JP2022143695A - Shaft member fitting structure, design method therefore and fretting fatigue test method - Google Patents

Shaft member fitting structure, design method therefore and fretting fatigue test method Download PDF

Info

Publication number
JP2022143695A
JP2022143695A JP2021044352A JP2021044352A JP2022143695A JP 2022143695 A JP2022143695 A JP 2022143695A JP 2021044352 A JP2021044352 A JP 2021044352A JP 2021044352 A JP2021044352 A JP 2021044352A JP 2022143695 A JP2022143695 A JP 2022143695A
Authority
JP
Japan
Prior art keywords
shaft member
test
stress
contact
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021044352A
Other languages
Japanese (ja)
Inventor
徹 矢ヶ崎
Toru Yagasaki
享佑 野村
Kyosuke Nomura
仁 石井
Hitoshi Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2021044352A priority Critical patent/JP2022143695A/en
Publication of JP2022143695A publication Critical patent/JP2022143695A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Abstract

To provide a fitting structure which can enhance the fretting fatigue strength of a shaft member, and a design method which can arbitrarily set a point at which the break of the shaft member occurs.SOLUTION: As a fitting structure of a shaft member 2 to a fitting hole 1a of a contact member 1, a stress relief groove 2A in which a stress concentration coefficient Kt reaches 1.08 to 1.13 is formed at a point corresponding to an end part of the contact member 1 of the shaft member 2 in an axial direction. Also, when the shaft member 2 receives a torsional load, the stress concentration coefficient Kt is set smaller than 1.08 in order to fretting-fatigue breaking the shaft member 2 at a fitting portion, the stress concentration coefficient Kt is set larger than 1.13 in order to fatigue-break the shaft member 2 at the stress relief groove 2A portion, and the stress concentration coefficient Kt is set to 1.08 to 1.13 in order to make the fretting-fatigue break at the fitting portion of the shaft member 2 and the fatigue break at the stress relief groove 2A portion substantially simultaneously occur.SELECTED DRAWING: Figure 10

Description

本発明は、軸部材の嵌合構造及びその設計手法、及びフレッティング疲労試験方法に関する。 TECHNICAL FIELD The present invention relates to a fitting structure of a shaft member, a design method thereof, and a fretting fatigue test method.

機械の設計にはフレッティングの問題を考慮する必要がある。ここで、フレッティングとは、面圧が作用している機械の構造物同士の接触面間において、摩擦力を伴った微小(数μm~数10μm程度)な相対滑りが繰り返して発生する現象である。例えば、蒸気タービンの翼根と翼溝との嵌合部においては、蒸気タービンの運転時に面圧が作用した状態で微小な相対滑りが繰り返し発生し、フレッティングによる疲労(フレッティング疲労)が生じる。 Fretting issues must be taken into account in machine design. Here, fretting is a phenomenon in which minute (about several μm to several tens of μm) relative slippage accompanied by frictional force occurs repeatedly between the contact surfaces of mechanical structures on which surface pressure is acting. be. For example, at the joint between the blade root and the blade groove of a steam turbine, when the steam turbine is in operation, slight relative slip occurs repeatedly under surface pressure, causing fatigue due to fretting (fretting fatigue). .

上記のようなフレッティング疲労によって構造物にクラックが発生したり、構造物が破壊されたりすることがある。このようなフレッティング疲労を伴う場合には、構造部材の強度がフレッティング疲労を伴わない場合に比して大きく低下するため、構造部材の設計に際しては考慮するべき問題の1つとされている。 The fretting fatigue described above may cause cracks in the structure or destroy the structure. When such fretting fatigue is involved, the strength of the structural member is greatly reduced compared to when it is not accompanied by fretting fatigue, so it is considered to be one of the problems to be considered when designing the structural member.

ところで、構造部材のフレッティング疲労に関しては、今までに種々の提案がなされるとともに(例えば、特許文献1参照)、種々の研究結果が報告されている(例えば、非特許文献1~5参照)。 By the way, with regard to fretting fatigue of structural members, various proposals have been made so far (see, for example, Patent Document 1), and various research results have been reported (see, for example, Non-Patent Documents 1 to 5). .

すなわち、特許文献1には、フレッティング疲労試験装置として、一対のパッドに押圧子を取り付け、これらのパッドに挿通するボルトを締め付けて押圧子で試験片を押圧した状態で該試験片に高周波ねじり振動を印加して疲労試験を行うものが提案されている。 That is, in Patent Document 1, as a fretting fatigue test device, a presser is attached to a pair of pads, a bolt inserted through these pads is tightened, and a high-frequency torsion is applied to the test piece in a state where the test piece is pressed by the presser. A device has been proposed in which fatigue testing is performed by applying vibration.

また、非特許文献1には、新幹線車両の車軸の嵌合部に応力逃がし溝とオーバーハング部を形成する構成が提案されており、これによれば高いフレッティング疲労強度が得られるとされている。 In addition, Non-Patent Document 1 proposes a configuration in which a stress relief groove and an overhang are formed in the fitting portion of the axle of a Shinkansen vehicle, and according to this, high fretting fatigue strength can be obtained. there is

さらに、非特許文献2,3には、フレッティング疲労強度向上に及ぼす応力逃がし溝の形状の影響に関する研究結果が報告されている。 Furthermore, Non-Patent Documents 2 and 3 report research results regarding the effect of the shape of stress relief grooves on the improvement of fretting fatigue strength.

また、非特許文献4には、円周切欠きを有する棒部材がねじり荷重を受ける場合の切欠き寸法の全ての範囲に対して正確な応力集中係数を求める計算式が提案されている。 Non-Patent Document 4 proposes a calculation formula for obtaining an accurate stress concentration factor for the entire range of notch dimensions when a rod member having a circumferential notch receives a torsional load.

そして、非特許文献5には、機械や構造部分の疲れ強度への切欠き、寸法、仕上げその他の各種因子の影響に関する資料が開示されている。 Non-Patent Document 5 discloses materials concerning the effects of notches, dimensions, finishing and other various factors on the fatigue strength of machinery and structural parts.

特許第6296860号公報Japanese Patent No. 6296860

新幹線車両用車軸の疲労特性 新日鉄住金技報 第395号(2013年)pp.56-63)Fatigue Characteristics of Shinkansen Axles, Nippon Steel & Sumikin Technical Review No.395 (2013) pp.56-63) フレッティング疲労強度向上に及ぼす応力逃がし溝形状の影響と溝形状選定条件 材料Vol56,No.12,pp.1156-1162,Dec.2007Effect of Stress Relief Groove Shape on Fretting Fatigue Strength Improvement and Groove Shape Selection Conditions Materials Vol56, No.12, pp.1156-1162, Dec.2007 フレッティング疲労強度向上に及ぼす応力逃がし溝形状の影響 日本機械学会論文集 No.068-1('06-3-17,九州支部第59期総会講演会)Effect of Stress Relief Groove Shape on Improvement of Fretting Fatigue Strength Journal of the Japan Society of Mechanical Engineers No.068-1 ('06-3-17, Kyushu Branch 59th General Assembly Lecture) 切欠き形状の全範囲に対して正確な応力集中係数を与える計算式 日本機械学会論文集(A編) 70巻689号(2004-1)pp.93-98Calculation formula for giving an accurate stress concentration factor for the entire range of notch shapes Transactions of the Japan Society of Mechanical Engineers (A) Vol.70 No.689 (2004-1) pp.93-98 金属材料 疲れ強さの設計資料(I) 第3章各種因子が疲れ強さに及ぼす影響 日本機械学会(1961)Metallic materials Fatigue strength design data (I) Chapter 3 Effect of various factors on fatigue strength The Japan Society of Mechanical Engineers (1961)

ところで、特許文献1には、超音波加振によって疲労強度を迅速に評価することができるフレッティング疲労試験装置が提案されているが、微摺動部の近傍の応力逃がし溝に適用可能であるか否かが明らかにされていない。 By the way, Patent Document 1 proposes a fretting fatigue test device that can quickly evaluate fatigue strength by ultrasonic excitation, and it is applicable to stress relief grooves in the vicinity of fine sliding portions. It is not clear whether

また、非特許文献1~3には、応力逃がし溝が形成されていない場合に比して、応力逃がし溝を形成した場合には、その形状によって高いフレッティング疲労強度が得られると報告されているが、何れも実験結果によって示されるものであって、経験的な方法であり、さらに10程度の疲労強度であるため、微摺動部近傍の応力逃がし溝の簡便な設計手法に適用が限定される。
また、非特許文献4には、円周切欠きを有する丸棒がねじり荷重を受ける際において、切欠き寸法の全ての範囲に対して正確な応力集中係数を求める計算式が提供され、非特許文献5には、各種金属材料の疲労強度への切欠きなどの各種因子の影響に関してまとめた資料が提供されているが、ねじり荷重を受ける棒部材などの疲労強度と応力集中係数との関係については言及されていない。
In addition, Non-Patent Documents 1 to 3 report that when stress relief grooves are formed, higher fretting fatigue strength can be obtained depending on the shape, compared to when stress relief grooves are not formed. However, all of them are shown by experimental results and are empirical methods. Furthermore, since the fatigue strength is about 10 7 , it can be applied to a simple design method for stress relief grooves near fine sliding parts. Limited.
In addition, Non-Patent Document 4 provides a calculation formula for obtaining an accurate stress concentration factor for the entire range of notch dimensions when a round bar having a circumferential notch receives a torsional load. Document 5 provides a summary of the effects of various factors such as notches on the fatigue strength of various metal materials. is not mentioned.

本発明は、上記事情に鑑みてなされたもので、その目的は、ねじり荷重を受ける軸部材のフレッティング疲労強度を高めることができる軸部材の嵌合構造を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a shaft member fitting structure capable of increasing the fretting fatigue strength of a shaft member that receives a torsional load.

ところで、軸部材のフレッティング疲労強度を高めるには、接触部材の軸方向端部に対応する箇所に応力逃がし溝を形成することが有効であることは知られているが、軸部材の設計に際しては、疲労破壊が起こる場合には、該軸部材の接触部材への嵌合部分のみならず、応力逃がし溝部分で疲労破壊が起こるような設計が求められる場合がある。 By the way, in order to increase the fretting fatigue strength of the shaft member, it is known that it is effective to form a stress relief groove at a location corresponding to the axial end of the contact member. In some cases, when fatigue fracture occurs, a design is required in which fatigue fracture occurs not only in the portion where the shaft member is fitted to the contact member, but also in the stress relief groove portion.

したがって、本発明は、軸部材の破壊が起こる箇所を任意に設定することができ、設計の自由度を高めることができる軸部材の嵌合構造及びその設計手法、及びフレッティング疲労試験方法を提供することを目的とする。 Therefore, the present invention provides a shaft member fitting structure, a design method thereof, and a fretting fatigue test method, which can arbitrarily set the location where the shaft member breaks and can increase the degree of design freedom. intended to

上記目的を達成するため、本発明は、接触部材(1)に形成された嵌合孔(1a)に嵌合する軸部材(2)の前記嵌合孔(1a)への嵌合構造であって、引張力を付加した場合の主応力(σ1.333)と押付力のみを付加した場合の主応力(σ1.0)との差(σ1.333-σ1.0)を最小断面における公称応力(σn)で割った値((σ1.333-σ1.0)/σn)を応力集中係数Ktと定義した場合、該軸部材(2)における前記接触部材(1)の軸方向端部に対応する箇所に、前記応力集中係数Ktが1.08~1.13となる形状の応力逃がし溝(2A)を形成することを特徴とする。 In order to achieve the above object, the present invention provides a structure for fitting a shaft member (2) into a fitting hole (1a) formed in a contact member (1). The difference (σ 1.333 - σ 1.0 ) between the principal stress (σ 1.333 ) when tensile force is applied and the principal stress (σ 1.0 ) when only pressing force is applied is the nominal stress (σ n ) at the minimum cross section When the value divided by ((σ 1.333 −σ 1.0 )/σ n ) is defined as the stress concentration factor Kt, at a portion of the shaft member (2) corresponding to the axial end of the contact member (1), The stress relief groove (2A) is formed in such a shape that the stress concentration factor Kt is 1.08 to 1.13.

本発明によれば、応力集中係数Ktが1.08~1.13となる形状の応力逃がし溝を形成すると、軸部材がねじり荷重を受ける場合、該軸部材の嵌合部におけるフレッティング疲労強度と応力逃がし溝部における疲労強度とが略等しく、且つ、これらの疲労強度が最大値を示すことが実験的に確認された。したがって、このような応力逃がし溝を軸部材に形成することによって、ねじり荷重を受ける軸部材のフレッティング疲労強度を高めることができる。応力集中係数Ktが1.08~1.13の範囲は、軸部材の嵌合部におけるフレッティング疲労破壊と応力逃がし溝における疲労破壊とが混在する領域(両疲労破壊がほぼ同時に起こる領域)である。 According to the present invention, when a stress relief groove having a shape with a stress concentration factor Kt of 1.08 to 1.13 is formed, when the shaft member receives a torsional load, the fretting fatigue strength at the fitting portion of the shaft member and the fatigue strength of the stress relief groove are substantially equal, and that these fatigue strengths exhibit the maximum value. Therefore, by forming such stress relief grooves in the shaft member, it is possible to increase the fretting fatigue strength of the shaft member that receives a torsional load. The range where the stress concentration factor Kt is 1.08 to 1.13 is a region where fretting fatigue fracture in the fitting portion of the shaft member and fatigue fracture in the stress relief groove coexist (both fatigue fractures occur almost simultaneously). be.

ここで、前記接触部材(1)の嵌合孔(1a)の軸方向中間位置に、少なくとも1つの逃げ溝(1A)を全周に亘って形成することが望ましい。 Here, it is desirable to form at least one escape groove (1A) along the entire circumference at an axially intermediate position of the fitting hole (1a) of the contact member (1).

上記構成によれば、軸部材と接触部材との固着領域が逃げ溝を形成しない場合に比して小さくなり、これらの軸部材と接触部材との固着が一様になされるために両者を一様に強固に固着させることができる。 According to the above configuration, the fixing area between the shaft member and the contact member is smaller than in the case where the escape groove is not formed, and the fixing between the shaft member and the contact member is evenly performed, so that the two are made uniform. can be firmly fixed.

また、前記接触部材(1)の軸方向端部を、前記軸部材(2)に形成された前記応力逃がし溝(2A)へと軸方向にオーバーハングさせることが望ましい。 Further, it is desirable to axially overhang the axial end of the contact member (1) to the stress relief groove (2A) formed in the shaft member (2).

上記構成によれば、接触部材の軸方向端部を軸部材の応力逃がし溝へと軸方向にオーバーハングさせることによって、応力集中や接触面圧の分布、相対滑り量の変化などによって軸部材のフレッティング疲労強度が高められる。 According to the above configuration, by overhanging the axial end of the contact member in the axial direction to the stress relief groove of the shaft member, the stress concentration, the distribution of the contact surface pressure, the change in the relative slippage, etc., can cause the shaft member to be degraded. Fretting fatigue strength is increased.

さらに、前記軸部材(2)における前記接触部材(1)の軸方向端部よりも軸方向外側であって、且つ、軸方向において前記応力逃がし溝(2A)に隣接する箇所に、当該軸部材(2)の前記接触部材(1)の前記嵌合孔(1a)に嵌合する部分と同径の鍔部(2a)を形成しても良い。 Further, at a portion of the shaft member (2) axially outside the axial end of the contact member (1) and adjacent to the stress relief groove (2A) in the axial direction, the shaft member A brim portion (2a) having the same diameter as that of the portion to be fitted into the fitting hole (1a) of the contact member (1) of (2) may be formed.

上記構成によれば、鍔部によって軸部材の剛性が応力逃がし溝に及ぼす影響を小さく抑えることができ、軸部材の鍔部から軸方向外側に沿って延びる部分の径を小さくすることができる。 According to the above configuration, the flange portion can reduce the influence of the rigidity of the shaft member on the stress relief groove, and the diameter of the portion extending axially outward from the flange portion of the shaft member can be reduced.

また、本発明に係る軸部材(2)の嵌合構造の設計手法は、本発明に係る上記いずれかの軸部材(2)の嵌合構造の設計手法であって、前記軸部材(2)がねじり荷重を受ける構造において、前記軸部材(2)を前記接触部材(1)の嵌合孔(1a)への嵌合部分におけるフレッティング疲労破壊が生じるように設計する場合、前記応力集中係数Ktを1.08より小さく設定し、前記軸部材(2)を前記応力逃がし溝(2A)部分における疲労破壊が生じるように設計する場合、前記応力集中係数Ktを1.13より大きく設定し、
前記軸部材(2)の前記接触部材(1)の嵌合孔(1a)におけるフレッティング疲労破壊と前記応力逃がし溝(2A)部分における疲労破壊との両方が生じるように設計する場合、前記応力集中係数Ktを1.08~1.13に設定することを特徴とする。
A method of designing a fitting structure for a shaft member (2) according to the present invention is any of the fitting structure designing methods for a shaft member (2) according to the present invention, wherein the shaft member (2) In a structure that receives a torsional load, when the shaft member (2) is designed so that fretting fatigue fracture occurs at the fitting portion of the contact member (1) into the fitting hole (1a), the stress concentration factor When Kt is set smaller than 1.08 and the shaft member (2) is designed so that fatigue fracture occurs in the stress relief groove (2A) portion, the stress concentration factor Kt is set larger than 1.13,
When designing so that both fretting fatigue fracture in the fitting hole (1a) of the contact member (1) of the shaft member (2) and fatigue fracture in the stress relief groove (2A) portion occur, the stress The concentration factor Kt is set to 1.08 to 1.13.

本発明にかかる設計手法によれば、応力逃がし溝の応力集中係数Ktの値によって、軸部材の破壊が起こる箇所を任意に設定することができる。 According to the design method according to the present invention, it is possible to arbitrarily set the location where the shaft member breaks depending on the value of the stress concentration factor Kt of the stress relief groove.

また、本発明にかかるフレッティング疲労試験方法は、接触部材(11)に試験用部材(12)を嵌合させ、前記接触部材(11)に対して前記試験用部材(12)を相対的に摺動させることで前記試験用部材(12)のフレッティング疲労を計測するフレッティング疲労試験方法であって、引張力を付加した場合の主応力(σ1.333)と押付力のみを付加した場合の主応力(σ1.0)との差(σ1.333-σ1.0)を最小断面における公称応力(σn)で割った値((σ1.333-σ1.0)/σn)を応力集中係数Ktと定義した場合、前記接触部材(11)と前記試験用部材(12)のどちらか一方における前記接触部材(11)と前記試験用部材(12)との接触部に、所定の応力集中係数(Kt)を持つ断面凹形状の逃し溝(12A)を形成し、前記接触部材(11)又は前記試験用部材(12)のどちらか一方を前記試験用部材(12)の中心軸線を中心に回動させることで、前記接触部材(11)と前記試験用部材(12)との接触部にねじり負荷を与えることを特徴とする。 Further, in the fretting fatigue test method according to the present invention, the test member (12) is fitted to the contact member (11), and the test member (12) is placed relative to the contact member (11). A fretting fatigue test method for measuring the fretting fatigue of the test member (12) by sliding it, in which the principal stress (σ 1.333 ) when a tensile force is applied and the stress when only a pressing force is applied The difference (σ 1.333 - σ 1.0 ) from the principal stress (σ 1.0 ) divided by the nominal stress (σ n ) at the minimum cross section ((σ 1.333 - σ 1.0 )/σ n ) was defined as the stress concentration factor Kt. In this case, a predetermined stress concentration factor (Kt) is applied to the contact portion between the contact member (11) and the test member (12) in either one of the contact member (11) and the test member (12). forming an escape groove (12A) having a concave cross-sectional shape, and rotating either the contact member (11) or the test member (12) around the central axis of the test member (12) and a torsional load is applied to the contact portion between the contact member (11) and the test member (12).

本発明にかかるフレッティング疲労試験方法によれば、所定の応力手中係数を持つ断面凹形状の応力逃がし溝の応力集中係数の値に応じて、接触部におけるフレッティング疲労破壊と応力逃がし溝における疲労破壊(溝部疲労破壊)のどちらが(先に)発生するかを見極めることができるため、部材の設計において破壊形態の選択が可能となる。したがって、例えば、フレッティング疲労破壊を生じさせたくない部位に対しては溝部疲労破壊を生じさせるような設計を行うことが可能となるので、構造の設計における自由度を高めることができる。 According to the fretting fatigue test method according to the present invention, according to the value of the stress concentration factor of the stress relief groove having a concave cross section having a predetermined stress coefficient, fretting fatigue fracture at the contact part and fatigue at the stress relief groove Since it is possible to ascertain which of the fractures (groove fatigue fractures) will occur (first), it is possible to select the fracture mode in the design of the member. Therefore, for example, it is possible to design a portion where fretting fatigue fracture is not desired to cause groove fatigue fracture, so that the degree of freedom in designing the structure can be increased.

また、このフレッティング疲労試験方法では、前記試験用部材(12)に接触する接触部材(11)を超音波加振することで、前記試験用部材(12)と前記接触部材(11)との間に微摺動を発生させてもよい。 Further, in this fretting fatigue test method, by applying ultrasonic vibration to the contact member (11) in contact with the test member (12), the test member (12) and the contact member (11) Fine sliding may occur between them.

本発明のフレッティング試験方法において上記工程を行うことで、ねじり負荷を受ける超高サイクル疲労強度が確認できる迅速なフレッティング疲労試験方法を提供することができる。 By performing the above steps in the fretting test method of the present invention, it is possible to provide a rapid fretting fatigue test method capable of confirming ultra-high cycle fatigue strength under torsional load.

本発明によれば、ねじり荷重を受ける軸部材のフレッティング疲労強度を高めることができるとともに、軸部材の破壊が起こる箇所を任意に設定することができるという効果が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the effect that the fretting fatigue strength of the shaft member which receives a torsional load can be improved and the location where the shaft member breaks can be set arbitrarily is obtained.

本発明に係る軸部材の嵌合構造を示す図である。It is a figure which shows the fitting structure of the shaft member which concerns on this invention. (a)は図1のA部拡大詳細図、(b)は逃げ溝がない場合の(a)と同様の図である。(a) is an enlarged detailed view of part A in FIG. 1, and (b) is a view similar to (a) when there is no escape groove. 本発明に係る軸部材の嵌合構造の別形態を示す図である。It is a figure which shows another form of the fitting structure of the shaft member which concerns on this invention. フレッティング疲労試験装置の基本構成を示す図である。It is a figure which shows the basic composition of a fretting fatigue test apparatus. 試験片の詳細と剪断応力及びねじれ角の分布を示す図である。FIG. 2 shows the details of the specimen and the distribution of shear stress and torsion angle. (a)は押圧治具の斜視図、(b)は接触片の斜視図である。(a) is a perspective view of a pressing jig, and (b) is a perspective view of a contact piece. (a)~(d)は各種試験片に対する試験形態を示す図、図7(e)は図7(c)のB部拡大詳細図である。7(a) to 7(d) are diagrams showing test configurations for various test pieces, and FIG. 7(e) is an enlarged detailed view of the B portion of FIG. 7(c). 各種試験片に対する疲労強度試験の手順を示すフローチャートである。4 is a flow chart showing the procedure of fatigue strength test for various test pieces. 各種試験片に対する試験結果を示すS-N線図である。FIG. 3 is an SN diagram showing test results for various test pieces. 各種試験片の応力集中係数Ktと疲労強度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the stress concentration factor Kt and fatigue strength of various test pieces.

以下、添付図面を参照して本発明の実施の形態を説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

[軸部材の嵌合構造]
先ず、本発明に係る軸部材の嵌合構造を図1及び図2に基づいて以下に説明する。
[Fitting Structure of Shaft Member]
First, the fitting structure of the shaft member according to the present invention will be described below with reference to FIGS. 1 and 2. FIG.

図1は本発明に係る軸部材の嵌合構造を示す図、図2(a)は図1のA部拡大詳細図、図2(b)は逃げ溝がない場合の図2(a)と同様の図である。 1 is a view showing a fitting structure of a shaft member according to the present invention, FIG. 2(a) is an enlarged detailed view of part A in FIG. 1, and FIG. It is a similar figure.

図1及び図2に示す軸部材2の嵌合構造は、図1に示すように、ねじり振動を繰り返す円筒状の接触部材1に形成された円孔状の嵌合孔1aに丸棒状の軸部材2が圧入されている機械構造物に採用されている。具体的には、軸部材2の接触部材1の軸方向両端近傍に曲率半径R、深さd、幅wの断面が円弧曲面状の応力逃がし溝2Aがそれぞれ形成されている。また、接触部材1の嵌合孔1aの軸方向中間位置には、断面矩形の1つの逃げ溝1Aが嵌合孔1aに沿って全周に亘って形成されている。 The fitting structure of the shaft member 2 shown in FIGS. 1 and 2 is, as shown in FIG. It is used in a mechanical structure in which the member 2 is press-fitted. Specifically, stress relief grooves 2A having a curvature radius R, a depth d, and a width w are formed in the vicinity of both ends of the contact member 1 of the shaft member 2 in the axial direction. At an axially intermediate position of the fitting hole 1a of the contact member 1, one relief groove 1A having a rectangular cross section is formed along the entire circumference along the fitting hole 1a.

また、図2(a)に詳細に示すように、接触部材1の軸方向端部は、軸部材2に形成された応力逃がし溝2Aへと図示のδだけ軸方向にそれぞれオーバーハングしている。 Further, as shown in detail in FIG. 2(a), the axial ends of the contact member 1 overhang the stress relief grooves 2A formed in the shaft member 2 in the axial direction by δ shown in the figure. .

ここで、軸部材2に軸方向の引張力を付加した場合の主応力σ1・333と軸方向の押付力のみを付加した場合の主応力σ1.0との差(σ1.333-σ1.0)を、当該軸部材2の最小断面における公称応力σnで割った値Kt、つまり、次式にて求められる値Kt:
Kt=(σ1.333-σ1.0)/σn …(1)
を「応力集中係数」と定義した場合、軸部材2の接触部材1の軸方向端部に対応する位置に、応力集中係数Ktが1.08~1.13となる形状の応力逃がし溝2Aが形成されている。
Here, the difference (σ 1.333 - σ 1 .0 ) divided by the nominal stress σ n in the minimum cross section of the shaft member 2, that is, the value Kt obtained by the following equation:
Kt=( σ1.333σ1.0 )/ σn (1)
is defined as a "stress concentration factor", a stress relief groove 2A having a shape with a stress concentration factor Kt of 1.08 to 1.13 is formed at a position corresponding to the axial end of the contact member 1 of the shaft member 2. formed.

ところで、接触部材1にねじり振動が繰り返し印加される場合、接触部材1と軸部材2との接触面(嵌合面)には、図2(a)に示すように、接触部材1と軸部材2との間に相対滑りが発生しない固着域S1と相対滑りが発生する滑り域S2とが存在し、両者S1,S2の境界付近からクラックが発生することが知られている。 By the way, when the torsional vibration is repeatedly applied to the contact member 1, the contact surface (fitting surface) between the contact member 1 and the shaft member 2 has the contact member 1 and the shaft member 2 as shown in FIG. 2, there are a fixed area S1 in which relative slip does not occur and a slip area S2 in which relative slip occurs, and cracks are known to occur near the boundary between both S1 and S2.

ここで、前述のように接触部材1の嵌合孔1aの軸方向中間位置に断面矩形の逃げ溝1Aを嵌合孔1aに沿って全周に亘って形成したため、図2(a)に示すように、軸部材2には図示の部位に固着域S1と滑り域S2が存在することになる。これに対して、図2(b)に示すように、接触部材1に図2(a)に示す逃げ溝1Aが形成されない場合には、軸部材2の図示の領域に固着域S11と滑り域S12が存在するが、固着域S11が逃げ溝1Aを形成した場合(図2(a)参照)に比して拡大する。このように固着域S11が拡大すると、寸法精度や表面粗さによっては接触部材1と軸部材2との固着が一様になされない可能性がある。このため、前述のように接触部材1の嵌合孔1aの軸方向中間位置に断面矩形の逃げ溝1Aを全周に亘って形成することによって、接触部材1と軸部材2とを一様に強固に固着させることができる。 Here, since the relief groove 1A having a rectangular cross section is formed along the entire circumference along the fitting hole 1a at the axially intermediate position of the fitting hole 1a of the contact member 1 as described above, the clearance groove 1A is shown in FIG. 2(a). Thus, the shaft member 2 has a fixed area S1 and a sliding area S2 at the illustrated locations. On the other hand, as shown in FIG. 2(b), when the escape groove 1A shown in FIG. 2(a) is not formed in the contact member 1, the fixing region S11 and the sliding region Although S12 exists, it is enlarged as compared with the case where the fixed area S11 forms the relief groove 1A (see FIG. 2(a)). If the fixed area S11 expands in this way, there is a possibility that the contact member 1 and the shaft member 2 will not be uniformly fixed depending on the dimensional accuracy and surface roughness. For this reason, as described above, the contact member 1 and the shaft member 2 can be made uniform by forming the escape groove 1A having a rectangular cross section in the axially intermediate position of the fitting hole 1a of the contact member 1 over the entire circumference. It can be fixed firmly.

また、前述のように、接触部材1の軸方向端部を軸部材2に形成された応力逃がし溝2Aへと図2(a)に示すδだけ軸方向にオーバーハングさせると、応力集中や接触面圧の分布、相対滑り量の変化などによって軸部材2のフレッティング疲労強度が高められる。このことは実験的に確かめられている(非特許文献1~3においても報告されている)。 Further, as described above, if the axial end of the contact member 1 is axially overhanging the stress relief groove 2A formed in the shaft member 2 by δ shown in FIG. The fretting fatigue strength of the shaft member 2 is enhanced by the distribution of surface pressure, changes in the amount of relative slippage, and the like. This has been confirmed experimentally (also reported in Non-Patent Documents 1 to 3).

ここで、軸部材2の嵌合構造の別形態を図3に示すが、図示の形態では、軸部材2の接触部材1の軸方向端部よりも軸方向外側であって、且つ、軸方向において応力逃がし溝2Aに隣接する箇所に、当該軸部材2の接触部材1の嵌合孔1aに圧入される部分と同径の鍔部2aを形成している。 Here, another form of the fitting structure of the shaft member 2 is shown in FIG. A flange portion 2a having the same diameter as the portion of the shaft member 2 that is press-fitted into the fitting hole 1a of the contact member 1 is formed at a location adjacent to the stress relief groove 2A.

上述のように、軸部材2に鍔部2aを形成すれば、鍔部2aによって当該軸部材2の剛性が応力逃がし溝2Aに及ぼす影響を小さく抑えることができ、軸部材2の鍔部2aから軸方向に延びる部位2bの径を小さくすることができる。 As described above, if the collar portion 2a is formed on the shaft member 2, the influence of the rigidity of the shaft member 2 on the stress relief groove 2A can be suppressed by the collar portion 2a. The diameter of the portion 2b extending in the axial direction can be reduced.

次に、軸部材2のフレッティング疲労試験装置を図4に基づいて以下に説明する。 Next, a fretting fatigue test apparatus for the shaft member 2 will be described below with reference to FIG.

図4はフレッティング疲労試験装置の基本構成を示す図であり、図示のフレッティング疲労試験装置10は、以下の構成要素を備えている。 FIG. 4 is a diagram showing the basic configuration of a fretting fatigue test apparatus, and the illustrated fretting fatigue test apparatus 10 has the following components.

1)軸部材2に相当する試験片12の外周面に接触するように該試験片12に固定される接触片11
2)高周波ねじり振動を発生する加振装置13
3)加振装置13が発生する高周波ねじり振動を増幅して試験片12に印加する増幅器14
4)試験片12の変位を検出する変位検出センサ15
5)変位検出センサ15からの信号を受信して試験片12の変位を求める変位測定器16
6)変位検出センサ15が検出した試験片12の変位からクラックの発生を検知して試験片12の疲労強度を求めるコンピュータ(PC)17
7)コンピュータ(PC)17からの指令信号を受けて加振装置13に対して高周波のパルス信号を発信する発信器18
なお、コンピュータ(PC)17は、変位検出センサ15によって検出されて変位測定器16によって求められた試験片12の変位からクラックの発生を検知する機能を有している。
1) A contact piece 11 fixed to the test piece 12 so as to contact the outer peripheral surface of the test piece 12 corresponding to the shaft member 2
2) Vibrator 13 that generates high-frequency torsional vibration
3) An amplifier 14 that amplifies the high-frequency torsional vibration generated by the vibrating device 13 and applies it to the test piece 12
4) Displacement detection sensor 15 for detecting displacement of test piece 12
5) a displacement measuring device 16 that receives a signal from the displacement detection sensor 15 and determines the displacement of the test piece 12;
6) A computer (PC) 17 that detects the occurrence of cracks from the displacement of the test piece 12 detected by the displacement detection sensor 15 and obtains the fatigue strength of the test piece 12;
7) A transmitter 18 that receives a command signal from a computer (PC) 17 and transmits a high-frequency pulse signal to the vibrating device 13
The computer (PC) 17 has a function of detecting the occurrence of cracks from the displacement of the test piece 12 detected by the displacement detection sensor 15 and obtained by the displacement measuring device 16 .

ここで、図5に試験片12の詳細と剪断応力及びねじれ角の分布を示すが、試験片12には、SCM420H材に熱処理(900℃(保持45分)油焼き入れ後に+180℃(120分)焼き戻したものが使用され、そのヤング率は203GPa、引張強度は1195MPa、耐力は855MPa、破壊ひずみは5.8%、ビッカース硬さは約450HVである。 Here, FIG. 5 shows the details of the test piece 12 and the distribution of shear stress and twist angle. ) A tempered material is used, and has a Young's modulus of 203 GPa, a tensile strength of 1195 MPa, a proof stress of 855 MPa, a breaking strain of 5.8%, and a Vickers hardness of about 450 HV.

試験片12は、軸方向両端部の大径の頭部12aと、軸方向中央の小径の軸部12bと、頭部12aと軸部12bとを接続する円弧凹曲面状の曲面部12cとで構成されており、剪断応力が一定である中央の軸部12bに接触片11が図6に示す押圧治具20を用いて押圧される。ここで、押圧治具20の構成を図6に基づいて以下に説明する。 The test piece 12 has large-diameter heads 12a at both ends in the axial direction, a small-diameter shaft portion 12b in the center in the axial direction, and an arc-shaped concave curved surface portion 12c connecting the head portions 12a and the shaft portions 12b. The contact piece 11 is pressed against the central shaft portion 12b having a constant shear stress using a pressing jig 20 shown in FIG. Here, the configuration of the pressing jig 20 will be described below with reference to FIG.

図6(a)は押圧治具の斜視図、図6(b)は接触片の斜視図であり、図6(a)に示すように、押圧治具20は、矩形プレート状の一対のパッド21を備えており、これらのパッド21は、試験片12を両側から挟むように配置されている。そして、一対のパッド21の相対向する内面には、図6(b)に示すような接触片11が取り付けられており、一方のパッド21の外面には歪ゲージ22が貼着されている。また、一対のパッド21には、試験片12を境としてこれの両側にボルト23がそれぞれ挿通しており、これらのボルト23の端部に螺合するナット24をそれぞれ締め付けることによって、試験片12が接触片11よって所定の押圧力で押圧される。このとき、接触片11から試験片12に加えられる押圧力は、歪ゲージ22によって検出され、その検出信号は、コンピュータ(PC)17に送信される。すると、コンピュータ(PC)17は、接触片11から試験片12に加えられる押圧力を算出する。 6(a) is a perspective view of a pressing jig, and FIG. 6(b) is a perspective view of a contact piece. As shown in FIG. 6(a), the pressing jig 20 is a pair of rectangular plate-like pads 21, and these pads 21 are arranged so as to sandwich the test strip 12 from both sides. A contact piece 11 as shown in FIG. 6B is attached to the inner surfaces of the pair of pads 21 facing each other, and a strain gauge 22 is attached to the outer surface of one of the pads 21 . Bolts 23 are inserted through the pair of pads 21 on both sides of the test piece 12, respectively. is pressed by the contact piece 11 with a predetermined pressing force. At this time, the pressing force applied from the contact piece 11 to the test piece 12 is detected by the strain gauge 22 , and the detection signal is sent to the computer (PC) 17 . The computer (PC) 17 then calculates the pressing force applied from the contact piece 11 to the test piece 12 .

次に、上記フレッティング疲労試験装置20を用いた疲労試験の手順と結果を図7~図10に基づいて以下に説明する。 Next, the procedure and results of the fatigue test using the fretting fatigue test apparatus 20 will be described below with reference to FIGS. 7 to 10. FIG.

図7(a)~(d)は各種試験片に対する試験形態を示す図、図7(e)は図7(c)のB部拡大詳細図、図8は各種試験片に対する疲労強度試験の手順を示すフローチャート、図9は各種試験片に対する試験結果を示すS-N線図、図10は各種試験片の応力集中係数Ktと疲労強度との関係を示す図である。 7 (a) to (d) are diagrams showing test configurations for various test pieces, FIG. 7 (e) is an enlarged detailed view of B part in FIG. 7 (c), and FIG. 8 is a fatigue strength test procedure for various test pieces. 9 is an SN diagram showing test results for various test pieces, and FIG. 10 is a diagram showing the relationship between stress concentration factor Kt and fatigue strength of various test pieces.

ここで、疲労強度試験は、図7(a)~(d)に示す各種試験片12,12’に対して種々の形態で行われる。すなわち、図7(a)は応力逃がし溝が形成されていない試験片(平滑材)12’を接触片11によって押圧する形態(「溝なし圧入部のフレッティング疲労試験」と称する(図8のステップS1参照))。なお、以下の説明においては、応力逃がし溝を単に「溝」と称する場合がある。 Here, fatigue strength tests are performed in various forms on various test pieces 12, 12' shown in FIGS. 7(a) to 7(d). That is, FIG. 7(a) shows a configuration in which a contact piece 11 presses a test piece (smooth material) 12' in which no stress relief groove is formed (referred to as "fretting fatigue test of press-fit portion without groove" (see FIG. 8). See step S1)). In the following description, the stress relief groove may be simply referred to as "groove".

図7(b)は応力逃がし溝が形成されていない試験片(平滑材)12’を接触片11によって押圧しない状態でねじり疲労試験を行う形態(「非圧入部のねじり疲労試験」と称する(図8のステップS2参照))。また、図7(c)は応力逃がし溝12Aが形成された試験片12を接触片11で押圧した状態でフレッティング疲労試験を行う形態(「溝つき圧入部のフレッティング疲労試験」と称する(図8のステップS4参照))。そして、図7(d)は応力逃がし溝12Aが形成された試験片12を接触子で押圧しない状態でねじり疲労試験を行う形態(「溝つき非圧入部のねじり疲労試験」と称する(図8のステップS5参照))。 FIG. 7(b) shows a configuration in which a test piece (smooth material) 12′ in which no stress relief groove is formed is subjected to a torsional fatigue test without being pressed by the contact piece 11 (referred to as a “non-press-fit portion torsional fatigue test”). See step S2 in FIG. 8)). In addition, FIG. 7(c) shows a mode in which a fretting fatigue test is performed in a state in which a test piece 12 having a stress relief groove 12A formed therein is pressed by a contact piece 11 (referred to as "a fretting fatigue test of a press-fit portion with a groove"). See step S4 in FIG. 8)). FIG. 7(d) shows a configuration in which a torsional fatigue test is performed in a state in which the test piece 12 in which the stress relief groove 12A is formed is not pressed by the contactor (referred to as "torsion fatigue test of non-press-fitted portion with groove" (FIG. 8). (see step S5)).

なお、図7(c),(d)に示す試験片12に形成された応力逃がし溝12Aの諸元を図7(e)に示すが、各応力逃がし溝12Aの曲率半径はR、深さはd、幅はw、接触片11の応力逃がし溝12Aへのオーバーハング量はδにそれぞれ設定されている。
また、図7(c),(d)に示す試験片12には、一対の接触片11,11が接触する一対の平面部12B,12Bが形成されている。これら一対の平面部12B,12Bは、試験片12の軸方向の中央部において互いが180度対向する両側に配置されたいわゆる二面幅の面である。そして、一対の接触片11,11がこれら一対の平面部12B,12Bに接触することで、接触片11,11から試験片12に対する押圧力が付与される。
The dimensions of the stress relief groove 12A formed in the test piece 12 shown in FIGS. 7(c) and (d) are shown in FIG. 7(e). is set to d, the width is set to w, and the amount of overhang of the contact piece 11 to the stress relief groove 12A is set to δ.
A pair of flat portions 12B, 12B with which the pair of contact pieces 11, 11 come into contact are formed on the test piece 12 shown in FIGS. 7(c) and 7(d). The pair of plane portions 12B, 12B are so-called width across flats surfaces arranged on both sides of the central portion of the test piece 12 in the axial direction so as to face each other 180 degrees. When the pair of contact pieces 11 and 11 come into contact with the pair of flat portions 12B and 12B, the contact pieces 11 and 11 apply pressure to the test piece 12 .

ここで、諸元の異なる各種試験片の種類を表1に示す。 Here, Table 1 shows the types of various test pieces with different specifications.

Figure 2022143695000002
表1においては、「溝なし」の試験片とは、図7(a),(b)に示す応力逃がし溝(溝)が形成されていない試験片12’であって、この試験片12’の応力集中係数Ktは1である。また、図7(c),(d)に示す応力逃がし溝(溝)12Aが形成された試験片12の応力逃がし溝12Aの深さdが0.03mm、曲率半径Rが3.00mm、幅wが0.85mm、応力集中係数Ktが1.070のものを「G0.03」としている。以下、同様に、応力逃がし溝12Aの深さdが0.04mm、曲率半径Rが2.45mm、幅wが0.88mm、応力集中係数Ktが1.086のものを「G0.04」、応力逃がし溝12Aの深さdが0.05mm、曲率半径Rが1.50mm、幅wが0.77mm、応力集中係数Ktが1.127のものを「G0.05」、応力逃がし溝12Aの深さdが0.10mm、曲率半径Rが1.00mm、幅wが0.87mm、応力集中係数Ktが1.193のものを「G0.1」としている。なお、「G0.03」、「G0.04」、「G0.05」、「G0.1」にて示される試験片12における接触片11のオーバーハング量δは0.3mm(一定)に設定されている。
Figure 2022143695000002
In Table 1, the "no groove" test piece is the test piece 12' in which the stress relief groove (groove) shown in Figs. 7(a) and (b) is not formed. has a stress concentration factor Kt of 1. 7(c) and 7(d), the test piece 12 formed with the stress relief groove (groove) 12A had a depth d of 0.03 mm, a radius of curvature R of 3.00 mm, and a width “G 0.03 ” means that w is 0.85 mm and the stress concentration factor Kt is 1.070. Similarly, the depth d of the stress relief groove 12A is 0.04 mm, the radius of curvature R is 2.45 mm, the width w is 0.88 mm, and the stress concentration factor Kt is 1.086. The depth d of the relief groove 12A is 0.05 mm, the radius of curvature R is 1.50 mm, the width w is 0.77 mm, and the stress concentration factor Kt is 1.127 . d is 0.10 mm, the radius of curvature R is 1.00 mm, the width w is 0.87 mm, and the stress concentration factor Kt is 1.193 is defined as "G 0.1 ". The overhang δ of the contact piece 11 in the test piece 12 indicated by "G 0.03 ", "G 0.04 ", "G 0.05 ", and "G 0.1 " is set to 0.3 mm (constant).

次に、各種試験片12,12’に対する疲労強度試験の手順と試験結果(疲労強度)を図8~図10に基づいて以下に説明する。 Next, the procedure and test results (fatigue strength) of the fatigue strength test for various test pieces 12, 12' will be described below with reference to FIGS. 8 to 10. FIG.

疲労強度試験に際しては、先ず、図7(a)に示す試験の形態において疲労試験(「溝なし圧入部のフレッティング疲労試験」)が行われる(図8のステップS1)。この場合の疲労強度τW0は、図9及び図10に示すように、205MPaである。 In the fatigue strength test, first, a fatigue test (“fretting fatigue test of press-fit portion without groove”) is performed in the form of the test shown in FIG. 7(a) (step S1 in FIG. 8). The fatigue strength τW0 in this case is 205 MPa, as shown in FIGS.

次に、図7(b)に示す試験の形態においてねじり疲労試験(「非圧入部のねじり疲労試験」)が行われる(ステップS2)。この場合の疲労強度τW1は、図9及び図10に示すように、300MPaである。 Next, a torsional fatigue test (“non-press-fit portion torsional fatigue test”) is performed in the form of the test shown in FIG. 7(b) (step S2). The fatigue strength τ W1 in this case is 300 MPa, as shown in FIGS.

その後、図7(c),(d)に示すような応力逃がし溝12Aが形成された応力集中係数Ktが異なる複数の試験片(表1に示す「G0.03」、「G0.04」、「G0.05」、「G0.1」にて示される4種類の試験片)12を準備する(ステップS3)。そして、「G0.03」と「G0.04」にて示される2種類の試験片12に対して図7(c)に示す試験形態(「溝つき圧入部のフレッティング疲労試験」)を行う(ステップS4)。このフレッティング疲労強度試験にて得られる試験片「G0.03」と「G0.04」に対するフレッティング疲労強度τW3は、図9及び図10に示すように、それぞれ230MPa、266MPaとなる。 After that, a plurality of test pieces having stress relief grooves 12A formed thereon and having different stress concentration factors Kt as shown in FIGS. 0.05 " and " G0.1 ") 12 are prepared (step S3). Then, the two types of test pieces 12 indicated by "G 0.03 " and "G 0.04 " are subjected to the test mode shown in FIG. S4). The fretting fatigue strengths τ W3 for the test pieces "G 0.03 " and "G 0.04 " obtained in this fretting fatigue strength test are 230 MPa and 266 MPa, respectively, as shown in FIGS.

また、表1に「G0.05」と「G0.10」にて示される2種類の試験片12に対して図7(d)に示す試験形態(「溝つき非圧入部のねじり疲労試験」)を行う(ステップS5)。このねじり疲労試験にて得られる試験片「G0.05」と「G0.10」に対するねじり疲労強度τW4は、図9及び図10に示すように、それぞれ263MPa、212MPaとなる。 In addition, the test form shown in FIG. (step S5). The torsional fatigue strengths τ W4 for the test pieces "G 0.05 " and "G 0.10 " obtained in this torsional fatigue test are 263 MPa and 212 MPa, respectively, as shown in FIGS.

なお、図10に示す直線X,Yについては下記の通りである。 The straight lines X and Y shown in FIG. 10 are as follows.

すなわち、軸部材に形成された切欠き(応力逃がし溝)に関して形状係数αと切欠き係数βをそれぞれ下式(2),(3)のように定義した場合:
形状係数α=切欠き底の最大応力/切欠き底の公称応力 …(2)
切欠き係数β=平滑試験片の疲れ限度/切欠き試験片の疲れ限度 …(3)
直線Xは、上式(3)で表される切欠き係数βに基づいて非特許文献5において提供されたデータを用いて求めた疲労強度の予測値を示し、直線Yは、β=αと仮定した場合の疲労強度の予測値を示している。
That is, when the shape factor α and the notch factor β for the notch (stress relief groove) formed in the shaft member are defined by the following formulas (2) and (3), respectively:
Shape factor α = maximum stress at notch bottom/nominal stress at notch bottom (2)
Notch factor β = fatigue limit of smooth test piece/fatigue limit of notched test piece (3)
The straight line X indicates the predicted value of the fatigue strength obtained using the data provided in Non-Patent Document 5 based on the notch factor β represented by the above equation (3), and the straight line Y indicates β = α and It shows the predicted value of the fatigue strength in the hypothetical case.

次に、ステップS4でのフレッティング疲労試験によって得られたフレッティング疲労強度τW3とステップS5でのねじり疲労試験において得られたねじり疲労強度τW4とが略等しい(τW3≒τW4)か否かが判定され(ステップS6)、フレッティング疲労強度τW3とねじり疲労強度τW4とが略等しい場合(ステップS6:Yes)、には一連の疲労試験が終了し(ステップS7)、フレッティング疲労強度τW3とねじり疲労強度τW4とが異なる場合(ステップS6:No)には、応力集中係数Ktが異なる他の試験片12に対してフレッティング疲労試験とねじり疲労試験がそれぞれ継続される(ステップS4,S5)。 Next, whether the fretting fatigue strength τ W3 obtained by the fretting fatigue test in step S4 and the torsional fatigue strength τ W4 obtained in the torsional fatigue test in step S5 are substantially equal (τ W3 ≈ τ W4 ) is determined (step S6), and when the fretting fatigue strength τ W3 and the torsional fatigue strength τ W4 are substantially equal (step S6: Yes), a series of fatigue tests are completed (step S7), and fretting When the fatigue strength τ W3 and the torsional fatigue strength τ W4 are different (Step S6: No), the fretting fatigue test and the torsional fatigue test are continued for other test pieces 12 having different stress concentration factors Kt. (Steps S4 and S5).

図10に示す試験結果によれば、応力集中係数が1.08~1.13の範囲においてフレッティング疲労強度τW3とねじり疲労強度τW4とが略等しく、且つ、それぞれ最も高い値を示す。 According to the test results shown in FIG. 10, the fretting fatigue strength τ W3 and the torsional fatigue strength τ W4 are substantially equal and exhibit the highest values when the stress concentration factor is in the range of 1.08 to 1.13.

以上の疲労強度試験の結果から明らかなように、ねじり荷重を受ける軸部材2に応力集中係数Ktが1.08~1.13となる形状の応力逃がし溝2Aを形成すると、該軸部材2の嵌合部におけるフレッティング疲労強度と応力逃がし溝2A部における疲労強度とが略等しく、これらの疲労強度が最大値を示すことが実験的に確認された。したがって、このような応力逃がし溝2Aを軸部材2に形成することによって、ねじり荷重を受ける軸部材2のフレッティング疲労強度を高めることができる。 As is clear from the results of the above fatigue strength test, when the stress relief groove 2A having a shape with a stress concentration factor Kt of 1.08 to 1.13 is formed in the shaft member 2 that receives a torsional load, the shaft member 2 It was experimentally confirmed that the fretting fatigue strength of the fitting portion and the fatigue strength of the stress relief groove 2A are substantially equal, and that these fatigue strengths exhibit the maximum value. Therefore, by forming such a stress relief groove 2A in the shaft member 2, the fretting fatigue strength of the shaft member 2 that receives a torsional load can be increased.

[軸部材の設計手法]
次に、本発明に係る軸部材2の設計手法について説明する。
[Method of designing the shaft member]
Next, a method of designing the shaft member 2 according to the present invention will be described.

図10に示す疲労試験結果から明らかなように、応力集中係数Ktが1.08~1.13の範囲は、軸部材2の嵌合部におけるフレッティング疲労破壊と応力逃がし溝2Aにおける疲労破壊とが混在する領域(両疲労破壊がほぼ同時に起こる領域)であり、応力集中係数Ktが1.08よりも小さい領域は、軸部材2の嵌合部におけるフレッティング疲労破壊が起こる領域、応力集中係数Ktが1.13よりも大きな領域は、応力逃がし溝2Aにおける疲労破壊が起こる領域である。 As is clear from the fatigue test results shown in FIG. 10, when the stress concentration factor Kt is in the range of 1.08 to 1.13, fretting fatigue fracture at the fitting portion of the shaft member 2 and fatigue fracture at the stress relief groove 2A. is mixed (region where both fatigue fractures occur almost simultaneously), and the region where the stress concentration factor Kt is smaller than 1.08 is the region where fretting fatigue fracture occurs in the fitting portion of the shaft member 2, the stress concentration factor A region where Kt is greater than 1.13 is a region where fatigue fracture occurs in the stress relief groove 2A.

したがって、軸部材2の設計において、該軸部材2を接触部材11への嵌合部において疲労破壊させるためには、応力集中係数Ktを1.08より小さく設定し、軸部材2を応力逃がし溝2A部分において疲労破壊させるためには、応力集中係数Ktを1.13より大きく設定すれば良い。そして、軸部材2を接触部材1の嵌合孔1aにおけるフレッティング疲労破壊と応力逃がし溝2A部分における疲労破壊とをほぼ同時に起こさせるためには、応力集中係数Ktを1.08~1.13に設定すれば良い。 Therefore, in designing the shaft member 2, in order to cause the shaft member 2 to be fatigue-destructed at the fitting portion to the contact member 11, the stress concentration factor Kt is set smaller than 1.08, and the shaft member 2 is provided with a stress relief groove. In order to cause fatigue fracture at the 2A portion, the stress concentration factor Kt should be set larger than 1.13. In order to cause the shaft member 2 to undergo fretting fatigue fracture in the fitting hole 1a of the contact member 1 and fatigue fracture in the stress relief groove 2A portion at substantially the same time, the stress concentration factor Kt should be 1.08 to 1.13. should be set to

以上の結果、本発明に係る軸部材2の設計手法によれば、該軸部材2の破壊が起こる箇所を任意に設定することができるという効果が得られる。 As a result, according to the method of designing the shaft member 2 according to the present invention, it is possible to arbitrarily set the location where the shaft member 2 breaks.

なお、本発明は、以上説明した実施の形態に適用が限定されるものではなく、特許請求の範囲および明細書と図面に記載された技術的思想の範囲内で種々の変形が可能であることは勿論である。 It should be noted that the present invention is not limited in application to the embodiments described above, and that various modifications are possible within the scope of the technical ideas described in the scope of claims, the specification, and the drawings. is of course.

1 接触部材
1A 接触部材の逃げ溝
1a 接触部材の嵌合孔
2 軸部材
2A 応力逃がし溝
2a 軸部材の鍔部
10 フレッティング疲労試験装置
11 接触片
11A 接触片の逃げ溝
12,12’ 試験片
12A 試験片の応力逃がし溝
20 押圧治具
d 応力逃がし溝の深さ
Kt 応力集中係数
R 応力逃がし溝の曲率半径
w 応力逃がし溝の幅
δ 接触部材のオーバーハング量
Reference Signs List 1 contact member 1A relief groove of contact member 1a fitting hole of contact member 2 shaft member 2A stress relief groove 2a collar portion of shaft member 10 fretting fatigue test device 11 contact piece 11A relief groove of contact piece 12, 12' test piece 12A Stress relief groove of test piece 20 Pressing jig d Depth of stress relief groove Kt Stress concentration factor R Curvature radius of stress relief groove w Width of stress relief groove δ Overhang amount of contact member

Claims (7)

接触部材に形成された嵌合孔に嵌合する軸部材の前記嵌合孔への嵌合構造であって、
引張力を付加した場合の主応力と押付力のみを付加した場合の主応力との差を最小断面における公称応力で割った値を応力集中係数Ktと定義した場合、
該軸部材における前記接触部材の軸方向端部に対応する箇所に、前記応力集中係数Ktが1.08~1.13となる形状の応力逃がし溝を形成したことを特徴とする軸部材の嵌合構造。
A fitting structure for fitting a shaft member into the fitting hole formed in the contact member,
When the stress concentration factor Kt is defined as the value obtained by dividing the difference between the principal stress when tensile force is applied and the principal stress when only pressing force is applied by the nominal stress at the minimum cross section,
A fitting of a shaft member characterized in that a stress relief groove having a shape with a stress concentration factor Kt of 1.08 to 1.13 is formed in a portion of the shaft member corresponding to an axial end of the contact member. Synthetic structure.
前記接触部材の前記嵌合孔の軸方向中間位置に、少なくとも1つの逃げ溝を全周に亘って形成したことを特徴とする請求項1に記載の軸部材の嵌合構造。 2. The fitting structure of the shaft member according to claim 1, wherein at least one relief groove is formed along the entire circumference at an axially intermediate position of the fitting hole of the contact member. 前記接触部材の軸方向端部を、前記軸部材に形成された前記応力逃がし溝へと軸方向にオーバーハングさせたことを特徴とする請求項1または2に記載の軸部材の嵌合構造。 3. The fitting structure of the shaft member according to claim 1, wherein the axial end portion of the contact member axially overhangs the stress relief groove formed in the shaft member. 前記軸部材における前記接触部材の軸方向端部よりも軸方向外側であって、且つ、軸方向において前記応力逃がし溝に隣接する箇所に、当該軸部材の前記接触部材の前記嵌合孔に嵌合する部分と同径の鍔部を形成したことを特徴とする請求項1~3の何れかに記載の軸部材の嵌合構造。 A portion of the shaft member axially outside the axial end portion of the contact member and adjacent to the stress relief groove in the axial direction is fitted into the fitting hole of the contact member of the shaft member. 4. The fitting structure of the shaft member according to claim 1, wherein a flange portion having the same diameter as that of the fitting portion is formed. 請求項1~4の何れかに記載の軸部材の嵌合構造の設計手法であって、
前記軸部材がねじり荷重を受ける構造において、
前記軸部材を前記接触部材の嵌合孔への嵌合部分におけるフレッティング疲労破壊が生じるように設計する場合、前記応力集中係数Ktを1.08より小さく設定し、
前記軸部材を前記応力逃がし溝部分における疲労破壊が生じるように設計する場合、前記応力集中係数Ktを1.13より大きく設定し、
前記軸部材の前記接触部材の嵌合孔におけるフレッティング疲労破壊と前記応力逃がし溝部分における疲労破壊との両方が生じるように設計する場合、前記応力集中係数Ktを1.08~1.13に設定する、
ことを特徴とする軸部材の嵌合構造の設計手法。
A method of designing a fitting structure for a shaft member according to any one of claims 1 to 4,
In the structure in which the shaft member receives a torsional load,
When the shaft member is designed so that fretting fatigue fracture occurs in the fitting portion of the contact member into the fitting hole, the stress concentration factor Kt is set to be smaller than 1.08,
When designing the shaft member so that fatigue fracture occurs in the stress relief groove portion, the stress concentration factor Kt is set to be greater than 1.13,
When designing so that both fretting fatigue failure in the fitting hole of the contact member of the shaft member and fatigue failure in the stress relief groove portion occur, the stress concentration factor Kt is set to 1.08 to 1.13. set,
A method of designing a fitting structure of a shaft member, characterized by:
接触部材に試験用部材を嵌合させ、前記接触部材に対して前記試験用部材を相対的に摺動させることで前記試験用部材のフレッティング疲労を計測するフレッティング疲労試験方法において、
引張力を付加した場合の主応力と押付力のみを付加した場合の主応力との差を最小断面における公称応力で割った値を応力集中係数Ktと定義した場合、
前記接触部材と前記試験用部材のどちらか一方における前記接触部材と前記試験用部材との接触部に、所定の応力集中係数を持つ断面凹形状の逃し溝を形成し、
前記接触部材又は前記試験用部材のどちらか一方を前記試験用部材の中心軸線を中心に回動させることで、前記接触部材と前記試験用部材との接触部にねじり負荷を与える
ことを特徴とするフレッティング疲労試験方法。
A fretting fatigue test method for measuring the fretting fatigue of the test member by fitting the test member to the contact member and sliding the test member relative to the contact member,
When the stress concentration factor Kt is defined as the value obtained by dividing the difference between the principal stress when tensile force is applied and the principal stress when only pressing force is applied by the nominal stress at the minimum cross section,
Forming a relief groove having a concave cross-sectional shape with a predetermined stress concentration factor in a contact portion between the contact member and the test member in either one of the contact member and the test member,
A torsional load is applied to a contact portion between the contact member and the test member by rotating either the contact member or the test member about the central axis of the test member. Fretting fatigue test method.
前記試験用部材に接触する接触部材を超音波加振することで、前記試験用部材と前記接触部材との間に微摺動を発生させる
ことを特徴とする請求項6に記載のフレッティング疲労試験方法。
7. The fretting fatigue according to claim 6, wherein a contact member in contact with the test member is ultrasonically vibrated to generate fine sliding between the test member and the contact member. Test method.
JP2021044352A 2021-03-18 2021-03-18 Shaft member fitting structure, design method therefore and fretting fatigue test method Pending JP2022143695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021044352A JP2022143695A (en) 2021-03-18 2021-03-18 Shaft member fitting structure, design method therefore and fretting fatigue test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021044352A JP2022143695A (en) 2021-03-18 2021-03-18 Shaft member fitting structure, design method therefore and fretting fatigue test method

Publications (1)

Publication Number Publication Date
JP2022143695A true JP2022143695A (en) 2022-10-03

Family

ID=83454439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021044352A Pending JP2022143695A (en) 2021-03-18 2021-03-18 Shaft member fitting structure, design method therefore and fretting fatigue test method

Country Status (1)

Country Link
JP (1) JP2022143695A (en)

Similar Documents

Publication Publication Date Title
Nishioka et al. Fundamental investigations of fretting fatigue: Part 1, on the relative slip amplitude of press-fitted axle assemblies
Marshall et al. Ultrasonic measurement of railway wheel hub–axle press-fit contact pressures
Juuma Torsional fretting fatigue strength of a shrink-fitted shaft
JP2022143695A (en) Shaft member fitting structure, design method therefore and fretting fatigue test method
JP2015190874A (en) Method and device for testing fretting fatigue
White et al. Finite-element analysis of stresses in shafts due to interference-fit hubs
Kadioglu et al. Use of the thick adherend shear test for shear stress-strain measurements of stiff and flexible adhesives
Khosrowshahi et al. Numerical simulation of plastic deformation in direct-drive friction welding of AISI 4140 and ASTM A106 steel tubes
JP2021156593A (en) Fretting fatigue reduction structure for shaft member and fretting fatigue test device
Kawamura et al. Effect of fitted position on stress distribution and strength of a bonded shrink fitted joint subjected to torsion
Kiyokawa et al. Slip coefficient and ultimate strength of high-strength bolted friction joints with compact bolt spacing and edge distance
Croccolo et al. Fretting fatigue of interference fitted joints: development of a novel specimen for four-point rotating-bending tests and experimental results
McMillan et al. Measurement of partial slip at the interface of a shrink fit assembly under axial load
Bedlaoui et al. Effect of interference and form defect on the cohesion of the shrink-fit assembly
Singh et al. Estimation of damping in layered welded structures with unequal thickness
JP2022147376A (en) Fitting structure of shaft member to fitting hole, and fretting fatigue test method
Choi et al. Fretting fatigue behavior in railway axle materials
Miskovic et al. The development and application of the new methodology for conveyor idlers fits testing
Dragoni Fatigue testing of taper press fits bonded with anaerobic adhesives
JP4600194B2 (en) Fastening structure of railcar brake disc and railcar wheel
Yu et al. Torque capacity and contact stress analysis of conical interference fit shrink disc of wind turbine
Filinov et al. The monitoring of technological stresses by the method of magnetic noise
JP6795528B2 (en) Fretting fatigue reduction structure of shaft member, shaft member, design method of shaft member and fretting fatigue strength tester
Matlin et al. Pressure in the Interference Fit of Cylindrical Parts
Knabner et al. Tribological adaption of a failure hypothesis for fretting fatigue based on the local parameters slip amplitude and contact pressure