JP2019208545A - Moving body moving along floor surface - Google Patents

Moving body moving along floor surface Download PDF

Info

Publication number
JP2019208545A
JP2019208545A JP2018104233A JP2018104233A JP2019208545A JP 2019208545 A JP2019208545 A JP 2019208545A JP 2018104233 A JP2018104233 A JP 2018104233A JP 2018104233 A JP2018104233 A JP 2018104233A JP 2019208545 A JP2019208545 A JP 2019208545A
Authority
JP
Japan
Prior art keywords
feedback signal
base station
detected
traveling
cleaner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018104233A
Other languages
Japanese (ja)
Inventor
田中 大輔
Daisuke Tanaka
大輔 田中
翔太 橋本
Shota Hashimoto
翔太 橋本
亨 仁木
Toru Niki
亨 仁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2018104233A priority Critical patent/JP2019208545A/en
Publication of JP2019208545A publication Critical patent/JP2019208545A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Electric Suction Cleaners (AREA)

Abstract

To perform efficiently return to a base station, of a moving body moving along a floor surface.SOLUTION: A moving body moving along a floor surface having a reception part capable of detecting distinctively a left side return signal and a right side return signal, and a driving wheel, capable of executing a base station oriented processing for progressing following a return signal detected by the reception part, is turned to a direction corresponding to a kind of the return signal detected just before non-detection, when changing from a detected state of the return signal by the reception part to a non-detection state.SELECTED DRAWING: Figure 16

Description

本発明は、床面を移動する移動体に関する。   The present invention relates to a moving body that moves on a floor surface.

充電池の電池残量が少なくなると充電器となる基地局へ自動で帰還しようとする機能を備えている自律走行型掃除機等の、床面を移動する移動体が知られている。   2. Description of the Related Art There are known moving bodies that move on the floor surface, such as an autonomous traveling vacuum cleaner that has a function of automatically returning to a base station serving as a charger when the remaining battery level of the rechargeable battery decreases.

特許文献1は、外部充電装置(基地局)との交信がなされた交信地点を記憶し、外部充電装置に帰還しようとする場合、記憶された交信地点に進行方向を設定してから直進する走行制御方法を開示している。   Patent Document 1 stores a communication point at which communication with an external charging device (base station) is performed, and when returning to the external charging device, travels straight after setting a traveling direction at the stored communication point. A control method is disclosed.

特開2006−236333号公報JP 2006-236333 A

帰還制御によって基地局近傍に到達することについては特許文献1が考慮するところ、基地局近傍は帰還信号を検知可能な領域が相対的に狭く、帰還信号をロストしやすい。ロストした場合、帰還信号を早期に再検知することが望まれるが、これについて特許文献1は検討していない。   As Patent Document 1 considers reaching the vicinity of the base station by feedback control, the area where the feedback signal can be detected is relatively narrow in the vicinity of the base station, and the feedback signal is easily lost. When lost, it is desired to re-detect the feedback signal at an early stage, but Patent Document 1 does not consider this.

上記事情に鑑みてなされた本発明は、
左側帰還信号及び右側帰還信号を区別して検知可能な受信部と、
駆動輪と、を有し、
前記受信部が検知する帰還信号を辿って進行する基地局指向処理の実行が可能な、床面を移動する移動体であって、
前記受信部が帰還信号を検知した状態から不検知の状態に変化した場合、不検知直前に検知していた帰還信号の種類に応じた方向に旋回することを特徴とする。
The present invention made in view of the above circumstances,
A receiving unit capable of distinguishing and detecting a left feedback signal and a right feedback signal;
Driving wheels, and
A mobile that moves on the floor, capable of performing base station-oriented processing that follows the feedback signal detected by the receiver,
When the receiving unit changes from a state in which a feedback signal is detected to a state in which it is not detected, the receiver turns in a direction corresponding to the type of the feedback signal detected immediately before the non-detection.

実施例1の自律走行型掃除機を左前方から見下ろした斜視図であるIt is the perspective view which looked down at the autonomous running type vacuum cleaner of Example 1 from the left front. 実施例1の自律走行型掃除機を下面図であるIt is a bottom view of the autonomous traveling type vacuum cleaner of Example 1. 図1のA−A断面図であるIt is AA sectional drawing of FIG. 実施例1の自律走行型掃除機のバンパシェードを外したバンパ内部構成を示す斜視図であるIt is a perspective view which shows the bumper internal structure which removed the bumper shade of the autonomous running type vacuum cleaner of Example 1. FIG. 実施例1の自律走行型掃除機の制御部、及び制御部に接続される機器を示す構成図であるIt is a block diagram which shows the apparatus connected to the control part of the autonomous running type vacuum cleaner of Example 1, and a control part. 実施例1の自律走行型掃除機が部屋を反射走行モードで走行した場合の軌跡の一例を示す図The figure which shows an example of a locus | trajectory at the time of the autonomous running type vacuum cleaner of Example 1 driving | running | working the room in reflection driving mode. 実施例1の自律走行型掃除機が部屋を帰還走行モードで走行した場合の軌跡の一例を示す図The figure which shows an example of a locus | trajectory at the time of the autonomous running type vacuum cleaner of Example 1 driving | running | working in the return traveling mode in a room. 実施例1の第1受信部の構成を示す図The figure which shows the structure of the 1st receiving part of Example 1. FIG. 実施例1の第2受信部の構成を示す図The figure which shows the structure of the 2nd receiving part of Example 1. FIG. 実施例1の基地局の正面図Front view of the base station of the first embodiment 実施例1の基地局周辺での帰還走行制御中における走行例を示す図The figure which shows the example of a driving | running | working during the return driving control around the base station of Example 1. 実施例1の帰還走行制御の制御フローチャートControl flowchart of feedback travel control of embodiment 1 実施例1の帰還信号探索処理G1を行っている状態を示す概略図Schematic which shows the state which is performing the feedback signal search process G1 of Example 1. FIG. 実施例1の基地局指向処理G2を行っている状態を示す概略図Schematic which shows the state which is performing the base station orientation process G2 of Example 1. FIG. 実施例1の基地局指向処理G2の最中に、基地局近傍で帰還信号を見失った場合の状態を示す概略図である。It is the schematic which shows the state at the time of losing sight of a feedback signal in the base station vicinity during the base station orientation process G2 of Example 1. FIG. 実施例1の帰還信号を見失ってから最終受信地点へと戻る基地局ロスト時処理G3を行っている状態を示す概略図Schematic diagram illustrating a state in which lost base station processing G3 is performed after losing sight of the feedback signal according to the first embodiment. 実施例2の基地局ロスト時処理G3から帰還リセット処理G4に遷移した時の状態を表す概略図Schematic showing the state at the time of the transition from the base station lost process G3 of Example 2 to the feedback reset process G4 実施例3の帰還走行制御の途中からの概略図Schematic from the middle of return travel control of Example 3

以下、本発明の実施例について、添付の図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本実施例の自律走行型掃除機Sを左前方から見た斜視図である。図2は、本実施例の自律走行型掃除機Sの下面図である。図3は、図1のA−A断面図である。図4は、本実施例の自律走行型掃除機Sのバンパ2の一部を透視した斜視図である。図5は、本実施例の自律走行型掃除機Sの制御部、及び制御部に接続される機器を示す構成図である。
自律走行型掃除機Sが通常進行する方向を前方とし、また、鉛直上向きを上方、駆動輪3、4が対向する方向であって駆動輪3側を右方、駆動輪4側を左方とする。すなわち図1等に示すように前後、上下、左右方向を定義する。
自律走行型掃除機Sは、所定の掃除領域(例えば、部屋の床面Y)を自律的に移動しながら自動的に掃除する電気機器である。
FIG. 1 is a perspective view of the autonomous traveling cleaner S of this embodiment as viewed from the left front. FIG. 2 is a bottom view of the autonomous traveling cleaner S of the present embodiment. 3 is a cross-sectional view taken along the line AA in FIG. FIG. 4 is a perspective view of a part of the bumper 2 of the autonomously traveling cleaner S of this embodiment. FIG. 5 is a configuration diagram illustrating a control unit of the autonomous traveling cleaner S of the present embodiment and devices connected to the control unit.
The direction in which the autonomously traveling cleaner S normally travels is the front, the vertically upward direction is the upper direction, the driving wheels 3 and 4 are opposed to each other, the driving wheel 3 side is the right side, and the driving wheel 4 side is the left side. To do. That is, as shown in FIG.
The autonomously traveling vacuum cleaner S is an electric device that automatically cleans a predetermined cleaning area (for example, the floor surface Y of the room) while moving autonomously.

[自律走行型掃除機Sの構造]
自律走行型掃除機Sは、本体ケース1、側周に設けたバンパ2、底面に設けた一対の駆動輪3、4、補助輪5及び回転ブラシ6、サイドブラシ8、充電池9、制御部10、吸引ファン11、集塵ケース12、表示パネル17、操作ボタン20、並びに帰還信号を検知する第1受信部26及び第2受信部27を備えている。
[Structure of autonomous traveling type vacuum cleaner S]
The autonomous traveling type vacuum cleaner S includes a main body case 1, a bumper 2 provided on a side periphery, a pair of driving wheels 3, 4 provided on a bottom surface, an auxiliary wheel 5, a rotating brush 6, a side brush 8, a rechargeable battery 9, and a control unit. 10, a suction fan 11, a dust collecting case 12, a display panel 17, an operation button 20, and a first receiver 26 and a second receiver 27 that detect a feedback signal.

駆動輪3、4は、走行モータ3m、4mの回転力によって回転する車輪であり、それぞれ独立した方向に回転ができる。駆動輪3、4によって自律走行型掃除機Sを前進、後退、旋回(或る点を中心としての円運動。或る点は、自律走行型掃除機Sの一部に重なっても良いし重なっていなくても良い。)及び超信地旋回(その場回転。駆動輪3,4の中点を中心としての円運動。)させることが出来る。補助輪5は、自由回転する従動輪(キャスタ)である。   The drive wheels 3 and 4 are wheels that are rotated by the rotational force of the traveling motors 3m and 4m, and can rotate in independent directions. The autonomously traveling cleaner S is moved forward, backward, and swiveled by the drive wheels 3 and 4 (circular motion around a certain point. A certain point may overlap or overlap with a part of the autonomously traveling cleaner S. And super-spinning (spinning on the spot. Circular motion around the midpoint of the drive wheels 3 and 4). The auxiliary wheel 5 is a driven wheel (caster) that freely rotates.

サイドブラシ8a、8bは、自律走行型掃除機Sの前方側、左右方向の外側に設けられており、図2の矢印α1のように、自律走行型掃除機Sの前方外側の領域から前方内側に向かう方向に掃引するよう回転して、床面上の塵埃を中央の回転ブラシ6側に集める。   The side brushes 8a and 8b are provided on the front side of the autonomous traveling type cleaner S, on the outer side in the left-right direction, and from the front outer side region of the autonomous traveling type cleaner S to the front inner side as indicated by the arrow α1 in FIG. The dust on the floor is collected on the central rotating brush 6 side.

回転ブラシ6は、自律走行型掃除機Sの駆動輪3、4に対して後方に設けられており、水平方向を回転軸として回転する。自律走行型掃除機Sの進路上の塵埃やサイドブラシ8に弾かれた塵埃を回収することができる。回転ブラシ6が設置された領域は、吸引ファン11による負圧が生成されている。回転ブラシ6と吸引ファン11の間には集塵ケース12が位置しており、塵埃が貯留される。   The rotating brush 6 is provided behind the driving wheels 3 and 4 of the autonomous traveling cleaner S, and rotates around the horizontal direction as a rotation axis. The dust on the path of the autonomous traveling cleaner S and the dust bounced by the side brush 8 can be collected. In the area where the rotating brush 6 is installed, negative pressure is generated by the suction fan 11. A dust collection case 12 is located between the rotary brush 6 and the suction fan 11 and dust is stored.

充電池9は、例えば、充電することで再利用可能な二次電池であり、電池残量は電池残量検出部7によって測定又は推定可能である。充電池9からの電力は、制御部10、表示パネル17や走行モータ3m、4m等自律走行型掃除機Sの駆動に必要な部材に供給される。   The rechargeable battery 9 is, for example, a secondary battery that can be reused by charging, and the remaining battery level can be measured or estimated by the remaining battery level detection unit 7. The electric power from the rechargeable battery 9 is supplied to members necessary for driving the autonomous traveling cleaner S, such as the control unit 10, the display panel 17, and the traveling motors 3m and 4m.

制御部10は、自律走行型掃除機Sを統括的に制御するものであり、例えばマイコン(Microcomputer)23と周辺回路とが基板に実装され、構成される。マイコン23は、ROM(Read Only Memory)に記憶された制御プログラムを読み出してRAM(Random Access Memory)に展開し、CPU(Central Processing Unit)が実行することで各種処理が実現される。周辺回路は、A/D・D/A変換器、各種モータの駆動回路、センサ駆動回路、充電池9の充電回路等を有している。   The control unit 10 controls the autonomously traveling cleaner S in an integrated manner, and is configured, for example, by mounting a microcomputer 23 and peripheral circuits on a substrate. The microcomputer 23 reads out a control program stored in a ROM (Read Only Memory), develops it in a RAM (Random Access Memory), and executes various processes by being executed by a CPU (Central Processing Unit). The peripheral circuit includes an A / D / D / A converter, driving circuits for various motors, a sensor driving circuit, a charging circuit for the rechargeable battery 9, and the like.

また、制御部10は利用者による操作ボタン20の操作、及び、各種障害物検知手段(バンパセンサ19、床面用測距センサ22、測距センサ21)から入力される信号に応じて演算処理を実行し、各種モータとの間で信号を入出力する。   Further, the control unit 10 performs arithmetic processing according to the operation of the operation button 20 by the user and signals input from various obstacle detection means (bumper sensor 19, floor surface ranging sensor 22, distance measuring sensor 21). Execute and input / output signals to / from various motors.

集塵ケース12は入口として回転ブラシ6の上方に吸込み口12iが形成されている。また、集塵ケース12は出口に集塵フィルタ13が取り付けられている。なお、吸引ファン11はファンモータ11mで駆動される。   The dust collection case 12 has a suction port 12 i formed above the rotary brush 6 as an inlet. The dust collection case 12 has a dust collection filter 13 attached to the outlet. The suction fan 11 is driven by a fan motor 11m.

[センサ]
自律走行型掃除機Sは、進路上の障害物や段差、充電台からの帰還信号等を検知する床面用測距センサ22、バンパ2(バンパセンサ19)、測距センサ21、受信部26,27を有する。
床面用測距センサ22(22a、22b、22c、22d)は、自律走行型掃除機Sの底面に設けられた、所定距離内に床面が存在するか区別できるセンサである。床面用測距センサ22としてはこのような機能を実現できれば特に制限されず、判定のために赤外線を用いる方式を採用したり、床面までの具体的な距離を計測可能なものにしたりしても良い。本実施例の床面用測距センサ22は、底面の前後左右4か所に設置されている。
[Sensor]
The autonomously traveling cleaner S includes a floor surface ranging sensor 22, a bumper 2 (a bumper sensor 19), a ranging sensor 21, a receiving unit 26, 27.
The floor surface ranging sensor 22 (22a, 22b, 22c, 22d) is a sensor provided on the bottom surface of the autonomously traveling cleaner S to distinguish whether the floor surface exists within a predetermined distance. The floor surface distance measuring sensor 22 is not particularly limited as long as such a function can be realized, and a method using infrared rays for determination or a specific distance to the floor surface can be measured. May be. The distance measuring sensors 22 for floor according to the present embodiment are installed at four places on the bottom, front, rear, left and right.

例えば、床面用測距センサ22によって前方に30mm程度以上の段差が検知された場合、制御部10は駆動輪3、4を制御して自律走行型掃除機Sを後退させた後、進行方向を転換させることができる。   For example, when a level difference of about 30 mm or more is detected in front by the distance measuring sensor 22 for the floor surface, the control unit 10 controls the driving wheels 3 and 4 to move the autonomous traveling cleaner S backward, and then the traveling direction Can be converted.

バンパ2は自律走行型掃除機Sが壁等の障害物に衝突したことを検知するセンサに連結している。バンパ2は左右一対のバンパばね(図示せず)によって本体ケース1に対して外向きに付勢されている。バンパ2を介して障害物と衝突した際の作用力がバンパばねに作用すると、バンパばねは平面視で内側に倒れ込むように変形し、バンパ2を外向きに付勢しつつバンパ2の本体ケース1の内側方向への移動を許容する。バンパ2が障害物から離れて前記した作用力がなくなると、バンパばねの付勢力によってバンパ2は元の位置に復帰する。   The bumper 2 is connected to a sensor that detects that the autonomously traveling vacuum cleaner S has collided with an obstacle such as a wall. The bumper 2 is urged outward with respect to the main body case 1 by a pair of left and right bumper springs (not shown). When an acting force when colliding with an obstacle via the bumper 2 acts on the bumper spring, the bumper spring is deformed so as to fall inward in a plan view, and the bumper 2 body case is urged outward. 1 is allowed to move inward. When the bumper 2 moves away from the obstacle and the above-described acting force disappears, the bumper 2 returns to the original position by the biasing force of the bumper spring.

このバンパ2の移動(つまり、障害物との接触)は、フォトカプラ等のバンパセンサ19によって検知される。障害物等との接触によりバンパ2が後退するとセンサ光が遮られ、この変化に応じた検知信号が制御部10に出力されることで、障害物等との接触が生じたことを検知できる。すると制御部10は駆動輪3、4を制御し、必要に応じて自律走行型掃除機Sを後退させた後、進行方向を変更する。   The movement of the bumper 2 (that is, contact with an obstacle) is detected by a bumper sensor 19 such as a photocoupler. When the bumper 2 moves backward due to contact with an obstacle or the like, the sensor light is blocked, and a detection signal corresponding to this change is output to the control unit 10, so that it can be detected that contact with the obstacle or the like has occurred. Then, the control unit 10 controls the drive wheels 3 and 4 to move the autonomous traveling cleaner S backward as necessary, and then changes the traveling direction.

測距センサ21は、障害物等が所定距離内に存在するか否かを検出可能な赤外線センサであり、例えば自律走行型掃除機Sの側周に配することができる。本実施例では、正面1箇所と左右側面それぞれ3箇所の計7か所に測距センサが設けられている。測距センサ21はより詳細に障害物等までの距離を検知可能であっても良い。   The distance measuring sensor 21 is an infrared sensor capable of detecting whether an obstacle or the like is present within a predetermined distance, and can be disposed, for example, on the side periphery of the autonomous traveling cleaner S. In this embodiment, distance measuring sensors are provided at a total of seven locations, one at the front and three at the left and right sides. The distance measuring sensor 21 may be able to detect the distance to an obstacle or the like in more detail.

測距センサ21の構成としては例えば、赤外線を発光させる発光部(図示せず)と、赤外線が障害物で反射して戻ってくる反射光を受光する受光部(図示せず)とを有するものにすることができる。また、カメラ等の撮像部にしてもよい。   For example, the distance measuring sensor 21 includes a light emitting unit (not shown) that emits infrared light, and a light receiving unit (not shown) that receives reflected light that is reflected by an infrared ray reflected by an obstacle. Can be. Alternatively, an imaging unit such as a camera may be used.

自律走行型掃除機Sが有する走行モータ用エンコーダ18R,18Lは、走行モータ3m,4mの回転速度・回転角度を検出する検出器であり、自律走行型掃除機Sの移動速度・移動距離を算出する。
また、自律走行型掃除機Sが有するジャイロセンサ50は、自律走行型掃除機Sの回転角度を検出できる。これにより、制御部10は、自律走行型掃除機Sの進行方向を検出できる。
操作ボタン20は、ユーザの操作に応じた操作信号を制御部10に出力するボタンであり、掃除の開始/終了や充電台帰還を指示することができる。
表示パネル17は、複数のLED(Light Emitting Diode:図示せず)と、7セグメントディスプレイ(図示せず)と、を有しており、自律走行型掃除機Sの運転状態等を表示する。
制御部10は、操作ボタン20、及びセンサ類からの信号に応じて演算処理を実行し、各モータに指令信号を出力する。
The traveling motor encoders 18R and 18L of the autonomous traveling cleaner S are detectors that detect the rotational speed and rotational angle of the traveling motors 3m and 4m, and calculate the traveling speed and traveling distance of the autonomous traveling cleaner S. To do.
Further, the gyro sensor 50 of the autonomous traveling cleaner S can detect the rotation angle of the autonomous traveling cleaner S. Thereby, the control part 10 can detect the advancing direction of the autonomous running type vacuum cleaner S.
The operation button 20 is a button for outputting an operation signal corresponding to a user operation to the control unit 10 and can instruct the start / end of cleaning or the charging stand return.
The display panel 17 has a plurality of LEDs (Light Emitting Diodes: not shown) and a 7-segment display (not shown), and displays the operation state of the autonomous traveling cleaner S and the like.
The control unit 10 executes arithmetic processing in accordance with signals from the operation buttons 20 and sensors, and outputs command signals to the respective motors.

[走行制御]
図6は本実施例の自律走行型掃除機Sが部屋Aを反射走行モードで走行した場合の軌跡の一例を示す図である。
[Running control]
FIG. 6 is a diagram illustrating an example of a locus when the autonomous traveling vacuum cleaner S of the present embodiment travels in the room A in the reflective traveling mode.

部屋Aを走行する自律走行型掃除機Sは、掃除走行制御の一例としての反射走行モードや壁際走行モードの他、充電台としての基地局25を探索する帰還走行制御で自律走行できる。
掃除走行制御では、サイドブラシ8a、8bを回転させるとともに、床面上の塵埃を回転ブラシ6で取り込み、送風ファン11で吸引して集塵ケース12に回収しながら、自律走行する。
反射走行モードでは、壁や障害物24(棚、ソファ等)に接触又は接近したことを検知した場合、自律走行型掃除機Sが進行方向を変えて走行するモードであり、部屋A全体の掃除に適している。バンパセンサ19や測距センサ21から入力される検出信号によって壁等の障害物24が検知された場合、制御部10は走行モータ3m,4mを互いに逆方向に回転させることで自律走行型掃除機Sを超信地旋回(その場で回転)させて進行方向を変えたり、走行モータ3m,4mの回転速度を異なるものにして旋回することで進行方向を変えたりできる。これによって自律走行型掃除機Sは、検知した障害物24等から離れる方向に移動することができる。
The autonomous traveling type vacuum cleaner S traveling in the room A can travel autonomously by a return traveling control that searches for the base station 25 as a charging stand, in addition to the reflective traveling mode and the wall-side traveling mode as examples of the cleaning traveling control.
In the cleaning travel control, the side brushes 8 a and 8 b are rotated, and dust on the floor surface is taken in by the rotating brush 6, sucked by the blower fan 11, and autonomously traveled while being collected in the dust collecting case 12.
The reflective travel mode is a mode in which the autonomous traveling cleaner S travels while changing the direction of travel when it is detected that a wall or an obstacle 24 (shelf, sofa, etc.) is touched or approached, and the entire room A is cleaned. Suitable for When an obstacle 24 such as a wall is detected by a detection signal input from the bumper sensor 19 or the distance measuring sensor 21, the control unit 10 rotates the traveling motors 3 m and 4 m in opposite directions to rotate the autonomous traveling type cleaner S. Can be changed by changing the direction of travel by turning (superior) on the ground, or by changing the rotational speeds of the traveling motors 3m, 4m to different directions. Accordingly, the autonomously traveling cleaner S can move in a direction away from the detected obstacle 24 and the like.

[帰還制御]
掃除走行制御による掃除が一定時間経過した場合や、充電池9の電池残量が所定の値以下に達した場合、又はユーザによるボタン20等の操作により帰還走行モードが指示された場合、自律走行型掃除機Sは、帰還走行制御を実行する。
[Return control]
When the cleaning by the cleaning travel control has passed for a certain period of time, when the remaining battery level of the rechargeable battery 9 has reached a predetermined value, or when the user is instructed to return to the travel mode by operating the button 20 or the like, the autonomous travel The mold cleaner S performs return travel control.

(基地局25)
図10は本実施例の基地局25の正面図である。
基地局25は床面に対して略垂直に伸びる背もたれ部25aと、床面に平行に前側に延びたベース部25bと、帰還信号を出射する出射部25cとを有する。背もたれ部25aの高さは自律走行型掃除機1の高さより高く、背もたれ部25aの上部には帰還信号29を伝送する3つの開口部25cを有している。それぞれの開口部25cには例えば赤外線を発光するLEDが配されている。また、基地局25は電源コード25eを有しており、LEDを発光させるのに必要な電力を商用電源等から獲得できる。
(Base station 25)
FIG. 10 is a front view of the base station 25 of the present embodiment.
The base station 25 includes a backrest portion 25a extending substantially perpendicular to the floor surface, a base portion 25b extending frontward in parallel to the floor surface, and an emission portion 25c that emits a feedback signal. The height of the backrest portion 25a is higher than the height of the autonomous traveling type vacuum cleaner 1, and three openings 25c for transmitting a feedback signal 29 are provided above the backrest portion 25a. For example, LEDs that emit infrared light are arranged in the respective openings 25c. Further, the base station 25 has a power cord 25e, and can acquire power necessary for causing the LED to emit light from a commercial power source or the like.

ベース部25bは、自律走行型掃除機Sの充電池9に電気的に接続できる給電端子25hを備えている。給電端子25hは、基地局25に自律走行型掃除機Sが帰還した際に、自律走行型掃除機Sの底面の受電端子28と接触することで、充電池9に給電することができる。   The base portion 25b includes a power feeding terminal 25h that can be electrically connected to the rechargeable battery 9 of the autonomously traveling cleaner S. The power supply terminal 25 h can supply power to the rechargeable battery 9 by contacting the power receiving terminal 28 on the bottom surface of the autonomous traveling cleaner S when the autonomous traveling cleaner S returns to the base station 25.

このような基地局25からの帰還信号29の伝送について説明する。まず、帰還信号は高速で赤外線LEDを点滅させて(約50〜100ms間にON/OFFを数十回繰り返して)作られるコードである。
出射部25cの帰還信号を自律走行型掃除機Sの受信部26,27は検知することができ、自律走行型掃除機Sは、帰還信号の出射源を探索することで基地局25に帰還しようとする。
The transmission of the feedback signal 29 from the base station 25 will be described. First, the feedback signal is a code generated by blinking the infrared LED at high speed (by repeating ON / OFF several tens of times in about 50 to 100 ms).
The receivers 26 and 27 of the autonomous traveling cleaner S can detect the return signal of the emitting unit 25c, and the autonomous traveling cleaner S will return to the base station 25 by searching for the source of the return signal. And

(受信部26,27)
図8は本実施例の第1受信部26の構成を示す図であり、図9は本実施例の第2受信部27の構成を示す図である。
(Receivers 26 and 27)
FIG. 8 is a diagram illustrating a configuration of the first receiving unit 26 of the present embodiment, and FIG. 9 is a diagram illustrating a configuration of the second receiving unit 27 of the present embodiment.

第1受信部26は、出射部25cが出射する帰還信号、例えば赤外線を受光する受光素子26aと、受光素子26aを囲う略円筒形状の受光レンズ26bと、受光レンズ26bの上面を覆う上面カバー26cと、を有する。
受光素子26aはバンパ12上面と略同じ高さの位置に、受光方向を上向きに固定される。受光レンズ26bは、その筒部が赤外線を透過する樹脂材料で作られており、筒部外周の全周又は略全周からの帰還信号を取り込むことができる。また、受光レンズ26b筒状の内側には、下側に向けてすぼんだすり鉢状に外周が設けられており、筒部外周から取り込んだ帰還信号を、このすり鉢状の外周との境界面で下方に向けて反射させている。
The first receiving unit 26 includes a light receiving element 26a that receives a feedback signal emitted from the emitting unit 25c, such as infrared rays, a substantially cylindrical light receiving lens 26b that surrounds the light receiving element 26a, and an upper surface cover 26c that covers the upper surface of the light receiving lens 26b. And having.
The light receiving element 26a is fixed at a position substantially the same height as the upper surface of the bumper 12 with the light receiving direction facing upward. The light receiving lens 26b is made of a resin material having a cylindrical portion that transmits infrared rays, and can receive a feedback signal from the entire circumference or substantially the entire circumference of the cylindrical portion. In addition, the outer periphery of the light receiving lens 26b is formed in a mortar shape that is sunk downward toward the lower side, and the feedback signal captured from the outer periphery of the cylindrical portion is located below the boundary surface with the mortar-shaped outer periphery Reflected toward

このように反射した帰還信号を受光レンズ26bの下方にある受光素子26aが受光する構造となっており、水平面において広範囲から帰還信号を受信できる。また、上面カバー26cは受光素子26aが検知可能な波長域の光を通過させない樹脂で作られており、自律走行型掃除機Sの上方からの例えば、照明光や他の機器のリモコン信号を遮断している。 第1受信部26は、自律走行型掃除機Sの上面に設けられており、水平方向の広い範囲(上面視した場合の平面において)、例えば300°以上、好ましくは360°の範囲を検知可能範囲としている。   The light receiving element 26a under the light receiving lens 26b receives the reflected signal reflected in this way, and can receive the feedback signal from a wide range on the horizontal plane. Further, the top cover 26c is made of a resin that does not allow light in the wavelength range that can be detected by the light receiving element 26a, and blocks, for example, illumination light and remote control signals of other devices from above the autonomous traveling cleaner S. doing. The 1st receiving part 26 is provided in the upper surface of autonomous running type vacuum cleaner S, and can detect a wide range (in the plane at the time of top view), for example, 300 degrees or more, preferably a 360 degrees range in the horizontal direction. The range.

基地局25が平坦な床面Yに載置された場合、同じ床面Yを走行する自律走行型掃除機Sの第1受信部26の高さは出射部25cが出射する帰還信号の高さと略同一になるよう設計されている。このため、第1受信部26によって出射部25cの帰還信号を、自律走行型掃除機Sの向きと基地局25との位置関係に依らず、それらの間に障害物24等が無ければ検知しやすい。なお、本実施例の第1受信部26は、自律走行型掃除機Sの左右幅の略中央で、バンパ2の上面に固定されている。   When the base station 25 is placed on the flat floor surface Y, the height of the first receiving unit 26 of the autonomously traveling cleaner S traveling on the same floor surface Y is equal to the height of the feedback signal output from the output unit 25c. Designed to be nearly identical. Therefore, the first receiving unit 26 detects the return signal of the emitting unit 25c regardless of the positional relationship between the direction of the autonomous traveling cleaner S and the base station 25 if there is no obstacle 24 or the like between them. Cheap. In addition, the 1st receiving part 26 of a present Example is being fixed to the upper surface of the bumper 2 in the approximate center of the left-right width of the autonomous running type vacuum cleaner S.

第2受信部27はバンパ2の高さ方向の中央位置より高い位置で、第1受信部26の位置する左右方向位置よりも左または右に、例えば約30mm離れた位置に設けられている。第2受信部27は、受光方向を略水平にした受光素子27aと、バンパ2の外郭より後方に延びて後方に向かうにつれてすぼんだ筒部27bとを有し、水平面および鉛直面に対する受信範囲が約30度となるような指向性を有している。   The second receiving unit 27 is provided at a position higher than the central position in the height direction of the bumper 2 and on the left or right of the left-right position where the first receiving unit 26 is located, for example, at a position about 30 mm away. The second receiving unit 27 includes a light receiving element 27a whose light receiving direction is substantially horizontal, and a cylindrical portion 27b that extends rearward from the outer shape of the bumper 2 and is recessed toward the rear. The directivity is about 30 degrees.

第2受信部27は、自律走行型掃除機Sの側周に設けられており、水平方向の比較的狭い範囲(上面視した場合の平面において)、少なくとも第1受信部26よりも狭い範囲、例えば45°以下の範囲を検知可能範囲としている。   The second receiving unit 27 is provided on the side periphery of the autonomous traveling cleaner S, and is relatively narrow in the horizontal direction (in a plane when viewed from above), at least in a range narrower than the first receiving unit 26, For example, a range of 45 ° or less is set as a detectable range.

(基地局25の出射する帰還信号)
基地局25は、3つの出射部25cからそれぞれ、右側前方の領域に向けて右側帰還信号29Rを伝送し、左側前方の領域に向けて左側帰還信号29Lを伝送し、中央前方の領域に向けて中央帰還信号29Cを伝送する。帰還信号29R,29L,29Cは基地局25から前方に約6m離れた領域まで伝送され、帰還信号29R,29Lの伝送領域の幅は、左右に約30度方向までの範囲となっている。また、帰還信号29Cの伝送領域の幅は、帰還信号29R,29Lより狭い。各帰還信号29R,29L,29Cはそれぞれ異なるコードにすることができ、自律走行型掃除機Sは何れの帰還信号を受信しているのか区別することができる。
(Return signal emitted from the base station 25)
The base station 25 transmits the right feedback signal 29R from the three emitting units 25c toward the right front area, transmits the left feedback signal 29L toward the left front area, and toward the center front area. A central feedback signal 29C is transmitted. The feedback signals 29R, 29L, and 29C are transmitted to an area about 6 m away from the base station 25, and the width of the transmission area of the feedback signals 29R and 29L is in the range of about 30 degrees in the left and right directions. Further, the width of the transmission region of the feedback signal 29C is narrower than the feedback signals 29R and 29L. Each feedback signal 29R, 29L, and 29C can be set to a different code, and the autonomous traveling cleaner S can distinguish which feedback signal is received.

[帰還信号追従走行モード]
図7は本実施例の自律走行型掃除機Sが部屋Aを帰還走行モードで走行した場合の軌跡の一例を示す図である。帰還走行モードを実行する自律走行型掃除機Sは、各帰還信号29R,29L,29Cのコードを識別し、自律走行型掃除機Sが基地局25に対してどの領域(位置)を走行しているかを判断して、進行方向を決めて基地局25に帰還するように走行する。本実施例の自律走行型掃除機Sは、中央帰還信号29Cが伝送される領域から外れないように前進し、基地局25に帰還する。
[Return signal follow mode]
FIG. 7 is a diagram illustrating an example of a locus when the autonomous traveling cleaner S of the present embodiment travels in the room A in the return traveling mode. The autonomous traveling cleaner S that executes the return traveling mode identifies the codes of the feedback signals 29R, 29L, and 29C, and in which region (position) the autonomous traveling cleaner S travels with respect to the base station 25. The vehicle travels so as to return to the base station 25 after determining the traveling direction. The autonomously traveling vacuum cleaner S of the present embodiment moves forward so as not to deviate from the area where the central feedback signal 29C is transmitted, and returns to the base station 25.

[帰還信号の探索]
帰還走行モード中に帰還信号29を検知した自律走行型掃除機Sは、帰還信号29を辿ることで基地局25に帰還しようとする。しかし、各帰還信号29は互いに近接した出射部25cから発射されるため、基地局25近傍では帰還信号29の広がりが狭い。例えば、図7に例示するように、帰還信号29の幅は充電台付近になると狭くなるため、自律走行型掃除機Sが何れの帰還信号29も受信できなくなったり、辿ろうとするコードの帰還信号(本実施例では中央帰還信号29C)を検知できなくなる虞が想定される。
[Search for feedback signal]
The autonomously traveling vacuum cleaner S that has detected the feedback signal 29 during the return traveling mode attempts to return to the base station 25 by following the feedback signal 29. However, since each feedback signal 29 is emitted from the emitting part 25c close to each other, the spread of the feedback signal 29 is narrow in the vicinity of the base station 25. For example, as illustrated in FIG. 7, since the width of the feedback signal 29 becomes narrow near the charging stand, the autonomously traveling cleaner S cannot receive any feedback signal 29 or the feedback signal of the code to be traced. It is assumed that the central feedback signal 29C (in this embodiment) cannot be detected.

図11は基地局25周辺での帰還走行制御中における走行例を示したものである。まず、図11中の太矢印線で例示する自律走行型掃除機Sの走行軌跡L31のように、帰還信号29Cを辿って基地局25へ近づき、基地局25への帰還(給電端子25hへの接続)を試みる。   FIG. 11 shows an example of traveling during return traveling control around the base station 25. First, as shown in the travel locus L31 of the autonomous traveling cleaner S illustrated by the thick arrow line in FIG. 11, the feedback signal 29C is traced to approach the base station 25 and return to the base station 25 (to the power supply terminal 25h). Connection).

しかし基地局25付近で接続を成功できなかった場合、自律走行型掃除機Sが帰還信号29の受信可能領域から離れる方向L32、L33に進路を変更して走行し、受信可能領域から外れてしまうことがある。このとき、自律走行型掃除機Sは帰還信号29を見失ってしまうため、再度帰還信号29を発見する必要がある。   However, if the connection is not successful in the vicinity of the base station 25, the autonomously traveling cleaner S changes its route in the directions L32 and L33 away from the receivable area of the feedback signal 29 and travels away from the receivable area. Sometimes. At this time, since the autonomously traveling vacuum cleaner S loses sight of the feedback signal 29, it is necessary to find the feedback signal 29 again.

このように一度帰還信号29を検出して基地局25に向かった後に帰還信号29を見失った場合は、自律走行型掃除機Sは、基地局25周辺に存在すると期待されることに注目する。このような場合に帰還信号29を効果的に探索すべく、本実施例の自律走行型掃除機Sは、まず、走行モータ用エンコーダ(右・左)18R,18L、ジャイロセンサ50の値から自律走行型掃除機Sの位置を推定するとともに、帰還走行制御中に帰還信号29を受信した場合、その位置を制御部10(例えばマイコン23)に記憶させる。   It is noted that the autonomous traveling cleaner S is expected to be present in the vicinity of the base station 25 if the feedback signal 29 is lost after detecting the feedback signal 29 and heading for the base station 25 in this way. In such a case, in order to effectively search for the feedback signal 29, the autonomous traveling cleaner S of the present embodiment firstly autonomously determines the values of the traveling motor encoders (right / left) 18R, 18L and the gyro sensor 50. While estimating the position of traveling type vacuum cleaner S and receiving feedback signal 29 during feedback traveling control, the position is memorized by control part 10 (for example, microcomputer 23).

ジャイロセンサ50を使用することで自律走行型掃除機Sがどの方向を向いているのかを推定でき、走行モータ用エンコーダ(右・左)18R,18Lを利用することで自律走行型掃除機Sが進んだ長さを推定できる。これを帰還信号29を見失った際に用いることで、どこに移動すれば帰還信号29を受信できるのかが判断でき、帰還信号29を受信可能な領域に到達しやすくなる。具体的な方法は後述する。   By using the gyro sensor 50, it is possible to estimate which direction the autonomous traveling cleaner S is facing, and by using the traveling motor encoders (right / left) 18R, 18L, the autonomous traveling cleaner S You can estimate the advanced length. By using this when losing sight of the feedback signal 29, it can be determined where the feedback signal 29 can be received by moving, and it is easy to reach an area where the feedback signal 29 can be received. A specific method will be described later.

[帰還信号を見失った際の帰還走行フロー]
図12は本実施例の帰還走行制御の制御フローチャートである。本フローは帰還走行制御に遷移後の、帰還信号を見つけるまでの処理G1、帰還信号に沿って基地局に向かうまでの処理G2、基地局に向かっている途中で帰還信号を見失った場合の処理G3、G3の処理を一定時間に行えなかった場合の処理G4を含んでいる。(以降の説明では、G1〜G4を「帰還信号探索処理G1」、「基地局指向処理G2」、「基地局ロスト時処理G3」、「帰還リセット処理G4」とする。)
図13は掃除運転から帰還走行へと遷移して、帰還信号探索処理G1を行っている状態を示す概略図である。
図14は帰還信号29を発見してから、基地局25を目指すから基地局指向処理G2を行っている状態を示す概略図である。
図15は基地局指向処理G2の最中に、基地局近傍で帰還信号29を見失った場合の状態を示す概略図である。
図16は帰還信号29を見失ってから最終受信地点へと戻る基地局ロスト時処理G3を行っている状態を示す概略図である。
図17は基地局ロスト時処理G3の処理を一定時間行っても見つからずに帰還リセット処理G4に遷移した時の状態を表す概略図である。
[Return driving flow when the return signal is lost]
FIG. 12 is a control flowchart of the return travel control of this embodiment. This flow is a process G1 until the return signal is found after the transition to the feedback travel control, a process G2 until the return signal is headed to the base station, and a process when the return signal is lost while heading for the base station. The process G4 when the process of G3 and G3 cannot be performed in a fixed time is included. (In the following description, G1 to G4 are referred to as “feedback signal search processing G1”, “base station orientation processing G2”, “base station lost time processing G3”, and “feedback reset processing G4”.)
FIG. 13 is a schematic diagram showing a state where the cleaning operation is changed to the return travel and the return signal search process G1 is performed.
FIG. 14 is a schematic diagram showing a state in which the base station orientation processing G2 is performed since the feedback signal 29 is discovered and then the base station 25 is aimed.
FIG. 15 is a schematic diagram showing a state when the feedback signal 29 is lost near the base station during the base station orientation processing G2.
FIG. 16 is a schematic diagram showing a state in which the lost base station processing G3 is performed after losing sight of the feedback signal 29 and returning to the final reception point.
FIG. 17 is a schematic diagram showing a state when the base station lost time process G3 is not found even when the process is performed for a certain period of time and transitions to the feedback reset process G4.

図13を参照しつつ、自律走行型掃除機Sが掃除走行モードを実行して鎖線矢印で明示された軌跡を走行して地点P30に到達したときに帰還走行モードに移行した場合を想定する。   Referring to FIG. 13, it is assumed that the autonomous traveling cleaner S executes the cleaning traveling mode, travels along the locus indicated by the chain line arrow, and shifts to the return traveling mode when reaching the point P30.

本実施例の自律走行型掃除機Sは、帰還信号29を発見する前は、清掃に適した動作、例えば、いわゆるランダム走行を行うことができる。より具体的には、障害物24等を発見した場合、進路方向をランダムに変更して前進を再開する。
帰還走行モードを実行している自律走行型掃除機Sはその後、帰還信号29の受信可能領域内である地点P31に至り、帰還信号29(ここでは29R)を受信したとする。このように帰還信号29を受信した点P31を本実施例において、位置推定における基準点とする。この場所から中央帰還信号29Cを見つけるまで運転した後、図14に例示した走行軌跡L31に示すように中央帰還信号29Cを辿る帰還信号追従走行モードになる。
The autonomously traveling vacuum cleaner S of the present embodiment can perform an operation suitable for cleaning, for example, so-called random traveling, before finding the return signal 29. More specifically, when the obstacle 24 or the like is found, the course direction is randomly changed and the forward movement is resumed.
It is assumed that the autonomously traveling cleaner S that is executing the return travel mode then reaches the point P31 that is within the receivable area of the return signal 29 and receives the return signal 29 (29R in this case). In this embodiment, the point P31 at which the feedback signal 29 is received in this way is set as a reference point for position estimation. After driving until the central feedback signal 29C is found from this place, a feedback signal follow-up running mode in which the central feedback signal 29C is followed as shown in the travel locus L31 illustrated in FIG.

このとき、基地局25付近で何らかの原因で帰還信号29の受信可能領域から外れてしまい、図15に例示する鎖線矢印L32のような軌跡で運転をしてしまうことがある。この場合、帰還信号29を受信した位置への現在位置からの距離や方向を算出して、そこを目指すよう進路を変更する。例えば、最後に受信した帰還信号29の種類(29L,29C,29Rいずれであるか)、また好ましくはさらに、最後に帰還信号29を受信した位置P32に基づいて、点線矢印L33のように、位置P32に向けて基地局25の正面へと回り込むように旋回又は超信地旋回する。この場合、最終受信地点P32での受信信号が帰還信号29Lであれば、時計回りで旋回または超信地旋回を行う。帰還信号29Lから、帰還信号29Cとは反対側に向かったことになるため、自律走行型掃除機Sから見て左側に基地局25があることが分かるためである。
もし最終受信地点P32で帰還信号29Rを受信していた場合には、右側に基地局25があるため、反時計回りで旋回または超信地旋回を行う。
At this time, the base station 25 may deviate from the area where the feedback signal 29 can be received for some reason, and the vehicle may be operated along a locus such as a chain line arrow L32 illustrated in FIG. In this case, the distance and direction from the current position to the position where the feedback signal 29 is received are calculated, and the course is changed to aim there. For example, based on the type of the last received feedback signal 29 (which is 29L, 29C, or 29R), and preferably, based on the position P32 at which the feedback signal 29 was last received, the position as indicated by a dotted arrow L33 Turn or turn around so as to go around to the front of the base station 25 toward P32. In this case, if the received signal at the final receiving point P32 is the feedback signal 29L, the turn or the super turn is performed clockwise. This is because the feedback signal 29L is directed to the opposite side of the feedback signal 29C, and thus it is understood that the base station 25 is on the left side when viewed from the autonomous traveling cleaner S.
If the feedback signal 29R has been received at the final receiving point P32, the base station 25 is on the right side, so that the turn or the superstrate turn is performed counterclockwise.

このときの旋回半径が大きいと障害物を検知して回避動作を頻繁に行ってしまい、帰還性能が低下する虞があるから、例えばピボット動作のような、自律走行型掃除機Sの片輪が軸となり、旋回する動作が好ましい。このような走行を行うことでP32へと戻るようにするものである。
上述の走行の流れについて、図12のフローチャートを用いながら説明する。
If the turning radius at this time is large, obstacles are frequently detected and the avoidance operation is frequently performed, and there is a concern that the return performance may be deteriorated. For example, one wheel of the autonomous traveling type cleaner S such as a pivot operation is A pivoting action is preferred. Returning to P32 is made by performing such traveling.
The above-described traveling flow will be described with reference to the flowchart of FIG.

<処理G1>
まず、帰還走行モードに遷移した際に受信部26,27いずれかが帰還信号29を受信しているかどうか判断して、基地局25が近くにあるかを認識する(ステップS1)。帰還信号29が受信されていない場合、(ステップS1、No)、ランダム走行を行い、基地局25の捜索を継続する(ステップS2)。ランダム走行を繰り返していき、帰還信号29が受信されると(ステップS1、Yes)、基地局25の近傍にいるものと判断し、処理G2に遷移する。
<Process G1>
First, it is determined whether any of the receiving units 26 and 27 has received the feedback signal 29 when transitioning to the return travel mode, and it is recognized whether the base station 25 is nearby (step S1). If the feedback signal 29 has not been received (No at Step S1), the vehicle travels randomly and continues to search for the base station 25 (Step S2). When random driving is repeated and the feedback signal 29 is received (step S1, Yes), it is determined that the vehicle is in the vicinity of the base station 25, and the process proceeds to process G2.

<処理G2>
処理G2ではまず、位置推定の準備として相対的な位置を算出するために必要な基準点である記憶開始地点P31を設定する(ステップS3)。記憶開始地点P31の設定が完了すると、帰還信号追従走行を開始する(ステップS4)。すなわち、帰還信号29を辿って基地局25への接近及び接続を試みる。
<Process G2>
In the process G2, first, as a preparation for position estimation, a storage start point P31 that is a reference point necessary for calculating a relative position is set (step S3). When the setting of the storage start point P31 is completed, the feedback signal follow-up running is started (step S4). That is, the feedback signal 29 is traced to try to approach and connect to the base station 25.

帰還信号追従走行を行った結果、基地局25への接続判定(ステップS5)で接続が成功したと判断された場合(ステップS5、Yes)、帰還は終了となる。しかし、接続されない間は(ステップS5、No)、帰還走行モードを継続する。この間は、検知した障害物を回避する障害物回避動作(ステップS6、S7)などを行いつつ、記憶開始地点からの相対地点(現在地)を演算したり記憶したりする(ステップS8)。   As a result of performing the feedback signal follow-up traveling, when it is determined that the connection to the base station 25 is determined to be successful (step S5, Yes), the feedback is terminated. However, while not connected (No at Step S5), the return traveling mode is continued. During this time, while performing an obstacle avoiding operation (steps S6 and S7) for avoiding the detected obstacle, a relative point (current location) from the storage start point is calculated and stored (step S8).

現在地の記憶が完了すると、現在の帰還信号受信状態を判断する(ステップS9)。もしこのとき帰還信号29の受信がされていれば(ステップS9、Yes)、帰還信号29を見失っていないものと判断し、帰還信号追従走行(ステップS4)を行う。対照的に、もしここで帰還信号29が受信できていなければ(ステップS9、No)、基地局を完全にロストしたものなのか一時的なものなのかを判断するため、次の処理(G3)に遷移する。   When the storage of the current location is completed, the current feedback signal reception state is determined (step S9). If the feedback signal 29 is received at this time (step S9, Yes), it is determined that the feedback signal 29 has not been lost, and the feedback signal follow-up running (step S4) is performed. In contrast, if the feedback signal 29 has not been received (step S9, No), the next process (G3) is performed to determine whether the base station is completely lost or temporary. Transition to.

<処理G3>
帰還信号を検知した状態から不検知の状態になったら、まずは任意で、走行(ステップS11)を行うことで帰還信号29を受信できるようになるか様子を見る。これにより、一時的に帰還信号29が遮断されたものなのか、障害物回避等によって見失ったものなのかを判断することができる。G2と同様、途中で障害物を発見した場合(ステップS12、Yes)は障害物回避動作(ステップS13)を行う。
<Process G3>
If the state where the feedback signal is detected is changed to the non-detection state, first, it is arbitrarily checked whether the feedback signal 29 can be received by running (step S11). This makes it possible to determine whether the feedback signal 29 has been temporarily interrupted or has been lost due to obstacle avoidance or the like. Similarly to G2, when an obstacle is found on the way (step S12, Yes), an obstacle avoidance operation (step S13) is performed.

すなわち、走行(ステップS11)や障害物回避動作(ステップS13)を行いながら、帰還信号が受信できているかどうかを判断する(ステップS14)、もし、このときに受信できていれば(ステップS14,Yes)、帰還信号追従走行(ステップS4)へ戻る。一定時間T1の間に帰還信号を受信できなければ(ステップ15、Yes)、一時的に遮断されたものではなく、見失っていると判断し、次の処理(G4)に遷移する。   That is, it is determined whether or not the feedback signal can be received while performing the running (step S11) and the obstacle avoiding operation (step S13) (step S14). If it is received at this time (step S14, Yes), the process returns to the feedback signal follow running (step S4). If the feedback signal cannot be received during the predetermined time T1 (step 15, Yes), it is determined that the signal is not temporarily interrupted but is lost, and the process proceeds to the next process (G4).

<処理G4>
この段階では、受信信号を既に見失っているものと判断されているため、直近に帰還信号を受信できた最終受信地点P32へと移動するための処理を行う。(ステップS16)。上述のように最後に受信した帰還信号29の種類に応じた方向への旋回を行う。
<Process G4>
At this stage, since it is determined that the received signal has already been lost, processing for moving to the final receiving point P32 where the feedback signal has been received most recently is performed. (Step S16). As described above, the turn in the direction corresponding to the type of the feedback signal 29 received last is performed.

もし、最終受信地点P32に向かう走行の途中で帰還信号29を受信することができれば(ステップS17、Yes)、その地点から帰還信号追従走行(ステップS4)を行う。   If the feedback signal 29 can be received in the middle of traveling toward the final reception point P32 (step S17, Yes), the feedback signal following traveling (step S4) is performed from that point.

対照的に、ここで帰還信号が受信できず(ステップS17、No)に、一定時間T2(好ましくはT2>T1)が経過した場合(ステップS18,Yes)、最初に受信できた場所P31に戻る。進入角度などの問題によりうまく接続できていない場合などは、こういった状態になることが考え得る。このような場合には、図17に示すようにリセットの意味合いも含めて記憶開始地点P31へと戻り、帰還信号追従走行(ステップS4)から帰還処理をやり直す。   In contrast, when the feedback signal cannot be received here (step S17, No) and a certain time T2 (preferably T2> T1) has elapsed (step S18, Yes), the process returns to the place P31 where the signal can be received first. . Such a state can be considered when the connection is not successful due to a problem such as an approach angle. In such a case, as shown in FIG. 17, the process returns to the storage start point P31 including the meaning of reset, and the feedback process is performed again from the feedback signal follow-up running (step S4).

本明細書にて記載した基地局25への帰還に係る技術的思想は、自律走行型掃除機Sに限られず、帰還信号を発する基地局及び帰還信号を検知する移動体を含む移動体システムに適用できる。
本明細書にて制御部10が記憶したり演算する情報は、必ずしも自律走行型掃除機S内にて実行する必要はなく、例えば自律走行型掃除機Sが通信可能なサーバやストレージに記憶させて必要に応じて呼び出せるようにしたり、サーバに演算を要求可能に構成しても良い。
The technical idea related to the return to the base station 25 described in the present specification is not limited to the autonomously traveling cleaner S, but a mobile system including a base station that generates a return signal and a mobile body that detects the return signal. Applicable.
The information stored or calculated by the control unit 10 in this specification is not necessarily executed in the autonomous traveling cleaner S, and is stored in, for example, a server or storage with which the autonomous traveling cleaner S can communicate. It may be configured so that it can be called as necessary, or the server can request computation.

なお、基地局25の正面に回り込むための旋回の半径(ステップS16)は使用者が自由に変更できるものであってもよい。また、現在位置と最後に記憶した位置との距離に対して正の相関関係を持たせても良い。旋回角度は180°以上360°以下が好ましいが、帰還信号を再検知したら旋回を終了させても良い。   It should be noted that the turning radius (step S16) for turning around the front of the base station 25 may be freely changed by the user. Further, a positive correlation may be given to the distance between the current position and the last stored position. The turning angle is preferably 180 ° or more and 360 ° or less, but the turning may be terminated when the feedback signal is detected again.

また、基地局ロスト時処理G3を行わずに帰還リセット処理G4を行ってもよい。記憶開始地点P31へと戻るため状況によっては基地局25から遠くに戻ることが考えられるが、旋回半径が十分確保できない場合や周辺に物が多い場合などは、あえて記憶開始地点P31へと戻ることでスムーズに基地局25への接続が出来る。   Further, the feedback reset process G4 may be performed without performing the base station lost process G3. Depending on the situation, it may be possible to return far from the base station 25 to return to the memory start point P31. However, if the turning radius cannot be secured sufficiently or there are many objects in the vicinity, the user may return to the memory start point P31. Can smoothly connect to the base station 25.

また、基地局ロスト時処理G3を行う際に旋回、超信地旋回で最終受信地点P32へと移動するのではなく、直前の動作を1つまたは2つ以上記憶しておき、一定時間を越えても帰還信号を見失ったままの場合に、記憶した動作とは反対方向に進む動作(例えば直前の動作が前進であれば後退、右旋回であれば右後旋回)を行わせて、最終受信地点P32を目指しても良い。   Also, when the base station lost process G3 is performed, instead of moving to the final reception point P32 by turning or super-significant turning, one or more previous operations are stored, and a predetermined time is exceeded. However, if the feedback signal remains lost, an operation that proceeds in the opposite direction to the stored operation (for example, backward if the immediately preceding operation is forward, or right rear if it is a right turn) is performed. You may aim at the receiving point P32.

本実施例は実施例1と下記の点を除き同様にできる。
図17は本実施例の帰還リセット処理G4の概略図である。帰還リセット処理G4へと遷移した後、途中で帰還信号29を受信した場合にはその地点から帰還信号追従走行G2を再開する。記憶開始地点P31へと戻る途中(軌跡L34)で帰還信号29Lを検知したら、図17のような軌跡をたどるのではなく、すなわち記憶開始地点P31には戻らず、帰還信号追従走行G2へと遷移させることで、更に効率よく基地局25への帰還が出来る。
This embodiment can be the same as the first embodiment except for the following points.
FIG. 17 is a schematic diagram of feedback reset processing G4 of this embodiment. After the transition to the feedback reset process G4, when the feedback signal 29 is received on the way, the feedback signal follow-up running G2 is resumed from that point. If the feedback signal 29L is detected in the middle of returning to the memory start point P31 (track L34), it does not follow the trajectory as shown in FIG. By doing so, it is possible to return to the base station 25 more efficiently.

本実施例は実施例1,2と下記の点を除き同様にできる。
図18は本実施例の帰還制御の途中からの軌跡の一例を示す図である。帰還リセット処理G4の際、記憶開始地点P31に戻るのではなく、基地局25からの距離が同じであり、なおかつP31で受信した帰還信号29とは逆方向に出力される信号(記憶開始地点P31で帰還信号29Rを受信していた場合には、帰還信号29Lのことを指す)が受信できる位置P33に向かって走行していく(鎖線矢印L35)。その後帰還信号追従走行G2へと遷移させることで、異なった方向から基地局25へのアプローチを行うことが出来る。
This embodiment can be the same as the first and second embodiments except for the following points.
FIG. 18 is a diagram illustrating an example of a locus from the middle of the feedback control according to the present embodiment. At the time of the feedback reset process G4, instead of returning to the storage start point P31, a signal (storage start point P31) that has the same distance from the base station 25 and is output in the opposite direction to the feedback signal 29 received at P31. When the feedback signal 29R is received, the vehicle travels toward the position P33 where the feedback signal 29L can be received (dashed line arrow L35). Then, the base station 25 can be approached from different directions by making a transition to the feedback signal follow-up running G2.

S 自律走行型掃除機
1 本体ケース
2 バンパ
3 右駆動輪
4 左駆動輪
9 充電池
18 走行モータ用エンコーダ
19 バンパセンサ(障害物センサの一例)
21 測距センサ(障害物センサの一例)
23 マイコン
25 基地局
26 第1受信部
27 第2受信部
50 ジャイロセンサ
S Autonomous Traveling Vacuum Cleaner 1 Body Case 2 Bumper 3 Right Drive Wheel 4 Left Drive Wheel 9 Rechargeable Battery 18 Travel Motor Encoder 19 Bumper Sensor (Example of Obstacle Sensor)
21 Ranging sensor (an example of an obstacle sensor)
23 Microcomputer 25 Base station 26 First receiver 27 Second receiver 50 Gyro sensor

Claims (4)

左側帰還信号及び右側帰還信号を区別して検知可能な受信部と、
駆動輪と、を有し、
前記受信部が検知する帰還信号を辿って進行する基地局指向処理の実行が可能な、床面を移動する移動体であって、
前記受信部が帰還信号を検知した状態から不検知の状態に変化した場合、不検知直前に検知していた帰還信号の種類に応じた方向に旋回することを特徴とする移動体。
A receiving unit capable of distinguishing and detecting a left feedback signal and a right feedback signal;
Driving wheels, and
A mobile that moves on the floor, capable of performing base station-oriented processing that follows the feedback signal detected by the receiver,
A moving body characterized in that when the receiving unit changes from a state in which a feedback signal is detected to a state in which it is not detected, the mobile unit turns in a direction corresponding to the type of feedback signal detected immediately before the non-detection.
前記旋回中に帰還信号を検知した場合、前記基地局指向処理を実行することを特徴とする請求項1に記載の移動体。   The mobile body according to claim 1, wherein when a feedback signal is detected during the turn, the base station orientation processing is executed. 前記旋回後に前記基地局指向処理をした結果、基地局への接続を失敗した場合、前記旋回前に帰還信号を検知した記憶開始地点に向かおうとすることを特徴とする請求項1又は2に記載の移動体。   3. The method according to claim 1, wherein if the connection to the base station fails as a result of the base station orientation processing after the turn, the mobile station tries to go to a storage start point where a feedback signal is detected before the turn. The moving body described. 前記旋回後に前記基地局指向処理をした結果、基地局への接続を失敗した場合、前記旋回前に帰還信号を検知した記憶開始地点で検知可能な種類の帰還信号とは異なる種類の帰還信号が検知可能な地点に向かおうとすることを特徴とする請求項1又は2に記載の移動体。   As a result of the base station-oriented processing after the turn, if the connection to the base station fails, a feedback signal of a type different from the type of feedback signal that can be detected at the memory start point where the feedback signal was detected before the turn The mobile body according to claim 1, wherein the mobile body is directed to a detectable point.
JP2018104233A 2018-05-31 2018-05-31 Moving body moving along floor surface Pending JP2019208545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018104233A JP2019208545A (en) 2018-05-31 2018-05-31 Moving body moving along floor surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018104233A JP2019208545A (en) 2018-05-31 2018-05-31 Moving body moving along floor surface

Publications (1)

Publication Number Publication Date
JP2019208545A true JP2019208545A (en) 2019-12-12

Family

ID=68845677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018104233A Pending JP2019208545A (en) 2018-05-31 2018-05-31 Moving body moving along floor surface

Country Status (1)

Country Link
JP (1) JP2019208545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021146145A (en) * 2020-03-24 2021-09-27 日立グローバルライフソリューションズ株式会社 Autonomous travel type cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021146145A (en) * 2020-03-24 2021-09-27 日立グローバルライフソリューションズ株式会社 Autonomous travel type cleaner

Similar Documents

Publication Publication Date Title
CN109562519B (en) Mobile robot and control method thereof
CN110621209B (en) Cleaner and control method thereof
KR101822942B1 (en) Robot cleaner and controlling method of the same
KR101566207B1 (en) Robot cleaner and control method thereof
US7133746B2 (en) Autonomous machine for docking with a docking station and method for docking
JP4522426B2 (en) Robot vacuum cleaner system
JP4268911B2 (en) Self-propelled vacuum cleaner
JP6325946B2 (en) Autonomous vehicle
EP3093727B1 (en) Traveling body device
US10564646B2 (en) Autonomous mobile robot
CN108604097B (en) Self-propelled electronic device and method for moving self-propelled electronic device
EP3778145B1 (en) Mobile robot and control method of mobile robot
KR20160097051A (en) Apparatus for returning of robot and returning method thereof
JP2003330543A (en) Charging type autonomous moving system
JP6422703B2 (en) Autonomous vehicle
JP6636289B2 (en) Traveling device
JP6429639B2 (en) Self-propelled electronic device
JP2019208545A (en) Moving body moving along floor surface
US20230096516A1 (en) Mobile robot and control method therefor
JP2016220823A (en) Self-propelled cleaner
KR101193685B1 (en) Automatic cleaning system and method for controlling automatic cleaning system
JP7107658B2 (en) AUTONOMOUS RUNNING VACUUM CLEANER, AUTONOMOUS RUNNING TYPE VACUUM CLEANER SYSTEM, AND MOVING OBJECT
CN114745999A (en) Autonomous walking type dust collector
JP2020173621A (en) Autonomous travel type cleaner
JP2019185411A (en) Autonomous travel type cleaner, autonomous travel type cleaner system, and mobile object

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601