JP2019145145A - Base station and autonomously running vacuum cleaner system - Google Patents

Base station and autonomously running vacuum cleaner system Download PDF

Info

Publication number
JP2019145145A
JP2019145145A JP2019075272A JP2019075272A JP2019145145A JP 2019145145 A JP2019145145 A JP 2019145145A JP 2019075272 A JP2019075272 A JP 2019075272A JP 2019075272 A JP2019075272 A JP 2019075272A JP 2019145145 A JP2019145145 A JP 2019145145A
Authority
JP
Japan
Prior art keywords
signal
base station
feedback signal
main body
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019075272A
Other languages
Japanese (ja)
Other versions
JP6840183B2 (en
Inventor
康博 松井
Yasuhiro Matsui
康博 松井
多田 健一
Kenichi Tada
健一 多田
祐輔 矢吹
Yusuke Yabuki
祐輔 矢吹
山本 亘
Wataru Yamamoto
亘 山本
欣也 赤荻
Kinya Akaogi
欣也 赤荻
寿子 原田
Toshiko Harada
寿子 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2019075272A priority Critical patent/JP6840183B2/en
Publication of JP2019145145A publication Critical patent/JP2019145145A/en
Application granted granted Critical
Publication of JP6840183B2 publication Critical patent/JP6840183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a system in which a base station can transfer a right signal and a left signal and an autonomously running vacuum cleaner can be reliably returned to the base station without duplicating signals.SOLUTION: A base station 25 for an autonomously running vacuum cleaner repeatedly transmits a plurality of signals including a first signal 29R and a second signal 29L transferred following the first signal, is adapted such that a region where only one of the first signal and the second signal is transferred can be discriminated by the autonomously running vacuum cleaner from a region where both are transferred, and is provided with transfer stop time until start of transferring the subsequent second signal after the transfer of the first signal.SELECTED DRAWING: Figure 11

Description

本発明は、基地局及び自律走行型掃除機システムに関する。   The present invention relates to a base station and an autonomous traveling type vacuum cleaner system.

自律走行型掃除機は、充電池を搭載し、充電池の電力により自律して家の中を移動すると同時に掃除する機器である。そのため充電池の電池残量が少なくなると掃除ができなくなり、充電することが必要である。近年の自律走行型掃除機は、充電池の電池残量が少なくなると、充電器となる基地局へ自動で帰還する機能を備えているものが多い。   An autonomous traveling type vacuum cleaner is a device that is equipped with a rechargeable battery and that moves autonomously with the power of the rechargeable battery and simultaneously cleans it. For this reason, when the remaining battery level of the rechargeable battery decreases, cleaning becomes impossible and charging is required. In recent years, many autonomously traveling vacuum cleaners have a function of automatically returning to a base station serving as a charger when the remaining battery level of the rechargeable battery decreases.

このような自動で基地局へ帰還するシステムについて、特許文献1では、基地局から伝送される右信号と左信号との部分的に信号重複によって定義された経路を辿る方法が示されている。   Regarding such a system that automatically returns to a base station, Patent Document 1 discloses a method of following a route defined by signal overlap partially between a right signal and a left signal transmitted from a base station.

特開2007−149115号公報JP 2007-149115 A

基地局から伝送させる右信号および左信号は、図1のような高速でHIGH/LOWを繰り返す赤外線のコードで作られることが多く、これはテレビやエアコン等の機器のリモコンに用いられる信号と同種のものである。この信号をこれら機器が判別することで、各種動作(例えば、テレビのON/OFFやチャンネル操作)がなされる。そのため、メーカー、機器、動作によってリモコンの信号のコードがあらかじめ割り振られている。   The right and left signals transmitted from the base station are often made up of infrared codes that repeat HIGH / LOW at a high speed as shown in FIG. 1, which is the same type of signal used for the remote control of devices such as televisions and air conditioners. belongs to. Various operations (for example, ON / OFF of a television and channel operation) are performed by these devices discriminating this signal. Therefore, remote control signal codes are allocated in advance according to manufacturers, devices, and operations.

文献1に示される信号重複によって定義された経路を作成するには、右信号と左信号を同時に伝送させるとともに重複させ、上記2つの信号のコードと異なる別のコードを有した信号(重複信号)を生成することが必要となる。この重複信号のコードは右信号のコードと左信号のコードのうち、どちらか一方の信号がHIGHのときはHIGHになり、両方の信号がLOWのときはLOWになるコードである。そのため、この重複信号は2つの信号の伝送タイミングによって異なる信号となる。2つの信号を毎回、同じタイミングで伝送していれば、この重複信号は毎回同じコードの信号になるが、タイミングにずれが生じると信号(コード)が乱れ、異なるコードとなる。伝送タイミングのずれた重複信号は、想定している重複信号と異なるため、基地局に帰還するための信号として自律走行型掃除機は認識できなくなる。特に、右信号および左信号がそれぞれともに高速でHIGH/LOWを繰り返すコードの場合、少しタイミングがずれただけで、重複信号に大きな差が現れ易く、重複信号を辿って基地局に帰還することが困難になる。   In order to create a path defined by signal duplication shown in Document 1, a right signal and a left signal are simultaneously transmitted and duplicated, and a signal having another code different from the code of the two signals (duplicate signal) Must be generated. The code of the overlapping signal is a code that becomes HIGH when one of the right signal code and the left signal code is HIGH, and becomes LOW when both signals are LOW. For this reason, the overlapping signal is a signal that differs depending on the transmission timing of the two signals. If two signals are transmitted at the same timing each time, the duplicate signal becomes a signal with the same code each time. However, if the timing is deviated, the signal (code) is disturbed, resulting in different codes. Since the duplicate signal with the shifted transmission timing is different from the assumed duplicate signal, the autonomously traveling cleaner cannot recognize it as a signal for returning to the base station. In particular, in the case of a code in which both the right signal and the left signal repeat HIGH / LOW at high speed, even if the timing is slightly shifted, a large difference is likely to appear in the duplicate signal, and the duplicate signal can be traced back to the base station. It becomes difficult.

また、生成された重複信号が想定と異なるコードになることで、基地局に帰還できないだけでなく、他の機器を操作する信号のコードと一致した場合、誤って他の機器を操作してしまうことが考えられる。   In addition, because the generated duplicate signal has a different code than expected, not only can it not be returned to the base station, but if it matches the code of the signal that operates another device, it will erroneously operate another device. It is possible.

そこで、本発明は上記従来の問題に鑑みてなされたものであり、基地局は右信号と左信号を伝送するとともに、それぞれの信号を重複させずに基地局へ帰還させる経路を作成し、自律走行型掃除機を基地局まで確実に帰還させることを目的とする。   Therefore, the present invention has been made in view of the above-described conventional problems. The base station transmits a right signal and a left signal and creates a route for returning each signal to the base station without overlapping each other. The purpose is to reliably return the traveling vacuum cleaner to the base station.

上記課題を解決するためになされた本発明は、
第1信号と、該第1信号に続いて伝送される第2信号と、を含む複数の信号を繰り返し送信して、前記第1信号と前記第2信号のうち一方のみが伝送される領域と、両方が伝送される領域とを自律走行型掃除機が区別できるようにし、
前記第1信号の伝送後、続く前記第2信号の伝送開始までに伝送停止時間を設ける自律走行型掃除機の基地局である。
The present invention made to solve the above problems
A region in which only one of the first signal and the second signal is transmitted by repeatedly transmitting a plurality of signals including a first signal and a second signal transmitted following the first signal; , Allowing the autonomous cleaner to distinguish between the areas where both are transmitted,
It is a base station of an autonomous traveling type cleaner that provides a transmission stop time after the transmission of the first signal and before the transmission of the subsequent second signal starts.

本発明によれば、2つの帰還信号の一方の帰還信号の伝送を停止している間にもう一方の帰還信号を伝送する、つまり、伝送のタイミングを完全にずらして帰還信号を伝送することで、右側帰還信号と左側帰還信号は重複することがなく、想定外の信号を生成することがなくなる。また、右側帰還信号を伝送する領域の基地局中央側の一部の領域に対して、左側帰還信号の一部を重複させるように伝送することで、右側帰還信号のみが伝送される領域、左側帰還信号のみが伝送される領域、両方の帰還信号が伝送される領域、どちらの帰還信号も伝送されない領域の4領域を作り出すことができる。このうち両方の帰還信号が伝送される領域を辿ることで、自律走行型掃除機は確実に基地局に帰還することができる。   According to the present invention, while the transmission of one feedback signal of two feedback signals is stopped, the other feedback signal is transmitted, that is, the feedback signal is transmitted by completely shifting the transmission timing. The right feedback signal and the left feedback signal do not overlap, and an unexpected signal is not generated. In addition, by transmitting a part of the left feedback signal so as to overlap with a part of the base station center side of the area where the right feedback signal is transmitted, the area where only the right feedback signal is transmitted, the left side Four regions can be created: a region where only the feedback signal is transmitted, a region where both feedback signals are transmitted, and a region where neither feedback signal is transmitted. By following the area in which both feedback signals are transmitted, the autonomously traveling cleaner can surely return to the base station.

基地局から伝送する帰還信号のコードの一例を示した図である。It is the figure which showed an example of the code | symbol of the feedback signal transmitted from a base station. 本発明の実施形態に係る自律走行型掃除機を左前方から見下ろした斜視図である。It is the perspective view which looked down at the autonomous running type vacuum cleaner concerning the embodiment of the present invention from the left front. 自律走行型掃除機を左前方から見上げた斜視図である。It is the perspective view which looked up at the autonomous running type vacuum cleaner from the left front. 自律走行型掃除機の制御装置、及び制御装置に接続される機器を示す構成図である。It is a block diagram which shows the apparatus connected to the control apparatus of an autonomous running type vacuum cleaner, and a control apparatus. 掃除走行制御の一例である反射走行パターンの走行軌跡を示す説明図である。It is explanatory drawing which shows the driving | running locus | trajectory of the reflective driving | running | working pattern which is an example of cleaning driving | running | working control. 帰還走行制御の走行軌跡を示す説明図である。It is explanatory drawing which shows the driving | running | working locus | trajectory of feedback driving | running | working control. 中央受信装置の構造を示す斜視図である。It is a perspective view which shows the structure of a center receiver. 右受信装置、および左受信装置の構造を示す断面図である。It is sectional drawing which shows the structure of a right receiver and a left receiver. 基地局を正面上方から見下ろした外観を示す斜視図である。It is a perspective view which shows the external appearance which looked down at the base station from the front upper direction. 図9の破線Cで切断した上断面図とともに、帰還信号の伝送領域を示す図である。It is a figure which shows the transmission area | region of a feedback signal with the upper cross section cut | disconnected by the broken line C of FIG. 帰還信号の伝送パターンを示す模式図である。It is a schematic diagram which shows the transmission pattern of a feedback signal. 帰還信号の伝送パターンを示すタイミングチャートである。It is a timing chart which shows the transmission pattern of a feedback signal. 帰還信号の別の伝送パターンを示すタイミングチャートである。It is a timing chart which shows another transmission pattern of a feedback signal.

本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、自律走行型掃除機1(図2、図3参照)が主に進行する向きを前方、鉛直上向きを上方とし、図2、図3に示すように前後・上下・左右を定義する。   Embodiments of the present invention will be described in detail with reference to the drawings as appropriate. Note that the direction in which the autonomously traveling cleaner 1 (see FIGS. 2 and 3) mainly travels is defined as forward and the vertically upward direction is defined as upward, and front and rear, up and down, and left and right are defined as shown in FIGS.

図2は、本実施形態に係る自律走行型掃除機1を左前方から見下ろした斜視図である。
図3は、自律走行型掃除機1を左前方から見上げた斜視図である。図4は、自律走行型掃除機の制御装置、及び制御装置に接続される機器を示す構成図である。
FIG. 2 is a perspective view of the autonomously traveling cleaner 1 according to the present embodiment as viewed from the left front.
FIG. 3 is a perspective view of the autonomously traveling vacuum cleaner 1 as viewed from the left front. FIG. 4 is a configuration diagram illustrating a control device for an autonomous traveling vacuum cleaner and devices connected to the control device.

自律走行型掃除機1は、所定の掃除領域(例えば、部屋)を自律的に移動しながら掃除する掃除機である。自律走行型掃除機1は、主に、本体2と、駆動輪3R,3L(図3参照)と、走行モータ4R,4L(図4参照)と、補助輪5(図3参照)と、送風機6と、センサ類(測距センサ7等:図3参照)と、サイドブラシ8R,8Lと、制御装置9(図4参照)と、を備えている。   The autonomously traveling cleaner 1 is a cleaner that cleans while moving autonomously in a predetermined cleaning area (for example, a room). The autonomous traveling type vacuum cleaner 1 mainly includes a main body 2, driving wheels 3R and 3L (see FIG. 3), traveling motors 4R and 4L (see FIG. 4), auxiliary wheels 5 (see FIG. 3), and a blower. 6, sensors (ranging sensor 7 and the like: see FIG. 3), side brushes 8 </ b> R and 8 </ b> L, and a control device 9 (see FIG. 4).

本体2は、各種モータや制御装置9等を収容する筐体であり、その外形は薄型の円柱状を呈している。本体2は、上壁である上ケース10と、底壁(及び一部の側壁)である下ケース11と、前部に設置されるバンパ12と、を備えている。上ケース10には、後記する集塵ケース13(図3参照)を出し入れするための蓋10aが設けられている。   The main body 2 is a housing that houses various motors, the control device 9 and the like, and has an outer shape of a thin column. The main body 2 includes an upper case 10 that is an upper wall, a lower case 11 that is a bottom wall (and some side walls), and a bumper 12 that is installed at the front. The upper case 10 is provided with a lid 10a for taking in and out a dust collection case 13 (see FIG. 3) described later.

下ケース11には、駆動輪3R,3Lをそれぞれ露出させる穴部H1と、補助輪5を露出させる穴部H2と、集塵ケース13に塵埃を取り込むための吸口H3と、が形成されている。平面視で円形を呈する下ケース11の中心付近に吸口H3が形成され、この吸口H3の左右方向両側に、前記した穴部H1が形成されている。また、下ケース11の前部には、サイドブラシ8R,8Lを露出させる二つの切欠V1が形成されている。   The lower case 11 is formed with a hole H1 for exposing the driving wheels 3R and 3L, a hole H2 for exposing the auxiliary wheel 5, and a suction port H3 for taking dust into the dust collecting case 13. . A suction port H3 is formed in the vicinity of the center of the lower case 11 having a circular shape in plan view, and the above-described hole portions H1 are formed on both sides of the suction port H3 in the left-right direction. In addition, two notches V1 for exposing the side brushes 8R and 8L are formed in the front portion of the lower case 11.

バンパ12は、外部から作用する押圧力に応じて内外方向(平面視で本体2の中心側を内側とする。)で移動可能に設置されている。バンパ12は、左右一対のバンパばね(図示せず)によって外方向に付勢されている。   The bumper 12 is installed so as to be movable in an inward / outward direction (a center side of the main body 2 is an inner side in a plan view) according to a pressing force acting from the outside. The bumper 12 is urged outward by a pair of left and right bumper springs (not shown).

駆動輪3R,3Lは、自身が回転することで本体2を前進・後退・旋回させるための車輪である。駆動輪3R,3Lは、左右方向において吸口H3の両側に配置されている。右側の駆動輪3Rは、複数段の歯車で構成された減速機(図示せず)を介し、走行モータ4Rの駆動力が作用するように設置されている。左側の駆動輪3Lについても同様である。   The drive wheels 3R and 3L are wheels for causing the main body 2 to move forward, backward, and turn by rotating itself. The drive wheels 3R and 3L are disposed on both sides of the suction port H3 in the left-right direction. The right driving wheel 3R is installed so that the driving force of the traveling motor 4R acts via a speed reducer (not shown) composed of a plurality of stages of gears. The same applies to the left driving wheel 3L.

走行モータ4Rは、右側の駆動輪3Rを回転させるためのモータであり、その回転軸が減速機に接続されている。他方の走行モータ4Lは、左側の駆動輪3Lを回転させるためのモータであり、その回転軸が左側の減速機を介して接続されている。これらの走行モータ4R,4Lは、制御装置9からの指令に応じて、同一の又は異なる回転速度で駆動可能になっている。つまり、走行モータ4R,4Lの回転速度をそれぞれ制御することで、自律走行型掃除機1を前進・後退・旋回させることができる。   The travel motor 4R is a motor for rotating the right drive wheel 3R, and its rotation shaft is connected to a speed reducer. The other traveling motor 4L is a motor for rotating the left driving wheel 3L, and its rotating shaft is connected via a left speed reducer. These travel motors 4R and 4L can be driven at the same or different rotational speeds according to a command from the control device 9. That is, by controlling the rotational speeds of the traveling motors 4R and 4L, the autonomous traveling cleaner 1 can be moved forward, backward, and turned.

補助輪5は、本体2を所定高さで保ちつつ自律走行型掃除機1をスムーズに移動させるための車輪である。補助輪5は、本体2の移動に伴い床面との間で生じる摩擦力によって回転するように軸支されている。   The auxiliary wheel 5 is a wheel for smoothly moving the autonomous traveling cleaner 1 while keeping the main body 2 at a predetermined height. The auxiliary wheel 5 is pivotally supported so as to rotate by a frictional force generated between the auxiliary wheel 5 and the floor surface as the main body 2 moves.

本体2の内部の後方には送風機6を搭載している。送風機6は、自身を駆動することで集塵ケース13内の空気を外部に排出して負圧を発生させ、床面から吸口H3を介して塵埃を吸い込む機能を有している。   A blower 6 is mounted on the rear side of the main body 2. The blower 6 has a function of driving itself to discharge the air in the dust collecting case 13 to the outside to generate a negative pressure and suck dust from the floor through the suction port H3.

吸口H3から下流側に向かう風路は、集塵ケース13、集塵フィルタ(図示せず)、送風機6、及び本体後方の排気口(図示せず)で構成される。吸口H3付近には、床面上の塵埃を掻き込む吸口ブラシ14が設けられている。この吸口ブラシ14は、左右方向に沿う軸を中心に回転可能に軸支され、吸口ブラシ用モータ15(図4参照)に連結されている。   The air path from the suction port H3 toward the downstream side includes a dust collection case 13, a dust collection filter (not shown), a blower 6, and an exhaust port (not shown) at the rear of the main body. In the vicinity of the suction port H3, a suction brush 14 that scrapes dust on the floor is provided. The suction brush 14 is rotatably supported around an axis extending in the left-right direction, and is connected to a suction brush motor 15 (see FIG. 4).

送風機5及び吸口ブラシ用モータ15が駆動すると、床面の塵埃は吸口H3を介して吸引され、吸口ブラシ14によって掻き込まれ、集塵ケース13に導かれる。集塵フィルタで塵埃が取り除かれた空気は、排気口を介して排出される。なお、集塵ケース13は、上ケース10に設けられた蓋10aを開けることで着脱可能である。   When the blower 5 and the suction brush motor 15 are driven, the dust on the floor is sucked through the suction port H <b> 3, scraped by the suction brush 14, and guided to the dust collecting case 13. The air from which the dust has been removed by the dust collection filter is discharged through the exhaust port. The dust collection case 13 can be attached and detached by opening the lid 10 a provided on the upper case 10.

また、図2に示すサイドブラシ8R,8Lは、自身が回転駆動されることで本体2よりも外側にある塵埃を吸口H3に導くブラシであり、その一部が平面視で本体2から突き出している。サイドブラシ8R,8Lは、平面視において120°間隔で放射状に延びる3束の刷毛を有し、吸口H3よりも前方において、下ケース11の左右の切欠V1に配置されている。   Moreover, the side brushes 8R and 8L shown in FIG. 2 are brushes that guide the dust outside the main body 2 to the suction port H3 by being driven to rotate. A part of the side brushes 8R and 8L protrudes from the main body 2 in plan view. Yes. The side brushes 8R and 8L have three bundles of brushes that extend radially at 120 ° intervals in plan view, and are arranged in the left and right cutouts V1 of the lower case 11 in front of the suction port H3.

サイドブラシ8Rの刷毛は、先端に向かうにつれて床面に近づくように下方に傾斜しており、その先端付近は床面に接している。なお、左側のサイドブラシ8Lについても同様である。   The brush of the side brush 8R is inclined downward so as to approach the floor surface as it goes toward the tip, and the vicinity of the tip is in contact with the floor surface. The same applies to the left side brush 8L.

サイドブラシ8R、8Lは、それぞれサイドブラシ用モータ16R,16L(図4参照)に連結されて、サイドブラシ用モータ16R,16Lが本体2底面から見てそれぞれ時計回り、反時計回りに駆動されることで、吸口H3の前方に塵埃を掻き集めるようになっている。   The side brushes 8R and 8L are respectively connected to side brush motors 16R and 16L (see FIG. 4), and the side brush motors 16R and 16L are driven clockwise and counterclockwise as viewed from the bottom of the main body 2. As a result, dust is collected in front of the suction port H3.

バンパセンサ12R,12L(図4参照:障害物検知手段)は、バンパ12の後退(つまり、障害物との接触)を検知するマイクロスイッチである。バンパセンサ12R、12Lはバンパ12の裏側で、本体2の前側(下ケース11の周縁付近)に右側、左側に分かれて固定されている。例えば、バンパ12の右側(又は中央付近)に障害物が接触した場合、バンパ12が後退し、バンパセンサ12Rを作動させることで、検知信号が制御装置9に出力される。左側のバンパセンサ12Lについても同様である。   The bumper sensors 12R and 12L (see FIG. 4: obstacle detection means) are micro switches that detect the backward movement of the bumper 12 (that is, contact with the obstacle). The bumper sensors 12R and 12L are fixed to the back side of the bumper 12 so as to be divided into a right side and a left side on the front side of the main body 2 (near the periphery of the lower case 11). For example, when an obstacle comes into contact with the right side (or near the center) of the bumper 12, the bumper 12 moves backward, and the bumper sensor 12R is operated to output a detection signal to the control device 9. The same applies to the left bumper sensor 12L.

測距センサ7(障害物検知手段)は、障害物までの距離を検出する赤外線センサである。本実施形態例では、下ケース11の周縁付近において正面に1個、左右両側に2個ずつ、計5個の測距センサ7を設けている(図2、3参照)。バンパ12のうち少なくとも測距センサ7の近傍は、赤外線を透過させる樹脂又はガラスで形成されている。なお、測距センサ7として他の種類のセンサ(例えば、超音波センサ、可視光センサ)を用いてもよい。   The distance measuring sensor 7 (obstacle detection means) is an infrared sensor that detects the distance to the obstacle. In this embodiment, five distance measuring sensors 7 are provided in the vicinity of the periphery of the lower case 11, one on the front and two on the left and right sides (see FIGS. 2 and 3). In the bumper 12, at least the vicinity of the distance measuring sensor 7 is made of resin or glass that transmits infrared rays. Note that other types of sensors (for example, an ultrasonic sensor and a visible light sensor) may be used as the distance measuring sensor 7.

床面用測距センサ17は、床面までの距離を計測する赤外線センサであり、下ケース11の下面に設置されている(図3参照)。床面用測距センサ17を設けることで、階段等の大きな段差があった場合に当該段差を検出し、自律走行型掃除機1が落下してしまうことを防止できる。例えば、床面用測距センサ17によって本体2の前側下方に30mm程度の段差が検知された場合、制御装置9は走行モータ4R,4Lを制御して本体2を後退させ、進行方向を転換させる。   The floor surface ranging sensor 17 is an infrared sensor that measures the distance to the floor surface, and is installed on the lower surface of the lower case 11 (see FIG. 3). By providing the floor surface ranging sensor 17, when there is a large step such as a staircase, the step can be detected and the autonomous traveling cleaner 1 can be prevented from falling. For example, when a level difference of about 30 mm is detected below the front side of the main body 2 by the distance measuring sensor 17 for the floor surface, the control device 9 controls the traveling motors 4R and 4L to move the main body 2 backward to change the traveling direction. .

図4に示す走行モータ用エンコーダ18R,18Lは、走行モータ4R,4Lの回転速度・回転角度を検出する検出器である。なお、走行モータ用エンコーダ18R,18Lによって検出される回転速度・回転角度と、減速機の減速比と、駆動輪3R,3Lの径とに基づいて、制御装置9は本体2の移動速度・移動距離を算出する。   The travel motor encoders 18R and 18L shown in FIG. 4 are detectors that detect the rotation speed and rotation angle of the travel motors 4R and 4L. The control device 9 determines the moving speed / movement of the main body 2 based on the rotation speed / rotation angle detected by the traveling motor encoders 18R / 18L, the reduction gear ratio of the reduction gear, and the diameters of the drive wheels 3R / 3L. Calculate the distance.

操作ボタン19a,19b,19cは、ユーザの操作に応じた操作信号を制御装置9に出力するボタンであり(図2参照)、電源ボタン19aと、掃除の開始/終了ボタン19bと、掃除モードを変更するための掃除モード選択ボタン19cと、を有している。   The operation buttons 19a, 19b, and 19c are buttons for outputting an operation signal corresponding to the user's operation to the control device 9 (see FIG. 2). The power button 19a, the cleaning start / end button 19b, and the cleaning mode are set. And a cleaning mode selection button 19c for changing.

図4に示す表示パネル20は、複数のLED(Light Emitting Diode:図示せず)と、7セグメントディスプレイ(図示せず)と、を有しており、自律走行型掃除機1の運転状態等を表示する。   The display panel 20 shown in FIG. 4 has a plurality of LEDs (Light Emitting Diodes: not shown) and a 7-segment display (not shown). indicate.

充電池21は、充電することで再利用可能な二次電池であり、本体2内部の前側に収容されている。充電池21からの電力は、各センサ類、各モータ、及び制御装置9に供給される。また、電池残量を検出する電池残量検出装置22を有している。電池残量検出装置22は充電池21の端子電圧を測定する方式や、充電池21に流入した電力量と流出した電力量を比較する方式等があるが、いずれの方式でも構わない。   The rechargeable battery 21 is a secondary battery that can be reused by charging, and is housed on the front side inside the main body 2. The electric power from the rechargeable battery 21 is supplied to each sensor, each motor, and the control device 9. Moreover, it has the battery remaining charge detection apparatus 22 which detects battery remaining charge. The battery remaining amount detection device 22 includes a method for measuring the terminal voltage of the rechargeable battery 21 and a method for comparing the amount of electric power flowing into the rechargeable battery 21 with the amount of electric power flowing out, and any method may be used.

制御装置9は、例えばマイクロコントローラ23であり、プログラムの書き換え可能なフラッシュROM(Read Only Memory)に記憶されたプログラムを読み出してRAM(Random Access Memory)に展開し、CPU(Central Processing Unit)が各種処理を実行するようになっている。   The control device 9 is, for example, a microcontroller 23, reads out a program stored in a flash ROM (Read Only Memory) in which the program can be rewritten, develops the program in a RAM (Random Access Memory), and various types of CPU (Central Processing Unit). Processing is to be executed.

制御装置9は、操作ボタン19a,19b,19c、及び前記したセンサ類からの信号に応じて演算処理を実行し、前記した各モータに指令信号を出力する。   The control device 9 executes arithmetic processing according to the signals from the operation buttons 19a, 19b, 19c and the above-described sensors, and outputs a command signal to each of the motors described above.

このような自律走行型掃除機1は、主に部屋A(図5、6参照)の中で使用され、部屋Aの中を掃除走行制御と帰還走行制御の2つの主な走行制御で自律走行する。掃除走行制御は、サイドブラシ8R、8Lを回転させるとともに、床面上の塵埃を吸口ブラシ14で取り込み、送風機5で吸引して集塵ケース13に回収しながら、自律走行させている。掃除走行制御の例として、反射走行パターンを以下に示す。   Such an autonomous traveling type vacuum cleaner 1 is mainly used in the room A (see FIGS. 5 and 6), and autonomously travels in the room A by two main traveling controls of cleaning traveling control and return traveling control. To do. In the cleaning traveling control, the side brushes 8 </ b> R and 8 </ b> L are rotated, and dust on the floor surface is taken in by the suction brush 14, sucked by the blower 5, and collected autonomously while being collected in the dust collecting case 13. As an example of cleaning travel control, a reflective travel pattern is shown below.

図5は、反射走行パターンの走行軌跡を示す説明図である。反射走行パターンは、壁や障害物24(棚、ソファ等)に接触又は接近した場合、自律走行型掃除機1が進行方向を変えながら走行する走行パターンであり、部屋A全体の掃除に適している。バンパセンサ12R,12Lや測距センサ7から入力される検出信号によって障害物24が検知された場合、制御装置9は走行モータ4R,4Lを互いに逆方向に回転させることで、本体2を超信地旋回(その場で回転)させて進行方向を変える。これによって自律走行型掃除機1は、あたかも障害物等によって本体2が反射するように方向転換する。   FIG. 5 is an explanatory diagram illustrating a travel locus of the reflective travel pattern. The reflective traveling pattern is a traveling pattern in which the autonomous traveling cleaner 1 travels while changing its traveling direction when it touches or approaches a wall or an obstacle 24 (shelf, sofa, etc.), and is suitable for cleaning the entire room A. Yes. When the obstacle 24 is detected by the detection signals input from the bumper sensors 12R and 12L and the distance measuring sensor 7, the control device 9 rotates the traveling motors 4R and 4L in opposite directions to make the main body 2 super Turn (turn on the spot) to change the direction of travel. As a result, the autonomously traveling vacuum cleaner 1 changes its direction as if the main body 2 is reflected by an obstacle or the like.

このような掃除走行制御による掃除が一定時間経過した、もしくは充電池21の電池残量が所定の値以下に達した場合に、掃除走行制御から帰還走行制御に自動で移行する。もしくは、掃除モード選択ボタン19cにより帰還走行モードが指示された場合に帰還走行制御を行う。   When the cleaning by such cleaning traveling control has passed for a certain period of time or when the remaining battery level of the rechargeable battery 21 has reached a predetermined value or less, the cleaning traveling control is automatically shifted to the feedback traveling control. Alternatively, the return travel control is performed when the return travel mode is instructed by the cleaning mode selection button 19c.

帰還走行制御は図6のように、自律走行型掃除機1を基地局25まで移動させる走行制御である。自律走行型掃除機1が基地局25に帰還することで、充電池21は充電される。   Return traveling control is traveling control in which the autonomous traveling cleaner 1 is moved to the base station 25 as shown in FIG. When the autonomous mobile vacuum cleaner 1 returns to the base station 25, the rechargeable battery 21 is charged.

この帰還走行制御を行う上で、基地局25は自律走行型掃除機1を基地局25に誘導する帰還信号を送信している。この帰還信号を自律走行型掃除機1は受信し、制御装置9により基地局25の位置を推測し(もしくは、基地局25に対する自律走行型掃除機1の位置を推測し)、進行方向を決め、駆動輪3R,3Lを駆動させる。以下、帰還走行制御、帰還信号の伝送システム、受信システムについて詳細に説明する。   In performing this return traveling control, the base station 25 transmits a feedback signal for guiding the autonomous traveling cleaner 1 to the base station 25. The autonomous traveling cleaner 1 receives this feedback signal, and the controller 9 estimates the position of the base station 25 (or estimates the position of the autonomous traveling cleaner 1 relative to the base station 25) and determines the traveling direction. Then, the drive wheels 3R and 3L are driven. Hereinafter, the feedback traveling control, the feedback signal transmission system, and the reception system will be described in detail.

まず、本体2における帰還信号の受信システムについて図2、7、8を用いて説明する。   First, a feedback signal receiving system in the main body 2 will be described with reference to FIGS.

本体2のバンパ12は、帰還信号を受信するために中央受信装置26、右受信装置27R、左受信装置27Lを設けている。   The bumper 12 of the main body 2 is provided with a central receiving device 26, a right receiving device 27R, and a left receiving device 27L in order to receive a feedback signal.

中央受信装置26は本体2の左右幅の略中央で、バンパ12上面に固定されている。中央受信装置26の内部構造を図7に示す。中央受信装置26は赤外線を受光する受光素子26aと、その受光素子26aを囲う略円筒形状の受光レンズ26bと、その受光レンズ26bの上面を覆う上面カバー26cと、で構成される。受光素子26aはバンパ12上面とほぼ同じ高さの位置に、受光方向を上向きに固定される。受光レンズ26bは、その胴部が赤外線を透過する樹脂材料で作られており、胴部外周のどの方向からの赤外線の帰還信号を取り込むことができる。また、受光レンズ26b内側は、下側がすぼんだすり鉢状の空間が設けられ、胴部外周から取り込んだ赤外線の帰還信号を、このすり鉢状の空間との境界面で下方に向けて反射させている。このように反射した帰還信号を受光レンズ26bの下方にある受光素子26aが受光する構造となっており、水平面において全方位(前方向、後方向、右方向、左方向)から帰還信号を受信できるようなっている。また、上面カバー26cは赤外線を通過させない樹脂で作られており、本体2の上方からの赤外線、例えば、照明光や他の機器のリモコン信号を遮断している。   The central receiver 26 is fixed to the upper surface of the bumper 12 at the approximate center of the left and right width of the main body 2. The internal structure of the central receiver 26 is shown in FIG. The central receiver 26 includes a light receiving element 26a that receives infrared rays, a substantially cylindrical light receiving lens 26b that surrounds the light receiving element 26a, and an upper surface cover 26c that covers the upper surface of the light receiving lens 26b. The light receiving element 26a is fixed at a position substantially the same height as the upper surface of the bumper 12 with the light receiving direction facing upward. The body of the light receiving lens 26b is made of a resin material that transmits infrared light, and can receive an infrared feedback signal from any direction on the outer periphery of the body. The inner side of the light receiving lens 26b is provided with a mortar-shaped space whose bottom is sunk, and the infrared feedback signal taken from the outer periphery of the trunk portion is reflected downward at the boundary surface with the mortar-shaped space. . The light receiving element 26a below the light receiving lens 26b receives the reflected signal reflected in this way, and can receive the feedback signal from all directions (forward, backward, right, left) on the horizontal plane. It is like that. The top cover 26c is made of a resin that does not allow infrared rays to pass therethrough, and blocks infrared rays from above the main body 2, for example, illumination light and remote control signals of other devices.

右受信装置27Rと左受信装置27Lは本体2の高さ方向の中央位置より高い位置で、本体2の左右幅の略中央よりそれぞれ右に約30mm、左に30mm離れた位置に、受信方向を略前向きにバンパ12に固定されている。右受信装置27Rと左受信装置27Lの内部構造を図8に示す。左右の受信装置27は受光方向を略水平にした受光素子27aと、バンパ12の外郭より後方に伸びる長さ約20mmのホーン状の筒27bで構成され、水平面および鉛直面に対する受信範囲が約30度となるような指向性を有している。   The right receiving device 27R and the left receiving device 27L are higher than the center position in the height direction of the main body 2, and the receiving direction is set at a position about 30mm to the right and 30mm to the left from the approximate center of the left and right width of the main body 2, respectively. The bumper 12 is fixed substantially forward. The internal structures of the right receiving device 27R and the left receiving device 27L are shown in FIG. The left and right receivers 27 are composed of a light receiving element 27a whose light receiving direction is substantially horizontal, and a horn-shaped tube 27b having a length of about 20 mm extending rearward from the outline of the bumper 12. It has the directivity to be a degree.

つまり、中央受信装置26は水平面において様々な方向からの帰還信号を受信するのに対し、右受信装置27R、左受信装置27Lは中央受信装置26より受信範囲が狭く、本体2の前方からの帰還信号のみを受信するように構成される。これにより、基地局25に対して、本体2が前向きか後ろ向きか判別可能となる。つまり、右受信装置27R、左受信装置27Lが帰還信号を受信していれば前向きであり、中央受信装置26のみが帰還信号を受信していれば後向きである。   That is, the central receiver 26 receives feedback signals from various directions on the horizontal plane, while the right receiver 27R and the left receiver 27L have a narrower receiving range than the central receiver 26, and return from the front of the main body 2. It is configured to receive only the signal. Thereby, it is possible to determine whether the main body 2 is facing forward or backward with respect to the base station 25. That is, if the right receiving device 27R and the left receiving device 27L are receiving the feedback signal, it is forward-facing, and if only the central receiving device 26 is receiving the feedback signal, it is facing backward.

次に、図9、10を用いて基地局25および帰還信号29の伝送システムを説明する。
図9は基地局25を正面上方より見下ろした外観斜視図であり、図10は基地局25を図9の破線Cで切断した面を上方より示すとともに、帰還信号29の伝送領域B1〜B4を示した図である。
Next, the transmission system of the base station 25 and the feedback signal 29 will be described with reference to FIGS.
FIG. 9 is an external perspective view of the base station 25 as viewed from above the front. FIG. 10 shows the surface of the base station 25 taken along the broken line C in FIG. 9 from above, and the transmission regions B1 to B4 of the feedback signal 29. FIG.

基地局25は床面に対して略垂直に伸びる背もたれ部25aと、床面に平行に前側にのびたベース部25bとで構成されている。背もたれ部25aの高さは自律走行型掃除機1の高さより若干高く、背もたれ部25aの上部には帰還信号29を伝送する2つの開口部25cを有している。開口部25cは高さ約10mm、横幅約20mmの横長な形状であり、その内側には赤外線を透過する材質で作られた窓板25dが設けられている。また、背もたれ部25aを上から見ると略台形をしており、後ろ側の幅が広く、前側が狭くなっている。この形状により、壁を背にして設置された基地局25に対して、壁際を走行している自律走行型掃除機1が接触した場合、基地局25に対し壁側に向かう力が生じ、基地局25を壁に押し付け、移動させ難くできる。   The base station 25 is composed of a backrest portion 25a extending substantially perpendicular to the floor surface and a base portion 25b extending parallel to the floor surface to the front side. The height of the backrest part 25a is slightly higher than the height of the autonomous traveling type vacuum cleaner 1, and two openings 25c for transmitting a feedback signal 29 are provided above the backrest part 25a. The opening 25c has a horizontally long shape with a height of about 10 mm and a width of about 20 mm, and a window plate 25d made of a material that transmits infrared rays is provided inside thereof. Moreover, when the backrest part 25a is viewed from above, it has a substantially trapezoidal shape, with a wide rear side and a narrow front side. With this shape, when the autonomously traveling cleaner 1 traveling near the wall comes into contact with the base station 25 installed with the back of the wall, a force toward the wall side is generated with respect to the base station 25, The station 25 can be pressed against the wall to make it difficult to move.

また、図10に示すように背もたれ部25aの内側は、帰還信号29を送信する2個の赤外線LED25i、25jと、これら赤外線LED25i、25jを発光させるための発光回路および自律走行型掃除機1の充電池21に電力を供給するための充電回路を含む電子基板25fを有している。   Further, as shown in FIG. 10, the inner side of the backrest portion 25 a includes two infrared LEDs 25 i, 25 j that transmit a feedback signal 29, a light emitting circuit for causing these infrared LEDs 25 i, 25 j to emit light, and the autonomous traveling cleaner 1. An electronic board 25f including a charging circuit for supplying power to the rechargeable battery 21 is provided.

また、基地局25は電源コード25eを有しており、電子基板25fに電力を供給する。   The base station 25 has a power cord 25e and supplies power to the electronic board 25f.

2個の赤外線LED25i、25jは基地局25の左右幅の略中央を中心に左右に約5mmずつ離れた状態で、開口部25cから約50mm後方の位置に設けられている。これら2個の赤外線LED25i、25jの間には窓板25dまで延びる仕切り板25gが設けられ、帰還信号29の伝送範囲を制限している。この仕切り板25gは黒色であり、赤外線の反射を抑え、意図しない方向に赤外線が広がるのを抑えている。   The two infrared LEDs 25i and 25j are provided at a position about 50 mm rearward from the opening 25c in a state of being about 5 mm apart from the left and right about the approximate center of the left and right width of the base station 25. A partition plate 25g extending to the window plate 25d is provided between the two infrared LEDs 25i and 25j, and the transmission range of the feedback signal 29 is limited. The partition plate 25g is black, suppresses reflection of infrared rays, and suppresses infrared rays from spreading in an unintended direction.

また、ベース部25bは自律走行型掃除機1の充電池21を充電するときの給電端子25hを備えている。給電端子25hは正極・負極の2極あり、ベース部25bの左右幅の略中央を中心に左右に分かれて、ベース部25bの凸状に盛り上がった頂上に設けられている。   Moreover, the base part 25b is provided with the electric power feeding terminal 25h when charging the rechargeable battery 21 of the autonomous running type vacuum cleaner 1. FIG. The power supply terminal 25h has two poles, a positive electrode and a negative electrode, and is divided into a left and a right centering on a substantially horizontal center of the base portion 25b, and is provided on the top of the base portion 25b that is raised.

給電端子25hは、基地局25に自律走行型掃除機1が帰還した際に、下ケース11の底面に設けた受電端子28と接触し、これにより充電池21に給電することができる。また、どちらの給電端子25hも、ばねでベース部25bの下方から押し上げられるように設けられ、上から力を加えると沈み込むようになっている。この構成により、充電時において、給電端子25hは自律走行型掃除機1の受電端子28を押し上げるように受電端子28と接触し、端子間をしっかり接触させることができる。また、受電端子28は給電端子25hより広く、基地局25の左右幅の中心と本体2の左右幅の中心が多少ずれても、充電池21に電力を供給できる。具体的には給電端子25hの幅は約5mmであり、受電端子28の幅は約20mmである。   The power supply terminal 25 h can contact the power receiving terminal 28 provided on the bottom surface of the lower case 11 when the autonomous mobile vacuum cleaner 1 returns to the base station 25, and can thereby supply power to the rechargeable battery 21. Both power supply terminals 25h are provided so as to be pushed up from below the base portion 25b by a spring, and are depressed when a force is applied from above. With this configuration, at the time of charging, the power supply terminal 25h can be brought into contact with the power receiving terminal 28 so as to push up the power receiving terminal 28 of the autonomous traveling cleaner 1, and the terminals can be firmly in contact with each other. The power receiving terminal 28 is wider than the power feeding terminal 25h, and can supply power to the rechargeable battery 21 even if the center of the left-right width of the base station 25 and the center of the left-right width of the main body 2 are slightly shifted. Specifically, the width of the power feeding terminal 25h is about 5 mm, and the width of the power receiving terminal 28 is about 20 mm.

また、ベース部25bの前縁は、給電端子25h付近が前側に出張っており、逆に2つの給電端子25h間においては背もたれ部25a側に奥まっている。この形状により、自律走行型掃除機1が自動で帰還するときに、本体2の補助輪5がベース部25bに接触すると補助輪5の向きが変わり、本体2の進行方向が変わり、給電端子25hに受電端子28が接触できなくなることを防ぐ。つまり、自律走行型掃除機1が基地局25に帰還しても、補助輪5がベース部25bにほぼ接触しないように、補助輪5が接近するベース部25bの前縁の一部を切り欠いた形状となっている。   Further, the front edge of the base portion 25b travels to the front side in the vicinity of the power supply terminal 25h, and conversely, it is recessed toward the backrest portion 25a between the two power supply terminals 25h. With this shape, when the autonomously traveling vacuum cleaner 1 automatically returns, when the auxiliary wheel 5 of the main body 2 comes into contact with the base portion 25b, the direction of the auxiliary wheel 5 changes, the traveling direction of the main body 2 changes, and the power supply terminal 25h It is possible to prevent the power receiving terminal 28 from being contacted. That is, even if the autonomously traveling cleaner 1 returns to the base station 25, a part of the front edge of the base portion 25b to which the auxiliary wheel 5 approaches is notched so that the auxiliary wheel 5 does not substantially contact the base portion 25b. It has become a shape.

このような基地局25からの帰還信号29の伝送について説明する。まず、帰還信号は図1に示す様な、高速で赤外線LED25i、25jを点滅させて(約50〜100ms間にON/OFFを数十回繰り返して)作られるコードである。このような帰還信号29を左右の赤外線LED25i、25jより伝送する。なお、右側および左側の帰還信号のコードは異なっている。   The transmission of the feedback signal 29 from the base station 25 will be described. First, the feedback signal is a code generated by blinking the infrared LEDs 25i and 25j at high speed (repeating ON / OFF several tens of times in about 50 to 100 ms) as shown in FIG. Such a feedback signal 29 is transmitted from the left and right infrared LEDs 25i, 25j. The right and left feedback signal codes are different.

図10に示すように、右側の赤外線LED25iは基地局25の左右幅の略中央から右側前方の領域に向けて右側帰還信号29Rを伝送し、左側の赤外線LED25jは基地局25の左右幅の略中央から左側前方の領域に向けて左側帰還信号29Lを伝送している。
具体的には、どちらの帰還信号29R,29Lも基地局25から前方に約6m離れた領域まで伝送され、右側の帰還信号29Rの伝送領域の幅は、基地局から約1m前方の位置で基地局25の左右幅の略中央より左側に約25mmから、略中央より右に約30度方向までの範囲であり、左側の帰還信号29Lの伝送領域の幅は、基地局25の左右幅の略中央より右側に約25mmから、左に約30度方向までの範囲である。よって、基地局25の左右幅の略中央の前方、幅約50mmの範囲は、右側帰還信号29Rと左側帰還信号29Lの両方が伝送される。ただし、基地局25の近傍(前方約50mm以内)では、左右両方の帰還信号29が伝送される領域は狭くなり、幅約20mm程度となる。
As shown in FIG. 10, the right infrared LED 25 i transmits a right feedback signal 29 R from the approximate center of the left and right width of the base station 25 toward the front area on the right side, and the left infrared LED 25 j is approximately the left and right width of the base station 25. The left feedback signal 29L is transmitted from the center toward the left front area.
Specifically, both feedback signals 29R and 29L are transmitted to an area about 6 m away from the base station 25, and the width of the transmission area of the right feedback signal 29R is about 1 m ahead of the base station. The width of the transmission area of the feedback signal 29L on the left side is substantially the same as the width of the left and right sides of the base station 25. The range is from about 25 mm on the right side of the center to about 30 degrees on the left side. Therefore, both the right feedback signal 29R and the left feedback signal 29L are transmitted in a range of approximately 50 mm in front of the center of the left and right width of the base station 25. However, in the vicinity of the base station 25 (within about 50 mm in front), the area where both the left and right feedback signals 29 are transmitted becomes narrow and has a width of about 20 mm.

このように基地局25周辺の領域は、右側帰還信号29Rだけが伝送される領域B1、左側帰還信号29Lだけが伝送される領域B2、右側帰還信号29Rと左側帰還信号29Lの両方が伝送される領域B3、どちらも伝送されない領域B4の4領域に分けることができる。自律走行型掃除機1は、これらの帰還信号29を受信し、コードを識別し、自律走行型掃除機1が基地局25に対してどの領域(位置)を走行しているかを判断し、進行方向を決める。特に、右側帰還信号29Rと左側帰還信号29Lの両方が伝送される領域B3は重要であり、後で述べるが、自律走行型掃除機1は領域B3から外れないように前進し、基地局25に帰還する。   Thus, in the area around the base station 25, the area B1 where only the right feedback signal 29R is transmitted, the area B2 where only the left feedback signal 29L is transmitted, and both the right feedback signal 29R and the left feedback signal 29L are transmitted. Region B3 can be divided into four regions, region B4 in which neither is transmitted. The autonomously traveling cleaner 1 receives these feedback signals 29, identifies the code, determines which area (position) the autonomously traveling cleaner 1 is traveling with respect to the base station 25, and proceeds. Decide the direction. In particular, the region B3 in which both the right feedback signal 29R and the left feedback signal 29L are transmitted is important. As will be described later, the autonomous mobile vacuum cleaner 1 moves forward so as not to deviate from the region B3, and reaches the base station 25. Return.

そのためにも、右側帰還信号29Rと左側帰還信号29Lの両方が伝送される領域B3は狭いほうが望ましく、左右の帰還信号29のみ伝送される領域B1、B2より狭くしている。   Therefore, it is desirable that the area B3 where both the right feedback signal 29R and the left feedback signal 29L are transmitted is narrower than the areas B1 and B2 where only the left and right feedback signals 29 are transmitted.

2つの帰還信号29R、29Lのそれぞれの伝送領域の一部が重なるように伝送させるが、これら2つの帰還信号29R、29Lを同時に発信させると、信号自体が重なり合い、信号が乱れ、右側帰還信号29Rでも左側帰還信号29Lでもなくなってしまう。2つの信号が重なった別信号は、どちらか一方の信号がHIGHのときはHIGHになり、両方の信号がLOWのときはLOWになる。そのため、この別信号は2つの信号の伝送タイミングによって異なる信号となる。2つの信号を毎回、同じタイミングで伝送していれば、この別信号は毎回同じコードの信号になるが、タイミングにずれが生じると信号(コード)が乱れ、異なるコードとなり、自律走行型掃除機1が帰還信号として認識できなくなる。特に、本実施形態例のように赤外線LED25i、25jの点滅が速い場合、発光タイミングが少しずれると全く異なる信号となってしまう。   The two feedback signals 29R and 29L are transmitted so that they partially overlap each other. However, if these two feedback signals 29R and 29L are transmitted simultaneously, the signals themselves overlap each other, the signals are disturbed, and the right feedback signal 29R. However, the left feedback signal 29L is lost. Another signal in which two signals overlap is HIGH when either signal is HIGH, and LOW when both signals are LOW. Therefore, this separate signal is a signal that differs depending on the transmission timing of the two signals. If two signals are transmitted each time at the same timing, this separate signal will be the same code signal each time. However, if the timing shifts, the signal (code) will be disturbed, resulting in a different code. 1 cannot be recognized as a feedback signal. In particular, when the infrared LEDs 25i and 25j are blinking fast as in the present embodiment, a completely different signal is generated if the light emission timing is slightly shifted.

信号が異なると、自律走行型掃除機1が帰還信号として認識できなくなるだけでなく、他の機器に対して、誤動作を引き起こすことも考えられる。赤外線を用いた家庭用電化機器の信号(例えば、リモコン信号)は、各社、各製品、各動作によって、リモコン信号のコードが割り当てられている。そのため、想定した信号のコードから異なると、他の家庭用電化機器のリモコン信号のコードと同じコードとなる恐れもあり、他の機器を誤動作させることも考えられる。   If the signals are different, the autonomous running cleaner 1 cannot be recognized as a feedback signal, and may cause malfunctions to other devices. A signal (for example, a remote control signal) of household electrical appliances using infrared rays is assigned a remote control signal code by each company, each product, and each operation. Therefore, if it differs from the code of the assumed signal, it may be the same code as the code of the remote control signal of other household appliances, and it is possible to cause other devices to malfunction.

そこで、本発明の2つの帰還信号29R、29Lは図11、図12のように一方が送信を停止している間に、もう一方を送信させることで、2つの帰還信号29R、29Lが重ならないようにしている。図11は帰還信号29の伝送の様子を示す模式図であり、図12は帰還信号29の伝送パターンを示すタイミングチャートである。約80msの右側帰還信号29Rを伝送した後、約70msの時間を空けて(約70ms間、両方の帰還信号29の伝送を停止した後)、約80msの左側帰還信号29Lを伝送させる。その後、70msの時間を空けて(約70ms間、両方の帰還信号29の伝送を停止した後)、右側帰還信号29Rから同様のタイミングで伝送を繰り返す。これにより、2つの帰還信号29R、29Lを重ねることなく伝送することができる。   Therefore, the two feedback signals 29R and 29L of the present invention are transmitted while the other feedback signals 29R and 29L are not transmitted as shown in FIGS. I am doing so. FIG. 11 is a schematic diagram showing how the feedback signal 29 is transmitted, and FIG. 12 is a timing chart showing the transmission pattern of the feedback signal 29. After transmitting the right feedback signal 29R of about 80 ms, after a time of about 70 ms (after stopping the transmission of both feedback signals 29 for about 70 ms), the left feedback signal 29L of about 80 ms is transmitted. Thereafter, after 70 ms (after stopping the transmission of both feedback signals 29 for about 70 ms), the transmission is repeated at the same timing from the right feedback signal 29R. As a result, the two feedback signals 29R and 29L can be transmitted without overlapping.

このように2つの帰還信号29R、29Lを交互に伝送しているが、片側の帰還信号29について見れば、約80msの帰還信号29のコードを約300ms間隔で伝送を繰り返している。つまり、帰還信号29の伝送を停止している時間は220msであり、伝送している時間に対して時間が長い。これは、家庭内で使われる赤外線信号を用いたテレビ、エアコン、照明機器などの家庭用電化機器のリモコン操作を妨げないためである。具体的には、家庭用電化機器のリモコン信号のコードは一般的に約100〜130ms間隔で伝送されているため、帰還信号29のコードの伝送を停止している時間は、130ms以上確保していることが望ましい。   As described above, the two feedback signals 29R and 29L are alternately transmitted. When the feedback signal 29 on one side is viewed, the code of the feedback signal 29 of about 80 ms is repeatedly transmitted at intervals of about 300 ms. That is, the time during which the transmission of the feedback signal 29 is stopped is 220 ms, which is longer than the time during which it is transmitted. This is because it does not hinder the remote control operation of household electrical appliances such as televisions, air conditioners, and lighting devices using infrared signals used in the home. Specifically, since the code of the remote control signal of household appliances is generally transmitted at an interval of about 100 to 130 ms, the time for stopping the transmission of the code of the feedback signal 29 should be secured for 130 ms or more. It is desirable that

また、別の伝送パターンのタイミングチャートを図13に示す。この場合は、約80msの右側帰還信号29Rを伝送した後、約10msの時間を空けて(約10ms間、帰還信号29R,29Lの両方の伝送を停止した後)、約80msの左側帰還信号29Lを伝送させる。その後、約130msの時間を空けて(約130ms間、帰還信号29R,29Lの両方の伝送を停止した後)、右側帰還信号29Rから同様のタイミングで伝送を繰り返す。本伝送パターンの特徴は、帰還信号29R,29Lの両方の伝送を停止している2つの時間の長さを異ならせることである。特に、帰還信号29R,29Lの両方の伝送を停止している時間の一方の時間を、帰還信号29の伝送時間よりも短くし、もう一方の帰還信号29R,29Lの両方の伝送を停止している時間を、帰還信号29の伝送時間よりも長くすることで、伝送パターンの1サイクル分の時間を長くせずに、帰還信号29R,29Lの両方の伝送を停止している状態を長時間継続させることができる。これにより右側帰還信号29Rと左側帰還信号29Lの両方を伝送する領域B3に対して、他の家庭用電化機器のリモコン操作を妨げないようにすることができる。   FIG. 13 shows a timing chart of another transmission pattern. In this case, after transmitting the right feedback signal 29R of about 80 ms, a time of about 10 ms is released (after transmission of both the feedback signals 29R and 29L is stopped for about 10 ms), and the left feedback signal 29L of about 80 ms is transmitted. Is transmitted. Thereafter, after a time of about 130 ms (after stopping transmission of both feedback signals 29R and 29L for about 130 ms), the transmission is repeated at the same timing from the right feedback signal 29R. A feature of this transmission pattern is that the lengths of the two times during which transmission of both feedback signals 29R and 29L is stopped are made different. In particular, one of the times during which the transmission of both feedback signals 29R and 29L is stopped is made shorter than the transmission time of the feedback signal 29, and the transmission of both of the other feedback signals 29R and 29L is stopped. The transmission time of the feedback signal 29 is made longer than the transmission time of the feedback signal 29, so that the transmission of both the feedback signals 29R and 29L is stopped for a long time without increasing the time of one cycle of the transmission pattern. Can be made. Thereby, it is possible to prevent the remote control operation of other household appliances from being disturbed for the region B3 that transmits both the right feedback signal 29R and the left feedback signal 29L.

また、これらの伝送パターンのように、右側帰還信号29R、左側帰還信号29Lは交互に伝送させることが望ましい。交互に伝送させずに、右側帰還信号29Rもしくは左側帰還信号29Lを2回以上連続して伝送させると、左右両方の帰還信号29R,29Lの伝送を完了させるまでの時間が長くなるので(1サイクルの時間が長くなるので)、帰還信号29を取り逃さないためにも、本体2の移動速度を低下させる必要が生じる。本体2の移動速度を低下させると、基地局25に帰還するまでの時間が長くなり、充電池21の電池残量をより低下させてしまう恐れがある。よって、左右の帰還信号29R,29Lを交互に伝送させることで、交互に伝送させない場合よりも基地局25に帰還するまでの時間を短くすることができ、充電池21の電池残量の低下を抑えることができるため望ましい。   Further, as in these transmission patterns, it is desirable that the right feedback signal 29R and the left feedback signal 29L are transmitted alternately. If the right feedback signal 29R or the left feedback signal 29L is continuously transmitted twice or more without being transmitted alternately, it takes a long time to complete transmission of both the left and right feedback signals 29R and 29L (one cycle). In order not to miss the feedback signal 29, it is necessary to reduce the moving speed of the main body 2. When the moving speed of the main body 2 is lowered, the time until returning to the base station 25 becomes longer, and there is a possibility that the remaining battery level of the rechargeable battery 21 is further lowered. Therefore, by alternately transmitting the left and right feedback signals 29R and 29L, it is possible to shorten the time until the feedback to the base station 25 compared to the case where the left and right feedback signals 29R and 29L are not transmitted alternately. This is desirable because it can be suppressed.

このような帰還信号の伝送システムおよび受信システムにおける帰還走行制御を、図6を用いて説明する。   Return travel control in such a feedback signal transmission system and reception system will be described with reference to FIG.

帰還走行制御は、基地局25に自律走行型掃除機1を帰還させることが主目的であり、充電池21の電池残量が極端に低下して、走行できなくなり、基地局25に帰還できなくなることを防ぐため、サイドブラシ8R、8Lの回転速度、吸口ブラシ14の回転速度、送風機5の吸引力を低下または停止させ、消費電力を抑えて自律走行させる。   The main purpose of the return running control is to return the autonomous running type vacuum cleaner 1 to the base station 25, and the remaining battery level of the rechargeable battery 21 is extremely low, so that it cannot run and cannot return to the base station 25. In order to prevent this, the rotational speed of the side brushes 8R and 8L, the rotational speed of the suction brush 14, and the suction force of the blower 5 are reduced or stopped, and the autonomous running is performed while suppressing power consumption.

まず、中央受信装置26もしくは左右の受信装置27が基地局25からの帰還信号29を受信していない状態においては、前記反射走行パターンと同様に、障害物が検知された場合、本体2を超信地旋回させて進行方向を変える走行パターンを行う。そのときの走行速度は、走行中に帰還信号29を取り逃さないためにも、掃除走行制御時の最高速度より遅い速度で走行させる。   First, in the state where the central receiver 26 or the left and right receivers 27 have not received the feedback signal 29 from the base station 25, the obstacle is detected when an obstacle is detected, as in the case of the reflection traveling pattern. A traveling pattern that changes the direction of travel by turning the ground is performed. The traveling speed at that time is made to travel at a speed slower than the maximum speed during the cleaning traveling control so that the feedback signal 29 is not missed during the traveling.

反射走行パターンで走行している間に、中央受信装置26もしくは左右の受信装置27が基地局25からの帰還信号29を受信した場合、直進動作(S1)から大きな円弧を描くように本体2を前進させる動作(S2)に変更し、右側帰還信号29Rと左側帰還信号29Lの両方が伝送される領域B3に、本体2を移動させる。このとき本体2が右側帰還信号29Rを受信している場合は、左側に大きな円弧を描くように本体2を移動させ、左側帰還信号29Lを受信している場合は、右側に大きな円弧を描くように本体2を移動させる。ただし、中央受信装置26のみが帰還信号29を受信している場合は、本体2が基地局25に対して後を向いている状態であり、本体2を超信地旋回させ、右側受信装置27Rもしくは左側受信装置27Lが帰還信号29を受信する状態にした後に、前記大きな円弧を描く前進動作(S2)に移行させる。また、前記大きな円弧を描く前進動作(S2)において、右側帰還信号29Rと左側帰還信号29Lの両方を受信できる領域B3は狭いため、帰還信号29を取り逃さないためにも、前進速度をさらに遅くさせる方が望ましい。   When the central receiver 26 or the left and right receivers 27 receive the feedback signal 29 from the base station 25 while traveling in the reflective traveling pattern, the main body 2 is moved so as to draw a large arc from the straight-ahead operation (S1). The main body 2 is moved to a region B3 where both the right feedback signal 29R and the left feedback signal 29L are transmitted. At this time, when the main body 2 receives the right feedback signal 29R, the main body 2 is moved so as to draw a large arc on the left side, and when the left feedback signal 29L is received, a large arc is drawn on the right side. The main body 2 is moved. However, when only the central receiver 26 is receiving the feedback signal 29, the main body 2 is facing rearward with respect to the base station 25, and the main body 2 is turned in a super-reflex and the right receiver 27R. Alternatively, after the left receiving device 27L receives the feedback signal 29, the left receiving device 27L shifts to the forward movement drawing the large arc (S2). Further, in the forward movement (S2) that draws a large arc, since the region B3 in which both the right feedback signal 29R and the left feedback signal 29L can be received is small, the forward speed is further reduced in order not to miss the feedback signal 29. It is better to let

中央受信装置26もしくは左右の受信装置27が右側帰還信号29Rと左側帰還信号29Lの両方を受信した後、本体2を本体2の約半径の距離、前進させ、本体2の略中央部を左右両方の帰還信号29が伝送される領域B3まで移動させる(S3)。中央受信装置26および左右の受信装置27は本体2の前側に設けられているため、右側帰還信号29Rと左側帰還信号29Lの両方を受信し始めた状態では、左右両方の帰還信号29R、29Lが伝送される領域B3に、本体2の前側だけしか位置していないため、上記走行制御S3を行う。ただし、このように本体2を前進させると、本体2の受信装置26、27は左右両方の帰還信号29R、29Lが伝送される領域B3から一旦外れることになる。   After the central receiving device 26 or the left and right receiving devices 27 receive both the right feedback signal 29R and the left feedback signal 29L, the main body 2 is moved forward by a distance of the radius of the main body 2 so that the substantially central portion of the main body 2 is both left and right. Is moved to the region B3 where the feedback signal 29 is transmitted (S3). Since the central receiving device 26 and the left and right receiving devices 27 are provided on the front side of the main body 2, in the state where both the right feedback signal 29R and the left feedback signal 29L start to be received, both the left and right feedback signals 29R, 29L are Since only the front side of the main body 2 is located in the transmission area B3, the travel control S3 is performed. However, when the main body 2 is moved forward in this way, the receiving devices 26 and 27 of the main body 2 are temporarily removed from the region B3 in which both the left and right feedback signals 29R and 29L are transmitted.

その後、本体2を超信地旋回させ、中央受信装置26もしくは左右の受信装置27が右側帰還信号29Rと左側帰還信号29Lの両方の信号を受信したら停止させる(S4)。
この走行制御S4において、本体2を超信地旋回させる時点で、中央受信装置26が右側帰還信号29Rを受信している場合は、本体2を本体2上方から見て反時計回りに回転させ、左側帰還信号29Lを受信している場合は、本体2を本体2上方から見て時計回りに回転させたほうが、右側帰還信号29Rと左側帰還信号29Lの両方の信号を、早く受信できるため(両方の帰還信号29R、29Lが伝送される領域B3に本体2の前側に設けた受信装置26、27を早く位置させることができるため)望ましい。この動作により、受信装置26、27を設けた本体2の前側と、本体2の略中央をともに、右左両方の帰還信号29R、29Lが伝送される領域B3に位置させることができる。つまり、基地局25の左右幅の略中央前面(正面)と本体2の左右幅の略中央前面(正面)が向かい合った状態になる。
After that, the main body 2 is turned in a super-confident manner and stopped when the central receiver 26 or the left and right receivers 27 receive both the right feedback signal 29R and the left feedback signal 29L (S4).
In the traveling control S4, when the central receiver 26 receives the right feedback signal 29R at the time of turning the main body 2 in a super-confidential manner, the main body 2 is rotated counterclockwise when viewed from above the main body 2, When the left feedback signal 29L is received, both the right feedback signal 29R and the left feedback signal 29L can be received earlier by rotating the main body 2 clockwise as viewed from above the main body 2 (both This is desirable because the receiving devices 26 and 27 provided on the front side of the main body 2 can be quickly positioned in the region B3 where the feedback signals 29R and 29L are transmitted. By this operation, both the front side of the main body 2 provided with the receiving devices 26 and 27 and the approximate center of the main body 2 can be positioned in the region B3 where both the right and left feedback signals 29R and 29L are transmitted. That is, the substantially central front surface (front surface) of the left and right width of the base station 25 and the substantially central front surface (front surface) of the left and right width of the main body 2 face each other.

その後、本体2の正面が基地局25の正面、つまり領域B3の範囲から外れないように、中央受信装置26が右左両方の帰還信号29R、29Lを受信した状態を保つように基地局25に向かって前進させる(S5)。この走行制御S5は、基地局25の給電端子25hと本体2の受電端子28を接触させるために必要であり、本体2が基地局25近傍まで近づいたときに、基地局25の正面からずれ、給電端子25hと受電端子28は接触しなくなることを防ぐ。具体的には、中央受信装置26が右側帰還信号29Rのみを受信するようになったら、本体2を左前方に前進させ、中央受信装置26が左側帰還信号29Lのみを受信するようになったら、本体2を右前方に前進させる制御により、左右両方の帰還信号29R、29Lが伝送される領域B3から本体2の正面が外れても、領域B3に戻すことが可能となる。   Thereafter, the central receiver 26 is directed toward the base station 25 so as to keep the right and left feedback signals 29R and 29L received so that the front of the main body 2 does not deviate from the front of the base station 25, that is, the range of the area B3. (S5). This traveling control S5 is necessary to bring the power supply terminal 25h of the base station 25 into contact with the power receiving terminal 28 of the main body 2, and when the main body 2 approaches the vicinity of the base station 25, it shifts from the front of the base station 25, The power feeding terminal 25h and the power receiving terminal 28 are prevented from being out of contact with each other. Specifically, when the central receiver 26 receives only the right feedback signal 29R, the main body 2 is moved forward to the left, and when the central receiver 26 receives only the left feedback signal 29L, By controlling the main body 2 to move forward to the right, even if the front surface of the main body 2 deviates from the area B3 where both the left and right feedback signals 29R and 29L are transmitted, it can be returned to the area B3.

また、より本体2の正面が基地局25の正面から外れないようにするためにも、右側受信装置27Rは右側帰還信号29Rのみを受信し、左側受信装置27Lは左側帰還信号29Lのみを受信する状態を保つように前進させる制御も追加したほうが望ましい。この制御により、左右の受信装置27が領域3に入った場合にも、本体2の進行方向を変えることができ、本体2の正面が領域B3から大幅に外れることを防ぐ。そのためには、右側受信装置27Rと左側受信装置27Lの距離は、左右の帰還信号の両方が伝送される領域の左右幅の距離より若干長いことが望ましい。そのため、少なくとも右側受信装置27Rと左側受信装置27Lの間隔は、基地局25に設けた左右の赤外線LED25i、25jの間隔より広いほうが望ましい。   Further, in order to prevent the front surface of the main body 2 from deviating from the front surface of the base station 25, the right receiving device 27R receives only the right feedback signal 29R, and the left receiving device 27L receives only the left feedback signal 29L. It is desirable to add control that moves forward to maintain the state. With this control, even when the left and right receiving devices 27 enter the region 3, the traveling direction of the main body 2 can be changed, and the front of the main body 2 is prevented from greatly deviating from the region B3. For this purpose, it is desirable that the distance between the right receiving device 27R and the left receiving device 27L is slightly longer than the distance between the left and right widths of the region where both the left and right feedback signals are transmitted. Therefore, it is desirable that at least the interval between the right receiving device 27R and the left receiving device 27L is wider than the interval between the left and right infrared LEDs 25i, 25j provided in the base station 25.

自律走行型掃除機1は、上記走行制御S5を行いながら基地局25に向かって前進していると、基地局25近傍で本体2の底面が基地局25のベース部25bに乗り上げる。そして、本体2の底面に設けた受電端子28と基地局25の給電端子25hが接して電気的導通が確認されると、自律走行型掃除機1は走行を停止させるとともに、サイドブラシ8R、8L、吸口ブラシ14の回転、送風機5の運転を停止させ、帰還走行制御を終了させる。その後、基地局25は本体2の充電池21へ電力を供給し始める。   When the autonomous traveling type vacuum cleaner 1 moves forward toward the base station 25 while performing the traveling control S <b> 5, the bottom surface of the main body 2 rides on the base portion 25 b of the base station 25 in the vicinity of the base station 25. When the power receiving terminal 28 provided on the bottom surface of the main body 2 and the power supply terminal 25h of the base station 25 come into contact with each other and the electrical continuity is confirmed, the autonomous traveling cleaner 1 stops traveling and the side brushes 8R and 8L. Then, the rotation of the suction brush 14 and the operation of the blower 5 are stopped, and the return traveling control is ended. Thereafter, the base station 25 starts to supply power to the rechargeable battery 21 of the main body 2.

上記帰還走行制御において、左右両方の帰還信号29が伝送される領域B3は重要であり、その領域B3で帰還信号の誤判定を起こさないことが求められる。そのため、本発明は左右の帰還信号29R,29Lを重複させずに、交互に伝送させることにより、帰還信号29の乱れを抑えて誤判定を防ぐ基地局25への自動帰還システムを提供する。   In the above-described feedback traveling control, the region B3 in which both the left and right feedback signals 29 are transmitted is important, and it is required that no erroneous determination of the feedback signal occurs in the region B3. Therefore, the present invention provides an automatic feedback system to the base station 25 that suppresses disturbance of the feedback signal 29 and prevents erroneous determination by transmitting the left and right feedback signals 29R and 29L alternately without overlapping.

1 自律走行型掃除機
2 本体
3 駆動輪
12 バンパ
21 充電池
25 基地局
25h 給電端子
25i 右側赤外線LED
25j 左側赤外線LED
26 中央受信装置
27R 右受信装置
27L 左受信装置
28 受電端子
29R 右側帰還信号
29L 左側帰還信号
B3 左右両方の帰還信号が伝送される領域
DESCRIPTION OF SYMBOLS 1 Autonomous traveling type vacuum cleaner 2 Main body 3 Drive wheel 12 Bumper 21 Rechargeable battery 25 Base station 25h Power supply terminal 25i Right side infrared LED
25j Left infrared LED
26 Central receiver 27R Right receiver 27L Left receiver 28 Power receiving terminal 29R Right feedback signal 29L Left feedback signal B3 Area where both left and right feedback signals are transmitted

Claims (2)

第1信号と、該第1信号に続いて伝送される第2信号と、を含む複数の信号を繰り返し送信して、前記第1信号と前記第2信号のうち一方のみが伝送される領域と、両方が伝送される領域とを自律走行型掃除機が区別できるようにし、
前記第1信号の伝送後、続く前記第2信号の伝送開始までに伝送停止時間を設ける自律走行型掃除機の基地局。
A region in which only one of the first signal and the second signal is transmitted by repeatedly transmitting a plurality of signals including a first signal and a second signal transmitted following the first signal; , Allowing the autonomous cleaner to distinguish between the areas where both are transmitted,
The base station of the autonomous traveling type vacuum cleaner which provides transmission stop time after transmission of the said 1st signal and transmission start of the said following 2nd signal.
請求項1に記載の基地局と、前記自律走行型掃除機とを有する自律走行型掃除機システムであって、
前記自律走行型掃除機は、前記第1信号及び前記第2信号を検知する受信装置を有する自律走行型掃除機システム。
An autonomous traveling cleaner system comprising the base station according to claim 1 and the autonomous traveling cleaner.
The autonomous traveling cleaner is an autonomous traveling cleaner system having a receiving device that detects the first signal and the second signal.
JP2019075272A 2019-04-11 2019-04-11 Base station and autonomous vacuum cleaner system Active JP6840183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019075272A JP6840183B2 (en) 2019-04-11 2019-04-11 Base station and autonomous vacuum cleaner system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019075272A JP6840183B2 (en) 2019-04-11 2019-04-11 Base station and autonomous vacuum cleaner system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018200512A Division JP6515242B2 (en) 2018-10-25 2018-10-25 Base station and autonomous traveling type vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2019145145A true JP2019145145A (en) 2019-08-29
JP6840183B2 JP6840183B2 (en) 2021-03-10

Family

ID=67771222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019075272A Active JP6840183B2 (en) 2019-04-11 2019-04-11 Base station and autonomous vacuum cleaner system

Country Status (1)

Country Link
JP (1) JP6840183B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164825A (en) * 1993-04-28 1994-06-10 Oki Electric Ind Co Ltd Optical coupler and optical coupling method
JPH09297184A (en) * 1996-05-01 1997-11-18 Takenaka Eng Kk Detecting device of infrared system
JP2007149115A (en) * 2007-01-19 2007-06-14 Irobot Corp Docking method of autonomous robot
US20080065266A1 (en) * 2006-09-11 2008-03-13 Lg Electronics Inc. Mobile robot and operating method thereof
JP2013061711A (en) * 2011-09-12 2013-04-04 Nippon Telegr & Teleph Corp <Ntt> Radio tag system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164825A (en) * 1993-04-28 1994-06-10 Oki Electric Ind Co Ltd Optical coupler and optical coupling method
JPH09297184A (en) * 1996-05-01 1997-11-18 Takenaka Eng Kk Detecting device of infrared system
US20080065266A1 (en) * 2006-09-11 2008-03-13 Lg Electronics Inc. Mobile robot and operating method thereof
JP2007149115A (en) * 2007-01-19 2007-06-14 Irobot Corp Docking method of autonomous robot
JP2013061711A (en) * 2011-09-12 2013-04-04 Nippon Telegr & Teleph Corp <Ntt> Radio tag system

Also Published As

Publication number Publication date
JP6840183B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP6431746B2 (en) Automatic return system, base station and autonomous traveling type vacuum cleaner
KR102312661B1 (en) Cleaning robot
JP6254446B2 (en) Running body device
JP6325946B2 (en) Autonomous vehicle
US20100288307A1 (en) Robot cleaner and method for controlling the same
EP2692271B1 (en) Electric vacuum cleaner
JP2014180501A (en) Self-propelled vacuum cleaner
JP6571051B2 (en) Autonomous traveling vacuum cleaner system and charging stand
JP2016143231A (en) Self-travelling electronic device
US20140109338A1 (en) Automatic cleaner
JP2016054918A (en) Self-propelled vacuum cleaner
JP6636289B2 (en) Traveling device
JP6378986B2 (en) Self-propelled electronic device and its return method
JP6462350B2 (en) Self-propelled vacuum cleaner
JP2016220823A (en) Self-propelled cleaner
JP6840183B2 (en) Base station and autonomous vacuum cleaner system
JP2019053742A (en) Base station and autonomous travelling type vacuum cleaner
JP6378962B2 (en) Self-propelled electronic device
JP2020173621A (en) Autonomous travel type cleaner
KR100283861B1 (en) Robot cleaner
JP2019185411A (en) Autonomous travel type cleaner, autonomous travel type cleaner system, and mobile object
JP2019208545A (en) Moving body moving along floor surface
CN109645887B (en) Autonomous traveling vacuum cleaner, autonomous traveling vacuum cleaner system, and moving body
JP2021103389A (en) Autonomous moving cleaner
JP2022039153A (en) Autonomous travel type cleaner and autonomous travel type cleaner system and moving body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6840183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150