JP2022039153A - Autonomous travel type cleaner and autonomous travel type cleaner system and moving body - Google Patents

Autonomous travel type cleaner and autonomous travel type cleaner system and moving body Download PDF

Info

Publication number
JP2022039153A
JP2022039153A JP2020144029A JP2020144029A JP2022039153A JP 2022039153 A JP2022039153 A JP 2022039153A JP 2020144029 A JP2020144029 A JP 2020144029A JP 2020144029 A JP2020144029 A JP 2020144029A JP 2022039153 A JP2022039153 A JP 2022039153A
Authority
JP
Japan
Prior art keywords
charging stand
distance
vacuum cleaner
feedback signal
autonomous traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020144029A
Other languages
Japanese (ja)
Inventor
翔太 橋本
Shota Hashimoto
亮介 佐川
Ryosuke Sagawa
健登 田中
Kento Tanaka
一輝 高木
Kazuteru Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2020144029A priority Critical patent/JP2022039153A/en
Publication of JP2022039153A publication Critical patent/JP2022039153A/en
Pending legal-status Critical Current

Links

Images

Abstract

To efficiently return an autonomous travel type cleaner (a movable body) to a base station.SOLUTION: An autonomous travel type cleaner includes: a reception unit capable of detecting a return signal; a reception unit that measures a distance from a charging stand based on a signal from a beacon terminal, wherein the charging stand is incorporated with the beacon terminal for measuring distance; a reception unit that measures a direction of the charging stand, based on the signal from the beacon terminal; a drive unit that moves a body; and a control unit that controls travel of the body. The autonomous travel type cleaner performs: an advancement step of approaching the charging stand while periodically determining a distance and a direction from the charging stand; and a step of connecting itself to the charging stand, based on the return signal.SELECTED DRAWING: Figure 11

Description

本発明は、自律走行型掃除機及び自律走行型掃除機システム並びに床面を移動する移動体に関する。 The present invention relates to an autonomous traveling vacuum cleaner, an autonomous traveling vacuum cleaner system, and a moving body moving on a floor surface.

充電池を搭載して自律駆動して清掃作業を行う自律走行型掃除機として、充電池の電池残量が少なくなると充電器となる基地局へ自動で帰還しようとする機能を備えているものが知られている。使用者の利便性を考慮すると、帰還成功率が高く、短時間で帰還できることが望ましい。 As an autonomous driving type vacuum cleaner equipped with a rechargeable battery and autonomously driving for cleaning work, there is a vacuum cleaner that has a function to automatically return to the base station that becomes a charger when the remaining battery level of the rechargeable battery is low. Are known. Considering the convenience of the user, it is desirable that the return success rate is high and the return can be performed in a short time.

特願2017-535572Japanese Patent Application No. 2017-535572

自律走行型掃除機又は移動体において、充電台へ帰還して接続する際、帰還信号を辿って充電台接続を実施する前に、帰還信号を受信するために充電台付近まで近づく必要がある。帰還信号受信まで走行時間が長いとそれだけ帰還全体の時間が伸びてしまうため、使用者の利便性を考慮すると、短時間で帰還信号が受信できる充電台付近まで移動することが重要となる。 In an autonomous vacuum cleaner or a mobile body, when returning to the charging stand and connecting to the charging stand, it is necessary to approach the vicinity of the charging stand in order to receive the return signal before following the return signal to carry out the charging stand connection. If the travel time until the feedback signal is received is long, the total feedback time will be extended accordingly. Therefore, considering the convenience of the user, it is important to move to the vicinity of the charging stand where the feedback signal can be received in a short time.

また、帰還信号による充電台接続処理を実施する際、開始位置が充電台との距離が近すぎると接続位置の調整が困難になり、充電台接続が失敗する可能性が高くなる。そのため、充電台接続処理を開始する際の充電台と本体との距離を確保することが重要となる。 Further, when the charging stand connection process using the feedback signal is performed, if the starting position is too close to the charging stand, it becomes difficult to adjust the connection position, and there is a high possibility that the charging stand connection fails. Therefore, it is important to secure a distance between the charging stand and the main body when starting the charging stand connection process.

上記課題を鑑みて、本発明では、帰還信号を検知可能な受信部と、充電台に距離を測定するためのビーコン端末を組み込み、前記ビーコン端末からの信号に基づき充電台との距離を測定する受信部と、前記ビーコン端末からの信号に基づき充電台の方向を測定する受信部と、本体移動のための駆動部と、本体の走行を制御する制御部と、を有する自律走行型掃除機であって、定期的に充電台との距離と方向を判定しながら充電台に近づく進行ステップと、前記帰還信号を基に充電台への接続処理を実施するステップを特徴とする。 In view of the above problems, in the present invention, a receiving unit capable of detecting a feedback signal and a beacon terminal for measuring the distance are incorporated in the charging stand, and the distance to the charging stand is measured based on the signal from the beacon terminal. An autonomous vacuum cleaner having a receiving unit, a receiving unit that measures the direction of the charging stand based on a signal from the beacon terminal, a driving unit for moving the main body, and a control unit that controls the running of the main body. It is characterized by a progress step of approaching the charging stand while periodically determining the distance and direction from the charging stand, and a step of performing a connection process to the charging stand based on the feedback signal.

本発明で在れば、充電台への帰還に関して、充電台接続までの時間短縮と接続の成功率向上を実現できる。 According to the present invention, regarding the return to the charging stand, it is possible to shorten the time until the charging stand is connected and improve the success rate of the connection.

実施例1の自律走行型掃除機を左前方から見下ろした斜視図であるIt is a perspective view which looked down on the autonomous traveling type vacuum cleaner of Example 1 from the left front. 実施例1の自律走行型掃除機を下面図であるIt is a bottom view of the autonomous traveling type vacuum cleaner of Example 1. 図1のA-A断面図であるFIG. 1 is a sectional view taken along the line AA of FIG. 実施例1の自律走行型掃除機のバンパシェードを外したバンパ内部構成を示す斜視図であるIt is a perspective view which shows the bumper internal structure which removed the bumper shade of the autonomous traveling type vacuum cleaner of Example 1. FIG. 実施例1の自律走行型掃除機の制御部、及び制御部に接続される機器を示す構成図であるIt is a block diagram which shows the control part of the autonomous traveling type vacuum cleaner of Example 1, and the apparatus connected to the control part. 実施例1の自律走行型掃除機が部屋を反射走行モードで走行した場合の軌跡の一例を示す図The figure which shows an example of the locus when the autonomous traveling type vacuum cleaner of Example 1 travels in a room in the reflection traveling mode. 実施例1の自律走行型掃除機が部屋を帰還走行モードで走行した場合の軌跡の一例を示す図The figure which shows an example of the locus when the autonomous traveling type vacuum cleaner of Example 1 travels in a room in the return driving mode. 実施例1の第1受信部の構成を示す図The figure which shows the structure of the 1st receiver of Example 1. 実施例1の第2受信部の構成を示す図The figure which shows the structure of the 2nd receiver of Example 1. 実施例1の基地局25の正面図Front view of the base station 25 of the first embodiment 実施例1の充電台探索処理の動作フローチャートOperation flowchart of the charging stand search process of the first embodiment 実施例1の充電台接続処理の動作フローチャートOperation flowchart of the charging stand connection process of the first embodiment 実施例1の帰還走行の軌跡の一例An example of the trajectory of the return run of the first embodiment 実施例1の帰還走行の軌跡の一例An example of the trajectory of the return run of the first embodiment

以下,実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.

図1は、本実施例の自律走行型掃除機Sを左前方から見た斜視図である。自律走行型掃除機Sが通常進行する方向を前方とし、また、鉛直上向きを上方、駆動輪3、4が対向する方向であって駆動輪3側を右方、駆動輪4側を左方とする。すなわち図1等に示すように前後、上下、左右方向を定義する。図2は、本実施例の自律走行型掃除機Sの下面図である。図3は、図1のA-A断面図である。図4は、本実施例の自律走行型掃除機Sのバンパ2の一部を透視した斜視図である。図5は、本実施例の自律走行型掃除機Sの制御部、及び制御部に接続される機器を示す構成図である。自律走行型掃除機Sは、所定の掃除領域(例えば、部屋の床面Y)を自律的に移動しながら自動的に掃除する電気機器である。 FIG. 1 is a perspective view of the autonomous traveling type vacuum cleaner S of the present embodiment as viewed from the left front. The direction in which the autonomous traveling type vacuum cleaner S normally travels is the front, the vertical upward direction is upward, the drive wheels 3 and 4 are facing each other, the drive wheel 3 side is the right side, and the drive wheel 4 side is the left side. do. That is, as shown in FIG. 1 and the like, the front-back, up-down, and left-right directions are defined. FIG. 2 is a bottom view of the autonomous traveling type vacuum cleaner S of this embodiment. FIG. 3 is a cross-sectional view taken along the line AA of FIG. FIG. 4 is a perspective view showing a part of the bumper 2 of the autonomous traveling type vacuum cleaner S of this embodiment. FIG. 5 is a configuration diagram showing a control unit of the autonomous traveling type vacuum cleaner S of this embodiment and a device connected to the control unit. The autonomous traveling type vacuum cleaner S is an electric device that automatically cleans a predetermined cleaning area (for example, the floor surface Y of a room) while autonomously moving.

[自律走行型掃除機Sの構造]
自律走行型掃除機Sは、本体ケース1、側周に設けたバンパ2、底面に設けた一対の駆動輪3、4、補助輪5及び回転ブラシ6、サイドブラシ8、充電池9、制御部10、吸引ファン11、集塵ケース12、表示パネル17、操作ボタン20、並びに帰還信号を検知する第1受信部26及び第2受信部27を備えている。
[Structure of autonomous vacuum cleaner S]
The autonomous traveling type vacuum cleaner S includes a main body case 1, a bumper 2 provided on the side circumference, a pair of drive wheels 3 and 4 provided on the bottom surface, training wheels 5, a rotary brush 6, a side brush 8, a rechargeable battery 9, and a control unit. A suction fan 11, a dust collecting case 12, a display panel 17, an operation button 20, and a first receiving unit 26 and a second receiving unit 27 for detecting a feedback signal are provided.

駆動輪3、4は、走行モータ3m、4mの回転力によって回転する車輪であり、それぞれ独立した方向に回転することができる。駆動輪3,4によって自律走行型掃除機Sを前進、後退、旋回(或る点を中心としての円運動。或る点は、自律走行型掃除機Sの一部に重なっても良いし重なっていなくても良い。)及び超信地旋回(その場回転。自律走行型掃除機Sの図心を中心としての円運動。)させることができる。
補助輪5は、自由回転する従動輪(キャスタ)である。
The drive wheels 3 and 4 are wheels that rotate by the rotational force of the traveling motors 3 m and 4 m, and can rotate in independent directions. The drive wheels 3 and 4 move the autonomous traveling vacuum cleaner S forward, backward, and turn (circular motion around a certain point. At a certain point, it may overlap or overlap a part of the autonomous traveling vacuum cleaner S. It does not have to be.) And super-credit turning (in-situ rotation. Circular motion around the center of the autonomous traveling type vacuum cleaner S) can be performed.
The training wheels 5 are driven wheels (casters) that rotate freely.

サイドブラシ8a、8bは、自律走行型掃除機Sの前方側、左右方向の外側に設けられており、図2の矢印α1のように、自律走行型掃除機Sの前方外側の領域から前方内側に向かう方向に掃引するよう回転して、床面上の塵埃を中央の回転ブラシ6側に集める。
回転ブラシ6は、自律走行型掃除機Sの駆動輪3、4に対して後方に設けられており、水平方向を回転軸として回転する。自律走行型掃除機Sの進路上の塵埃やサイドブラシ8に弾かれた塵埃を回収することができる。回転ブラシ6が設置された領域は、吸引ファン11による負圧が生成されている。回転ブラシ6のと吸引ファン11の間には集塵ケース12が位置しており、塵埃が貯留される。
The side brushes 8a and 8b are provided on the front side of the autonomous traveling type vacuum cleaner S and on the outer side in the left-right direction, and as shown by the arrow α1 in FIG. Rotate to sweep in the direction toward, and collect dust on the floor surface toward the central rotating brush 6.
The rotary brush 6 is provided behind the drive wheels 3 and 4 of the autonomous traveling type vacuum cleaner S, and rotates about the horizontal direction as a rotation axis. It is possible to collect dust on the path of the autonomous traveling type vacuum cleaner S and dust repelled by the side brush 8. Negative pressure is generated by the suction fan 11 in the area where the rotary brush 6 is installed. A dust collecting case 12 is located between the rotating brush 6 and the suction fan 11, and dust is stored.

充電池9は、例えば、充電することで再利用可能な二次電池であり、電池残量は電池残量検出部22によって測定又は推定可能である。充電池9からの電力は、制御部10、表示パネル17や走行モータ3m、4m等自律走行型掃除機Sの駆動に必要な部材に供給される。 The rechargeable battery 9 is, for example, a secondary battery that can be reused by charging, and the remaining battery level can be measured or estimated by the battery remaining amount detecting unit 22. The electric power from the rechargeable battery 9 is supplied to the members necessary for driving the autonomous traveling type vacuum cleaner S such as the control unit 10, the display panel 17, and the traveling motors 3m and 4m.

制御部10は、自律走行型掃除機Sを統括的に制御するものであり、例えばマイコン(Microcomputer)23と周辺回路とが基板に実装され、構成される。マイコン23は、ROM(Read Only Memory)に記憶された制御プログラムを読み出してRAM(Random Access Memory)に展開し、CPU(Central Processing Unit)が実行することで各種処理が実現される。周辺回路は、A/D・D/A変換器、各種モータの駆動回路、センサ駆動回路、充電池9の充電回路等を有している。
制御部10は、利用者による操作ボタン20の操作、及び、各種障害物検知手段(バンパセンサ19、床面用測距センサ22、測距センサ21)から入力される信号に応じて演算処理を実行し、各種モータとの間で信号を入出力する。
The control unit 10 comprehensively controls the autonomous traveling type vacuum cleaner S. For example, a microcomputer 23 and peripheral circuits are mounted on a substrate and configured. The microcomputer 23 reads a control program stored in a ROM (Read Only Memory), expands it into a RAM (Random Access Memory), and executes it by a CPU (Central Processing Unit) to realize various processes. The peripheral circuit includes an A / D / D / A converter, a drive circuit for various motors, a sensor drive circuit, a charging circuit for the rechargeable battery 9, and the like.
The control unit 10 executes arithmetic processing according to the operation of the operation button 20 by the user and the signals input from various obstacle detecting means (bumper sensor 19, floor distance measuring sensor 22, distance measuring sensor 21). Then, signals are input and output to and from various motors.

集塵ケース12は入口として回転ブラシ6の上方に吸込み口12iが形成されている。また、集塵ケース12は出口に集塵フィルタ13が取り付けられている。なお、吸引ファン11はファンモータ11mで駆動される。 The dust collecting case 12 has a suction port 12i formed above the rotating brush 6 as an inlet. Further, a dust collecting filter 13 is attached to the outlet of the dust collecting case 12. The suction fan 11 is driven by a fan motor 11m.

[センサ]
自律走行型掃除機Sは、進路上の障害物や段差、充電台からの帰還信号等を検知する床面用測距センサ22、バンパ2(バンパセンサ19)、測距センサ21、受信部26,27を有する。
[Sensor]
The autonomous traveling type vacuum cleaner S has a floor distance measuring sensor 22, a bumper 2 (bumper sensor 19), a distance measuring sensor 21, a receiving unit 26, which detects obstacles and steps on the path, a return signal from the charging stand, and the like. Has 27.

床面用測距センサ22(22a、22b、22c、22d)は、自律走行型掃除機Sの底面に設けられた、所定距離内に床面が存在するか区別できるセンサである。床面用測距センサ22としてはこのような機能を実現できれば特に制限されないが、赤外線を用いたり床面までの具体的な距離を計測可能であっても良い。本実施例の床面用測距センサ22は、底面の前後左右4か所に設置されている。例えば、床面用測距センサ22によって前方に30mm程度以上の段差が検知された場合、制御部10は駆動輪3、4を制御して自律走行型掃除機Sを後退させた後、進行方向を転換させることができる。 The floor surface measuring sensor 22 (22a, 22b, 22c, 22d) is a sensor provided on the bottom surface of the autonomous traveling type vacuum cleaner S and can distinguish whether or not the floor surface exists within a predetermined distance. The floor distance measuring sensor 22 is not particularly limited as long as such a function can be realized, but it may be possible to use infrared rays or measure a specific distance to the floor surface. The floor distance measuring sensors 22 of this embodiment are installed at four locations on the front, back, left, and right of the bottom surface. For example, when the floor distance measuring sensor 22 detects a step of about 30 mm or more in front, the control unit 10 controls the drive wheels 3 and 4 to retract the autonomous traveling type vacuum cleaner S, and then moves in the traveling direction. Can be converted.

バンパ2は自律走行型掃除機Sが壁等の障害物に衝突したことを検知するセンサに連結している。バンパ2は左右一対のバンパばね(不図示)によって本体ケース1に対して外向きに付勢されている。バンパ2を介して障害物と衝突した際の作用力がバンパばねに作用すると、バンパばねは平面視で内側に倒れ込むように変形し、バンパ2を外向きに付勢しつつバンパ2の本体ケース1の内側方向への移動を許容する。バンパ2が障害物から離れて前記した作用力がなくなると、バンパばねの付勢力によってバンパ2は元の位置に復帰する。 The bumper 2 is connected to a sensor that detects that the autonomous traveling vacuum cleaner S has collided with an obstacle such as a wall. The bumper 2 is urged outward with respect to the main body case 1 by a pair of left and right bumper springs (not shown). When the acting force when colliding with an obstacle through the bumper 2 acts on the bumper spring, the bumper spring is deformed so as to fall inward in a plan view, and the main body case of the bumper 2 is urged outward while the bumper 2 is urged outward. Allows 1 to move inward. When the bumper 2 separates from the obstacle and loses the above-mentioned acting force, the bumper 2 returns to the original position by the urging force of the bumper spring.

このバンパ2の移動(つまり、障害物との接触)は、フォトカプラ等のバンパセンサ19によって検知される。障害物等との接触によりバンパ2が後退するとセンサ光が遮られ、この変化に応じた検知信号が制御部10に出力されることで、障害物等との接触が生じたことを検知できる。すると制御部10は駆動輪3、4を制御し、必要に応じて自律走行型掃除機Sを後退させた後、進行方向を変更する。 The movement of the bumper 2 (that is, contact with an obstacle) is detected by a bumper sensor 19 such as a photocoupler. When the bumper 2 retracts due to contact with an obstacle or the like, the sensor light is blocked, and a detection signal corresponding to this change is output to the control unit 10, so that it is possible to detect that contact with the obstacle or the like has occurred. Then, the control unit 10 controls the drive wheels 3 and 4, retreats the autonomous traveling type vacuum cleaner S as necessary, and then changes the traveling direction.

測距センサ21は、障害物等が所定距離内に存在するか否かを検出可能な赤外線センサであり、例えば自律走行型掃除機Sの側周に配することができる。本実施例では、正面1箇所と左右側面それぞれ3箇所の計7か所に測距センサが設けられている。測距センサ21はより詳細に障害物等までの距離を検知可能であっても良い。測距センサ21の構成としては例えば、赤外線を発光させる発光部(図示せず)と、赤外線が障害物で反射して戻ってくる反射光を受光する受光部(図示せず)とを有するものにすることができる。 The distance measuring sensor 21 is an infrared sensor capable of detecting whether or not an obstacle or the like exists within a predetermined distance, and can be arranged, for example, on the side circumference of the autonomous traveling type vacuum cleaner S. In this embodiment, distance measuring sensors are provided at a total of 7 locations, one on the front and three on the left and right sides. The distance measuring sensor 21 may be able to detect the distance to an obstacle or the like in more detail. The configuration of the distance measuring sensor 21 includes, for example, a light emitting unit (not shown) that emits infrared rays and a light receiving unit (not shown) that receives reflected light that is reflected by an obstacle and returned. Can be.

自律走行型掃除機Sが有する走行モータ用エンコーダ18R,18Lは、走行モータ3m,4mの回転速度・回転角度を検出する検出器であり、自律走行型掃除機Sの移動速度・移動距離を算出する。また、自律走行型掃除機Sが有するジャイロセンサ50は、自律走行型掃除機Sの回転角度つまりは進行方向を検出する。 The traveling motor encoders 18R and 18L of the autonomous traveling type vacuum cleaner S are detectors that detect the rotation speed and rotation angle of the traveling motors 3m and 4m, and calculate the moving speed and moving distance of the autonomous traveling type vacuum cleaner S. do. Further, the gyro sensor 50 included in the autonomous traveling type vacuum cleaner S detects the rotation angle, that is, the traveling direction of the autonomous traveling type vacuum cleaner S.

操作ボタン20は、ユーザの操作に応じた操作信号を制御部10に出力するボタンであり、掃除の開始/終了や充電台帰還を指示することができる。 The operation button 20 is a button that outputs an operation signal corresponding to the user's operation to the control unit 10, and can instruct the start / end of cleaning and the return of the charging stand.

表示パネル17は、複数のLED(Light Emitting Diode:図示せず)と、7セグメントディスプレイ(図示せず)と、を有しており、自律走行型掃除機Sの運転状態等を表示する。 The display panel 17 has a plurality of LEDs (Light Emitting Diode: not shown) and a 7-segment display (not shown), and displays the operating state of the autonomous traveling vacuum cleaner S and the like.

制御部10は、操作ボタン20a,20b、及びセンサ類からの信号に応じて演算処理を実行し、各モータに指令信号を出力する。 The control unit 10 executes arithmetic processing according to the signals from the operation buttons 20a and 20b and the sensors, and outputs a command signal to each motor.

[走行]
図6は本実施例の自律走行型掃除機Sが部屋Aを反射走行モードで走行した場合の軌跡の一例を示す図である。図7は本実施例の自律走行型掃除機Sが部屋Aを帰還走行モードで走行した場合の軌跡の一例を示す図である。
[Running]
FIG. 6 is a diagram showing an example of a locus when the autonomous traveling type vacuum cleaner S of this embodiment travels in the room A in the reflection traveling mode. FIG. 7 is a diagram showing an example of a locus when the autonomous traveling type vacuum cleaner S of this embodiment travels in the room A in the return traveling mode.

部屋Aを走行する自律走行型掃除機Sは、掃除走行制御の一例としての反射走行モードや壁際走行モードの他、充電台としての基地局25を探索する帰還走行制御で自律走行できる。掃除走行制御は、サイドブラシ8a、8bを回転させるとともに、床面上の塵埃を回転ブラシ6で取り込み、送風ファン11で吸引して集塵ケース12に回収しながら、自律走行する。 The autonomous traveling type vacuum cleaner S traveling in the room A can autonomously travel by the reflection traveling mode and the wall-side traveling mode as an example of the cleaning traveling control, as well as the return traveling control for searching the base station 25 as a charging stand. In the cleaning running control, the side brushes 8a and 8b are rotated, and the dust on the floor surface is taken in by the rotating brush 6, sucked by the blower fan 11 and collected in the dust collecting case 12, and is autonomously run.

反射走行モードでは、壁や障害物24(棚、ソファ等)に接触又は接近したことを検知した場合、自律走行型掃除機Sが進行方向を変えて走行するモードであり、部屋A全体の掃除に適している。バンパセンサ19や測距センサ21から入力される検出信号によって壁等の障害物24が検知された場合、制御部10は走行モータ3m,4mを互いに逆方向に回転させることで自律走行型掃除機Sを超信地旋回(その場で回転)させて進行方向を変えたり、走行モータ3m,4mの回転速度を異なるものにして旋回することで進行方向を変えたりできる。これによって自律走行型掃除機1は、検知した障害物24等から離れる方向に移動することができる。 In the reflection driving mode, when it is detected that the wall or the obstacle 24 (shelf, sofa, etc.) is touched or approached, the autonomous traveling type vacuum cleaner S changes the traveling direction and travels, and cleans the entire room A. Suitable for. When an obstacle 24 such as a wall is detected by a detection signal input from the bumper sensor 19 or the distance measuring sensor 21, the control unit 10 rotates the traveling motors 3m and 4m in opposite directions to autonomously travel the vacuum cleaner S. You can change the direction of travel by turning (rotating on the spot), or you can change the direction of travel by turning at different rotation speeds of the traveling motors 3m and 4m. As a result, the autonomous traveling type vacuum cleaner 1 can move in a direction away from the detected obstacle 24 or the like.

掃除走行制御による掃除が一定時間経過した場合、充電池9の電池残量が所定の値以下に達した場合、又はユーザによるボタン20b等の操作により帰還走行モードが指示された場合に帰還走行制御を実行する。 Return driving control when cleaning by cleaning driving control has elapsed for a certain period of time, when the remaining battery level of the rechargeable battery 9 reaches a predetermined value or less, or when the returning driving mode is instructed by the operation of the button 20b or the like by the user. To execute.

[帰還信号]
基地局25は、帰還信号を出射する出射部25cを有している。自律走行型掃除機Sの受信部26,27は帰還信号を検知することができ、自律走行型掃除機Sは、帰還信号の出射源を探索することで基地局25に帰還しようとする。
[Feedback signal]
The base station 25 has an emission unit 25c that emits a feedback signal. The receiving units 26 and 27 of the autonomous traveling type vacuum cleaner S can detect the feedback signal, and the autonomous traveling type vacuum cleaner S tries to return to the base station 25 by searching for the emission source of the feedback signal.

自律走行型掃除機Sは、第1受信部26と第2受信部27とを有している。
第1受信部26は、自律走行型掃除機Sの上面に設けられており、水平方向の広い範囲(上面視した場合の平面において)、例えば300°以上、好ましくは360°の範囲を検知可能範囲としている。基地局25が平坦な床面Yに載置された場合、同じ床面Yを走行する自律走行型掃除機Sの第1受信部26の高さは出射部25cが出射する帰還信号の高さと略同一になるよう設計されている。このため、第1受信部26によって出射部25cの帰還信号を、自律走行型掃除機Sの向きと基地局25との位置関係に依らず、それらの間に障害物24等が無ければ検知しやすい。なお、本実施例の第1受信部26は、自律走行型掃除機Sの左右幅の略中央で、バンパ2の上面に固定されている。
The autonomous traveling type vacuum cleaner S has a first receiving unit 26 and a second receiving unit 27.
The first receiving unit 26 is provided on the upper surface of the autonomous traveling type vacuum cleaner S, and can detect a wide range in the horizontal direction (in a plane when viewed from above), for example, a range of 300 ° or more, preferably 360 °. It is in the range. When the base station 25 is placed on a flat floor surface Y, the height of the first receiving unit 26 of the autonomous traveling type vacuum cleaner S traveling on the same floor surface Y is the height of the feedback signal emitted by the emitting unit 25c. It is designed to be almost the same. Therefore, the first receiving unit 26 detects the feedback signal of the emitting unit 25c if there is no obstacle 24 or the like between them regardless of the positional relationship between the direction of the autonomous traveling vacuum cleaner S and the base station 25. Cheap. The first receiving unit 26 of this embodiment is fixed to the upper surface of the bumper 2 at substantially the center of the left-right width of the autonomous traveling type vacuum cleaner S.

第2受信部27は、自律走行型掃除機Sの側周に設けられており、水平方向の比較的狭い範囲(上面視した場合の平面において)、少なくとも第1受信部26よりも狭い範囲、例えば45°以下の範囲を検知可能範囲としている。 The second receiving unit 27 is provided on the side circumference of the autonomous traveling type vacuum cleaner S, and has a relatively narrow range in the horizontal direction (in a plane when viewed from above), at least a narrow range than the first receiving unit 26. For example, the range of 45 ° or less is set as the detectable range.

図8は本実施例の第1受信部26の構成を示す図であり、図9は本実施例の第2受信部27の構成を示す図である。
第1受信部26は、出射部25cが出射する帰還信号、例えば赤外線を受光する受光素子26aと、受光素子26aを囲う略円筒形状の受光レンズ26bと、受光レンズ26bの上面を覆う上面カバー26cと、を有する。受光素子26aはバンパ12上面と略同じ高さの位置に、受光方向を上向きに固定される。受光レンズ26bは、その筒部が赤外線を透過する樹脂材料で作られており、筒部外周の全周又は略全周からの帰還信号を取り込むことができる。また、受光レンズ26b筒状の内側には、下側に向けてすぼんだすり鉢状に外周が設けられており、筒部外周から取り込んだ帰還信号を、このすり鉢状の外周との境界面で下方に向けて反射させている。このように反射した帰還信号を受光レンズ26bの下方にある受光素子26aが受光する構造となっており、水平面において広範囲から帰還信号を受信できる。また、上面カバー26cは受光素子26aが検知可能な波長域の光を通過させない樹脂で作られており、自律走行型掃除機Sの上方からの例えば、照明光や他の機器のリモコン信号を遮断している。
FIG. 8 is a diagram showing the configuration of the first receiving unit 26 of the present embodiment, and FIG. 9 is a diagram showing the configuration of the second receiving unit 27 of the present embodiment.
The first receiving unit 26 includes a light receiving element 26a that receives a feedback signal emitted by the emitting unit 25c, for example, infrared rays, a substantially cylindrical light receiving lens 26b that surrounds the light receiving element 26a, and an upper surface cover 26c that covers the upper surface of the light receiving lens 26b. And have. The light receiving element 26a is fixed at a position substantially the same height as the upper surface of the bumper 12 with the light receiving direction facing upward. The light receiving lens 26b has a cylinder portion made of a resin material that transmits infrared rays, and can capture a feedback signal from the entire circumference or substantially the entire circumference of the cylinder portion. Further, inside the light receiving lens 26b cylinder, an outer circumference is provided in a mortar-shaped shape that is recessed toward the lower side, and the feedback signal captured from the outer circumference of the cylinder portion is downward at the boundary surface with the outer circumference of the mortar-shaped portion. It is reflected toward. The light receiving element 26a below the light receiving lens 26b receives the reflected feedback signal in this way, and the feedback signal can be received from a wide range on a horizontal plane. Further, the upper surface cover 26c is made of a resin that does not allow light in the wavelength range that can be detected by the light receiving element 26a to pass through, and blocks, for example, illumination light and remote control signals of other devices from above the autonomous traveling vacuum cleaner S. is doing.

第2受信部27はバンパ2の高さ方向の中央位置より高い位置で、第1受信部26の位置する左右方向位置よりも左または右に、例えば約30mm離れた位置に設けられている。第2受信部27は、受光方向を略水平にした受光素子27aと、バンパ2の外郭より後方に延びて後方に向かうにつれてすぼんだ筒部27bとを有し、水平面および鉛直面に対する受信範囲が約30度となるような指向性を有している。 The second receiving unit 27 is provided at a position higher than the center position in the height direction of the bumper 2 and to the left or right of the position in the left-right direction where the first receiving unit 26 is located, for example, at a position about 30 mm away. The second receiving unit 27 has a light receiving element 27a whose light receiving direction is substantially horizontal, and a tubular portion 27b that extends rearward from the outer shell of the bumper 2 and dents toward the rear, and has a receiving range for a horizontal plane and a vertical surface. It has a directivity of about 30 degrees.

[基地局25]
図10は本実施例の基地局25の正面図である。基地局25は床面に対して略垂直に伸びる背もたれ部25aと、床面に平行に前側に延びたベース部25bとを有する。背もたれ部25aの高さは自律走行型掃除機1の高さより高く、背もたれ部25aの上部には帰還信号29を伝送する3つの開口部25cを有している。それぞれの開口部25cには例えば赤外線を発光するLEDが配されている。また、基地局25は電源コード25eを有しており、LEDを発光させるのに必要な電力を商用電源等から獲得できる。
[Base station 25]
FIG. 10 is a front view of the base station 25 of this embodiment. The base station 25 has a backrest portion 25a extending substantially perpendicular to the floor surface and a base portion 25b extending forward in parallel with the floor surface. The height of the backrest portion 25a is higher than the height of the autonomous traveling type vacuum cleaner 1, and the upper part of the backrest portion 25a has three openings 25c for transmitting the feedback signal 29. An LED that emits infrared rays, for example, is arranged in each opening 25c. Further, the base station 25 has a power cord 25e, and the electric power required for causing the LED to emit light can be obtained from a commercial power source or the like.

ベース部25bは、自律走行型掃除機Sの充電池9に電気的に接続できる給電端子25hを備えている。給電端子25hは、基地局25に自律走行型掃除機Sが帰還した際に、自律走行型掃除機Sの底面の受電端子28と接触することで、充電池9に給電することができる。 The base portion 25b is provided with a power supply terminal 25h that can be electrically connected to the rechargeable battery 9 of the autonomous traveling type vacuum cleaner S. When the autonomous traveling type vacuum cleaner S returns to the base station 25, the power feeding terminal 25h can supply power to the rechargeable battery 9 by coming into contact with the power receiving terminal 28 on the bottom surface of the autonomous traveling type vacuum cleaner S.

このような基地局25からの帰還信号29の伝送について説明する。まず、帰還信号は高速で赤外線LEDを点滅させて(約50~100ms間にON/OFFを数十回繰り返して)作られるコードである。 The transmission of the feedback signal 29 from the base station 25 will be described. First, the feedback signal is a code created by blinking the infrared LED at high speed (repeating ON / OFF several tens of times in about 50 to 100 ms).

基地局25は、右側前方の領域に向けて右側帰還信号29Rを伝送し、左側前方の領域に向けて左側帰還信号29Lを伝送し、中央前方の領域に向けて中央帰還信号29Cを伝送する。帰還信号29R,29L,29Cは基地局25から前方に約6m離れた領域まで伝送され、帰還信号29R,29Lの伝送領域の幅は、左右に約30度方向までの範囲となっている。また、帰還信号29Cの伝送領域の幅は、帰還信号29R,29Lより狭い。各帰還信号29R,29L,29Cはそれぞれ異なるコードにすることができ、自律走行型掃除機Sは何れの帰還信号を受信しているのか区別することができる。ビーコン端末25Kは無線信号を発信し、自律走行型掃除機Sは基地局25との相対的な距離と方向を測定することができる。 The base station 25 transmits the right side feedback signal 29R toward the area in front of the right side, transmits the left side feedback signal 29L toward the area in front of the left side, and transmits the center feedback signal 29C toward the area in front of the center. The feedback signals 29R, 29L, 29C are transmitted to a region about 6 m forward from the base station 25, and the width of the transmission region of the feedback signals 29R, 29L is in a range of about 30 degrees to the left and right. Further, the width of the transmission region of the feedback signal 29C is narrower than that of the feedback signals 29R and 29L. Each feedback signal 29R, 29L, 29C can have a different code, and the autonomous traveling type vacuum cleaner S can distinguish which feedback signal is being received. The beacon terminal 25K transmits a wireless signal, and the autonomous traveling vacuum cleaner S can measure the relative distance and direction from the base station 25.

[帰還走行の全体]
帰還走行モードを実行する自律走行型掃除機Sは、上記帰還信号を受信して充電台接続処理を開始するまでの充電台探索処理と、上記帰還信号のコードを識別し、自律走行型掃除機Sが基地局25に対してどの領域(位置)を走行しているかを判断して、基地局25に接続するように走行する充電台接続処理がある。本実施例の自律走行型掃除機Sは、中央帰還信号29Cが伝送される領域から外れないように前進し(帰還信号追従走行)、基地局25に帰還する。
[Overall return run]
The autonomous traveling vacuum cleaner S that executes the return traveling mode identifies the charging stand search process until the charging platform connection process is started after receiving the feedback signal, and identifies the code of the feedback signal, and is an autonomous traveling vacuum cleaner. There is a charging stand connection process that determines which area (position) S is traveling with respect to the base station 25 and travels so as to connect to the base station 25. The autonomous traveling type vacuum cleaner S of this embodiment advances so as not to deviate from the region where the central feedback signal 29C is transmitted (return signal follow-up traveling), and returns to the base station 25.

[充電台探索処理]
図11は本実施例の充電台探索処理の動作フローを示したものである。
[Charging stand search process]
FIG. 11 shows the operation flow of the charging stand search process of this embodiment.

充電台探索処理が開始された際、まずは帰還処理の初期設定を行う(図11-S11)。充電台探索処理では、帰還信号の有無を判定しながら走行を行い、帰還信号を受信した場合には充電台探索処理を終了して充電台接続処理(G2)に移行する(図11-S12)。 When the charging stand search process is started, the initial setting of the feedback process is first performed (FIGS. 11-S11). In the charging stand search process, the vehicle travels while determining the presence or absence of a feedback signal, and when the feedback signal is received, the charging stand search process is terminated and the process proceeds to the charging stand connection process (G2) (Fig. 11-S12). ..

帰還信号が受信なしの場合、充電台との距離と方向を測定する(図11-S13)。距離・方向が測定できない場合はランダムに走行して帰還信号を探索する(図11-S14)。距離・方向が測定できる場合は、充電台に対する本体向きを判定し(図11-S15)、本体向きが充電台の方向となっていない場合は充電台方向へ回転動作を実施する(図11-S16)。 本体向きが充電台の方向となっている場合は、前進を実施して(図11-S17)充電台へ接近する走行を行う。 When the feedback signal is not received, the distance and direction to the charging stand are measured (Fig. 11-S13). If the distance / direction cannot be measured, the vehicle travels randomly to search for a feedback signal (Fig. 11-S14). If the distance and direction can be measured, the orientation of the main body with respect to the charging stand is determined (Fig. 11-S15), and if the orientation of the main body is not the direction of the charging stand, the rotation operation is performed toward the charging stand (Fig. 11-). S16). If the main body is facing the charging stand, move forward (Fig. 11-S17) to drive closer to the charging stand.

図13は充電台探索処理の走行の軌跡を示したものである。充電台探索開始時に充電台との距離・向きを判定し、本体向きが充電台の方向へ向いていないため回転を実施し(図13-71)、本体向きを充電台の方向へ向ける。その後、前進動作を実施し(図13-72)、充電台に接近していく。 FIG. 13 shows the traveling locus of the charging stand search process. At the start of the charging stand search, the distance and orientation with the charging stand are determined, and since the main body is not facing the direction of the charging stand, rotation is performed (Fig. 13-71), and the main body is turned toward the charging stand. After that, a forward operation is performed (Fig. 13-72), and the charging stand is approached.

[充電台接続処理]
図12は本実施例の充電台接続処理の動作フローを示したものである。
[Charging stand connection process]
FIG. 12 shows an operation flow of the charging stand connection process of this embodiment.

充電台接続処理が開始された際、まずは充電台接続処理の初期設定を行う(図12-S21)。その後、充電台との距離が一定距離以上あるか判定を行う(図12-S22)。ここで、充電台との距離閾値は任意に決定できるとする。 When the charging stand connection process is started, the initial setting of the charging stand connection process is first performed (Fig. 12-S21). After that, it is determined whether or not the distance to the charging stand is a certain distance or more (FIG. 12-S22). Here, it is assumed that the distance threshold value with the charging stand can be arbitrarily determined.

充電台との距離が一定距離以上ある場合(充電台接続のための調整が十分可能な距離が確保できている場合)、通常の帰還信号追従走行を実施する。充電台との接続を判定(図12-S26)しながら、帰還信号を追従する走行を行い(図12-S27)、充電台接続まで走行を実施する。 If the distance to the charging stand is more than a certain distance (when a sufficient distance for adjusting the charging stand can be secured), normal feedback signal follow-up running is performed. While determining the connection with the charging stand (Fig. 12-S26), the vehicle follows the feedback signal (Fig. 12-S27) and travels to the charging stand connection.

充電台との距離が一定距離以上ない場合(充電台接続のための調整が十分可能な距離が確保できていない場合)、充電台との距離を確保する走行を実施する。充電台と逆向きになるように本体を回転させ(図12-S23)、充電台との距離を判定(図12-S24)しながら、前進走行を行い(図12-S25)、充電台との距離が一定距離以上となるまで走行を実施する。充電台との距離が一定距離以上となった後は、帰還信号を追従して充電台接続まで走行を行う(図12-S26,S27)。 If the distance to the charging stand is not more than a certain distance (when the distance that can be adjusted for connecting the charging stand is not sufficiently secured), the vehicle is driven to secure the distance from the charging stand. Rotate the main unit so that it faces the opposite direction of the charging stand (Fig. 12-S23), and while determining the distance to the charging stand (Fig. 12-S24), drive forward (Fig. 12-S25) and use the charging stand. Drive until the distance is equal to or greater than a certain distance. After the distance to the charging stand exceeds a certain distance, the vehicle follows the feedback signal and travels to the charging stand connection (Figs. 12-S26, S27).

図14は充電台接続処理の走行の軌跡を示したものであり、図14-60を帰還信号追従走行を行う距離の境目とする。充電台接続処理開始時に充電台との距離を判定し、充電台との距離が一定距離以上確保できていないため(図14-60より内側のため)回転を実施し(図14-81)、本体向きを充電台と逆の方向へ向ける。その後、前進動作を実施し(図14-82)、充電台との距離を確保する。その後は通常の帰還信号追従走行にて充電台と接続する。 FIG. 14 shows the travel trajectory of the charging stand connection process, and FIG. 14-60 is the boundary of the distance for the feedback signal follow-up travel. At the start of the charging stand connection process, the distance to the charging stand is determined, and since the distance to the charging stand cannot be secured more than a certain distance (because it is inside from Fig. 14-60), rotation is performed (Fig. 14-81). Turn the main unit in the opposite direction to the charging stand. After that, a forward operation is performed (Fig. 14-82) to secure a distance from the charging stand. After that, it is connected to the charging stand by normal feedback signal follow-up running.

以上により、充電台への帰還に関して、充電台接続までの時間短縮と接続の成功率向上を実現できる。 As described above, regarding the return to the charging stand, it is possible to shorten the time until the charging stand is connected and improve the success rate of the connection.

S 自律走行型掃除機
1 本体ケース
2 バンパ
3 右駆動輪
4 左駆動輪
9 充電池
18 走行モータ用エンコーダ
19 バンパセンサ(障害物センサの一例)
21 測距センサ(障害物センサの一例)
23 マイコン
25 基地局
26 第1受信部
27 第2受信部
50 ジャイロセンサ
S Autonomous driving type vacuum cleaner 1 Main body case 2 Bumper 3 Right drive wheel 4 Left drive wheel 9 Rechargeable battery 18 Encoder for traveling motor 19 Bumper sensor (an example of obstacle sensor)
21 Distance measurement sensor (an example of an obstacle sensor)
23 Microcomputer 25 Base station 26 1st receiver 27 2nd receiver 50 Gyro sensor

Claims (2)

帰還信号を検知可能な受信部と、
充電台に距離を測定するためのビーコン端末を組み込み、前記ビーコン端末からの信号に基づき充電台との距離を測定する受信部と、前記ビーコン端末からの信号に基づき充電台の方向を測定する受信部と、
本体移動のための駆動部と、本体の走行を制御する制御部と、
を有する自律走行型掃除機であって、
定期的に充電台との距離と方向を判定しながら充電台に近づく進行ステップと、前記帰還信号を基に充電台への接続処理を実施するステップを特徴とする自律走行型掃除機。
A receiver that can detect the feedback signal and
A beacon terminal for measuring the distance is built into the charging stand, and a receiving unit that measures the distance to the charging stand based on the signal from the beacon terminal and a receiving unit that measures the direction of the charging stand based on the signal from the beacon terminal. Department and
A drive unit for moving the main body, a control unit for controlling the running of the main body,
It is an autonomous vacuum cleaner that has
An autonomous traveling type vacuum cleaner characterized by a progress step of approaching the charging stand while periodically determining the distance and direction to the charging stand, and a step of performing connection processing to the charging stand based on the feedback signal.
帰還信号を検知可能な受信部と、
充電台に距離を測定するためのビーコン端末を組み込み、前記ビーコン端末からの信号に基づき充電台との距離を測定する受信部と、
本体移動のための駆動部と、本体の走行を制御する制御部と、
を有する自律走行型掃除機であって、
定期的に充電台との距離を判定しながら進行する進行ステップと、前記帰還信号と距離情報を基に充電台との距離を確保するための走行を実施するステップと、前記帰還信号を基に充電台への接続処理を実施するステップを特徴とする自律走行型掃除機。
A receiver that can detect the feedback signal and
A beacon terminal for measuring the distance is built into the charging stand, and a receiving unit that measures the distance to the charging stand based on the signal from the beacon terminal.
A drive unit for moving the main body, a control unit for controlling the running of the main body,
It is an autonomous vacuum cleaner that has
Based on the progress step that progresses while periodically determining the distance to the charging stand, the step that runs to secure the distance to the charging stand based on the feedback signal and the distance information, and the feedback signal. An autonomous vacuum cleaner featuring a step to carry out the connection process to the charging stand.
JP2020144029A 2020-08-28 2020-08-28 Autonomous travel type cleaner and autonomous travel type cleaner system and moving body Pending JP2022039153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020144029A JP2022039153A (en) 2020-08-28 2020-08-28 Autonomous travel type cleaner and autonomous travel type cleaner system and moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020144029A JP2022039153A (en) 2020-08-28 2020-08-28 Autonomous travel type cleaner and autonomous travel type cleaner system and moving body

Publications (1)

Publication Number Publication Date
JP2022039153A true JP2022039153A (en) 2022-03-10

Family

ID=80498293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020144029A Pending JP2022039153A (en) 2020-08-28 2020-08-28 Autonomous travel type cleaner and autonomous travel type cleaner system and moving body

Country Status (1)

Country Link
JP (1) JP2022039153A (en)

Similar Documents

Publication Publication Date Title
CN109562519B (en) Mobile robot and control method thereof
KR102329614B1 (en) Cleaner and controlling method thereof
CN110300537B (en) Dust collector and control method thereof
KR101566207B1 (en) Robot cleaner and control method thereof
EP3047773B1 (en) Robot cleaner and controlling method thereof
US9456725B2 (en) Robot cleaner and control method thereof
US9340116B2 (en) Self-propelled electronic device
EP3093727B1 (en) Traveling body device
KR102459151B1 (en) Robot cleaner and controlling method thereof
CN108604097B (en) Self-propelled electronic device and method for moving self-propelled electronic device
KR102070066B1 (en) Robot cleaner and method for controlling the same
JP2021118849A (en) Docking station for autonomous floor cleaner
JP2016048466A (en) Autonomous traveling device
CN108351646B (en) Self-propelled electronic device
JP2016143231A (en) Self-travelling electronic device
JP6422703B2 (en) Autonomous vehicle
EP2692271A1 (en) Electric vacuum cleaner
JP6636289B2 (en) Traveling device
KR20130042422A (en) Robot cleaner and control method for the same
JP6429639B2 (en) Self-propelled electronic device
JP2016220823A (en) Self-propelled cleaner
JP2020173621A (en) Autonomous travel type cleaner
JP2022039153A (en) Autonomous travel type cleaner and autonomous travel type cleaner system and moving body
KR102122237B1 (en) Cleaner and controlling method thereof
JP2019185411A (en) Autonomous travel type cleaner, autonomous travel type cleaner system, and mobile object

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220301