JP2019143390A - Column-beam joint structure - Google Patents

Column-beam joint structure Download PDF

Info

Publication number
JP2019143390A
JP2019143390A JP2018029250A JP2018029250A JP2019143390A JP 2019143390 A JP2019143390 A JP 2019143390A JP 2018029250 A JP2018029250 A JP 2018029250A JP 2018029250 A JP2018029250 A JP 2018029250A JP 2019143390 A JP2019143390 A JP 2019143390A
Authority
JP
Japan
Prior art keywords
joint
column
flange
welded
joint core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018029250A
Other languages
Japanese (ja)
Other versions
JP6986751B2 (en
Inventor
中島 教雄
Norio Nakajima
教雄 中島
中島 伸
Shin Nakajima
伸 中島
英樹 加納
Hideki Kano
英樹 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakajima Steel Pipe Co Ltd
Original Assignee
Nakajima Steel Pipe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakajima Steel Pipe Co Ltd filed Critical Nakajima Steel Pipe Co Ltd
Priority to JP2018029250A priority Critical patent/JP6986751B2/en
Publication of JP2019143390A publication Critical patent/JP2019143390A/en
Application granted granted Critical
Publication of JP6986751B2 publication Critical patent/JP6986751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

To provide a column-beam joint structure having rigidity at the same degree of that of a through-diaphragm frame or an inner-diaphragm frame in a non-diaphragm frame.SOLUTION: A column-beam joint structure 10 comprises column shafts 11A and 11B, a beam 13 having a flange 13a and a web 13b, and a non-diaphragm type connection core 12, in which a horizontal stiffener 18 is welded to the end face of the open end of the connection core 12, a horizontal haunch 30 is provided in a gap K formed between the end surface of the flange 13a and the side surface of the connection core 12 by the beam 13 welded to the side surface of the connection core 12, the other end surface of the horizontal haunch 30 is welded to the connection core 12 with each of both ends being disposed at an intermediate position Rbetween a vertex Rand an R stop Rof a corner portion 12b of the connection core 12, and the gap K between the end face of the flange 13a to which the horizontal haunch 30 is welded and the side surface of the connection core 12 is formed by the difference between an outer diameter Bp of the connection core 12 and a width W of the flange 13a.SELECTED DRAWING: Figure 2

Description

本発明は、冷間ロール成形の角形鋼管により構成される柱部と、H形鋼により構成される梁部と、熱間成形の角形鋼管により構成され、前記柱部と前記梁部との接続部分となるノンダイアフラム形式の仕口部と、を備える柱梁接合構造に関するものである。   The present invention is constituted by a column portion constituted by a cold roll-formed square steel pipe, a beam portion constituted by an H-shaped steel, and a hot-formed square steel pipe, and the connection between the pillar portion and the beam portion. The present invention relates to a column beam connection structure including a non-diaphragm type joint portion as a part.

従来、この種の柱梁接合構造物は、複数の鋼管を溶接結合することにより構成されており、その際に溶接結合として、例えば、通しダイアフラム形式、内ダイアフラム形式等の接合形式がある。
しかしながら、これら通しダイアフラム形式、内ダイアフラム形式等の接合形式によると、組立て工数(溶接箇所)が多く、且つ溶接長さが長くなるため、全体の作業が複雑化するという問題点があった。
Conventionally, this type of column beam connection structure is configured by welding a plurality of steel pipes. In this case, examples of the welding connection include a connection type such as a through diaphragm type and an inner diaphragm type.
However, according to the joining types such as the through diaphragm type and the inner diaphragm type, there are many problems in that the entire work is complicated because the number of assembling steps (welding points) is large and the welding length becomes long.

そこで、このような問題点を解決したものとして、柱部と梁部との接続部分となる仕口部に熱間成形により成形した厚肉の短尺角形鋼管を採用したノンダイアフラム形式の柱梁接合構造物が提供されている(例えば、特許文献1)。すなわち、所定の板厚の長尺角形鋼管と、この長尺角形鋼管よりも板厚が厚く且つ仕口部を形成する長さの半成形短尺角形鋼管とを、それぞれ冷間成形で製造する。そして、半成形短尺角形鋼管を加熱炉において加熱した後、熱間成形して短尺角形鋼管を製造する。このようにして得た長尺角形鋼管と短尺角形鋼管とをアーク溶接等で溶接結合することで角形鋼管柱を得る。
このような熱間成形により得た厚肉の短尺角形鋼管を採用した柱梁接合構造物によると、組立て工数を削減できるとともに溶接長さを短くでき、全体の作業が簡略化できる。
Therefore, as a solution to these problems, non-diaphragm-type beam-column joints using thick, short rectangular steel pipes formed by hot forming at the joints that connect the column and beam. A structure is provided (for example, Patent Document 1). That is, a long square steel pipe having a predetermined thickness and a semi-formed short square steel pipe having a thickness larger than that of the long square steel pipe and forming a joint are manufactured by cold forming. Then, after heating the semi-formed short rectangular steel pipe in a heating furnace, it is hot-formed to produce a short rectangular steel pipe. A rectangular steel pipe column is obtained by welding and joining the long rectangular steel pipe and the short rectangular steel pipe thus obtained by arc welding or the like.
According to the column beam connection structure employing the thick short rectangular steel pipe obtained by such hot forming, the number of assembling steps can be reduced, the welding length can be shortened, and the entire operation can be simplified.

特開2003−268877号公報JP 2003-268877 A

しかしながら、特許文献1の柱梁接合構造においては、柱部と梁部との接続部分となる仕口部に地震等による外力が加わると梁部の接合端部に大きな応力やひずみが集中し、梁部の接合端部の損傷や梁部の押し込みによる仕口部の変形が生じる場合がある。そして、特許文献1の柱梁接合構造のようなノンダイアフラム形式の架構においては、当該仕口部の変形が、通しダイアフラム形式の架構或いは内ダイアフラム形式の架構において生じる当該仕口部の変形と比べて大きいという問題がある。すなわち、特許文献1の柱梁接合構造のようなノンダイアフラム形式の架構においては、その剛性が、通しダイアフラム形式の架構或いは内ダイアフラム形式の架構の剛性と比べて小さいという問題がある。   However, in the beam-column joint structure of Patent Document 1, when an external force due to an earthquake or the like is applied to the joint portion that is a connection portion between the column portion and the beam portion, a large stress or strain is concentrated on the joint end portion of the beam portion, The joint end of the beam part may be damaged or the joint part may be deformed due to the pushing of the beam part. And, in the non-diaphragm frame structure such as the column beam joint structure of Patent Document 1, the deformation of the joint portion is compared with the deformation of the joint portion that occurs in the through-diaphragm frame structure or the inner diaphragm frame structure. There is a problem that it is big. In other words, the non-diaphragm frame structure such as the column-beam joint structure of Patent Document 1 has a problem that its rigidity is smaller than the rigidity of the through-diaphragm frame structure or the inner-diaphragm frame structure.

そこで、本発明は、ノンダイアフラム形式の架構において、通しダイアフラム形式の架構或いは内ダイアフラム形式の架構と同程度の剛性を有する柱梁接合構造を提供することを目的とする。   Accordingly, an object of the present invention is to provide a column-beam joint structure having a rigidity comparable to that of a through-diaphragm frame or an inner-diaphragm frame in a non-diaphragm frame.

本発明の解決しようとする課題は以上であり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、本発明の柱梁接合構造は、冷間ロール成形の角形鋼管により構成される柱部と、一対のフランジと、前記フランジを連結するウェブと、を有するH形鋼により構成される梁部と、熱間成形の角形鋼管により構成され、前記柱部と前記梁部との接続部分となるノンダイアフラム形式の仕口部と、を備える柱梁接合構造であって、前記仕口部の両側における開口端部の端面に、前記柱部が溶接接合されるとともに、その両端の開口端部の内側に、四角形状の補強板材が、前記開口端部の端面と面一となるように溶接接合され、前記梁部は、前記フランジの一端側が前記ウェブの一端側より短く形成され、前記仕口部の側面に溶接接合される前記梁部によって前記フランジの一端側の端面と、前記仕口部の側面との間に形成される間隙に、平板状の水平ハンチを設け、前記水平ハンチは、その一端面が前記フランジの一端側の端面に溶接接合され、その他端面が、その両端のそれぞれを、前記仕口部の隅角部分の頂点と、前記頂点を含む隅角部分のR止まりと、の中間位置に配置して、前記仕口部の側面に溶接接合され、前記水平ハンチが溶接接合される前記フランジの一端側の端面と、前記仕口部の側面との間の間隙は、前記仕口部の外径と前記フランジの幅との差に基づいて形成されるものである。   That is, the column beam connection structure of the present invention is a beam portion made of an H-shaped steel having a column portion made of a cold rolled square steel pipe, a pair of flanges, and a web connecting the flanges. And a non-diaphragm joint that is formed by a hot-formed square steel pipe and serves as a connecting portion between the pillar and the beam, and both sides of the joint The column part is welded and joined to the end face of the open end part of the steel plate, and the square reinforcing plate is welded and joined to the end face of the open end part inside the open end parts of both ends thereof. The flange portion is formed such that one end side of the flange is shorter than one end side of the web, and the end portion on one end side of the flange is welded to the side surface of the joint portion, and the joint portion In the gap formed between The horizontal hunch has one end surface welded to the end surface on one end side of the flange, and the other end surface has its both ends respectively connected to the apex of the corner portion of the joint portion. An end face on one end side of the flange, which is disposed at an intermediate position between the R-stop of the corner portion including the apex, welded to the side surface of the joint portion, and welded to the horizontal haunch, and the finish The gap between the side surface of the mouth portion is formed based on the difference between the outer diameter of the mouth portion and the width of the flange.

本発明の柱梁接合構造は、上記の柱梁接合構造において、前記柱部及び前記仕口部は、前記柱部の外径Bと仕口部の板厚tpとの比が10≦B/tp≦15となるように成形され、前記仕口部の隅角部分の外側曲率半径が前記仕口部の板厚の1.5倍から2.5倍に成形されるものである。   In the column beam connection structure of the present invention, in the column beam connection structure, the column portion and the joint portion have a ratio of an outer diameter B of the column portion to a plate thickness tp of the joint portion of 10 ≦ B / The outer curvature radius of the corner portion of the joint portion is formed to be 1.5 to 2.5 times the plate thickness of the joint portion.

本発明の柱梁接合構造によれば、仕口部の外径とフランジの幅との差に基づいて形成されるフランジの一端側の端面と、仕口部の側面との間の間隙に、平板状の水平ハンチを設けることから、架構の剛性を大きくすることができ、通しダイアフラム形式の架構或いは内ダイアフラム形式の架構と同程度の剛性を有するノンダイアフラム形式の架構を構成することができる。ノンダイアフラム形式を採用した建物の構造設計において、梁の梁端部を剛接合としてモデル化することができる。   According to the beam-column joint structure of the present invention, the gap between the end face on one end side of the flange formed based on the difference between the outer diameter of the joint portion and the width of the flange, and the side surface of the joint portion, Since the flat horizontal haunch is provided, the rigidity of the frame can be increased, and a non-diaphragm frame having the same degree of rigidity as the through-diaphragm frame or the inner-diaphragm frame can be formed. In the structural design of buildings that adopt the non-diaphragm format, the beam end of the beam can be modeled as a rigid joint.

本発明に係る柱梁接合構造の要部の一部切り欠き斜視図である。It is a partially cutaway perspective view of the main part of the column beam joint structure according to the present invention. 本発明に係る柱梁接合構造の要部の縦断正面図である。It is a vertical front view of the principal part of the column beam junction structure concerning the present invention. 本発明に係る柱梁接合構造の要部の横断平面図である。It is a cross-sectional top view of the principal part of the column beam junction structure which concerns on this invention. 本発明に係る柱梁接合構造の柱シャフトと仕口コアの組み合わせの適否図表である。It is a suitability chart of the combination of the column shaft and the joint core of the column beam joint structure according to the present invention. 本発明に係る柱梁接合構造の柱シャフトと仕口コアとの重なりを示す平面図である。It is a top view which shows the overlap of the column shaft of the column beam junction structure which concerns on this invention, and a joint core. FEM解析に用いた柱梁接合構造の解析モデルを示す概要図である。It is a schematic diagram which shows the analysis model of the column beam connection structure used for FEM analysis. (a)は、FEM解析に用いたGeneral Yield法の概要図、(b)は、FEM解析の結果により求められる荷重変形曲線である。(A) is a schematic diagram of the General Yield method used for the FEM analysis, and (b) is a load deformation curve obtained from the result of the FEM analysis. 比較例1の全塑性耐力時におけるMises応力図であり、(a)は外観、(b)は内観を示す図である。It is a Mises stress figure at the time of the total plastic yield strength of the comparative example 1, (a) is an external appearance, (b) is a figure which shows an internal appearance. 比較例1の最終ステップ時(R=1/10rad時)におけるMises応力図であり、(a)は外観、(b)は内観を示す図である。It is a Mises stress figure at the time of the final step (R = 1/10 rad) of comparative example 1, (a) is an appearance, and (b) is a figure showing an introspection. 比較例2の全塑性耐力時におけるMises応力図であり、(a)は外観、(b)は内観を示す図である。It is the Mises stress figure at the time of the total plastic yield strength of the comparative example 2, (a) is an external appearance, (b) is a figure which shows an internal appearance. 比較例2の最終ステップ時(R=1/10rad時)におけるMises応力図であり、(a)は外観、(b)は内観を示す図である。It is a Mises stress figure at the time of the last step of comparative example 2 (at the time of R = 1/10 rad), (a) is an appearance and (b) is a figure showing an introspection. 比較例3の全塑性耐力時におけるMises応力図であり、(a)は外観、(b)は内観を示す図である。It is a Mises stress figure at the time of the total plastic yield strength of the comparative example 3, (a) is an external appearance, (b) is a figure which shows an internal appearance. 比較例3の最終ステップ時(R=1/10rad時)におけるMises応力図であり、(a)は外観、(b)は内観を示す図である。It is a Mises stress figure at the time of the final step (R = 1/10 rad) of comparative example 3, (a) is an appearance and (b) is a figure showing an introspection. 実施例1の全塑性耐力時におけるMises応力図であり、(a)は外観、(b)は内観を示す図である。It is a Mises stress figure at the time of the total plastic yield strength of Example 1, (a) is an external appearance, (b) is a figure which shows an internal appearance. 実施例1の最終ステップ時(R=1/10rad時)におけるMises応力図であり、(a)は外観、(b)は内観を示す図である。It is a Mises stress figure at the time of the last step (R = 1/10 rad) of Example 1, (a) is an external appearance, (b) is a figure which shows an introspection.

以下、本発明の実施例を図面に基づき説明する。まず、本発明に係る柱梁接合構造10について説明する。なお、本発明は、以下に説明する柱梁接合構造10に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. First, the column beam joint structure 10 according to the present invention will be described. In addition, this invention is not limited to the beam-column joining structure 10 demonstrated below.

図1に示すように、柱梁接合構造10は、上下方向に延設される上下の柱シャフト11A、11B(「柱部」の一例)と、上下の柱シャフト11A、11Bの間に配設される仕口コア12(「仕口部」の一例)と、仕口コア12の四方に向く外側面にその一端部が固定され、水平方向に延びて設けられる梁13(「梁部」の一例)と、から構成される。   As shown in FIG. 1, the column beam connection structure 10 is disposed between upper and lower column shafts 11A and 11B (an example of “column portion”) extending in the vertical direction and the upper and lower column shafts 11A and 11B. Of the joint core 12 (an example of the “joint part”) and a beam 13 (an “joint part”) of which one end is fixed to an outer surface facing the four sides of the joint core 12 and extends in the horizontal direction. An example).

図1から図3に示すように、上下の柱シャフト11A、11Bは、ブレークダウン装置、フィンパス装置等の成形手段により冷間ロール成形した長尺の角形鋼管である。上下の柱シャフト11A、11Bは、その外径Bが200mmから550mmであり、その板厚tcが9mmから25mmである。上下の柱シャフト11A、11Bは、その隅角部分11aの外側曲率半径が上下の柱シャフト11A、11Bの板厚tcの2.0倍から3.0倍となるように成形される。図2に示すように、上下の柱シャフト11A、11Bは、切削加工装置等の加工手段によりその端部の外側部分を切削加工することで、所定角度の開先部11bが形成される。上下の柱シャフト11A、11Bは、その端部に四角リング状の裏当て金15が内嵌されて溶接16により固定される。   As shown in FIGS. 1 to 3, the upper and lower column shafts 11 </ b> A and 11 </ b> B are long rectangular steel pipes that are cold-roll formed by forming means such as a breakdown device or a fin pass device. The upper and lower column shafts 11A and 11B have an outer diameter B of 200 mm to 550 mm and a plate thickness tc of 9 mm to 25 mm. The upper and lower column shafts 11A and 11B are formed so that the outer radius of curvature of the corner portion 11a is 2.0 to 3.0 times the plate thickness tc of the upper and lower column shafts 11A and 11B. As shown in FIG. 2, the upper and lower column shafts 11 </ b> A and 11 </ b> B are formed with a groove portion 11 b having a predetermined angle by cutting an outer portion of an end portion thereof by a processing means such as a cutting device. The upper and lower column shafts 11 </ b> A and 11 </ b> B are fixed by welding 16 with a square ring-shaped backing metal 15 fitted inside the ends thereof.

仕口コア12は、加熱炉等の加熱手段により加熱され、成形ロール装置等の成形手段により熱間成形した短尺の角形鋼管である。図1から図3に示すように、仕口コア12は、上下の柱シャフト11A、11Bと梁13との接続部であり、ノンダイアフラム形式により構成される。仕口コア12は、その長手方向(鉛直方向)の長さLが、溶接接合される梁13の高さD(フランジ13a間の高さ)より長くなるように成形される。仕口コア12は、その外径Bpが220mmから575mmであり、そのパネル12aの板厚tpが19mmから50mmである。仕口コア12は、その隅角部分12bの外側曲率半径が仕口コア12のパネル12aの板厚tpの1.5倍から2.5倍に成形される。ここで、仕口コア12の隅角部分12bの外側曲率半径とは、図5(a)に示すように、仕口コア12における隣り合う内側面と外側面を直交する辺と45度の角度をなす線と隅角部分12bの外側の交点での曲率半径をいう。   The joint core 12 is a short square steel pipe that is heated by a heating means such as a heating furnace and hot-formed by a forming means such as a forming roll device. As shown in FIGS. 1 to 3, the joint core 12 is a connection portion between the upper and lower column shafts 11 </ b> A and 11 </ b> B and the beam 13, and is configured in a non-diaphragm format. The joint core 12 is formed such that the length L in the longitudinal direction (vertical direction) is longer than the height D of the beam 13 to be welded (the height between the flanges 13a). The joint core 12 has an outer diameter Bp of 220 mm to 575 mm, and a panel thickness tp of the panel 12a of 19 mm to 50 mm. The joint core 12 is formed such that the outer radius of curvature of the corner portion 12b is 1.5 to 2.5 times the plate thickness tp of the panel 12a of the joint core 12. Here, as shown in FIG. 5A, the outer radius of curvature of the corner portion 12b of the joint core 12 is an angle of 45 degrees with a side perpendicular to the inner surface and the outer surface adjacent to each other in the joint core 12. Is the radius of curvature at the intersection of the line 12 and the corner 12b outside.

図1及び図2に示すように、柱梁接合構造10においては、上下の柱シャフト11A、11Bと、仕口コア12と、が直線状に位置させるように形成される。具体的には、下側の柱シャフト11Bの上端部に仕口コア12の下端部が配置され、上側の柱シャフト11Aの下端部に仕口コア12の上端部が配置される。そして、上下の柱シャフト11A、11Bの内部に位置させた裏当て金15の外側面を仕口コア12のパネル12aの端面12cに当接させた状態で、上下の柱シャフト11A、11Bと仕口コア12とを外側から溶接17により接合する。柱梁接合構造10においては、上下の柱シャフト11A、11Bの端面が仕口コア12の端面12cに載置可能となるように、仕口コア12の外径Bpが上下の柱シャフト11A、11Bの外径Bより所定の長さで長く設定されている。   As shown in FIGS. 1 and 2, in the column-beam joint structure 10, the upper and lower column shafts 11 </ b> A and 11 </ b> B and the joint core 12 are formed so as to be linearly positioned. Specifically, the lower end portion of the joint core 12 is disposed at the upper end portion of the lower column shaft 11B, and the upper end portion of the joint core 12 is disposed at the lower end portion of the upper column shaft 11A. Then, with the outer surface of the backing metal 15 positioned inside the upper and lower column shafts 11A and 11B in contact with the end surface 12c of the panel 12a of the joint core 12, the upper and lower column shafts 11A and 11B are finished. The mouth core 12 is joined from the outside by welding 17. In the column beam connection structure 10, the outer diameter Bp of the joint core 12 is such that the upper and lower column shafts 11 </ b> A and 11 </ b> B can be placed on the end surface 12 c of the joint core 12. Is set longer than the outer diameter B by a predetermined length.

図1から図3に示すように、梁13は、H形鋼から形成され、対向する2枚の平板状のフランジ13aと、対向するフランジ13aの間に形成されるウェブ13bと、から構成される。梁13は、フランジ13aが上下方向に対向した位置となり、且つウェブ13bの一端面が仕口コア12のパネル12aに沿って当接するように、仕口コア12に溶接接合される。   As shown in FIGS. 1 to 3, the beam 13 is made of H-shaped steel, and includes two opposing flat flanges 13 a and a web 13 b formed between the opposing flanges 13 a. The The beam 13 is welded to the joint core 12 so that the flange 13a faces the vertical direction and the one end surface of the web 13b abuts along the panel 12a of the joint core 12.

フランジ13aは、その長手方向の一端側に開先部13cが形成されるとともに、その開先部13cが形成される一端側がウェブ13bの長手方向の一端側(仕口コア12のパネル12aに当接する側)より短く形成されている。すなわち、フランジ13aは、その長手方向の長さがウェブ13bの長手方向の長さより短く形成されている。フランジ13aの一端側がウェブ13bの一端側より短く形成されることで、梁13をパネル12a(仕口コア12の側面)に溶接接合した際に、フランジ13aの一端側の端面と、パネル12a(仕口コア12の側面)との間に間隙Kが形成される。すなわち、間隙Kは、梁13におけるパネル12aとの溶接接合側の梁端に形成される。   In the flange 13a, a groove portion 13c is formed on one end side in the longitudinal direction, and one end side on which the groove portion 13c is formed corresponds to one end side in the longitudinal direction of the web 13b (the panel 12a of the joint core 12). It is shorter than the contact side. In other words, the length of the flange 13a is shorter than the length of the web 13b in the longitudinal direction. Since one end side of the flange 13a is formed shorter than one end side of the web 13b, when the beam 13 is welded to the panel 12a (side surface of the joint core 12), the end surface on one end side of the flange 13a and the panel 12a ( A gap K is formed with the side surface of the joint core 12. In other words, the gap K is formed at the beam end of the beam 13 on the welding joint side with the panel 12a.

間隙Kは、梁13をパネル12aに溶接接合した場合におけるフランジ13aの一端側の開先部13cの先端から、梁13が溶接接合されるパネル12aの側面までの水平方向の間隙であり、仕口コア12の外径Bpとフランジ13aの幅W(フランジ13aの長手方向に対して水平に直交する方向の長さ)との差(Bp−W)に基づいて形成される。すなわち、フランジ13aの幅Wが仕口コア12の外径Bpより短くなるにつれて間隙Kが広く形成され、フランジ13aの幅Wが仕口コア12の外径Bpに近づくにつれ間隙Kが狭く形成される。   The gap K is a horizontal gap from the tip of the groove portion 13c on one end side of the flange 13a when the beam 13 is welded to the panel 12a to the side surface of the panel 12a to which the beam 13 is welded. It is formed based on the difference (Bp−W) between the outer diameter Bp of the mouth core 12 and the width W of the flange 13a (the length in the direction perpendicular to the longitudinal direction of the flange 13a). That is, the gap K is formed wider as the width W of the flange 13a becomes shorter than the outer diameter Bp of the joint core 12, and the gap K is formed narrower as the width W of the flange 13a approaches the outer diameter Bp of the joint core 12. The

図1から図3に示すように、柱梁接合構造10においては、仕口コア12の側面に溶接接合される梁13によってフランジ13aの一端側の端面と、仕口コア12の側面との間に形成される間隙Kに、水平ハンチ30が設けられる。水平ハンチ30は、その一端面がフランジ13aの一端側の端面に溶接接合され、その他端面がパネル12a(仕口コア12の側面)に溶接接合される。具体的には、水平ハンチ30の一端側とフランジ13aの一端側に裏当て金31を当接させた状態で水平ハンチ30とフランジ13aとを溶接32により接合する。また、水平ハンチ30の他端側と仕口コア12の側面(パネル12a)に裏当て金33を当接させた状態で水平ハンチ30とパネル12aとを溶接34により接合する。   As shown in FIG. 1 to FIG. 3, in the beam-column joint structure 10, the gap 13 is welded to the side surface of the joint core 12 and the end surface on one end side of the flange 13 a is connected to the side surface of the joint core 12. A horizontal hunch 30 is provided in the gap K formed in the above. One end surface of the horizontal haunch 30 is welded to the end surface on one end side of the flange 13a, and the other end surface is welded to the panel 12a (side surface of the joint core 12). Specifically, the horizontal haunch 30 and the flange 13a are joined by welding 32 with the backing metal 31 in contact with one end side of the horizontal haunch 30 and one end side of the flange 13a. Further, the horizontal haunch 30 and the panel 12 a are joined by welding 34 with the backing metal 33 in contact with the other end side of the horizontal haunch 30 and the side surface (panel 12 a) of the joint core 12.

水平ハンチ30は、平板状の部材により構成される。水平ハンチ30は、略長方形状に形成され、その幅方向の長さ(水平ハンチ30の長手方向に対して水平に直交する方向の長さ)が間隙Kの長さに対応して設定される。水平ハンチ30は、その長手方向の長さが仕口コア12の側面における平板部の幅方向の長さ(仕口コア12の各側面の両端の2つのR止まりR間の長さ)より若干長く設定される。具体的には、水平ハンチ30は、その他端面が仕口コア12の側面に溶接接合される際に、その両端のそれぞれを、仕口コア12の隅角部分12bの頂点Rと、その頂点Rを含む隅角部分12bのR止まりRと、の中間位置R(頂点RとR止まりRとの間の曲線の中間位置)に配置可能な長さに、その長手方向の長さが設定される。ここで、図3に示すように、仕口コア12の隅角部分12bの頂点Rとは、仕口コア12の隅角部分12bの外径側面と仕口コア12の対角線Tとが交わる位置をいう。また、隅角部分12bのR止まりRとは、隅角部分12bの外径側面であって隅角部分12bの湾曲部分が終了する位置(仕口コア12の側面における平板部が開始する位置)をいう。 The horizontal haunch 30 is configured by a flat member. The horizontal haunch 30 is formed in a substantially rectangular shape, and the length in the width direction (the length in the direction perpendicular to the longitudinal direction of the horizontal haunch 30) is set corresponding to the length of the gap K. . The length of the horizontal haunch 30 in the longitudinal direction is the length in the width direction of the flat plate portion on the side surface of the joint core 12 (the length between the two R stops R 0 at both ends of each side surface of the joint core 12). Set slightly longer. Specifically, horizontal haunch 30, when the other end face is welded to the side surface of the Joint core 12, each of its ends, the vertex R 1 of the corner portions 12b of the Joint core 12, the apex and R blind R 0 of corner portions 12b containing R 1, the intermediate position R 2 placeable length (apex R 1 and R blind curve intermediate position between the R 0), in the longitudinal direction The length is set. Here, as shown in FIG. 3, the apex R 1 of the corner portion 12 b of the joint core 12 intersects the outer diameter side surface of the corner portion 12 b of the joint core 12 and the diagonal line T of the joint core 12. Says the position. Further, the R stop R0 of the corner portion 12b is a position where the curved portion of the corner portion 12b is finished on the outer diameter side surface of the corner portion 12b (a position where the flat plate portion starts on the side surface of the joint core 12). ).

仕口コア12は、その両端部分の内側に水平スチフナ18(「補強板材」の一例)が溶接接合される。水平スチフナ18は、仕口コア12の内径と同程度の四角形状の金属平板である。水平スチフナ18は、その平面部分が仕口コア12のパネル12aの端面12cと面一となるように配置され、仕口コア12の両側の開口部分を塞ぐように仕口コア12の内面に溶接接合される。すなわち、水平スチフナ18は、内ダイアフラムとは異なるものであり、内ダイアフラムのように、仕口コア12の内部であって、その平面部分が仕口コア12に固定される梁13のフランジ13aの平面部分と面一となるように配置されるものではなく、梁13のフランジ13aの平面部分より仕口コア12のパネル12aの端面12c側に配置される。仕口コア12の両端部分の内側に水平スチフナ18を設けることで、梁13の押し込みによる仕口コア12のパネル12aの変形を防止することができ、仕口コア12のパネル12aの端面12cから梁13のフランジ13aの上下面との間の高さX(仕口コア12の余長)を短くすることができる。具体的には、仕口コア12の両端部分の内側に水平スチフナ18を設けることで、仕口コア12の余長を(上下の柱シャフト11A、11Bの外径B)/4とすることができる。   A horizontal stiffener 18 (an example of a “reinforcing plate material”) is welded and joined to the inside of both ends of the joint core 12. The horizontal stiffener 18 is a rectangular metal flat plate having the same size as the inner diameter of the joint core 12. The horizontal stiffener 18 is arranged so that the plane portion thereof is flush with the end surface 12c of the panel 12a of the joint core 12, and is welded to the inner surface of the joint core 12 so as to close the opening portions on both sides of the joint core 12. Be joined. That is, the horizontal stiffener 18 is different from the inner diaphragm. Like the inner diaphragm, the horizontal stiffener 18 is inside the joint core 12, and the plane portion of the flange 13 a of the beam 13 is fixed to the joint core 12. It is not disposed so as to be flush with the planar portion, but is disposed closer to the end surface 12 c side of the panel 12 a of the joint core 12 than the planar portion of the flange 13 a of the beam 13. By providing the horizontal stiffener 18 inside the both ends of the joint core 12, it is possible to prevent deformation of the panel 12 a of the joint core 12 due to the pushing of the beam 13, and from the end surface 12 c of the panel 12 a of the joint core 12. The height X between the upper and lower surfaces of the flange 13a of the beam 13 (the extra length of the joint core 12) can be shortened. Specifically, by providing the horizontal stiffener 18 inside the both ends of the joint core 12, the extra length of the joint core 12 can be set to (the outer diameter B of the upper and lower column shafts 11A and 11B) / 4. it can.

水平スチフナ18を仕口コア12に溶接接合する場合には、まず、水平スチフナ18をその平面部分が仕口コア12のパネル12aの端面12cと面一となるように、仕口コア12の両側の開口部分に配置する。そして、水平スチフナ18を仕口コア12の両側の開口部分に配置した状態で、パネル12aの端面12c側の端部と、水平スチフナ18の外側端部(上下の柱シャフト11A、11Bが設けられる側の端部)と、を所定の厚さで、仕口コア12の幅方向に切削する。このようにパネル12a及び水平スチフナ18を切削することで、水平スチフナ18の平面部分と、仕口コア12のパネル12aの端面12cとがより精度よく面一となり、裏当て金15の取り付けを精度よく容易に行うことができる。   When the horizontal stiffener 18 is welded to the joint core 12, first, the horizontal stiffener 18 is placed on both sides of the joint core 12 so that the planar portion thereof is flush with the end surface 12c of the panel 12a of the joint core 12. It arranges in the opening part of. Then, in a state where the horizontal stiffener 18 is disposed in the opening portions on both sides of the joint core 12, the end on the end surface 12c side of the panel 12a and the outer end of the horizontal stiffener 18 (upper and lower column shafts 11A and 11B are provided. Side end) and a predetermined thickness are cut in the width direction of the joint core 12. By cutting the panel 12a and the horizontal stiffener 18 in this way, the flat portion of the horizontal stiffener 18 and the end surface 12c of the panel 12a of the joint core 12 are more accurately flush with each other, and the mounting of the backing metal 15 is accurate. Well done easily.

次に、上下の柱シャフト11A、11B及び仕口コア12の選定方法について説明する。
柱梁接合構造10に用いる上下の柱シャフト11A、11B及び仕口コア12を選定するに際しては、まず、上下の柱シャフト11A、11Bの外径B及び仕口コア12の外径Bpを設定する。柱梁接合構造10においては、上下の柱シャフト11A、11Bの端面が仕口コア12の端面12c上に載置されるように、上下の柱シャフト11A、11Bの外径B及び仕口コア12の外径Bpが設定される。具体的には、仕口コア12の外径Bpが上下の柱シャフト11A、11Bの外径Bより長くなるように設定され、外径200mmから350mmの上下の柱シャフト11A、11Bを用いて柱梁接合構造10を形成する場合には、その外径Bpが上下の柱シャフト11A、11Bの外径Bより20mm長い仕口コア12を用い、外径400mmから550mmの上下の柱シャフト11A、11Bを用いて柱梁接合構造10を形成する場合には、その外径Bpが上下の柱シャフト11A、11Bの外径Bより25mm長い仕口コア12を用いる。
Next, a method for selecting the upper and lower column shafts 11A and 11B and the joint core 12 will be described.
When selecting the upper and lower column shafts 11A and 11B and the joint core 12 used for the column beam connection structure 10, first, the outer diameter B of the upper and lower column shafts 11A and 11B and the outer diameter Bp of the joint core 12 are set. . In the column beam connection structure 10, the outer diameter B of the upper and lower column shafts 11 </ b> A and 11 </ b> B and the joint core 12 are arranged so that the end surfaces of the upper and lower column shafts 11 </ b> A and 11 </ b> B are placed on the end surface 12 c of the joint core 12. The outer diameter Bp is set. Specifically, the outer diameter Bp of the joint core 12 is set to be longer than the outer diameter B of the upper and lower column shafts 11A and 11B, and the column is formed using the upper and lower column shafts 11A and 11B having an outer diameter of 200 mm to 350 mm. When the beam joint structure 10 is formed, the upper and lower column shafts 11A, 11B having an outer diameter of 400 mm to 550 mm are used by using the joint core 12 whose outer diameter Bp is 20 mm longer than the outer diameter B of the upper and lower column shafts 11A, 11B. When the column-beam joint structure 10 is formed using the above, the joint core 12 whose outer diameter Bp is 25 mm longer than the outer diameter B of the upper and lower column shafts 11A, 11B is used.

上下の柱シャフト11A、11Bの外径B及び仕口コア12の外径Bpが設定されると、上下の柱シャフト11A、11Bの板厚tc及び仕口コア12のパネル12aの板厚tpが設定される。具体的には、図4の表に基づいて、上下の柱シャフト11A、11Bの板厚tcと、仕口コア12のパネル12aの板厚tpとの組み合わせの適否を判断する。上下の柱シャフト11A、11Bの板厚tcと、仕口コア12のパネル12aの板厚tpとの組み合わせの適否は、上下の柱シャフト11A、11Bの外径Bと仕口コア12の板厚tpとの比が10≦B/tp≦15となる適用範囲に基づいて判断される。すなわち、上下の柱シャフト11A、11Bの板厚tcと、仕口コア12のパネル12aの板厚tpとの組み合わせが、当該適用範囲内にあるか否かにより判断される。図4に示す表の〇印は、上下の柱シャフト11A、11Bの板厚tcと、仕口コア12のパネル12aの板厚tpとの組み合わせが適用範囲内であることを示し、上下の柱シャフト11A、11Bと、仕口コア12との接合部に断面の食い違いが生じない組み合わせであることを意味する。一方、図4に示す表の×印は、上下の柱シャフト11A、11Bの板厚tcと、仕口コア12のパネル12aの板厚tpとの組み合わせが適用範囲外であることを示し、上下の柱シャフト11A、11Bと、仕口コア12との接合部に断面の食い違いが生じる組み合わせであることを意味する。   When the outer diameter B of the upper and lower column shafts 11A and 11B and the outer diameter Bp of the joint core 12 are set, the plate thickness tp of the upper and lower column shafts 11A and 11B and the plate thickness tp of the panel 12a of the joint core 12 are set. Is set. Specifically, the suitability of the combination of the plate thickness tp of the upper and lower column shafts 11A and 11B and the plate thickness tp of the panel 12a of the joint core 12 is determined based on the table of FIG. Appropriateness of the combination of the plate thickness tc of the upper and lower column shafts 11A and 11B and the plate thickness tp of the panel 12a of the joint core 12 depends on the outer diameter B of the upper and lower column shafts 11A and 11B and the plate thickness of the joint core 12. It is determined based on the application range in which the ratio to tp is 10 ≦ B / tp ≦ 15. That is, it is determined by whether or not the combination of the plate thickness tc of the upper and lower column shafts 11A and 11B and the plate thickness tp of the panel 12a of the joint core 12 is within the applicable range. 4 indicates that the combination of the plate thickness tp of the upper and lower column shafts 11A and 11B and the plate thickness tp of the panel 12a of the joint core 12 is within the applicable range. It means that the cross section does not cause a discrepancy at the joint between the shafts 11A and 11B and the joint core 12. On the other hand, the crosses in the table shown in FIG. 4 indicate that the combination of the plate thickness tp of the upper and lower column shafts 11A and 11B and the plate thickness tp of the panel 12a of the joint core 12 is out of the applicable range. This means that the cross-sectional discrepancy occurs at the joint between the column shafts 11A and 11B and the joint core 12.

具体的には、上下の柱シャフト11A、11Bの外径Bを250mm、仕口コア12の外径Bpを270mmに設定した場合に、板厚tcが9mmの上下の柱シャフト11A、11Bと組み合わせ可能な仕口コア12は、パネル12aの板厚tpが19mm、22mm、25mmの仕口コア12である。同様に、上下の柱シャフト11A、11Bの外径Bを250mm、仕口コア12の外径Bpを270mmに設定した場合に、板厚tcが12mmの上下の柱シャフト11A、11Bと組み合わせ可能な仕口コア12は、パネル12aの板厚tpが22mm、25mmの仕口コア12であり、パネル12aの板厚tpが19mmの仕口コア12は組み合わせ不可となる。
このように、仕口コア12の外径Bpを、上下の柱シャフト11A、11Bの外径Bより長くなるように設定した上で、上下の柱シャフト11A、11Bの板厚tcと、仕口コア12のパネル12aの板厚tpとの組み合わせを上記適用範囲内で設定することにより、柱梁接合構造10は、上下の柱シャフト11A、11Bの外径Bと仕口コア12の板厚tpとの比が10≦B/tp≦15となるように成形されるとともに、仕口コア12の隅角部分12bの外側曲率半径を上下の柱シャフト11A、11Bの隅角部分11aの外側曲率半径に合わせて大きくすることなく、上下の柱シャフト11A、11Bの端面が仕口コア12の端面12c上に載置されるように成形される。
具体的には、外径Bが400mm、板厚tcが16mm又は19mmの上下の柱シャフト11A、11Bを用いる場合には、外径Bpが柱シャフト11A、11Bの外径Bより25mm長い425mmの仕口コア12であって、パネル12aの板厚tpが32mmから40mmのものを用いれば、図5(a)及び(b)に示すように、上下の柱シャフト11A、11Bの端面が仕口コア12の端面12c上に載置されるように成形される。また、外径Bが450mm、板厚tcが22mmの上下の柱シャフト11A、11Bを用いる場合には、外径Bpが柱シャフト11A、11Bの外径Bより25mm長い475mmの仕口コア12であって、パネル12aの板厚tpが36mmから45mmのものを用いれば、図5(c)に示すように、上下の柱シャフト11A、11Bの端面が仕口コア12の端面12c上に載置されるように成形される。さらに、外径Bが500mm、板厚tcが25mmの上下の柱シャフト11A、11Bを用いる場合には、外径Bpが柱シャフト11A、11Bの外径Bより25mm長い525mmの仕口コア12であって、パネル12aの板厚tpが40mmから50mmのものを用いれば、図5(d)に示すように、上下の柱シャフト11A、11Bの端面が仕口コア12の端面12c上に載置されるように成形される。
Specifically, when the outer diameter B of the upper and lower column shafts 11A and 11B is set to 250 mm and the outer diameter Bp of the joint core 12 is set to 270 mm, it is combined with the upper and lower column shafts 11A and 11B having a plate thickness tc of 9 mm. The possible splicing core 12 is a splicing core 12 in which the plate thickness tp of the panel 12a is 19 mm, 22 mm, and 25 mm. Similarly, when the outer diameter B of the upper and lower column shafts 11A and 11B is set to 250 mm and the outer diameter Bp of the joint core 12 is set to 270 mm, the upper and lower column shafts 11A and 11B having a plate thickness tc of 12 mm can be combined. The joint core 12 is a joint core 12 having a panel thickness 12 tp of 22 mm and 25 mm, and the joint core 12 having a panel thickness 12 tp of 19 mm cannot be combined.
As described above, after setting the outer diameter Bp of the joint core 12 to be longer than the outer diameter B of the upper and lower column shafts 11A and 11B, the thickness tc of the upper and lower column shafts 11A and 11B, By setting the combination of the plate thickness tp of the panel 12a of the core 12 within the above-mentioned application range, the column beam joint structure 10 has the outer diameter B of the upper and lower column shafts 11A and 11B and the plate thickness tp of the joint core 12. And the outer radius of curvature of the corner portion 12b of the joint core 12 is set to be the outer radius of curvature of the corner portion 11a of the upper and lower column shafts 11A and 11B. The end surfaces of the upper and lower column shafts 11 </ b> A and 11 </ b> B are molded so as to be placed on the end surface 12 c of the joint core 12 without increasing the size.
Specifically, when the upper and lower column shafts 11A and 11B having an outer diameter B of 400 mm and a plate thickness tc of 16 mm or 19 mm are used, the outer diameter Bp is 425 mm which is 25 mm longer than the outer diameter B of the column shafts 11A and 11B. If the panel core 12 having a panel thickness tp of 32 mm to 40 mm is used, the end surfaces of the upper and lower column shafts 11A and 11B are connected to each other as shown in FIGS. 5 (a) and 5 (b). It shape | molds so that it may mount on the end surface 12c of the core 12. FIG. When the upper and lower column shafts 11A and 11B having an outer diameter B of 450 mm and a plate thickness tc of 22 mm are used, the outer diameter Bp is 475 mm, which is 25 mm longer than the outer diameter B of the column shafts 11A and 11B. If the panel 12a having a thickness tp of 36 mm to 45 mm is used, the end surfaces of the upper and lower column shafts 11A and 11B are placed on the end surface 12c of the joint core 12 as shown in FIG. To be molded. Further, when using the upper and lower column shafts 11A and 11B having an outer diameter B of 500 mm and a plate thickness tc of 25 mm, the outer diameter Bp is 525 mm longer than the outer diameter B of the column shafts 11A and 11B. If the panel 12a having a thickness tp of 40 mm to 50 mm is used, the end surfaces of the upper and lower column shafts 11A and 11B are placed on the end surface 12c of the joint core 12 as shown in FIG. To be molded.

次に、本発明の効果をFEM解析によって確認したため、これについて以下の実施例で説明する。   Next, since the effect of the present invention was confirmed by FEM analysis, this will be described in the following examples.

以下の実施例においては、柱梁接合構造10における上下の柱シャフト11A、11Bを□−400×400×16(R=40)、耐力324.5N/mm、引張強さ400N/mm、F値295N/mm、E値205000N/mm、ν値0.3、BCR295の冷間ロール成形の角形鋼管で構成し、梁13をH−488×300×11×18、耐力258.5N/mm、引張強さ400N/mm、F値235N/mm、E値205000N/mm、ν値0.3、SN400BのH形鋼で構成した通しダイアフラム形式或いはノンダイアフラム形式の十字形架溝(試験体)についてFEM解析を行った。 In the following examples, the upper and lower pillar shafts 11A, 11B and □ -400 × 400 × 16 (R = 40) in the beam-column joint structure 10, proof stress 324.5N / mm 2, a tensile strength of 400 N / mm 2, It is composed of a cold roll-formed square steel pipe with an F value of 295 N / mm 2 , an E value of 205000 N / mm 2 , a ν value of 0.3, and a BCR295, and the beam 13 is H-488 × 300 × 11 × 18, yield strength 258.5 N Cross-diaphragm type or non-diaphragm type cross shape made of H-shaped steel with / mm 2 , tensile strength 400N / mm 2 , F value 235N / mm 2 , E value 205000N / mm 2 , ν value 0.3, SN400B FEM analysis was performed on the bridge groove (test body).

また、柱梁接合構造10を通しダイアフラム形式で構成した十字形架溝(試験体)を比較例1とし、柱梁接合構造10をノンダイアフラム形式で構成した十字形架溝(試験体)を比較例2、比較例3、実施例1とした。   Further, a cross-shaped bridge groove (test body) configured in a diaphragm form through the beam-column joint structure 10 is referred to as Comparative Example 1, and a cross-shaped bridge groove (test body) in which the beam-column joint structure 10 is configured in a non-diaphragm form is compared. It was set as Example 2, Comparative Example 3, and Example 1.

なお、ダイアフラム形式の比較例1における仕口コア12のパネル12aは、□−400×400×16(R=40)、耐力324.5N/mm、引張強さ400N/mm、F値295N/mm、E値205000N/mm、ν値0.3、BCR295の冷間ロール成形の角形鋼管で構成し、ダイアフラムは、耐力357.5N/mm、引張強さ490N/mm、F値325N/mm、E値205000N/mm、ν値0.3、SN490Cの板材で構成した。 Incidentally, the panel 12a of the Joint core 12 in Comparative Example 1 of the diaphragm type, □ -400 × 400 × 16 ( R = 40), yield strength 324.5N / mm 2, a tensile strength of 400 N / mm 2, F value 295N / mm 2, E value 205000N / mm 2, ν value 0.3, constituted by RHS cold roll forming of BCR295, diaphragm yield strength 357.5N / mm 2, a tensile strength of 490 N / mm 2, F value 325N / mm 2, E value 205000N / mm 2, ν value 0.3, was composed of plate material SN490C.

また、ノンダイアフラム形式の比較例2、比較例3、実施例1における仕口コア12のパネル12aは、□−425×425×32(R=64)、耐力357.5N/mm、引張強さ490N/mm、F値325N/mm、E値205000N/mm、ν値0.3、SHC490Cの熱間成形の角形鋼管で構成し、水平スチフナ18は、耐力357.5N/mm、引張強さ490N/mm、F値325N/mm、E値205000N/mm、ν値0.3、SN490Bの板材で構成し、パネル12aの余長は、(上下の柱シャフト11A、11Bの外径B)/4とした。 Moreover, the panel 12a of the joint core 12 in the comparative example 2, comparative example 3, and example 1 of a non-diaphragm type is □ -425 * 425 * 32 (R = 64), yield strength 357.5N / mm < 2 >, tensile strength is 490 N / mm 2, F value 325N / mm 2, E value 205000N / mm 2, ν value 0.3, constituted by RHS of hot forming of SHC490C, horizontal stiffener 18, yield strength 357.5N / mm 2 , tensile strength of 490 N / mm 2, F value 325N / mm 2, E value 205000N / mm 2, ν value 0.3, composed of a plate material of SN490B, extra length of panel 12a is (vertical pillar shaft 11A, 11B outer diameter B) / 4.

さらに、ノンダイアフラム形式の比較例2は、パネル12aの両端部分の内側に水平スチフナ18を溶接接合したものとし、比較例3は、パネル12aの両端部分の内側に水平スチフナ18を溶接接合するとともに、パネル12aの中間部に2枚の水平スチフナ18を設置したものとし、実施例1は、パネル12aの両端部分の内側に水平スチフナ18を溶接接合するとともに、梁13をパネル12a(仕口コア12の側面)に溶接接合した際に形成される間隙Kに水平ハンチ30を設置したものとした。   Further, in the comparative example 2 of the non-diaphragm type, the horizontal stiffener 18 is welded and joined inside the both ends of the panel 12a, and in the comparative example 3, the horizontal stiffener 18 is welded and joined inside the both ends of the panel 12a. It is assumed that two horizontal stiffeners 18 are installed in the middle part of the panel 12a. In the first embodiment, the horizontal stiffener 18 is welded to the inside of both end portions of the panel 12a, and the beam 13 is connected to the panel 12a (joint core). The horizontal haunch 30 was installed in the gap K formed when welding and joining to the 12 side surfaces.

図6に示すように、本実施例においては、上記試験体を1/2対称モデルでモデル化を行った。パネル12a、上下の柱シャフト11A、11B、梁13の部材端部から部材中央までは8節点ソリッド要素(完全積分要素)でモデル化し、部材中央から部材先端までは2節点梁要素(線形材料要素)でモデル化した。梁要素とソリッド要素の接続は、接続位置で平面保持が成立するように、梁要素端接点を独立節点とし、ソリッド要素フェース節点を従属節点に設定した。拘束条件としては、ソリッド要素部は対称面で面外方向への変位を拘束し(U=0)、梁要素部は面外変位、面外方向への回転及び捩れ回転を拘束し(U=0、θ=0、θ=0)、加力点以外の梁要素先端は、材軸方向自由とするローラ支持を行う(梁13:U=0、上下の柱シャフト11A、11B:U=0)。解析は材料幾何学的非線形を考慮し、上部の柱シャフト11Aの先端位置での変位制御による増分解析とした(層間変形角で1/10radまで)。 As shown in FIG. 6, in the present example, the specimen was modeled with a ½ symmetric model. The panel 12a, the upper and lower column shafts 11A, 11B, and the beam 13 are modeled by an 8-node solid element (complete integration element) from the member end to the member center, and a 2-node beam element (linear material element) from the member center to the member tip. ). As for the connection between the beam element and the solid element, the beam element end contact is set as an independent node, and the solid element face node is set as a dependent node so that plane maintenance is established at the connection position. As a constraint condition, the solid element portion constrains the displacement in the out-of-plane direction on the symmetry plane (U z = 0), and the beam element portion constrains the out-of-plane displacement, the rotation in the out-of-plane direction, and the torsional rotation (U z = 0, θ x = 0, θ y = 0), and the tip of the beam element other than the applied point performs roller support to make the material axis direction free (beam 13: U y = 0, upper and lower column shafts 11A, 11B : U x = 0). The analysis was performed in consideration of material geometrical nonlinearity, and an incremental analysis was performed by displacement control at the tip position of the upper column shaft 11A (up to 1/10 rad in the interlayer deformation angle).

図7及び表1に示すFEM解析結果における全塑性耐力は、General Yield法(図7(a))によって算出した。   The total plastic yield strength in the FEM analysis results shown in FIG. 7 and Table 1 was calculated by the General Yield method (FIG. 7A).

図8から図15は、Mises応力度にて235N/mm以上の応力(卓越応力)が生じている範囲のみを模様で表示させた。 In FIGS. 8 to 15, only a range in which a stress (excellent stress) of 235 N / mm 2 or more is generated in the Mises stress degree is displayed as a pattern.

図7(b)及び表1に示すように、全塑性耐力を含め終局耐力は、比較例1から3及び実施例1の試験体によらずほぼ同様の結果となった。このように、各試験体の耐力がほぼ同程度の値となったのは、各試験体が、共通して、架構の耐力が梁13の曲げ耐力で決定される梁先行降伏型の崩壊形となるためである。   As shown in FIG. 7B and Table 1, the ultimate proof stress including the total plastic proof stress was almost the same regardless of the specimens of Comparative Examples 1 to 3 and Example 1. As described above, the proof stress of each test specimen is almost the same value because each specimen has a collapse type of the beam preceding yield type in which the proof strength of the frame is determined by the bending proof strength of the beam 13 in common. It is because it becomes.

表1に示すように、比較例2の試験体(パネル12aの両端部分(頂部分及び底部分)の内側のみに水平スチフナ18を設けたノンダイアフラム形式の架構)は、比較例1の試験体(通しダイアフラム形式の架構)より剛性が小さくなった。また、比較例3の試験体(パネル12aの両端部分の内側に水平スチフナ18を溶接接合するとともに、パネル12aの中間部に2枚の水平スチフナ18を設置したノンダイアフラム形式の架構)は、比較例1の試験体(通しダイアフラム形式の架構)とほぼ同程度の剛性であった。   As shown in Table 1, the specimen of Comparative Example 2 (the non-diaphragm type frame in which the horizontal stiffener 18 is provided only inside the both end portions (the top portion and the bottom portion) of the panel 12a) is the specimen of Comparative Example 1. Rigidity is smaller than (through diaphragm type frame). Further, the test body of Comparative Example 3 (a non-diaphragm frame in which the horizontal stiffener 18 is welded and joined to the inside of both end portions of the panel 12a and two horizontal stiffeners 18 are installed in the middle portion of the panel 12a) is compared. The rigidity was almost the same as that of the test body of Example 1 (through diaphragm type frame).

図10、11(比較例2)及び図12、13(比較例3)より、水平スチフナ18に生じている応力を比較することから分かるように、比較例3の剛性が比較例2の剛性より大きくなった(比較例3の剛性が比較例1の剛性とほぼ同程度であった)のは、パネル12aの中間部に設けた水平スチフナ18が作用しているためである。   10 and 11 (Comparative Example 2) and FIGS. 12 and 13 (Comparative Example 3), the rigidity of Comparative Example 3 is higher than that of Comparative Example 2 as can be seen from comparing the stresses generated in the horizontal stiffener 18. The reason why it was increased (the rigidity of Comparative Example 3 was almost the same as that of Comparative Example 1) is that the horizontal stiffener 18 provided at the intermediate portion of the panel 12a is acting.

また、実施例1の試験体(パネル12aの両端部分の内側に水平スチフナ18を溶接接合するとともに、梁13をパネル12a(仕口コア12の側面)に溶接接合した際に形成される間隙Kに水平ハンチ30を設置したノンダイアフラム形式の架構)は、比較例3と同様に、比較例1の試験体(通しダイアフラム形式の架構)とほぼ同程度の剛性であった。   In addition, the gap K formed when the specimen of Example 1 (the horizontal stiffener 18 is welded to the inside of both end portions of the panel 12a and the beam 13 is welded to the panel 12a (side surface of the joint core 12). The non-diaphragm type frame having the horizontal haunch 30 installed on the same surface as the comparative example 3 had substantially the same rigidity as the test body of the comparative example 1 (through diaphragm type frame).

図10、図11(比較例2)及び図14、図15(実施例1)より、パネル12aに生じている応力を比較することから分かるように、実施例1の剛性が、比較例3と同様に、比較例1の剛性とほぼ同程度であった(実施例1の剛性が比較例2の剛性より大きくなった)のは、水平ハンチ30を間隙K(梁端)に設けることで、パネル12aに生じる応力が小さくなり、パネル12aの側面の面外変形が小さくなったためである。   From FIG. 10, FIG. 11 (Comparative Example 2), FIG. 14, and FIG. 15 (Example 1), as can be seen from comparing the stresses generated in the panel 12a, the rigidity of Example 1 is comparable to that of Comparative Example 3. Similarly, the rigidity of the comparative example 1 was almost the same as that of the comparative example 1 (the rigidity of the example 1 was larger than the rigidity of the comparative example 2). By providing the horizontal haunch 30 in the gap K (beam end), This is because the stress generated in the panel 12a is reduced and the out-of-plane deformation of the side surface of the panel 12a is reduced.

以上のように、柱梁接合構造10においては、仕口コア12の外径Bpとフランジ13aの幅Wとの差(Bp−W)に基づいて形成されるフランジ13aの一端側の端面と、仕口コア12の側面(パネル12a)との間の間隙K(梁13におけるパネル12aとの溶接接合側の梁端)に、平板状の水平ハンチ30を設けることから、架構の剛性を大きくすることができ、通しダイアフラム形式の架構或いは内ダイアフラム形式の架構と同程度の剛性を有するノンダイアフラム形式の架構を構成することができる。すなわち、ノンダイアフラム形式を採用した建物の構造設計において、梁13の梁端部を剛接合としてモデル化して構造計算することができる。   As described above, in the beam-column joint structure 10, the end face on one end side of the flange 13 a formed based on the difference (Bp−W) between the outer diameter Bp of the joint core 12 and the width W of the flange 13 a, Since the flat horizontal hunch 30 is provided in the gap K between the side surface (panel 12a) of the joint core 12 (the beam end of the beam 13 on the side welded to the panel 12a), the rigidity of the frame is increased. It is possible to construct a non-diaphragm frame having rigidity comparable to that of a through-diaphragm frame or an inner diaphragm frame. That is, in the structural design of a building adopting the non-diaphragm format, the structural calculation can be performed by modeling the beam end portion of the beam 13 as a rigid joint.

柱梁接合構造10においては、パネル12aの両端部分の内側に加えて、パネル12aの中間部に水平スチフナ18を設けることで、架構の剛性を大きくすることができ、通しダイアフラム形式の架構或いは内ダイアフラム形式の架構と同程度の剛性を有するノンダイアフラム形式の架構を構成することができる。すなわち、ノンダイアフラム形式を採用した建物の構造設計において、梁13の梁端部を剛接合としてモデル化して構造計算することができる。   In the column beam connection structure 10, in addition to the inside of both ends of the panel 12a, the horizontal stiffener 18 is provided in the middle part of the panel 12a, so that the rigidity of the frame can be increased. A non-diaphragm frame having rigidity comparable to that of a diaphragm frame can be formed. That is, in the structural design of a building adopting the non-diaphragm format, the structural calculation can be performed by modeling the beam end portion of the beam 13 as a rigid joint.

10 柱梁接合構造
11A、11B 柱シャフト(柱部)
12 仕口コア(仕口部)
12b 隅角部分
13 梁(梁部)
13a フランジ
13b ウェブ
18 水平スチフナ(補強板材)
30 水平ハンチ
Bp 仕口コアの外径
K 間隙
R止まり
頂点
中間位置
W フランジの幅
10 Column-to-beam connection structure 11A, 11B Column shaft (column part)
12 Joint core (joint part)
12b Corner portion 13 Beam (beam)
13a Flange 13b Web 18 Horizontal stiffener (Reinforcement plate)
30 Horizontal haunch Bp Outer core outer diameter K Gap R 0 R Stop R 1 Vertex R 2 Intermediate position W Flange width

Claims (2)

冷間ロール成形の角形鋼管により構成される柱部と、
一対のフランジと、前記フランジを連結するウェブと、を有するH形鋼により構成される梁部と、
熱間成形の角形鋼管により構成され、前記柱部と前記梁部との接続部分となるノンダイアフラム形式の仕口部と、
を備える柱梁接合構造であって、
前記仕口部の両側における開口端部の端面に、前記柱部が溶接接合されるとともに、その両端の開口端部の内側に、四角形状の補強板材が、前記開口端部の端面と面一となるように溶接接合され、
前記梁部は、前記フランジの一端側が前記ウェブの一端側より短く形成され、
前記仕口部の側面に溶接接合される前記梁部によって前記フランジの一端側の端面と、前記仕口部の側面との間に形成される間隙に、平板状の水平ハンチを設け、
前記水平ハンチは、
その一端面が前記フランジの一端側の端面に溶接接合され、
その他端面が、その両端のそれぞれを、前記仕口部の隅角部分の頂点と、前記頂点を含む隅角部分のR止まりと、の中間位置に配置して、前記仕口部の側面に溶接接合され、
前記水平ハンチが溶接接合される前記フランジの一端側の端面と、前記仕口部の側面との間の間隙は、前記仕口部の外径と前記フランジの幅との差に基づいて形成されること
を特徴とする柱梁接合構造。
A column part formed of a cold rolled square steel pipe;
A beam portion made of H-shaped steel having a pair of flanges and a web connecting the flanges;
It is composed of a hot-formed rectangular steel pipe, and a non-diaphragm type joint part that becomes a connection part between the column part and the beam part,
A beam-column joint structure comprising:
The column portions are welded to the end surfaces of the open end portions on both sides of the joint portion, and a rectangular reinforcing plate is flush with the end surfaces of the open end portions inside the open end portions at both ends. Welded to be
The beam portion is formed such that one end side of the flange is shorter than one end side of the web,
A flat horizontal hunch is provided in a gap formed between the end face on one end side of the flange by the beam part welded and joined to the side face of the joint part and the side face of the joint part,
The horizontal haunch is
One end surface of the flange is welded to one end surface of the flange,
The other end face is welded to the side face of the joint portion by arranging both ends at intermediate positions between the apex of the corner portion of the joint and the R stop of the corner portion including the apex. Joined and
The gap between the end face on one end side of the flange to which the horizontal haunch is welded and the side face of the joint portion is formed based on the difference between the outer diameter of the joint portion and the width of the flange. Column beam connection structure characterized by
前記柱部及び前記仕口部は、
前記柱部の外径Bと仕口部の板厚tpとの比が10≦B/tp≦15となるように成形され、
前記仕口部の隅角部分の外側曲率半径が前記仕口部の板厚の1.5倍から2.5倍に成形されること
を特徴とする請求項1に記載の柱梁接合構造。
The column part and the joint part are
The ratio of the outer diameter B of the column part and the plate thickness tp of the joint part is formed to be 10 ≦ B / tp ≦ 15,
2. The beam-column joint structure according to claim 1, wherein an outer radius of curvature of a corner portion of the joint portion is formed to be 1.5 to 2.5 times a plate thickness of the joint portion.
JP2018029250A 2018-02-22 2018-02-22 Column-beam joint structure Active JP6986751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018029250A JP6986751B2 (en) 2018-02-22 2018-02-22 Column-beam joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018029250A JP6986751B2 (en) 2018-02-22 2018-02-22 Column-beam joint structure

Publications (2)

Publication Number Publication Date
JP2019143390A true JP2019143390A (en) 2019-08-29
JP6986751B2 JP6986751B2 (en) 2021-12-22

Family

ID=67771995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018029250A Active JP6986751B2 (en) 2018-02-22 2018-02-22 Column-beam joint structure

Country Status (1)

Country Link
JP (1) JP6986751B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110625548A (en) * 2019-10-24 2019-12-31 中铁宝桥集团有限公司 Bridge steel plate beam K-shaped cross brace assembling and positioning tool and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110625548A (en) * 2019-10-24 2019-12-31 中铁宝桥集团有限公司 Bridge steel plate beam K-shaped cross brace assembling and positioning tool and manufacturing method thereof
CN110625548B (en) * 2019-10-24 2023-09-19 中铁宝桥集团有限公司 Bridge steel plate beam K-shaped transverse strut assembling and positioning tool and manufacturing method thereof

Also Published As

Publication number Publication date
JP6986751B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
JP2019218710A (en) Beam joint device for square steel pipe column
JP7110000B2 (en) Column-beam joint structure
JP4576899B2 (en) Method for manufacturing column-beam joint structure and column-beam joint structure
JP2019143390A (en) Column-beam joint structure
JP2018115541A (en) Column and beam joint structure
JP6535704B2 (en) Column-beam frame
KR102013585B1 (en) Multi-brackets integrated square steel tube for building and the menufacturing method by roll forming
JP2017214771A (en) Connection load bearing capacity evaluation method for column-beam connection structure, design method for column-beam connection structure, and column-beam connection structure
JP5739946B2 (en) Composite structure design method
JP2023012013A (en) Column-to-beam joint structure
JP2001271419A (en) Joining structure of column and beam
JP3964288B2 (en) Steel structure for steel reinforced concrete building and method for building steel reinforced concrete building
JP5912044B2 (en) Bearing wall with opening
CN109457816B (en) Connecting node of box-shaped steel beam and reinforced concrete interface and construction method
JP2001329613A (en) Beam-column joint structure
JP6783045B2 (en) How to design column-beam joint structure and column-beam joint structure
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP4127225B2 (en) Beam-column joint
JP5160258B2 (en) Beam-column joint structure and structure
JP6685571B1 (en) Beam-column joint structure
JP7393861B2 (en) frame structure
JP5358004B2 (en) Beam joint structure
KR101807470B1 (en) Construction method of sandwich panel for building
KR20120035494A (en) Folded-glued light beam
JP2013028997A (en) Proof stress prediction method for steel column-beam connection part with different diameters of upper and lower columns and plate thickness designing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6986751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150