JP2019138828A - Fretting fatigue reduction structure of shaft member, shaft member, design method of shaft member, fretting fatigue strength test equipment for shaft member - Google Patents

Fretting fatigue reduction structure of shaft member, shaft member, design method of shaft member, fretting fatigue strength test equipment for shaft member Download PDF

Info

Publication number
JP2019138828A
JP2019138828A JP2018023827A JP2018023827A JP2019138828A JP 2019138828 A JP2019138828 A JP 2019138828A JP 2018023827 A JP2018023827 A JP 2018023827A JP 2018023827 A JP2018023827 A JP 2018023827A JP 2019138828 A JP2019138828 A JP 2019138828A
Authority
JP
Japan
Prior art keywords
press
shaft member
peripheral surface
fretting fatigue
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018023827A
Other languages
Japanese (ja)
Other versions
JP6795528B2 (en
Inventor
徹 矢ヶ崎
Toru Yagasaki
徹 矢ヶ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018023827A priority Critical patent/JP6795528B2/en
Priority to CN201910111277.4A priority patent/CN110159644B/en
Publication of JP2019138828A publication Critical patent/JP2019138828A/en
Application granted granted Critical
Publication of JP6795528B2 publication Critical patent/JP6795528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To reduce fretting fatigue generated in a press-fitting portion of a shaft member.SOLUTION: A shaft member 11 includes a non-press-fitting portion 13 having a diameter d, and a press-fitting portion 12 having a diameter D greater than the diameter d, and an outer peripheral surface of the press-fitting portion 12 is press-fit to an inner peripheral surface of a press-fitting hole 14a of the other member 14. The pitching generated in the protrusion 12c of the press-fitting portion 12 prevented by fretting from extending to cracks is thus prevented in the groove 12b since a large number of protrusions 12c surrounded by a large number of grooves 12b on the outer peripheral surface of the press-fitting portion 12 are formed, and the durability against fretting fatigue of the shaft member 11 is improved.SELECTED DRAWING: Figure 1

Description

本発明は、軸部材が、直径dの非圧入部と、直径dよりも大きい直径Dの圧入部とを備え、前記圧入部の外周面が他部材の圧入孔の内周面に圧入される軸部材のフレッティング疲労低減構造と、その疲労低減構造が適用される軸部材と、その軸部材の設計方法と、その軸部材のフレッティング疲労強度を試験するフレッティング疲労強度試験装置とに関する。   In the present invention, the shaft member includes a non-press-fit portion having a diameter d and a press-fit portion having a diameter D larger than the diameter d, and an outer peripheral surface of the press-fit portion is press-fitted into an inner peripheral surface of a press-fit hole of another member. The present invention relates to a fretting fatigue reduction structure for a shaft member, a shaft member to which the fatigue reduction structure is applied, a design method for the shaft member, and a fretting fatigue strength test apparatus for testing the fretting fatigue strength of the shaft member.

フレッティングとは、面圧が作用している機械の部品どうしの接触面間において、摩擦力を伴った微小な相対滑り(数μm〜数十μm)が繰り返し生じる現象であり、このフレッティングにより部品の表面が疲労してクラックが発生し、部品の疲労強度を大きく低下させる問題がある。   Fretting is a phenomenon in which minute relative slip (several μm to several tens of μm) accompanied by friction force is repeatedly generated between contact surfaces of machine parts where surface pressure is applied. There is a problem that the surface of the component is fatigued and cracks are generated, and the fatigue strength of the component is greatly reduced.

下記非特許文献1には、鉄道車両の車軸が車輪に圧入される圧入部のフレッティング疲労が開示されている。図12に示すように、車軸に曲げ荷重が繰り返し入力すると、車軸および車輪の圧入部の軸方向中間部分は相対滑りが発生しない固着領域となるが、圧入部の軸方向両端部分は相対滑りが発生する滑り領域となり、固着領域および滑り領域の境界にフレッティング疲労によるクラックが発生するとされている。   Non-Patent Document 1 below discloses fretting fatigue of a press-fitting portion where an axle of a railway vehicle is press-fitted into a wheel. As shown in FIG. 12, when a bending load is repeatedly input to the axle, the axially intermediate portion of the axle and the wheel press-fit portion becomes a fixed region where relative slip does not occur, but the axial end portions of the press-fit portion are relatively slippery. It is said that the generated slip region causes cracks due to fretting fatigue at the boundary between the fixed region and the slip region.

また下記特許文献1には、試験片の表面に接触片を接触させた状態で、試験片に高周波捩じり振動を入力してフレッティング疲労を発生させるフレッティング疲労強度試験装置において、接触片を外部構造物に固定して試験片の表面に接触させるのではなく、接触片を試験片の表面に接触状態で直接支持したものが記載されている。このフレッティング疲労強度試験装置によれば、試験片が接触片を接触する部分に固着領域および滑り領域の両方を発生させ、試験片のフレッティング疲労強度を精度良く測定できるとされている。   Patent Document 1 below discloses a fretting fatigue strength test apparatus that generates fretting fatigue by inputting high-frequency torsional vibration to a test piece in a state where the contact piece is in contact with the surface of the test piece. Is not fixed to an external structure and brought into contact with the surface of the test piece, but is described in which the contact piece is directly supported in contact with the surface of the test piece. According to this fretting fatigue strength test apparatus, it is said that both a fixed region and a sliding region are generated at a portion where the test piece contacts the contact piece, and the fretting fatigue strength of the test piece can be accurately measured.

新幹線車両用車軸の疲労特性 新日鉄住金技報 第395号(2013年) 第56ページ〜第63ページFatigue characteristics of Shinkansen vehicle axles Nippon Steel & Sumikin Technical Report No. 395 (2013) pp. 56-63

特開2015−190874号公報JP2015-190874A

上記非特許文献1には、車軸および車輪の圧入部に発生するフレッティング疲労を、車軸の高周波焼入れの改良や、車軸および車輪の圧入部の嵌め合い形状の改良により低減する技術が開示されているが、車輪に圧入される車軸の外周面に簡単な加工を施すだけでフレッティング疲労を低減することができれば、従来の車軸に大きな設計変更を加える必要がなくなってコストダウンに寄与することができる。   Non-Patent Document 1 discloses a technique for reducing fretting fatigue generated in the press-fitting portion of the axle and the wheel by improving the induction hardening of the axle and the fitting shape of the press-fitting portion of the axle and the wheel. However, if fretting fatigue can be reduced by simply processing the outer peripheral surface of the axle that is press-fitted into the wheel, it is not necessary to make a major design change to the conventional axle, which can contribute to cost reduction. it can.

本発明は前述の事情に鑑みてなされたもので、軸部材の圧入部に発生するフレッティング疲労を低減することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to reduce fretting fatigue occurring in a press-fitting portion of a shaft member.

上記目的を達成するために、請求項1に記載された発明によれば、軸部材が、直径dの非圧入部と、直径dよりも大きい直径Dの圧入部とを備え、前記圧入部の外周面が他部材の圧入孔の内周面に圧入される軸部材のフレッティング疲労低減構造であって、前記圧入部の外周面に多数の溝に囲まれた多数の突出部が形成されることを特徴とする軸部材のフレッティング疲労低減構造が提案される。   In order to achieve the above object, according to the first aspect of the present invention, the shaft member includes a non-pressed portion having a diameter d and a press-fit portion having a diameter D larger than the diameter d. The shaft member has a fretting fatigue reduction structure in which an outer peripheral surface is press-fitted into an inner peripheral surface of a press-fitting hole of another member, and a plurality of protrusions surrounded by a number of grooves are formed on the outer peripheral surface of the press-fitting portion. A fretting fatigue reduction structure for a shaft member is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記突出部の平均接触幅が16μm以下であることを特徴とする軸部材のフレッティング疲労低減構造が提案される。   According to the invention described in claim 2, in addition to the structure of claim 1, there is proposed a fretting fatigue reduction structure for a shaft member, wherein the average contact width of the protrusion is 16 μm or less. The

また請求項3に記載された発明によれば、請求項1または請求項2に記載の軸部材であって、前記圧入部の外周面の最大許容剪断応力τ1と、前記非圧入部の外周面の最大許容剪断応力τ2とから算出したD/d=(τ2/τ1)1/3 の値が、1.1以下かつ最大許容剪断応力τ1が最大になる値以上になるように前記溝および前記突出部の形状を設定したことを特徴とする軸部材が提案される。 According to the invention described in claim 3, the shaft member according to claim 1 or 2, wherein the maximum allowable shear stress τ1 of the outer peripheral surface of the press-fit portion and the outer peripheral surface of the non-press-fit portion are provided. And the groove and the above-mentioned so that the value of D / d = (τ2 / τ1) 1/3 calculated from the maximum allowable shear stress τ2 is 1.1 or less and the maximum allowable shear stress τ1 is the maximum value or more. A shaft member characterized by setting the shape of the protrusion is proposed.

また請求項4に記載された発明によれば、請求項1または請求項2に記載の軸部材の設計方法であって、前記圧入部の外周面の最大許容剪断応力τ1を測定する工程と、前記非圧入部の外周面の最大許容剪断応力τ2を測定する工程と、前記圧入部および前記非圧入部の直径比D/dを、D/d=(τ2/τ1)1/3 により算出する工程と、前記直径比D/dの値が1.1以下かつ最大許容剪断応力τ1が最大になる値以上になるように前記溝および前記突出部の形状を調整する工程とを含むことを特徴とする軸部材の設計方法が提案される。 According to the invention described in claim 4, the shaft member design method according to claim 1 or 2, wherein the maximum allowable shear stress τ1 of the outer peripheral surface of the press-fit portion is measured; The step of measuring the maximum allowable shear stress τ2 of the outer peripheral surface of the non-pressed part and the diameter ratio D / d of the press-fitted part and the non-pressed part are calculated by D / d = (τ2 / τ1) 1/3 And adjusting the shapes of the groove and the protrusion so that the value of the diameter ratio D / d is 1.1 or less and the maximum allowable shear stress τ1 is a maximum or more. A shaft member design method is proposed.

また請求項5に記載された発明によれば、請求項1または請求項2に記載の軸部材のフレッティング疲労強度を試験するフレッティング疲労強度試験装置であって、前記軸部材に相当する試験片の外周面に接触するように該試験片に固定される接触片と、前記試験片に高周波振動を加える加振装置と、前記試験片の変位からクラックの発生を検出する変位検出センサとを備えることを特徴とするフレッティング疲労強度試験装置が提案される。   According to the invention described in claim 5, the fretting fatigue strength test apparatus for testing the fretting fatigue strength of the shaft member according to claim 1, wherein the test corresponds to the shaft member. A contact piece fixed to the test piece so as to be in contact with the outer peripheral surface of the piece, a vibration device that applies high-frequency vibration to the test piece, and a displacement detection sensor that detects the occurrence of a crack from the displacement of the test piece. A fretting fatigue strength test apparatus characterized by comprising:

請求項1の構成によれば、軸部材が、直径dの非圧入部と、直径dよりも大きい直径Dの圧入部とを備え、圧入部の外周面が他部材の圧入孔の内周面に圧入される軸部材のフレッティング疲労低減構造であって、圧入部の外周面に多数の溝に囲まれた多数の突出部が形成されるので、フレッティングにより圧入部の突出部に発生したピッチングが溝に阻止されてクラックに伸展することが阻止され、軸部材のフレッティング疲労に対する耐久性が向上する。   According to the configuration of claim 1, the shaft member includes a non-press-fit portion having a diameter d and a press-fit portion having a diameter D larger than the diameter d, and an outer peripheral surface of the press-fit portion is an inner peripheral surface of a press-fit hole of another member. It is a fretting fatigue reduction structure of the shaft member that is press-fitted into the press-fitting portion, and since a large number of protrusions surrounded by a number of grooves are formed on the outer peripheral surface of the press-fitting part, the fretting generated the protrusions of the press-fitting part. Pitching is prevented by the grooves and prevented from extending into the cracks, and the durability of the shaft member against fretting fatigue is improved.

また請求項2の構成によれば、突出部の平均接触幅が16μm以下であるので、突出部に発生したピッチングの伸展を確実に阻止して軸部材の圧入部の耐久性を高めることができる。   Further, according to the configuration of the second aspect, since the average contact width of the protrusions is 16 μm or less, it is possible to reliably prevent the extension of the pitching generated in the protrusions and improve the durability of the press-fitting part of the shaft member. .

また請求項3の構成によれば、圧入部の外周面の最大許容剪断応力τ1と、非圧入部の外周面の最大許容剪断応力τ2とから算出したD/d=(τ2/τ1)1/3 の値が、1.1以下かつ最大許容剪断応力τ1が最大になる値以上になるように溝および突出部の形状を設定したので、軸部材の圧入部のフレッティング疲労強度を溝および突出部により効果的に高めながら、非圧入部の疲労強度に対して圧入部の疲労強度が過剰になるのを防止し、圧入部および非圧入部の直径比D/dを最小に抑えて軸部材の小型軽量化を図ることができる。 According to the third aspect of the present invention, D / d = (τ2 / τ1) 1 / calculated from the maximum allowable shear stress τ1 of the outer peripheral surface of the press-fit portion and the maximum allowable shear stress τ2 of the outer peripheral surface of the non-press-fit portion. Since the shape of the groove and the protruding portion was set so that the value of 3 was 1.1 or less and the maximum allowable shear stress τ1 was the maximum value, the fretting fatigue strength of the press-fit portion of the shaft member was determined as the groove and the protruding portion. The shaft member prevents the fatigue strength of the press-fitted part from becoming excessive with respect to the fatigue strength of the non-press-fitted part while minimizing the diameter ratio D / d of the press-fitted part and the non-fitted part while minimizing the fatigue strength of the non-press-fitted part. Can be reduced in size and weight.

また請求項4の構成によれば、圧入部の外周面の最大許容剪断応力τ1を測定する工程と、非圧入部の外周面の最大許容剪断応力τ2を測定する工程と、圧入部および非圧入部の直径比D/dを、D/d=(τ2/τ1)11/3 により算出する工程と、直径比D/dの値が1.1以下かつ最大許容剪断応力τ1が最大になる値以上になるように溝および突出部の形状を調整する工程とを含むので、軸部材の圧入部のフレッティング疲労強度を溝および突出部により効果的に高めながら、非圧入部の疲労強度に対して圧入部の疲労強度が過剰になるのを防止し、圧入部および非圧入部の直径比D/dを最小に抑えて軸部材の小型軽量化を図ることができる。 According to the configuration of claim 4, the step of measuring the maximum allowable shear stress τ1 of the outer peripheral surface of the press-fit portion, the step of measuring the maximum allowable shear stress τ2 of the outer peripheral surface of the non-press-fit portion, the press-fit portion and the non-press-fit And calculating the diameter ratio D / d of the portion by D / d = (τ2 / τ1) 1 1/3, and the value of the diameter ratio D / d is 1.1 or less and the maximum allowable shear stress τ1 is maximized. The step of adjusting the shape of the groove and the protruding portion so as to be equal to or higher than the value, so that the fretting fatigue strength of the press-fitted portion of the shaft member is effectively increased by the groove and the protruding portion, while the fatigue strength of the non-pressed portion is increased. On the other hand, the fatigue strength of the press-fitted part can be prevented from becoming excessive, and the diameter ratio D / d between the press-fitted part and the non-press-fitted part can be minimized to reduce the size and weight of the shaft member.

また請求項5の構成によれば、軸部材に相当する試験片の外周面に接触するように該試験片に固定される接触片と、試験片に高周波振動を加える加振装置と、試験片の変位からクラックの発生を検出する変位検出センサとを備えるので、試験片に接触片が接触する部分に固着領域および滑り領域の両方を確実に発生させ、試験片のフレッティング疲労強度を精度良く測定することができる。   According to the fifth aspect of the present invention, the contact piece fixed to the test piece so as to be in contact with the outer peripheral surface of the test piece corresponding to the shaft member, the vibration device for applying high-frequency vibration to the test piece, and the test piece It is equipped with a displacement detection sensor that detects the occurrence of cracks from the displacement of the test piece, so that both the fixed area and the sliding area are reliably generated at the part where the contact piece contacts the test piece, and the fretting fatigue strength of the test piece is accurately determined. Can be measured.

圧入により結合された軸部材および他部材の縦断面図および横断面図である。It is the longitudinal cross-sectional view and cross-sectional view of the shaft member and other member which were couple | bonded by press injection. 圧入部の突出部の幅とクラックの長さとの関係を示すグラフである。It is a graph which shows the relationship between the width | variety of the protrusion part of a press-fit part, and the length of a crack. 第1の実施の形態にかかる試験片の形状を示す図である。It is a figure which shows the shape of the test piece concerning 1st Embodiment. 図3の試験片の製造方法を示す図である。It is a figure which shows the manufacturing method of the test piece of FIG. 第2の実施の形態にかかる試験片を示す図である。It is a figure which shows the test piece concerning 2nd Embodiment. 図5の実施の形態の試験片の製造方法を示す図である。It is a figure which shows the manufacturing method of the test piece of embodiment of FIG. 第3の実施の形態にかかる試験片の製造方法を示す図である。It is a figure which shows the manufacturing method of the test piece concerning 3rd Embodiment. フレッティング疲労強度試験装置を示す図である。It is a figure which shows a fretting fatigue strength test apparatus. 超音波フレッティング試験による最大許容剪断応力の測定結果を示すグラフである。It is a graph which shows the measurement result of the maximum permissible shear stress by an ultrasonic fretting test. 車軸の直径比D/dと最大許容剪断応力との関係を示すグラフである。It is a graph which shows the relationship between the axle diameter ratio D / d and the maximum allowable shear stress. 軸部材の設計方法を示すフローチャートである。It is a flowchart which shows the design method of a shaft member. 車輪に圧入された車軸を示す図である。It is a figure which shows the axle shaft press-fit in the wheel.

以下、図1〜図12に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1(A)に模式的に示すように、従来の鉄道車両の車軸のような軸部材11は、その両端に位置する直径Dの圧入部12,12と、両圧入部12,12に挟まれた直径dの非圧入部13とを備えており、各々の圧入部12の外周面には例えば車輪のような他部材14の中心の圧入孔14aの内周面が圧入により固定される。他部材14の圧入孔14aに圧入される軸部材11の圧入部12の外周面は、繰り返し入力される荷重によりフレッティング疲労し、微細なピッチングが生じ易くなる表面劣化層12aが形成される。表面劣化層12aのピッチングがクラックに成長すると、軸部材11の強度が著しく損なわれるため、圧入部12の外周面には、表面劣化層12aのピッチングがクラックに成長するのを抑制するための加工が施される。   As schematically shown in FIG. 1A, a shaft member 11 such as an axle of a conventional railway vehicle is sandwiched between press-fitting parts 12 and 12 having a diameter D and both press-fitting parts 12 and 12 located at both ends thereof. The inner peripheral surface of the press-fitting hole 14a at the center of another member 14 such as a wheel is fixed to the outer peripheral surface of each press-fitting portion 12 by press-fitting. The outer peripheral surface of the press-fitting portion 12 of the shaft member 11 that is press-fitted into the press-fitting hole 14a of the other member 14 is fretting fatigued by a load that is repeatedly input, and a surface deteriorated layer 12a that easily causes fine pitching is formed. When the pitching of the surface deteriorated layer 12a grows into cracks, the strength of the shaft member 11 is remarkably impaired. Therefore, the outer peripheral surface of the press-fit portion 12 is processed to prevent the pitching of the surface deteriorated layer 12a from growing into cracks. Is given.

フレッティング疲労する圧入部12は、フレッティング疲労しない非圧入部13に比べて強度が低下するため、圧入部12および非圧入部13の強度が均等になるように、圧入部12の直径Dは非圧入部13の直径dよりも大きく設定される。直径比D/dはフレッティング疲労による圧入部12の強度低下を表す指標であり、直径比D/dが1のときは、圧入部12がフレッティング疲労の影響を全く受けない理想的な状態に相当し、直径比D/dが1よりも大きくなるほど、圧入部12がフレッティング疲労の影響を大きく受けることになる。   Since the strength of the press-fit portion 12 that undergoes fretting fatigue is lower than that of the non-press-fit portion 13 that does not undergo fretting fatigue, the diameter D of the press-fit portion 12 is set so that the strength of the press-fit portion 12 and the non-press-fit portion 13 is uniform. It is set larger than the diameter d of the non-press-fit portion 13. The diameter ratio D / d is an index representing the strength reduction of the press-fit portion 12 due to fretting fatigue. When the diameter ratio D / d is 1, the ideal state where the press-fit portion 12 is not affected by fretting fatigue at all. As the diameter ratio D / d is larger than 1, the press-fitting portion 12 is greatly affected by fretting fatigue.

図1(B)および図1(C)に模式的示すように、本実施の形態では軸部材11の圧入部12の外周面に、周方向および軸方向に延びて相互に交差する多数の溝12b…が形成されており、これらの溝12b…に囲まれた多数の突出部12c…の頂部が他部材14の圧入孔14aの内周面に当接する。溝12b…の深さは表面劣化層12aの厚さよりも大きく、よって溝12b…の底部は表面劣化層12aの底部を超えて圧入部12の内部に達している。なお、図1では誇張して大きく描かれているが、表面劣化層12aの厚さ、溝12b…の幅、突出部12c…の幅は数μm〜数十μm程度の大きさである。   As schematically shown in FIGS. 1B and 1C, in the present embodiment, a large number of grooves extending in the circumferential direction and the axial direction and intersecting each other on the outer peripheral surface of the press-fitting portion 12 of the shaft member 11. Are formed, and the tops of a large number of protrusions 12c surrounded by the grooves 12b contact the inner peripheral surface of the press-fitting hole 14a of the other member 14. The depth of the grooves 12b is larger than the thickness of the surface deteriorated layer 12a. Therefore, the bottom of the grooves 12b extends beyond the bottom of the surface deteriorated layer 12a and reaches the inside of the press-fit portion 12. 1, the thickness of the surface degradation layer 12a, the width of the grooves 12b, and the width of the protrusions 12c are about several μm to several tens of μm.

図1(A)に示すように、仮に圧入部12に溝12b…および突出部12c…が存在しないと、圧入部12の表面劣化層12aに発生したピッチングが表面劣化層12aを突き抜けて圧入部12の内部に伸展し、クラックに成長して圧入部12の強度を低下させることになる。   As shown in FIG. 1 (A), if there are no grooves 12b... And protrusions 12c... In the press-fit portion 12, the pitting generated in the surface deteriorated layer 12a of the press-fit portion 12 penetrates the surface deteriorated layer 12a. It extends to the inside of 12 and grows into a crack, so that the strength of the press-fit portion 12 is lowered.

一方、図1(B)および図1(C)に示すように、圧入部12に溝12b…および突出部12c…が存在すると、圧入部12の表面劣化層12aに発生したピッチングは突出部12c…の側面から溝12b…に達してそれ以上伸展できなくなるため、クラックへの成長が阻止されて圧入部12の強度低下が抑制される。   On the other hand, as shown in FIGS. 1 (B) and 1 (C), when grooves 12b ... and protrusions 12c ... exist in the press-fit portion 12, the pitching generated in the surface degradation layer 12a of the press-fit portion 12 is projected 12c. Since it reaches the grooves 12b from the side surfaces of the ... and cannot extend any more, the growth into cracks is prevented and the strength reduction of the press-fit portion 12 is suppressed.

図2は、軸部材11の圧入部12の突出部12c…の最大幅とクラックの長さとの関係を示すグラフである。   FIG. 2 is a graph showing the relationship between the maximum width of the protrusions 12c of the press-fitting portion 12 of the shaft member 11 and the length of the crack.

横軸は初期摩耗後の突出部12c…の最大幅であり、縦軸は突出部12c…に発生するクラックの長さである。同図から明らかなように、突出部12c…の最大幅が16μmを超えるとクラックが発生するが、突出部12c…の最大幅が16μm以下の場合にはクラックが全く発生していないことが分かる。   The horizontal axis is the maximum width of the protrusions 12c after initial wear, and the vertical axis is the length of cracks generated in the protrusions 12c. As is clear from the figure, cracks are generated when the maximum width of the protrusions 12c exceeds 16 μm, but no crack is generated when the maximum width of the protrusions 12c is 16 μm or less. .

初期摩耗後の突出部12c…の最大幅を16μm以下にするとクラックの発生を阻止できる理由は、幅の狭い突出部12c…の頂部にピッチングが生じても、そのピッチングは突出部12c…の頂部の幅が狭いために深さ方向に伸展せず、頂部に沿って伸展しても突出部12c…の端部で止まってそれ以上の伸展が阻止され、頂部のピッチングは他部材14との接触により削り取られて消失するためである。やがて突出部12c…の頂部と他部材14との間になじみがつくと、平均ヘルツ面圧が低下してピッチングが発生し難くなる。また突出部12c…の頂部が摩耗して面粗度が非常に良くなるため、潤滑性が向上してそれ以上の摩耗の進行が停止する。   The reason why cracks can be prevented if the maximum width of the protrusions 12c after initial wear is 16 μm or less is that even if pitching occurs at the top of the narrow protrusions 12c, the pitching is the top of the protrusions 12c. Since the width of the head is narrow, it does not extend in the depth direction, and even if it extends along the top, it stops at the end of the protrusion 12c. This is because it is scraped off by the metal and disappears. Eventually, when familiarity is found between the tops of the protrusions 12c and the other members 14, the average Hertz surface pressure is lowered and pitching is less likely to occur. Also, the top of the protrusions 12c ... wears and the surface roughness becomes very good, so that the lubricity is improved and the further progress of wear is stopped.

次に、図3〜図7に基づいてフレッティング疲労特性を試験するための試験片21について説明する。   Next, a test piece 21 for testing fretting fatigue characteristics will be described with reference to FIGS.

図3に示すように、ダンベル状の試験片21は、中央部が一定直径を有する丸棒状に形成された軸部22と、軸部22の両端から膨出する一対の頭部23,23とを備えており、軸部22の外周面に多数の溝22a…および多数の突出部22b…が形成される。試験片21の溝22a…および突出部22b…は、上述した軸部材11の溝12b…および突出部12c…に対応するものであり、フレッティングにより発生したピッチングがクラックに成長するのを阻止する機能を有している。   As shown in FIG. 3, the dumbbell-shaped test piece 21 includes a shaft portion 22 formed in a round bar shape having a constant diameter at the center portion, and a pair of head portions 23, 23 bulging from both ends of the shaft portion 22. Are formed on the outer peripheral surface of the shaft portion 22 and a plurality of protrusions 22b are formed. The grooves 22a and the protrusions 22b of the test piece 21 correspond to the grooves 12b and the protrusions 12c of the shaft member 11 described above, and prevent the pitching generated by fretting from growing into cracks. It has a function.

この試験片21を製造するには、先ず図4(A)に示すように、軸部22の外周面に複数の環状の逃げ溝22c…を加工する。続いて、図4(B)に示すように、軸部22の外周面に、平坦な外周面を有するバックアップローラ24と、外周面に多数の突起25a…を有する平歯車状の転造ローラ25とを押し付けて回転させることで、隣接する逃げ溝22c…に挟まれた領域に多数の平行な溝22a…と、多数の長方形状の突出部22b…とを形成する。このとき、転造ローラ25により溝22a…から押し出された材料は逃げ溝22c…に逃がされる。   In order to manufacture the test piece 21, first, as shown in FIG. 4A, a plurality of annular relief grooves 22 c... Are processed on the outer peripheral surface of the shaft portion 22. Subsequently, as shown in FIG. 4B, a spur gear-shaped rolling roller 25 having a backup roller 24 having a flat outer peripheral surface on the outer peripheral surface of the shaft portion 22 and a number of protrusions 25a on the outer peripheral surface. Are rotated to form a large number of parallel grooves 22a and a large number of rectangular protrusions 22b in a region sandwiched between the adjacent escape grooves 22c. At this time, the material pushed out of the grooves 22a by the rolling roller 25 is released into the escape grooves 22c.

図5は試験片21の他の実施の形態を示すもので、この試験片21は多数のメッシュ状の溝22a…と、多数の菱形状の突出部22b…と備える。この試験片21を製造するには、先ず図6(A)に示すように、軸部22の外周面に複数の環状の逃げ溝22c…を加工する。続いて、図6(B)に示すように、軸部22の外周面に、一方向に傾斜する多数の突起26a…を有する斜歯歯車状の外周面を有する転造ローラ26と、他方向に傾斜する多数の突起27a…を有する斜歯歯車状の転造ローラ27とを押し付けて回転させることで、隣接する逃げ溝22c…に挟まれた領域に多数のメッシュ状の溝22a…と、多数の菱形状の突出部22b…とを形成する。このとき、転造ローラ26,27により溝22a…から押し出された材料は逃げ溝22c…に逃がされる。   FIG. 5 shows another embodiment of the test piece 21. The test piece 21 includes a large number of mesh-shaped grooves 22a and a large number of rhombus-shaped protrusions 22b. In order to manufacture the test piece 21, first, as shown in FIG. 6A, a plurality of annular relief grooves 22 c... Are processed on the outer peripheral surface of the shaft portion 22. Subsequently, as shown in FIG. 6B, the rolling roller 26 having a bevel gear-shaped outer peripheral surface having a number of protrusions 26a... Inclined in one direction on the outer peripheral surface of the shaft portion 22, and the other direction. A plurality of mesh-like grooves 22a in a region sandwiched between adjacent escape grooves 22c, by rotating and rotating a bevel gear-shaped rolling roller 27 having a large number of protrusions 27a ... A large number of diamond-shaped protrusions 22b are formed. At this time, the material extruded from the grooves 22a by the rolling rollers 26 and 27 is released to the escape grooves 22c.

試験片21の製造方法の他の実施の形態として、図7に示すように、軸部22および一対の頭部23,23を別部材で構成し、溝22a…および突出部22b…を形成した軸部22の両端に一対の頭部23,23を圧入により固定しても良い。   As other embodiment of the manufacturing method of the test piece 21, as shown in FIG. 7, the axial part 22 and a pair of head parts 23 and 23 were comprised by another member, and the groove | channel 22a ... and the protrusion part 22b ... were formed. A pair of heads 23 and 23 may be fixed to both ends of the shaft part 22 by press-fitting.

なお、図3〜図7では誇張して大きく描かれているが、溝22a…の幅、突出部22b…の幅、逃げ溝22c…の幅は数μm〜数十μm程度の大きさである。   3 to 7, the widths of the grooves 22a, the protrusions 22b, and the escape grooves 22c are about several μm to several tens of μm. .

図8は、試験片21のフレッティングによる強度低下を測定するためのフレッティング疲労強度試験装置を示すものである。一対の板状のパッド31,31の相互に対向する内面中央部に、試験片21の軸部22に接触可能な一対の接触片32,32が固定される。一対のパッド31,31の両端部を貫通する一対のボルト33,33にナット34,34を螺合して締結することで、接触片32,32が試験片21の軸部22に所定の荷重で押し付けられる。高周波捩じり振動を発生する加振装置35が試験片21の上側の頭部23に接続されており、捩じり変位を検出する一対の変位検出センサ36,36が、試験片21の一対の頭部23,23に対向するように配置される。   FIG. 8 shows a fretting fatigue strength test apparatus for measuring the strength reduction due to fretting of the test piece 21. A pair of contact pieces 32 and 32 that can come into contact with the shaft portion 22 of the test piece 21 are fixed to the center portions of the inner surfaces of the pair of plate-like pads 31 and 31 facing each other. The nuts 34 and 34 are screwed and fastened to a pair of bolts 33 and 33 penetrating both ends of the pair of pads 31 and 31 so that the contact pieces 32 and 32 have a predetermined load on the shaft portion 22 of the test piece 21. Pressed with. A vibration device 35 that generates high-frequency torsional vibration is connected to the upper head 23 of the test piece 21, and a pair of displacement detection sensors 36 and 36 that detect torsional displacement are a pair of the test piece 21. It arrange | positions so that it may oppose head 23,23.

試験片21および接触片32は、例えば前記軸部材11および前記他部材14に対応するもので、それらの材質や、溝22a…および突出部22b…の形状は、前記軸部材11および前記他部材14と同じに設定される。   The test piece 21 and the contact piece 32 correspond to, for example, the shaft member 11 and the other member 14, and the material and the shapes of the grooves 22a and the protruding portions 22b are the shaft member 11 and the other member. 14 is set.

試験片21の軸部22を挟むように一対の接触片32,32を固定した状態で、加振装置35で試験片21の上側の頭部23に高周波捩じり振動を入力すると、試験片21の軸部22が捩じり振動して接触片32,32との間に相対滑りが発生し、試験片21の軸部22がフレッティング疲労する。このとき、試験片21の軸部22の捩じれ角は一対の変位検出センサ36,36の出力から検出されるが、検出された捩じれ角が急激に増加したときに、フレッティングにより発生したピッチングがクラックに成長し、試験片21が疲労限界に達したと判断される。このときの試験片21の軸部22の外周面の剪断応力は、試験片21に加えられるトルクと、試験片21の軸部22の直径とから算出される。   When high-frequency torsional vibration is input to the upper head 23 of the test piece 21 with the vibration device 35 in a state where the pair of contact pieces 32 and 32 are fixed so as to sandwich the shaft portion 22 of the test piece 21, the test piece The shaft portion 22 of the test piece 21 is torsionally vibrated to cause relative slip between the contact pieces 32 and 32, and the shaft portion 22 of the test piece 21 is fretting fatigued. At this time, the twisting angle of the shaft portion 22 of the test piece 21 is detected from the outputs of the pair of displacement detection sensors 36, 36. When the detected twisting angle increases rapidly, the pitching generated by fretting does not occur. It grows into a crack, and it is judged that the test piece 21 has reached the fatigue limit. The shear stress of the outer peripheral surface of the shaft part 22 of the test piece 21 at this time is calculated from the torque applied to the test piece 21 and the diameter of the shaft part 22 of the test piece 21.

接触片32,32がフレームのような固定部に支持されていると仮定すると、試験片21および接触片32,32の接触部の全域が滑り領域となってしまい、固着領域および滑り領域が共存する状態を実現することが困難になってクラックの発生を精度良く検出できなくなる。一方、本実施の形態によれば、接触片32,32を試験片21に直接支持したことにより、試験片21および接触片32,32の接触部に固着領域および滑り領域を共存させ、固着領域および滑り領域の境界部におけるクラックの発生を精度良く検出することができる。   Assuming that the contact pieces 32 and 32 are supported by a fixed portion such as a frame, the entire contact portion of the test piece 21 and the contact pieces 32 and 32 becomes a sliding region, and the fixing region and the sliding region coexist. It becomes difficult to realize the state to be performed, and the occurrence of cracks cannot be detected accurately. On the other hand, according to the present embodiment, since the contact pieces 32 and 32 are directly supported by the test piece 21, the fixing region and the sliding region are allowed to coexist in the contact portion between the test piece 21 and the contact pieces 32 and 32, thereby fixing the fixing region. In addition, it is possible to accurately detect the occurrence of cracks at the boundary of the sliding region.

溝22a…および突出部22b…を有する試験片21の疲労限界を検証するために、このフレッティング疲労強度試験装置により、溝22a…および突出部22b…を有しない試験片21のフレッティング疲労限界を測定可能である。また接触片32,32を取り外すことで、溝22a…および突出部22b…を有しない試験片21のフレッティングを伴わない単純な捩じり疲労限界を測定可能である。   In order to verify the fatigue limit of the test piece 21 having the grooves 22a... And the protruding portions 22b..., The fretting fatigue limit of the test piece 21 having no grooves 22a. Can be measured. Further, by removing the contact pieces 32, 32, it is possible to measure a simple torsional fatigue limit without fretting of the test piece 21 which does not have the grooves 22a and the protrusions 22b.

さて、軸部材11の圧入部12の外周面はフレッティング疲労により強度が低下するため、軸部材11全体の強度を最大限に確保するには、圧入部12の直径Dは非圧入部13の直径dよりも大きく設定する必要がある。しかしながら、圧入部12の直径Dをむやみに大きくすることは、軸部材11の重量や寸法が増加するために望ましくない。そこで、圧入部12に溝12b…および突出部12c…を形成してフレッティング疲労を低減した上で、圧入部12の直径Dを必要最小限に抑えて、つまり直径比D/dをできるだけ小さくして軸部材11の重量や寸法を低減することが望ましい。   Now, since the strength of the outer peripheral surface of the press-fitting portion 12 of the shaft member 11 is reduced due to fretting fatigue, the diameter D of the press-fit portion 12 is set to be that of the non-press-fit portion 13 in order to ensure the maximum strength of the shaft member 11. It is necessary to set larger than the diameter d. However, unnecessarily increasing the diameter D of the press-fit portion 12 is not desirable because the weight and dimensions of the shaft member 11 increase. Therefore, the grooves 12b and the protrusions 12c are formed in the press-fit portion 12 to reduce fretting fatigue, and the diameter D of the press-fit portion 12 is suppressed to the minimum necessary, that is, the diameter ratio D / d is made as small as possible. Thus, it is desirable to reduce the weight and size of the shaft member 11.

直径Dを有する軸部材11の圧入部12にトルクTを加えたとき、その外周面における剪断応力τ1は、τ1=16T/πD3 で与えられる。また直径dを有する軸部材11の非圧入部13にトルクTを加えたとき、その外周面における剪断応力τ2は、τ2=16T/πd3 で与えられる。軸部材11の圧入部12および非圧入部13は一体に連続していて同じトルクTが作用するため、直径比D/dは、D/d=(τ2/τ1)1/3 で与えられる。すなわち、圧入部12の外周面の最大許容剪断応力τ1と、非圧入部13の外周面の最大許容剪断応力τ2とをD/d=(τ2/τ1)1/3 の式に適用すれば、非圧入部13にクラックが発生するのと同時に圧入部12にクラックが発生する直径比D/d、つまり圧入部12の直径Dが無駄に大きくない最小の直径比D/dを得ることができる。 When adding torque T to the press-fitting portion 12 of the shaft member 11 having a diameter D, the shear stress .tau.1 at the outer circumferential surface is given by τ1 = 16T / πD 3. Also when adding torque T in the non-press-fitting portion 13 of the shaft member 11 having a diameter d, shear stress .tau.2 at the outer circumferential surface is given by τ2 = 16T / πd 3. Since the press-fitting portion 12 and the non-press-fitting portion 13 of the shaft member 11 are integrally continuous and the same torque T acts, the diameter ratio D / d is given by D / d = (τ2 / τ1) 1/3 . That is, if the maximum allowable shear stress τ1 of the outer peripheral surface of the press-fit portion 12 and the maximum allowable shear stress τ2 of the outer peripheral surface of the non-press-fit portion 13 are applied to the equation D / d = (τ2 / τ1) 1/3 , It is possible to obtain a diameter ratio D / d at which cracks occur in the press-fitted portion 12 at the same time as cracks occur in the non-press-fit portion 13, that is, a minimum diameter ratio D / d where the diameter D of the press-fit portion 12 is not unnecessarily large. .

図9のグラフは、上記フレッティング疲労強度試験による試験片の最大許容剪断応力の測定結果を示すもので、横軸は試験片に加える振動のサイクル数であり、縦軸は試験片にクラックが発生したときの剪断応力(最大許容剪断応力)である。■印および●印は、試験片がフレッティング疲労を伴わない単純な捩じり疲労を受けた場合の最大許容剪断応力を示し、■印は試験片に浸炭窒化処理および微粒子ショットピーニング処理(WPC)の両方を施したものであり、●印は試験片に浸炭処理だけを施したものである。また□印および○印は、試験片がフレッティング疲労を伴う捩じり疲労を受けた場合の最大許容剪断応力を示し、□印は試験片に浸炭窒化処理および微粒子ショットピーニング処理(WPC)の両方を施したものであり、○印は試験片に浸炭処理だけを施したものである。   The graph of FIG. 9 shows the measurement result of the maximum allowable shear stress of the test piece by the fretting fatigue strength test. The horizontal axis is the number of cycles of vibration applied to the test piece, and the vertical axis is cracks in the test piece. Shear stress (maximum allowable shear stress) when generated. ■ and ● indicate the maximum allowable shear stress when the specimen is subjected to simple torsional fatigue without fretting fatigue, and ■ indicates carbonitriding and fine particle shot peening (WPC) ), And the ● mark indicates that the test piece was only carburized. The □ and ○ marks indicate the maximum allowable shear stress when the test piece is subjected to torsional fatigue accompanied by fretting fatigue. Both marks are given, and the circles indicate that the test piece was only carburized.

浸炭窒化処理および微粒子ショットピーニング処理の両方を施した試験片の最大許容剪断応力は、単なる捩じり疲労を受けた場合(■印)は900MPaであるのに対し、フレッティング疲労を伴う捩じり疲労を受けた場合(□印)は480MPaに低下している。また浸炭処理だけを施した試験片の最大許容剪断応力は、単なる捩じり疲労を受けた場合(●印)は750MPaであるのに対し、フレッティング疲労を伴う捩じり疲労を受けた場合(○印)は440MPaに低下している。   The maximum allowable shear stress of a specimen subjected to both carbonitriding and fine particle shot peening is 900 MPa when subjected to mere torsional fatigue (marked with ■), whereas that with fretting fatigue When subjected to fatigue (□ mark), it is reduced to 480 MPa. In addition, the maximum allowable shear stress of a specimen subjected only to carburizing treatment is 750 MPa when subjected to mere torsional fatigue (marked with ●), but torsional fatigue with fretting fatigue. (Circle mark) has fallen to 440 MPa.

この試験結果をD/d=(τ2/τ1)1/3 の式に適用すると、浸炭窒化処理および微粒子ショットピーニング処理の両方を施した試験片の直径比D/dは1.19となり、また浸炭処理だけを施した試験片の直径比D/dは1.20となる。 When this test result is applied to the equation D / d = (τ2 / τ1) 1/3 , the diameter ratio D / d of the test piece subjected to both carbonitriding and fine particle shot peening is 1.19. The diameter ratio D / d of the test piece subjected to only carburizing treatment is 1.20.

図10は、図12で説明した鉄道車両の軸部材11を他部材14に圧入した圧入部12の最大許容剪断応力を示すグラフであり、横軸は直径比D/dを示し、縦軸は圧入部12にクラックが発生するときの最大許容剪断応力を示している。   FIG. 10 is a graph showing the maximum allowable shear stress of the press-fitted portion 12 in which the shaft member 11 of the railway vehicle described in FIG. 12 is press-fitted into the other member 14. The horizontal axis shows the diameter ratio D / d, and the vertical axis shows The maximum allowable shear stress when a crack occurs in the press-fit portion 12 is shown.

図10に実線で示すように、圧入部12の直径Dの増加、すなわち直径比D/dの増加に伴って圧入部12の最大許容剪断応力は増加しており、非圧入部13の最大許容剪断応力(直径比D/d=1のときの圧入部12の最大許容剪断応力)は70MPaであり、圧入部12の最大許容剪断応力は124MPaであることが読み取れる。非圧入部13の最大許容剪断応力=70MPaと、圧入部12の最大許容剪断応力=124MPaとをD/d=(τ2/τ1)1/3 の式に適用すると直径比D/d=1.20となり、グラフから読み取れる直径比D/d=1.15とほぼ一致することがわかる。 As shown by the solid line in FIG. 10, the maximum allowable shear stress of the press-fit portion 12 increases as the diameter D of the press-fit portion 12 increases, that is, the diameter ratio D / d increases. It can be seen that the shear stress (the maximum allowable shear stress of the press-fit portion 12 when the diameter ratio D / d = 1) is 70 MPa, and the maximum allowable shear stress of the press-fit portion 12 is 124 MPa. When the maximum allowable shear stress of the non-pressed portion 13 = 70 MPa and the maximum allowable shear stress of the press-fit portion 12 = 124 MPa are applied to the equation D / d = (τ2 / τ1) 1/3 , the diameter ratio D / d = 1. It can be seen that the diameter ratio is almost equal to the diameter ratio D / d = 1.15 that can be read from the graph.

次に、直径比D/dを最小にして軸部材11の小型軽量化を図るための設計方法を、図11のフローチャートに基づいて説明する。   Next, a design method for reducing the size and weight of the shaft member 11 by minimizing the diameter ratio D / d will be described based on the flowchart of FIG.

先ずステップS1で、溝12b…および突出部12c…を有しない軸部材11の圧入部12を模した試験片21をフレッティング疲労強度試験装置にかけ、フレッティング疲労を発生させた状態で最大許容剪断応力τ1´を測定する。続くステップS2で、軸部材11の非圧入部13を模した試験片21をフレッティング疲労強度試験装置にかけ、フレッティング疲労を発生させずに単純捩じり疲労だけを発生させた状態で最大許容剪断応力τ2を測定する。前記ステップS2ではフレッティング疲労を発生させる必要がないため、試験片21に接触片32,32を接触させる必要はない。続くステップS3で、最大許容剪断応力τ1´および最大許容剪断応力τ2から直径比(D/d)´を算出する。この直径比(D/d)´は溝12b…および突出部12c…を有しない比較例の軸部材11(図1(A)参照)の直径比に相当する。   First, in step S1, a test piece 21 simulating the press-fitted portion 12 of the shaft member 11 having no grooves 12b and protrusions 12c is applied to a fretting fatigue strength test apparatus, and the maximum allowable shear is generated in a state where fretting fatigue is generated. The stress τ1 ′ is measured. In the subsequent step S2, the test piece 21 simulating the non-pressed portion 13 of the shaft member 11 is applied to the fretting fatigue strength test apparatus, and the maximum allowable value is obtained in a state where only the torsional fatigue is generated without generating fretting fatigue. The shear stress τ2 is measured. In step S2, since it is not necessary to generate fretting fatigue, it is not necessary to bring the contact pieces 32, 32 into contact with the test piece 21. In the subsequent step S3, the diameter ratio (D / d) ′ is calculated from the maximum allowable shear stress τ1 ′ and the maximum allowable shear stress τ2. This diameter ratio (D / d) ′ corresponds to the diameter ratio of the shaft member 11 (see FIG. 1A) of the comparative example having no grooves 12b.

続くステップS4で、溝12b…および突出部12c…を有する軸部材11の圧入部12を模した試験片21をフレッティング疲労強度試験装置にかけ、フレッティング疲労を発生させた状態で最大許容剪断応力τ1を測定する。続くステップS5で、最大許容剪断応力τ1および最大許容剪断応力τ2から直径比(D/d)を算出する。この直径比(D/d)は溝12b…および突出部12c…を有する実施の形態の軸部材11の直径比に相当する(図1(B)および図1(C)参照)。   In the subsequent step S4, the test piece 21 simulating the press-fitting portion 12 of the shaft member 11 having the grooves 12b... And the projecting portions 12c is subjected to a fretting fatigue strength test device, and the maximum allowable shear stress is generated in the state where fretting fatigue is generated. τ1 is measured. In the subsequent step S5, the diameter ratio (D / d) is calculated from the maximum allowable shear stress τ1 and the maximum allowable shear stress τ2. This diameter ratio (D / d) corresponds to the diameter ratio of the shaft member 11 of the embodiment having the grooves 12b... And the protrusions 12c (see FIGS. 1B and 1C).

続くステップS6で、比較例の直径比(D/d)´および実施の形態の直径比(D/d)を比較し、(D/d)≦(D/d)´が成立すればステップS7に移行し、成立しなければステップS8に移行する。(D/d)≦(D/d)´が成立しない場合とは、溝12b…および突出部12c…を有しない比較例の軸部材11の疲労強度が、溝12b…および突出部12c…を有する実施の形態の軸部材11の疲労強度以上となる場合であり、溝12b…および突出部12c…の設計が不適切で効果を発揮しない場合に相当する。   In subsequent step S6, the diameter ratio (D / d) ′ of the comparative example and the diameter ratio (D / d) of the embodiment are compared, and if (D / d) ≦ (D / d) ′ is satisfied, step S7 is established. If not established, the process proceeds to step S8. The case where (D / d) ≦ (D / d) ′ is not satisfied means that the fatigue strength of the shaft member 11 of the comparative example not having the grooves 12b and the protrusions 12c is that the grooves 12b and the protrusions 12c are not. This corresponds to a case where the fatigue strength of the shaft member 11 of the embodiment is greater than that, and the case where the design of the grooves 12b and the protrusions 12c is inappropriate and the effect is not exhibited.

その場合には、ステップS8で、試験片21の溝の形状、深さ、角度、ピッチ等あるいは突出部の形状、面積等を変更し、前記ステップS4〜ステップS6を繰り返す。その結果、前記ステップS6で(D/d)≦(D/d)´が成立すれば、比較例に対して実施の形態の疲労強度が向上したと判断し、ステップS7に移行する。   In that case, in step S8, the shape, depth, angle, pitch, etc. of the groove of the test piece 21 or the shape, area, etc. of the protrusion are changed, and the above steps S4 to S6 are repeated. As a result, if (D / d) ≦ (D / d) ′ is established in step S6, it is determined that the fatigue strength of the embodiment has improved with respect to the comparative example, and the process proceeds to step S7.

そしてステップS7で、(D/d)≦閾値が成立しなければ、溝および突出部による疲労強度の向上が不充分であると判断し、前記ステップS8で溝および突出部の性状を更に変更した後に、前記ステップS4〜ステップS7を更に繰り返す。その結果、(D/d)≦閾値が成立すれば、疲労強度の向上が充分に達成されたと判断して本ルーチンを終了する。   In step S7, if (D / d) ≦ threshold value is not satisfied, it is determined that the fatigue strength is not sufficiently improved by the groove and the protrusion, and the properties of the groove and the protrusion are further changed in step S8. Later, steps S4 to S7 are further repeated. As a result, if (D / d) ≦ threshold value is established, it is determined that the fatigue strength has been sufficiently improved, and this routine is terminated.

図10に実線で示すように、従来の鉄道車両の軸部材11を他部材14に圧入した圧入部12の最大許容剪断応力τは、直径比(D/d)の増加に応じて増加するが、直径比(D/d)が1.1に達するとτ=124MPaにサチュレートしてそれ以上増加しなくなる。破線は上記設計方法により溝12b…および突出部12c…の形状を最適化した本実施の形態の特性を示すもので、最大許容剪断応力τは直径比(D/d)の増加に応じて増加するが、直径比(D/d)が従来例の1.1よりも小さい(D/d)min でτ=124MPaにサチュレートしてそれ以上増加しなくなる。よって、直径比(D/d)が1.1以下、かつ(D/d)min となるように溝12b…および突出部12c…の形状を最適化することで、従来例に対して直径比(D/d)を小さくして軸部材11を小型軽量化することができる。 As shown by a solid line in FIG. 10, the maximum allowable shear stress τ of the press-fitted portion 12 in which the shaft member 11 of the conventional railway vehicle is press-fitted into the other member 14 increases as the diameter ratio (D / d) increases. When the diameter ratio (D / d) reaches 1.1, saturates to τ = 124 MPa and does not increase any more. The broken lines indicate the characteristics of the present embodiment in which the shapes of the grooves 12b and the protrusions 12c are optimized by the above design method, and the maximum allowable shear stress τ increases as the diameter ratio (D / d) increases. However, when the diameter ratio (D / d) is smaller than 1.1 of the conventional example (D / d) min , saturates to τ = 124 MPa and does not increase any more. Therefore, by optimizing the shapes of the grooves 12b and the protrusions 12c so that the diameter ratio (D / d) is 1.1 or less and (D / d) min , the diameter ratio is compared with the conventional example. The shaft member 11 can be reduced in size and weight by reducing (D / d).

以上のように、本実施の形態によれば、軸部材11の圧入部12のフレッティング疲労強度を溝12b…および突出部12c…により効果的に高めながら、非圧入部13の疲労強度に対して圧入部12の疲労強度が過剰になるのを防止し、圧入部12および非圧入部13の直径比D/dを最小に抑えて軸部材11の小型軽量化を図ることができる。   As described above, according to the present embodiment, the fretting fatigue strength of the press-fit portion 12 of the shaft member 11 is effectively increased by the grooves 12b and the protrusions 12c, while the fatigue strength of the non-press-fit portion 13 is increased. Thus, the fatigue strength of the press-fit portion 12 can be prevented from becoming excessive, and the diameter ratio D / d of the press-fit portion 12 and the non-press-fit portion 13 can be minimized to reduce the size and weight of the shaft member 11.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、本発明の軸部材11および他部材14は鉄道車両の車軸および車輪に限定されるものではない。   For example, the shaft member 11 and the other member 14 of the present invention are not limited to the axle and wheels of a railway vehicle.

また本発明の軸部材の溝および突出部の寸法、形状、数等は実施の形態に限定されるものではない。   Further, the dimensions, shape, number, and the like of the grooves and protrusions of the shaft member of the present invention are not limited to the embodiments.

11 軸部材
12 圧入部
12b 溝
12c 突出部
13 非圧入部
14 他部材
14a 圧入孔
21 試験片
32 接触片
35 加振装置
36 変位検出センサ
11 Shaft member 12 Press-fit portion 12b Groove 12c Projection portion 13 Non-press-fit portion 14 Other member 14a Press-fit hole 21 Test piece 32 Contact piece 35 Excitation device 36 Displacement detection sensor

Claims (5)

軸部材(11)が、直径dの非圧入部(13)と、直径dよりも大きい直径Dの圧入部(12)とを備え、前記圧入部(12)の外周面が他部材(14)の圧入孔(14a)の内周面に圧入される軸部材のフレッティング疲労低減構造であって、
前記圧入部(12)の外周面に多数の溝(12b)に囲まれた多数の突出部(12c)が形成されることを特徴とする軸部材のフレッティング疲労低減構造。
The shaft member (11) includes a non-press-fit portion (13) having a diameter d and a press-fit portion (12) having a diameter D larger than the diameter d, and the outer peripheral surface of the press-fit portion (12) is the other member (14). The fretting fatigue reduction structure of the shaft member press-fitted into the inner peripheral surface of the press-fitting hole (14a),
A fretting fatigue reduction structure for a shaft member, wherein a plurality of protrusions (12c) surrounded by a number of grooves (12b) are formed on an outer peripheral surface of the press-fitting portion (12).
前記突出部(12c)の平均接触幅が16μm以下であることを特徴とする、請求項1に記載の軸部材のフレッティング疲労低減構造。   2. The fretting fatigue reduction structure for a shaft member according to claim 1, wherein an average contact width of the protrusions (12 c) is 16 μm or less. 請求項1または請求項2に記載の軸部材(11)であって、
前記圧入部(12)の外周面の最大許容剪断応力τ1と、前記非圧入部(13)の外周面の最大許容剪断応力τ2とから算出したD/d=(τ2/τ1)1/3 の値が、1.1以下かつ最大許容剪断応力τ1が最大になる値以上になるように前記溝(12b)および前記突出部(12c)の形状を設定したことを特徴とする、請求項1または請求項2に記載の軸部材。
A shaft member (11) according to claim 1 or 2, wherein
D / d = (τ2 / τ1) 1/3 calculated from the maximum allowable shear stress τ1 of the outer peripheral surface of the press-fitted portion (12) and the maximum allowable shear stress τ2 of the outer peripheral surface of the non-pressed portion (13). The shape of the groove (12b) and the protrusion (12c) is set so that the value is 1.1 or less and the maximum allowable shear stress τ1 is the maximum value or more. The shaft member according to claim 2.
請求項1または請求項2に記載の軸部材(11)の設計方法であって、
前記圧入部(12)の外周面の最大許容剪断応力τ1を測定する工程と、前記非圧入部(13)の外周面の最大許容剪断応力τ2を測定する工程と、前記圧入部(12)および前記非圧入部(13)の直径比D/dを、D/d=(τ2/τ1)1/3 により算出する工程と、前記直径比D/dの値が1.1以下かつ最大許容剪断応力τ1が最大になる値以上になるように前記溝(12b)および前記突出部(12c)の形状を調整する工程とを含むことを特徴とする軸部材の設計方法。
A method for designing a shaft member (11) according to claim 1 or 2,
A step of measuring the maximum allowable shear stress τ1 of the outer peripheral surface of the press-fit portion (12), a step of measuring the maximum allowable shear stress τ2 of the outer peripheral surface of the non-press-fit portion (13), the press-fit portion (12) and A step of calculating a diameter ratio D / d of the non-press-fit portion (13) by D / d = (τ2 / τ1) 1/3, and a value of the diameter ratio D / d of 1.1 or less and a maximum allowable shear Adjusting the shape of the groove (12b) and the protruding portion (12c) so that the stress τ1 is equal to or greater than the maximum value.
請求項1または請求項2に記載の軸部材(11)のフレッティング疲労強度を試験するフレッティング疲労強度試験装置であって、
前記軸部材(11)に相当する試験片(21)の外周面に接触するように該試験片(21)に固定される接触片(32)と、前記試験片(21)に高周波振動を加える加振装置(35)と、前記試験片(21)の変位からクラックの発生を検出する変位検出センサ(36)とを備えることを特徴とするフレッティング疲労強度試験装置。
A fretting fatigue strength test apparatus for testing the fretting fatigue strength of the shaft member (11) according to claim 1 or 2,
A contact piece (32) fixed to the test piece (21) so as to come into contact with the outer peripheral surface of the test piece (21) corresponding to the shaft member (11), and high frequency vibration is applied to the test piece (21). A fretting fatigue strength test apparatus comprising: a vibration exciter (35); and a displacement detection sensor (36) for detecting occurrence of a crack from the displacement of the test piece (21).
JP2018023827A 2018-02-14 2018-02-14 Fretting fatigue reduction structure of shaft member, shaft member, design method of shaft member and fretting fatigue strength tester Active JP6795528B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018023827A JP6795528B2 (en) 2018-02-14 2018-02-14 Fretting fatigue reduction structure of shaft member, shaft member, design method of shaft member and fretting fatigue strength tester
CN201910111277.4A CN110159644B (en) 2018-02-14 2019-02-12 Shaft member, fretting fatigue reducing structure, design method, and fretting fatigue strength test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023827A JP6795528B2 (en) 2018-02-14 2018-02-14 Fretting fatigue reduction structure of shaft member, shaft member, design method of shaft member and fretting fatigue strength tester

Publications (2)

Publication Number Publication Date
JP2019138828A true JP2019138828A (en) 2019-08-22
JP6795528B2 JP6795528B2 (en) 2020-12-02

Family

ID=67645341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023827A Active JP6795528B2 (en) 2018-02-14 2018-02-14 Fretting fatigue reduction structure of shaft member, shaft member, design method of shaft member and fretting fatigue strength tester

Country Status (2)

Country Link
JP (1) JP6795528B2 (en)
CN (1) CN110159644B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134410U (en) * 1981-02-18 1982-08-21
JPH0510340A (en) * 1990-11-19 1993-01-19 Nippon Piston Ring Co Ltd Machine element pressed with shaft into coupling member and manufacture thereof
JPH05172209A (en) * 1991-12-26 1993-07-09 Mitsubishi Materials Corp Cam shaft
JP2014224599A (en) * 2013-04-19 2014-12-04 Nok株式会社 Torsional damper
JP2015190874A (en) * 2014-03-28 2015-11-02 本田技研工業株式会社 Method and device for testing fretting fatigue
GB2543090A (en) * 2015-10-09 2017-04-12 Univ Dublin City An interference fit fastener and method of fabricating same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070276409A1 (en) * 2006-05-25 2007-11-29 Ethicon Endo-Surgery, Inc. Endoscopic gastric restriction methods and devices
WO2011115101A1 (en) * 2010-03-16 2011-09-22 Ntn株式会社 Method of assessing rolling contact metallic material shear stress fatigue values, and method and device using same that estimate fatigue limit surface pressure
CN104458443B (en) * 2013-09-25 2017-10-17 中国石油化工股份有限公司 Anti- interlaminar shear strength method of testing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134410U (en) * 1981-02-18 1982-08-21
JPH0510340A (en) * 1990-11-19 1993-01-19 Nippon Piston Ring Co Ltd Machine element pressed with shaft into coupling member and manufacture thereof
JPH05172209A (en) * 1991-12-26 1993-07-09 Mitsubishi Materials Corp Cam shaft
JP2014224599A (en) * 2013-04-19 2014-12-04 Nok株式会社 Torsional damper
JP2015190874A (en) * 2014-03-28 2015-11-02 本田技研工業株式会社 Method and device for testing fretting fatigue
GB2543090A (en) * 2015-10-09 2017-04-12 Univ Dublin City An interference fit fastener and method of fabricating same

Also Published As

Publication number Publication date
CN110159644A (en) 2019-08-23
JP6795528B2 (en) 2020-12-02
CN110159644B (en) 2021-10-26

Similar Documents

Publication Publication Date Title
Shen et al. Effect of retained austenite–Compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel
Alfredsson Fretting fatigue of a shrink-fit pin subjected to rotating bending: Experiments and simulations
Silori et al. Finite element analysis of traction gear using ANSYS
Almen Shot blasting to increase fatigue resistance
JP2006329319A (en) Rolling/sliding component, rolling bearing, cam follower, and surface improving method for rolling/sliding component
JP2019138828A (en) Fretting fatigue reduction structure of shaft member, shaft member, design method of shaft member, fretting fatigue strength test equipment for shaft member
CA2615916A1 (en) Process for laser rounding and flattening of cylindrical parts
Solazzi Wheel rims for industrial vehicles: Comparative experimental analyses
JP5994377B2 (en) Radial rolling bearing inner ring and manufacturing method thereof
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
Daniewicz et al. Increasing the bending fatigue resistance of spur gear teeth using a presetting process
Seo et al. Effects of metal removal and residual stress on the contact fatigue life of railway wheels
Stamenković et al. Recommendations for the estimation of the strength of the railway wheel set press fit joint
JP2001206002A (en) Axle for rolling stock and its manufacturing method
JP2022097327A (en) Torsion bar and manufacturing method thereof
CN110399660B (en) Quantitative matching design method for structure heat treatment-hardness distribution
JP2021156593A (en) Fretting fatigue reduction structure for shaft member and fretting fatigue test device
JP2002257169A (en) High fatigue strength axial spring for railway vehicle
JP4361916B2 (en) Method for strengthening surface of metal member
JP4600194B2 (en) Fastening structure of railcar brake disc and railcar wheel
JP6155829B2 (en) ROLLING MEMBER, MANUFACTURING METHOD THEREOF, AND ROLLING BEARING
JP2022143695A (en) Shaft member fitting structure, design method therefore and fretting fatigue test method
JP2014006112A (en) Method for evaluating dynamic characteristics of steel
JP2022147376A (en) Fitting structure of shaft member to fitting hole, and fretting fatigue test method
JP2003254436A (en) Cylinder device and manufacturing method of rod used in cylinder device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6795528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150