

(供試菌株および接種剤の調整)
供試菌株はW-01、O-02、T-03を使用した。菌液の調整はLB培地を蒸留水に溶解後、オートクレーブ滅菌した液体培地にそれぞれの単一の菌株を接種し、スターラーで攪拌しながら、インキュベーターを用いて35℃の条件で3日間培養することで行った。接種剤の調整は単一で培養した3種類の菌液を同一の重量比で混合し、調整した。
(Adjustment of test strain and inoculum)
W-01, O-02, and T-03 were used as the test strains. To prepare the bacterial solution, dissolve the LB medium in distilled water, inoculate each single strain into an autoclave-sterilized liquid medium, and incubate in an incubator at 35 ° C. for 3 days while stirring with a stirrer. I went there. The inoculant was adjusted by mixing three types of bacterial solutions cultured alone in the same weight ratio.

(培地pHの影響)
LB培地と寒天を蒸留水に溶解後、塩酸と水酸化ナトリウムでpHを5.0〜9.0に調整し、オートクレーブ滅菌した後、プレートを調製した。調製されたプレートに菌株をそれぞれ塗布し、35℃、12時間の培養を行った。培養後のコロニー数を計数し、増殖性(実測値/理論値)を評価した。増殖性については、コロニー形成がないものを−、<0.5であるものを+、0.5≦x<1であるものを++、1=であるものを+++と示した。
(Effect of medium pH)
After dissolving LB medium and agar in distilled water, the pH was adjusted to 5.0 to 9.0 with hydrochloric acid and sodium hydroxide, and autoclave sterilization was performed to prepare a plate. The strains were applied to the prepared plates, respectively, and cultured at 35 ° C. for 12 hours. The number of colonies after culturing was counted, and the proliferative property (measured value / theoretical value) was evaluated. Regarding proliferative property, those without colonization were shown as −, those with <0.5 were shown as +, those with 0.5 ≦ x <1 were shown as ++, and those with 1 = were shown as +++.

評価結果(3種類の菌株の異なるpHにおける増殖性)は表2の通りであった。

Figure 0006878751
The evaluation results (proliferation of the three strains at different pH values) are shown in Table 2.
Figure 0006878751

(結果)
培地pHの影響を評価した結果(表2)、3菌株ともpHごとの増殖性は異なることが示された。特にW-01はpH7.0〜9.0とアルカリ側で増殖性が高く、T-03はpH6.0と7.0と特定のpHで増殖性が高くなっていた。また、O-02はpHが6.0〜9.0と適性範囲が広い特徴を有していた。一方、いずれの菌もpHが6.0以下では増殖性が低い結果が示された。以上の結果から、ダイズの生育至適pHである6.0〜6.5の範囲では増殖性が高いことが示唆され、3菌株の培地pHへの応答は異なることが明らかになった。
(result)
As a result of evaluating the influence of the medium pH (Table 2), it was shown that the proliferative property of each of the three strains was different for each pH. In particular, W-01 was highly proliferative at pH 7.0-9.0 on the alkaline side, and T-03 was highly proliferative at specific pHs of pH 6.0 and 7.0. In addition, O-02 had a feature of a wide suitability range with a pH of 6.0 to 9.0. On the other hand, all the bacteria showed low proliferative potential when the pH was 6.0 or less. From the above results, it was suggested that the growth potential was high in the range of 6.0 to 6.5, which is the optimum pH for soybean growth, and it was clarified that the responses of the three strains to the medium pH were different.

(低温条件下の増殖性)
LB培地と寒天を蒸留水に溶解後(pH7.8)、オートクレーブ滅菌した後、プレートを調製した。調製されたプレートに菌株をそれぞれ塗布し、暗所、25℃、15℃、10℃の条件で培養し、コロニーが検出される日数を評価した。低温条件での増殖性については、コロニー形成がないものを−、培養2日以内にコロニーを形成したものを+++、5日以内にコロニーを形成したものを++、6日以内にコロニーを形成したものを+と示した。
(Proliferative under low temperature conditions)
After dissolving the LB medium and agar in distilled water (pH 7.8) and sterilizing in an autoclave, a plate was prepared. The strains were applied to the prepared plates, respectively, and cultured in a dark place at 25 ° C., 15 ° C., and 10 ° C., and the number of days when colonies were detected was evaluated. Regarding the proliferative condition under low temperature conditions, those without colonization were negative, those that formed colonies within 2 days of culture were +++, those that formed colonies within 5 days were ++, and those that formed colonies within 6 days were formed. Things are shown as +.

評価結果(3種類の菌株の低温時における増殖性)は表3の通りであった。

Figure 0006878751
The evaluation results (proliferation of the three strains at low temperature) are shown in Table 3.
Figure 0006878751

(結果)
低温条件による増殖性を検討した結果(表3)、いずれの株も15℃の条件では6日以内の培養でコロニーが検出された。特に、O-02とT-03は5日以内で検出され、低温感受性が高い可能性が示された。また、25℃の条件ではすべての菌株が2日以内に検出され、増殖性が高いことが示された。3種類の菌株を用いた土壌伝染性病害軽減材を低温時に土壌に鋤き込んだ場合でも、土壌中で3種類の菌株が増殖できる可能性が示された。
(result)
As a result of examining the proliferative property under low temperature conditions (Table 3), colonies were detected in all the strains after culturing within 6 days under the condition of 15 ° C. In particular, O-02 and T-03 were detected within 5 days, indicating that they may be highly sensitive to low temperatures. In addition, under the condition of 25 ° C., all the strains were detected within 2 days, indicating that the strain was highly proliferative. It was shown that even when a soil-borne disease-reducing material using three types of strains was plowed into the soil at low temperatures, the three types of strains could grow in the soil.

(対峙培養法)
それぞれの菌株をPDA培地上にダイズ黒根腐病菌と接種し、インキュベーターを用いて、25℃の条件で5日間対峙培養し、分離したそれぞれの菌株のダイズ黒根腐病に対する増殖抑制効果を検討した。検討結果は図2の参考写真の通りであった。写真中のシャーレは左側に黒根腐病菌、右側に抑制菌あるいは非抑制菌を接種した。
(Confrontation culture method)
Each strain was inoculated with soybean black root rot on a PDA medium, and confronted and cultured at 25 ° C. for 5 days using an incubator, and the growth inhibitory effect of each isolated strain on soybean black root rot was examined. The examination results are as shown in the reference photograph in FIG. The petri dish in the photo was inoculated with black root rot bacteria on the left side and suppressor or non-suppressor bacteria on the right side.

(結果)
3菌株とダイズ黒根腐病菌を対峙培養した結果、いずれの株も黒根腐病菌に対して増殖抑制効果を有することが示された。その程度はO-02>W-01>T-03であると推定された。以上の結果から、3菌株は黒根腐病菌に対して増殖抑制効果が有し、その程度に強弱があることから異なる機構で黒根腐病菌の増殖を抑制している可能性が示された。
(result)
As a result of confronting the three strains and soybean black root rot fungus, it was shown that all the strains have a growth inhibitory effect on the black root rot fungus. The degree was estimated to be O-02>W-01> T-03. From the above results, it was shown that the three strains have a growth inhibitory effect on the black root rot fungus, and since there are strengths and weaknesses to that extent, it is possible that the growth of the black root rot fungus is suppressed by different mechanisms.

(機構の解明:キチンへの応答)
LB培地と寒天を蒸留水に溶解後(pH7.8)、オートクレーブ滅菌した後、プレートを調製した。調製されたプレートにキチン粉末を添加し、菌株をそれぞれ塗布した。それぞれの菌株が培地に添加したキチンを分解するかを観察することによって、キチナーゼ活性を推定した。接種した菌株が白色のキチンを透明化する程度を評価した。検討結果は図3の参考写真の通りであった。
(Elucidation of mechanism: Response to chitin)
After dissolving the LB medium and agar in distilled water (pH 7.8) and sterilizing in an autoclave, a plate was prepared. Chitin powder was added to the prepared plate, and each strain was applied. Chitinase activity was estimated by observing whether each strain decomposed chitin added to the medium. The degree to which the inoculated strain made the white chitin transparent was evaluated. The examination results are as shown in the reference photograph in FIG.

(結果)
菌株のキチナーゼ活性を推定した結果(図3)、いずれの菌株も培地中のキチンを分解することが示された。特にW-01株の活性が著しく高く、O-02には活性は有するがゆるやかに活性が維持される可能性(Date not shown)が示された。以上の結果から、いずれの菌株もキチナーゼ活性を有することが黒根腐病菌の増殖を抑制する要因の一つである可能性が示された。
(result)
As a result of estimating the chitinase activity of the strains (Fig. 3), it was shown that all the strains decomposed chitin in the medium. In particular, the activity of the W-01 strain was extremely high, and it was shown that O-02 has the activity but may maintain the activity slowly (Date not shown). From the above results, it was shown that the fact that each strain has chitinase activity may be one of the factors that suppress the growth of black root rot bacteria.

(Pot試験)
供試植物はダイズ(Glycine max(L.)Merr )、品種はリュウホウを用いた。土壌は青森県の砂質壌土を用い、黒根腐病菌を10の8乗の濃度で添加し、感染区を設定した。
(Pot test)
Soybean (Glycine max (L.) Merr) was used as the test plant, and Ryuhou was used as the variety. As the soil, sandy loam soil of Aomori prefecture was used, and black root rot fungus was added at a concentration of 10 to the 8th power to set an infected area.

調製された培地に3種類の菌を混合した抑制菌液の接種の有無で処理区を設け(接種濃度:10の8条 cfu/ml)、70%エタノールと次亜塩素酸で表面殺菌した種子を播種した。播種後、植物培養機の中で、適宜蒸留水を添加し、明期/暗期:28℃/18℃(16h/8h)の条件で培養した。培養後、観察により、黒根腐病の影響を評価した。検討結果は図4の参考写真の通りであった。 Seeds sterilized with 70% ethanol and hypochlorous acid in a treatment group with or without inoculation of a suppressive bacterial solution in which three types of bacteria were mixed in the prepared medium (inoculation concentration: 10 8-row cfu / ml). Was sown. After sowing, distilled water was appropriately added in a plant incubator, and the cells were cultured under the conditions of light period / dark period: 28 ° C./18 ° C. (16h / 8h). After culturing, the effect of black root rot was evaluated by observation. The examination results are as shown in the reference photograph in FIG.

(結果)
Pot試験において、3菌株の接種が黒根腐病に及ぼす影響を評価した結果(図4)、3菌株を混合した抑制菌を添加した区ではダイズの発芽、初期生育に影響しないことが示された。抑制菌液を添加しない区では黒根腐病菌の感染濃度が高い条件であるが、発芽、初期生育に著しく影響することが示された。
(result)
In the Pot test, the effect of inoculation of 3 strains on black root rot was evaluated (Fig. 4), and it was shown that the group to which the inhibitory bacteria mixed with 3 strains were added did not affect the germination and initial growth of soybean. .. In the group to which the inhibitory bacterial solution was not added, the infection concentration of black root rot fungus was high, but it was shown that it significantly affected germination and initial growth.

(資材化に関する検討)
担体資材として、発酵鶏ふんおよび軽量気泡コンクリート(ALC)、鶏ふん炭化物の検討を行った。3種類のBacillus amyloliquefaciens(APU-W01)、Bacillus subtilis(APU-O02)、Bacillus subtilis(APU-T03) 培養後、発酵鶏ふん単独、発酵鶏ふんおよびALC、発酵鶏ふんおよび鶏ふん炭化物を混合物に重量比で40%添加し、成型後、約60℃の条件で10時間の加熱処理を行った(7kg/バッチ)。
(Examination of materialization)
As carrier materials, fermented chicken manure, lightweight aerated concrete (ALC), and charcoal chicken manure were examined. After culturing 3 types of Bacillus amyloliquefaciens (APU-W01), Bacillus subtilis (APU-O02), Bacillus subtilis (APU-T03), fermented chicken manure alone, fermented chicken manure and ALC, fermented chicken manure and charcoal-based chicken manure are mixed in a weight ratio of 40. % Was added, and after molding, heat treatment was performed for 10 hours under the condition of about 60 ° C. (7 kg / batch).

得られた成型資材の菌数を計数し、担体資材の組み合わせによる影響を評価したところ表4(担体資材の組み合わせに関する検討1)、表5(担体資材の組み合わせに関する検討2)の通りであった。

Figure 0006878751
Figure 0006878751
When the number of bacteria in the obtained molding material was counted and the influence of the combination of the carrier materials was evaluated, it was as shown in Table 4 (examination 1 regarding the combination of the carrier materials) and Table 5 (examination 2 regarding the combination of the carrier materials). ..
Figure 0006878751
Figure 0006878751

(結果)
検討の結果(表4、表5)、資材の組み合わせの影響はほとんど認められなかったが、発酵鶏ふん単独で成型するよりも、他の資材を組み合わせことにより菌数が増加する傾向が認められた。この結果は得られた成型資材の物性評価の値から(date not shown)、ALCや緑色擬灰岩を添加することにより、菌液の分散性が良化したためと考えられる。
(result)
As a result of the examination (Tables 4 and 5), the influence of the combination of materials was hardly observed, but the number of bacteria tended to increase by combining other materials rather than molding the fermented chicken manure alone. .. This result is considered to be because the dispersibility of the bacterial solution was improved by adding ALC or green pseudo-ashite from the values of the physical property evaluation of the obtained molding material (date not shown).

(長期保管の検討)
3種類のBacillus amyloliquefaciens(APU-W01)、Bacillus subtilis(APU-O02)、Bacillus subtilis(APU-T03) を培養後、発酵鶏ふん単独に重量比で40%添加し、成型・加熱処理を行った。得られた成型資材を恒温培養機で培養し、60日目の菌数を評価したところ表6(長期保管試験の検討結果)の通りであった。

Figure 0006878751
(Consideration of long-term storage)
After culturing three types of Bacillus amyloliquefaciens (APU-W01), Bacillus subtilis (APU-O02), and Bacillus subtilis (APU-T03), 40% by weight was added to fermented chicken manure alone, and molding and heat treatment were performed. The obtained molding material was cultured in a constant temperature incubator, and the number of bacteria on the 60th day was evaluated. The results were as shown in Table 6 (results of long-term storage test).
Figure 0006878751

(結果)
検討の結果(表6)、60日間の培養試験で菌数は約35%の減少が認められたが、軽減効果を示す10の4乗を上回っており、品質に与える影響は認めらないことが明らかになった。
(result)
As a result of the examination (Table 6), a 60-day culture test showed a decrease in the number of bacteria by about 35%, but it exceeded 10 to the 4th power, which shows a reduction effect, and no effect on quality was observed. Became clear.

(大規模製造機による製造ストレスの検討)
3種類のBacillus amyloliquefaciens(APU-W01)、Bacillus subtilis(APU-O02)、Bacillus subtilis(APU-T03) を培養後、発酵鶏ふん単独に質量比で2−10%添加し、大規模製造機器によって成型後、熱風温度約100℃の条件で30分間の加熱処理を行った(800kg/バッチ)。得られた成型資材の菌数を評価し、大規模製造機による製造ストレスの影響を評価したところ表7(大規模製造機による製造ストレスの影響)の通りであった。

Figure 0006878751
(Examination of manufacturing stress by large-scale manufacturing machine)
After culturing three types of Bacillus amyloliquefaciens (APU-W01), Bacillus subtilis (APU-O02), and Bacillus subtilis (APU-T03), 2-10% by mass ratio was added to fermented chicken manure alone, and molded by a large-scale manufacturing equipment. After that, heat treatment was performed for 30 minutes under the condition of hot air temperature of about 100 ° C. (800 kg / batch). The number of bacteria in the obtained molding material was evaluated, and the effect of manufacturing stress on the large-scale manufacturing machine was evaluated. Table 7 (effect of manufacturing stress on the large-scale manufacturing machine) was shown.
Figure 0006878751

(結果)
検討の結果(表7)、熱や圧力等、非常に大きなストレスがかかる造粒機、加熱処理は菌液の添加量(質量比の10%程度)を考慮すると初期菌数は10倍程度低下するが、いずれの処理区も10の4乗以上の菌数を維持することができることが示された。
(result)
As a result of the examination (Table 7), the initial number of bacteria decreased by about 10 times in consideration of the amount of bacterial solution added (about 10% of the mass ratio) in the granulation machine, which is subject to extremely large stress such as heat and pressure, and the heat treatment. However, it was shown that each treatment group can maintain a bacterial count of 10 to the 4th power or higher.

以上の結果から、乾燥鶏ふん、発酵鶏ふんの担体とする菌株のストレス耐性は著しく高いと考えられる。 From the above results, it is considered that the stress resistance of the strains used as carriers for dried chicken manure and fermented chicken manure is extremely high.

植物が栽培される圃場に土壌伝染性病害軽減材を施用し、効果を確認した。 A soil-borne disease reducing material was applied to the field where the plants were cultivated, and the effect was confirmed.

供試植物はダイズ(Glycine max(L.)Merr )、品種はリュウホウを用いた。供試圃場は青森県の水田転換畑で、本年がダイズ2作目の圃場で行った。土壌タイプは砂質壌土で、土壌化学性(供試圃場の化学性)は表8に示した通りであった。

Figure 0006878751
Soybean (Glycine max (L.) Merr) was used as the test plant, and Ryuhou was used as the variety. The test field was a paddy field conversion field in Aomori Prefecture, and this year it was conducted in the field for the second soybean crop. The soil type was sandy loam, and the soil chemistry (chemical properties of the test field) was as shown in Table 8.
Figure 0006878751

処理区については慣行区として化成肥料を施用(N-PO-KO(%):14-18-14)、担体区として発酵鶏ふんを200kg施用、資材区として土壌伝染性病害軽減材を200kg施用した。 For the treatment area, chemical fertilizer was applied as a conventional area (NP 2 O 5 -K 2 O (%): 14-18-14), 200 kg of fermented chicken manure was applied as a carrier area, and soil infectious disease mitigation material was applied as a material area. 200 kg was applied.

抑制菌3菌株(W-01、O-02、T-03)をそれぞれLB液体培地で大量培養した後、混合した。得られた混合液を発酵鶏ふんの質量比の40%を添加し、成型したものを土壌伝染性病害軽減材として用いた。微生物成型資材は粒状形状、大きさ2−4mmサイズに成型した。抑制菌3菌株の菌濃度は10の5乗〜6乗cfu/gであった。以下、この実施例では成型した土壌伝染性病害軽減材であるので「微生物成型資材」と表す。 The three suppressor strains (W-01, O-02, T-03) were mass-cultured in LB liquid medium and then mixed. 40% of the mass ratio of fermented chicken manure was added to the obtained mixed solution, and the molded product was used as a soil infectious disease reducing material. The microbial molding material was molded into a granular shape and a size of 2-4 mm. The bacterial concentration of the three suppressor strains was 10 5 to 6 cfu / g. Hereinafter, in this embodiment, since it is a molded soil infectious disease reducing material, it is referred to as a “microorganism molding material”.

耕種概要は4月25日に担体区に発酵鶏ふん、資材区に微生物成型資材、6月6日に慣行区に化成肥料を施用した。 As for the outline of cultivation, fermented chicken manure was applied to the carrier plot on April 25, microbial molding materials were applied to the material plot, and chemical fertilizer was applied to the conventional plot on June 6.

播種は6月7日に畝間72cm、株間14cm、2粒播きで行った。 The seeding was carried out on June 7, with a furrow of 72 cm, a plant spacing of 14 cm, and two seeds.

調査項目としてはダイズ地下部の土壌伝染性病害の病徴調査およびダイズ黒根腐病菌の感染率、生育および収量を調査した。 The survey items included a symptom survey of soil-borne diseases in the underground part of soybean and a survey of the infection rate, growth and yield of soybean black root rot.

土壌伝染性の病徴調査については三葉期(7月8日)、開花期(7月29日)、最大繁茂期(以下最繁期とする)(9月2日)に採取した植物体の地下部の土壌伝染性病害(ダイズ黒根腐病、ダイズ茎疫病等)の病徴調査を行い、発病度を算出した。 For soil infectious disease symptom investigation, plants collected during the three-leaf stage (July 8), flowering stage (July 29), and maximum flourishing season (hereinafter referred to as the most prosperous season) (September 2). The symptom of soil-borne diseases (soybean black root rot, soybean stalk epidemic, etc.) in the underground part of the plant was investigated, and the degree of disease was calculated.

感染率についてはダイズ根からDNAを抽出し、糸状菌のβ-tubulin遺伝子をターゲットしたダイズ黒根腐病菌に特異的なプライマーでPCRを行った。その後、アガロースゲル電気泳動でバンドの有無を確認することでダイズ黒根腐病菌の感染を評価した。 For the infection rate, DNA was extracted from soybean root and PCR was performed with a primer specific to soybean black root rot fungus targeting the β-tubulin gene of filamentous fungus. Then, infection with soybean black root rot was evaluated by confirming the presence or absence of a band by agarose gel electrophoresis.

生育および収量については三葉期、開花期、最繁期に植物体を採取し、乾物重を測定した。 Regarding the growth and yield, the plants were collected at the three-leaf stage, the flowering stage, and the most prosperous stage, and the dry matter weight was measured.

10月14日にダイズの坪刈りを行い、収量及び収量構成要素を調査した。 Soybeans were mowed on October 14, and the yield and yield components were investigated.

(結果)
ダイズ地下部の土壌伝染性病害の発病度を評価した結果、三葉期から最繁期まで資材区が他の2試験区よりも発病度が低く推移し、病害による被害が抑制していることが示された(図5、図7)。
(result)
As a result of evaluating the incidence of soil-borne diseases in the underground part of soybeans, the incidence of the material plots remained lower than that of the other two test plots from the three-leaf stage to the most prosperous stage, and the damage caused by the diseases was suppressed. Was shown (FIGS. 5 and 7).

ダイズ黒根腐病菌の感染について検討した結果、資材区では三葉期においてダイズ黒根腐病菌に感染が認められないことが示され(図6)、開花期、最繁期においてもその感染が他の2試験区と比較して感染率が低いことが示された(表9「異なる生育期におけるダイズ黒根腐病菌の感染率」)。

Figure 0006878751
As a result of examining the infection of soybean black root rot fungus, it was shown that the soybean black root rot fungus was not infected in the three-leaf stage (Fig. 6), and the infection was found in other stages during the flowering stage and the most prosperous stage. It was shown that the infection rate was lower than that in the two test plots (Table 9 “Infection rate of soybean black root rot fungus in different growing seasons”).
Figure 0006878751

以上のことから、微生物成型資材(土壌伝染性病害軽減材)がダイズ黒根腐病の軽減効果を有することが明らかになった。また、三葉期ではどの試験区においてもダイズ黒根腐病菌の感染は認められなかったが、資材区では慣行区、担体区と比べて顕著に病害の抑制が見られた(図7)。したがって、微生物成型資材はダイズ黒根腐病以外の土壌伝染性病害に対しても抑制効果を有することが推定された。 From the above, it was clarified that the microbial molding material (soil infectious disease reducing material) has the effect of reducing soybean black root rot. In addition, in the three-leaf stage, infection with soybean black root rot fungus was not observed in any of the test plots, but the disease was significantly suppressed in the material plots as compared with the conventional plots and the carrier plots (Fig. 7). Therefore, it was presumed that the microbial molding material has a suppressive effect on soil-borne diseases other than soybean black root rot.

参考データとして、エダマメの試験結果を示す。晩酌茶豆とあきたさやかに微生物成型資材を施用した(200kg/10a)結果、資材を施用しない慣行区と比較して発病度が低い結果が示された(図8)。 As reference data, the test results of green soybeans are shown. As a result of applying the microbial molding material to the evening drink tea beans and the microbial molding material (200 kg / 10a), it was shown that the disease incidence was lower than that in the conventional section where the material was not applied (Fig. 8).

生育を調査した結果、乾物重は開花期まで試験区間の差は認められなかったが、最繁期になると資材区で慣行区よりも有意に増加していることが示唆された(図9)。収量を調査した結果、微生物成型資材区は慣行区と比較して、百粒重が増加し、収量が増加することが示された(表10「土壌伝染性病害軽減材施用の有無がダイズの収量に及ぼす影響を検討した結果」)。

Figure 0006878751
As a result of investigating the growth, there was no difference in the dry matter weight between the test sections until the flowering period, but it was suggested that the dry matter weight was significantly increased in the material plot than in the conventional plot at the peak season (Fig. 9). .. As a result of investigating the yield, it was shown that the microbial molding material group increased the weight of 100 grains and the yield increased in the microbial molding material group (Table 10 “Soil infectious disease mitigation material application or non-application of soybean). As a result of examining the effect on yield ").
Figure 0006878751

以上の結果から、微生物成型資材(土壌伝染性病害軽減材)はダイズ黒根腐病菌に対する抑制効果を有し、病気の発病を軽減することで、ダイズの生育や収量を増加ないし安定化することができることが示された。また、他の土壌伝染性の病害に対しても軽減効果を有することが推定された。 From the above results, the microbial molding material (soil-borne disease reducing material) has an inhibitory effect on soybean black root rot fungi, and by reducing the onset of the disease, it is possible to increase or stabilize the growth and yield of soybean. It was shown that it can be done. It was also presumed to have a mitigating effect on other soil-borne diseases.

以上、本発明の実施形態、実施例を説明したが本発明はこれらに限られることなく特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。 Although the embodiments and examples of the present invention have been described above, the present invention is not limited to these and can be variously modified within the technical scope grasped from the description of the scope of claims.

この発明によれば、土壌伝染性病害の軽減効果を有する微生物の成型資材化についての新しい提案を行うことができる。特に、土壌伝染性病害の軽減効果を有する微生物の成型資材化について、その効果を安定化させる技術を提案することができる。 According to the present invention, it is possible to make a new proposal for the use of a microorganism having a mitigating effect on soil-borne diseases as a molding material. In particular, it is possible to propose a technique for stabilizing the effect of using a microorganism as a molding material, which has an effect of reducing soil-borne diseases.

特性の異なる3種類のBacillus属細菌を培養した後、所定の質量比、例えば、均等の質量比で混合し、担体資材(例えば、乾燥鶏ふんおよび発酵鶏ふんを主体とする担体資材)に質量比2〜40%の割合で封入後、水分が5〜10%になるまで乾燥処理して土壌伝染性病害軽減材にすることができる。 After culturing three types of Bacillus bacteria having different characteristics, they are mixed at a predetermined mass ratio, for example, an equal mass ratio, and the mass ratio is 2 to a carrier material (for example, a carrier material mainly composed of dried chicken manure and fermented chicken manure). After encapsulation at a ratio of ~ 40%, it can be dried until the water content becomes 5 to 10% to obtain a soil-borne disease reducing material.

本発明が提案する土壌伝染性病害軽減材は、25℃以上の保管条件であっても、菌数やその活性を6ヶ月以上維持することが可能であり、実際の農業現場での使用では土壌伝染性の病害軽減効果を安定化させる技術を提供することができる。例えば、ダイズの黒根腐病に対して、その病害を軽減する効果を安定化させることができる。 The soil infectious disease reducing material proposed by the present invention can maintain the number of bacteria and its activity for 6 months or more even under storage conditions of 25 ° C or higher, and is used in actual agricultural sites in soil. It is possible to provide a technique for stabilizing the effect of reducing infectious diseases. For example, it is possible to stabilize the effect of reducing the disease on black root rot of soybean.

ダイズ黒根腐病の原因菌は土壌伝染性であり、その残存性が高いことが報告されている。その対策は行われているが、常に化学農薬を処理することができない又は処理しても効果が少ない状況にある。そこで、本発明のように継続的に使用する菌株の効果を安定化させることは重要であり、この技術を提供できる。 It has been reported that the causative agent of soybean black root rot is soil-borne and its persistence is high. Although countermeasures have been taken, it is not always possible to treat chemical pesticides, or even if they are treated, there is little effect. Therefore, it is important to stabilize the effect of the strain used continuously as in the present invention, and this technique can be provided.

Claims (16)

担体資材に特性の異なる3種類のBacillus属細菌である、Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354)を含ませてなるダイズ黒根腐病菌に対して増殖抑制効果を有する土壌伝染性病害軽減材。 Bacillus amyloliquefaciens (accession number: NITE P-02337), Bacillus subtilis (accession number: NITE P-02338), Bacillus subtilis (accession number: NITE P-02354), which are three types of Bacillus bacteria with different characteristics in the carrier material. A soil-borne disease-reducing material that has a growth-suppressing effect on Bacillus subtilis soybeans. 前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である請求項1記載の土壌伝染性病害軽減材。 The soil-borne disease reducing material according to claim 1, wherein the carrier material is a porous carrier material having a pore size of μm or more. 水分量5〜10%に乾燥処理されている請求項1又は2記載の土壌伝染性病害軽減材。 The soil infectious disease reducing material according to claim 1 or 2, which has been dried to a water content of 5 to 10%. 菌濃度が1.0×10cfu/g〜9.0×10cfu/gである請求項1〜3のいずれか一項に記載の土壌伝染性病害軽減材。 The soil infectious disease reducing material according to any one of claims 1 to 3, wherein the bacterial concentration is 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g. あらかじめ成型されている担体資材に特性の異なる3種類のBacillus属細菌である、Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354)を含ませてなるダイズ黒根腐病菌に対して増殖抑制効果を有する土壌伝染性病害軽減材。 Bacillus amyloliquefaciens (accession number: NITE P-02337), Bacillus subtilis (accession number: NITE P-02338), Bacillus subtilis (accession number: NITE P-02338), which are three types of Bacillus bacteria with different characteristics in pre-molded carrier materials. NITE P-02354) is a soil-borne disease-reducing material that has a growth-suppressing effect on Bacillus subtilis. あらかじめ成型されている前記担体資材は粒径2mm〜10mmの粒状に成型されている請求項5記載の土壌伝染性病害軽減材。 The soil-borne disease reducing material according to claim 5, wherein the carrier material that has been molded in advance is formed into granules having a particle size of 2 mm to 10 mm. 前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である請求項5又は6記載の土壌伝染性病害軽減材。 The soil-borne disease reducing material according to claim 5 or 6, wherein the carrier material is a porous carrier material having a pore size of μm or more. 水分量5〜10%に乾燥処理されている請求項5〜7のいずれか一項に記載の土壌伝染性病害軽減材。 The soil infectious disease reducing material according to any one of claims 5 to 7, which has been dried to a water content of 5 to 10%. 菌濃度が1.0×10cfu/g〜9.0×10cfu/gである請求項5〜8のいずれか一項に記載の土壌伝染性病害軽減材。 The soil infectious disease reducing material according to any one of claims 5 to 8, wherein the bacterial concentration is 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g. 担体資材に特性の異なる3種類のBacillus属細菌である、Bacillus amyloliquefaciens(受託番号:NITE P‐02337)、Bacillus subtilis(受託番号:NITE P‐02338)、Bacillus subtilis(受託番号:NITE P‐02354)を含ませたものを成型してなるダイズ黒根腐病菌に対して増殖抑制効果を有する土壌伝染性病害軽減材。 Bacillus amyloliquefaciens (accession number: NITE P-02337), Bacillus subtilis (accession number: NITE P-02338), Bacillus subtilis (accession number: NITE P-02354), which are three types of Bacillus bacteria with different characteristics in the carrier material. A soil-borne disease-reducing material that has a growth-suppressing effect on soybean black root rot fungi formed by molding a material containing. 粒径2mm〜10mmの粒状に成型されている請求項10記載の土壌伝染性病害軽減材。 The soil infectious disease reducing material according to claim 10, which is molded into granules having a particle size of 2 mm to 10 mm. 前記担体資材はμm単位以上の孔径を有する多孔質の担体資材である請求項10又は11記載の土壌伝染性病害軽減材。 The soil-borne disease reducing material according to claim 10 or 11, wherein the carrier material is a porous carrier material having a pore size of μm or more. 水分量5〜10%に乾燥処理されている請求項10〜12のいずれか一項に記載の土壌伝染性病害軽減材。 The soil infectious disease reducing material according to any one of claims 10 to 12, which has been dried to a water content of 5 to 10%. 菌濃度が1.0×10cfu/g〜9.0×10cfu/gである請求項10〜13のいずれか一項に記載の土壌伝染性病害軽減材。 The soil infectious disease reducing material according to any one of claims 10 to 13, wherein the bacterial concentration is 1.0 × 10 4 cfu / g to 9.0 × 10 7 cfu / g. 前記担体資材は、乾燥鶏ふん、発酵鶏ふん、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種の組み合わせからなる請求項1〜14のいずれか一項に記載の土壌伝染性病害軽減材。 The carrier material is any one of claims 1 to 14, which comprises any one or a combination of dried chicken manure, fermented chicken manure, fermented cow manure, fermented pork manure, diatomaceous earth, zeolite, lightweight bubble concrete, and green pseudo-ashite. The soil-borne disease reducing material described in item 1. 前記担体資材は、発酵牛ふん、発酵豚ぷん、ケイソウ土、ゼオライト、軽量気泡コンクリート、緑色擬灰岩のいずれか一種又は複数種と、乾燥鶏ふん及び/又は発酵鶏ふんとの組み合わせからなる、又は、乾燥鶏ふん及び/又は発酵鶏ふんからなる請求項1〜14のいずれか一項に記載の土壌伝染性病害軽減材。 The carrier material comprises one or more of fermented beef manure, fermented pork manure, diatomaceous earth, zeolite, lightweight bubble concrete, green pseudo-ashite, and a combination of dried chicken manure and / or fermented chicken manure, or dried. The soil-borne disease reducing material according to any one of claims 1 to 14, which comprises chicken manure and / or fermented chicken manure.
JP2018033071A 2018-02-27 2018-02-27 Soil infectious disease mitigation material Active JP6878751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033071A JP6878751B2 (en) 2018-02-27 2018-02-27 Soil infectious disease mitigation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033071A JP6878751B2 (en) 2018-02-27 2018-02-27 Soil infectious disease mitigation material

Publications (2)

Publication Number Publication Date
JP2019147757A JP2019147757A (en) 2019-09-05
JP6878751B2 true JP6878751B2 (en) 2021-06-02

Family

ID=67849112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033071A Active JP6878751B2 (en) 2018-02-27 2018-02-27 Soil infectious disease mitigation material

Country Status (1)

Country Link
JP (1) JP6878751B2 (en)

Also Published As

Publication number Publication date
JP2019147757A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
CN111100805B (en) Rice sheath blight disease bactericide prepared by using boron-resistant lysine bacillus as chassis cells
CN111961598B (en) Isaria javanicus strain and application thereof in aspect of preventing and treating phyllotreta striolata
RU2724464C1 (en) Strains, biopreparation, biopreparation production method and method for biological protection of crops against fusariosis
JP2009511012A (en) Composition for controlling plant diseases comprising Bacillus subtilis KCCM10639 or KCCM10640 and method for controlling plant diseases using these
CN109182219B (en) Bacillus mojavensis promoting growth of clostridium sargassum and application thereof
CN111647518A (en) Bacillus belgii microbial agent and preparation method thereof
CN104789509A (en) Eucommia ulmoides endogenous bacillus pumilus and application thereof
CN112063543B (en) Urease-producing bacterium and application thereof in preparation of microbial inoculum for preventing and treating tobacco root knot nematode disease
CN102443559B (en) Baclillus subtilis used for controlling cotton verticillium wilt and application thereof
CN105754900B (en) Novel Erwinia strain for promoting crop drought resistance and application thereof
CN114032182B (en) Fungus with functions of antagonizing pathogenic bacteria of garlic root rot and promoting growth
JP6878751B2 (en) Soil infectious disease mitigation material
CN115851479A (en) Bacterium with antagonistic effect on botrytis cinerea and application thereof
KR100616408B1 (en) Turfgrass growth promoter comprising Rhizopus oligosporus and methods of promoting growth of turfgrass by using it
CN110699305B (en) Burkholderia and application thereof
KR101573584B1 (en) Composition comprising Tsukamurella tyrosinosolvens strain YJR102 for controlling plant diseases and plant-growth promiting effect
EP3476930B1 (en) Pseudozyma
CN111019837B (en) New application of trichoderma viride
CN115786172B (en) Bacillus bailii and composition and application thereof
CN116376720B (en) Chaetomium aureum and application thereof in preventing and treating tobacco leaf spot
CN116731932B (en) Bacillus bailii NBT78-2 and application thereof
CN117384807B (en) Bacillus mycoides HDMM 2 and application thereof
CN110607259B (en) Hot pepper endophytic bacterium capable of producing siderophores at high yield and application of hot pepper endophytic bacterium in yield increase of hot peppers
JP6824519B2 (en) Soybean black root rot control agent, microbial material for suppressing soybean black root rot, and soybean black root rot control method
KR101406823B1 (en) Bacillus sp. CS-52 and Antifungal control against Anthracnose of Red Pepper using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200430

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R150 Certificate of patent or registration of utility model

Ref document number: 6878751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250