JP2019137919A - Film deposition method - Google Patents

Film deposition method Download PDF

Info

Publication number
JP2019137919A
JP2019137919A JP2019021400A JP2019021400A JP2019137919A JP 2019137919 A JP2019137919 A JP 2019137919A JP 2019021400 A JP2019021400 A JP 2019021400A JP 2019021400 A JP2019021400 A JP 2019021400A JP 2019137919 A JP2019137919 A JP 2019137919A
Authority
JP
Japan
Prior art keywords
film
ceo
cef
substrate
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019021400A
Other languages
Japanese (ja)
Other versions
JP6736066B2 (en
Inventor
裕志 室谷
Hiroshi Murotani
裕志 室谷
由紀夫 堀口
Yukio Horiguchi
由紀夫 堀口
卓哉 菅原
Takuya Sugawara
卓哉 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Shincron Co Ltd
Fine Crystal Co Ltd
Original Assignee
Tokai University
Shincron Co Ltd
Fine Crystal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Shincron Co Ltd, Fine Crystal Co Ltd filed Critical Tokai University
Publication of JP2019137919A publication Critical patent/JP2019137919A/en
Application granted granted Critical
Publication of JP6736066B2 publication Critical patent/JP6736066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

To provide a film deposition method capable of stably depositing an infrared region low refractive index optical thin film material.SOLUTION: The film deposition method includes the film formation step of depositing a mixed material obtained by adding CeFof 10-60 wt.% to CeOon the surface of a substrate while decomposing the CeF3. The film formation step includes irradiating the mixed material with an electron beam having an output value set from 80 mA or more to 200 mA or less; and supplying oxygen to a vacuum vessel. A flow rate when supplying the oxygen to the vacuum vessel is set from 8 sccm or more and 40 sccm or less.SELECTED DRAWING: Figure 3

Description

本発明は、光学薄膜の成膜方法に関するものである。   The present invention relates to a method for forming an optical thin film.

従来、赤外線領域用の光学薄膜の低屈折率材料としてはZnS、ZnSeなどが用いられている。また、他の赤外線領域用の低屈折率光学薄膜材料として、CeOやCeFなどが用いられており、これら材料はスパッタリングにおいて成膜可能である。 Conventionally, ZnS, ZnSe, or the like has been used as a low refractive index material for optical thin films for the infrared region. Further, CeO 2 and CeF 3 are used as other low refractive index optical thin film materials for the infrared region, and these materials can be formed by sputtering.

しかしながら、ZnS、ZnSeの蒸着材料は真空蒸着やスパッタリングなどの手法で成膜されるときに分解して、硫化物、セレン化合物などのガスが発生する問題点がある。CeOやCeFを用いたスパッタリングは成膜レートが低いため、赤外線領域用の光学薄膜として用いる数μmの膜厚を得るには数時間かかり、生産性が低いという問題点がある。 However, there is a problem that ZnS and ZnSe vapor deposition materials are decomposed when a film is formed by a technique such as vacuum vapor deposition or sputtering, and gases such as sulfides and selenium compounds are generated. Since sputtering using CeO 2 or CeF 3 has a low film formation rate, it takes several hours to obtain a film thickness of several μm used as an optical thin film for the infrared region, and there is a problem that productivity is low.

Ce系の蒸着材料は、可視光線領域から10μm帯の赤外線領域まで透明な優れた蒸着材料である。しかし、CeOは成膜レートが高く生産性のよい電子ビーム真空蒸着法において成膜レートが不安定である。また、CeFは成膜時の安定性は高いが、透過帯域がCeOより狭いという問題点がある。 The Ce-based vapor deposition material is an excellent vapor deposition material that is transparent from the visible light region to the infrared region of the 10 μm band. However, CeO 2 has a high film formation rate, and the film formation rate is unstable in the electron beam vacuum deposition method with good productivity. Further, CeF 3 has high stability during film formation, but has a problem that its transmission band is narrower than that of CeO 2 .

本発明が解決しようとする課題は、安定的に成膜できる成膜方法を提供することである。   The problem to be solved by the present invention is to provide a film forming method capable of stably forming a film.

本発明は、基板の表面に、CeOに対してCeFを10〜60重量%加えた混合材料を成膜する工程を含んだ成膜方法によって上記課題を解決する。 The present invention solves the above problems by a film forming method including a step of forming a film of a mixed material obtained by adding 10 to 60% by weight of CeF 3 to CeO 2 on the surface of a substrate.

本発明によれば、安定的に蒸着材料を基板表面に成膜できる。   According to the present invention, the deposition material can be stably deposited on the substrate surface.

図1は、本発明に係る成膜方法の一実施の形態に使用できる成膜装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a film forming apparatus that can be used in an embodiment of a film forming method according to the present invention. 図2は、Ge基板、CeO膜、及びCeF膜の透過率特性を示すグラフである。FIG. 2 is a graph showing transmittance characteristics of a Ge substrate, a CeO 2 film, and a CeF 3 film. 図3は、本発明に係る成膜方法の一実施の形態を示す工程図である。FIG. 3 is a process diagram showing an embodiment of a film forming method according to the present invention. 図4は、成膜後の蒸着材料(CeO)の写真である。FIG. 4 is a photograph of the vapor deposition material (CeO 2 ) after film formation. 図5は、ゲルマニウム基板(Ge基板)、CeO単体で成膜した膜、CeOとCeFとの混合材料で成膜した膜(第2実施形態に係る成膜方法で成膜した膜)の分光透過率特性を示すグラフである。FIG. 5 shows a germanium substrate (Ge substrate), a film formed of CeO 2 alone, a film formed of a mixed material of CeO 2 and CeF 3 (film formed by the film forming method according to the second embodiment). It is a graph which shows the spectral transmittance characteristic of this. 図6は、CeOとCeFとの混合材料成膜時の酸素量と電子ビームの影響を説明するためのグラフである。FIG. 6 is a graph for explaining the influence of the amount of oxygen and the electron beam when forming a mixed material of CeO 2 and CeF 3 . 図7は、基板、CeO単体の蒸着材料を用いて成膜された膜、CeF単体の蒸着材料を用いて成膜された膜、CeOとCeFとを混合した蒸着材料を用いて成膜された膜の各透過率特性を説明するためのグラフである。FIG. 7 shows a substrate, a film formed using a vapor deposition material of CeO 2 alone, a film formed using a vapor deposition material of CeF 3 alone, and a vapor deposition material obtained by mixing CeO 2 and CeF 3. It is a graph for demonstrating each transmittance | permeability characteristic of the formed film. 図8は、CeOとCeFとの混合材料成膜時の酸素量と影響を説明するためのグラフである。FIG. 8 is a graph for explaining the amount of oxygen and the influence upon film formation of a mixed material of CeO 2 and CeF 3 . 図9は、CeOとCeFとの混合材料成膜時の酸素量と影響を説明するためのグラフである。FIG. 9 is a graph for explaining the amount of oxygen and the influence upon film formation of a mixed material of CeO 2 and CeF 3 .

以下、本発明の一実施の形態を図面に基づいて説明する。図1は、本発明に係る成膜方法の一実施の形態に使用できる成膜装置1の一例を示す概略縦断面図である。なお、本発明の成膜方法の実施は、図1に示す成膜装置1を用いた実施に何ら限定されず、本発明の構成要件を実現できる成膜装置であれば全てのものが含まれる。本例の成膜装置1は、真空容器2と、真空容器2の内部を減圧するための排気装置3と、駆動部4aにより回転する回転軸4bを中心に回転可能で、基板保持面5aに基板Sを保持可能な円板状の基板ホルダ5と、真空容器2の内部に酸素ガスを導入するガス導入系統6と、真空容器2の内部に基板保持面に対向するように設けられた真空蒸着用の真空蒸着機構7と、基板を温めるためのヒータ8を備える。また、真空容器2には、内部圧力を計測する圧力計9及び非接触式の膜厚センサ10が設けられている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view showing an example of a film forming apparatus 1 that can be used in an embodiment of a film forming method according to the present invention. The implementation of the film forming method of the present invention is not limited to the implementation using the film forming apparatus 1 shown in FIG. 1, and includes any film forming apparatus that can realize the constituent requirements of the present invention. . The film forming apparatus 1 of this example is rotatable around a vacuum vessel 2, an exhaust device 3 for depressurizing the inside of the vacuum vessel 2, and a rotation shaft 4b rotated by a drive unit 4a, and is provided on a substrate holding surface 5a A disk-shaped substrate holder 5 capable of holding the substrate S, a gas introduction system 6 for introducing oxygen gas into the vacuum vessel 2, and a vacuum provided inside the vacuum vessel 2 so as to face the substrate holding surface. A vacuum evaporation mechanism 7 for evaporation and a heater 8 for heating the substrate are provided. The vacuum vessel 2 is provided with a pressure gauge 9 for measuring the internal pressure and a non-contact type film thickness sensor 10.

本例の基板ホルダ5は、円板状に形成され、円板の中心に、駆動部4aにより一方向に回転する回転軸4bが固定されている。基板ホルダ5の下面は、基板Sを固定して保持する基板保持面5aとされている。基板ホルダ5は必ずしも回転式でなくてもよく無回転の形式でもよい。また基板の装着形態は図1に示す形態に限らず、種々の形態でもよい。   The substrate holder 5 of this example is formed in a disc shape, and a rotating shaft 4b that is rotated in one direction by a drive unit 4a is fixed to the center of the disc. The lower surface of the substrate holder 5 is a substrate holding surface 5a that holds the substrate S fixedly. The substrate holder 5 does not necessarily have to be a rotary type and may be a non-rotating type. Further, the mounting form of the substrate is not limited to the form shown in FIG.

成膜対象物である基板Sとしては、特に限定されず、ガラス基板のほか、アクリルその他のプラスチック基板を適用することができる。なかでも屈折率が大きいため反射率を抑制する必要があり、しかも触手や洗浄などの機会があるため機械的強度が必要とされる光学用途の基板を用いると、本発明の効果がより一層発揮される。   The substrate S that is a film formation target is not particularly limited, and an acrylic or other plastic substrate can be used in addition to a glass substrate. In particular, since the refractive index is large, it is necessary to suppress the reflectivity, and there are opportunities for tentacles and cleaning, so the use of substrates for optical applications that require mechanical strength will further enhance the effects of the present invention. Is done.

真空容器2の内部に酸素ガスを導入するガス導入系統6が設けられている。ガス導入系統6は、酸素を貯蔵するボンベ6аと、ボンベ6аに対応して設けられたバルブ6bと、酸素ガスの流量を調整するマスフローコントローラ6cと、反応性ガスの供給路としての配管6dと、を備える。   A gas introduction system 6 for introducing oxygen gas is provided inside the vacuum vessel 2. The gas introduction system 6 includes a cylinder 6a for storing oxygen, a valve 6b provided corresponding to the cylinder 6a, a mass flow controller 6c for adjusting the flow rate of oxygen gas, and a pipe 6d as a reactive gas supply path. .

本例の成膜方法では、蒸着材料(成膜材料)としてCeOとCeFとの混合材料を用いており、蒸着材料を基板の表面に成膜する際に、CeFを積極的に分解させるために、成膜工程で酸素を供給している。酸素は、ボンベ6аに貯蔵されている。バルブ6bは成膜工程時に開放されて、マスフローコントローラは、成膜時に酸素供給量を適切な範囲に調整して、酸素は配管6dを通り真空容器2内に供給される。 In the film formation method of this example, a mixed material of CeO 2 and CeF 3 is used as a vapor deposition material (film formation material), and CeF 3 is actively decomposed when the vapor deposition material is formed on the surface of the substrate. Therefore, oxygen is supplied in the film forming process. Oxygen is stored in the cylinder 6a. The valve 6b is opened during the film formation process, and the mass flow controller adjusts the oxygen supply amount to an appropriate range during film formation, and oxygen is supplied into the vacuum vessel 2 through the pipe 6d.

真空蒸着機構7は、電子ビーム蒸着源からなり、蒸着材料を充填する坩堝7aと、坩堝7aに充填された蒸着材料に電子ビームを照射する電子銃7bとを備える。また、坩堝7aの上方には、当該坩堝7aの上部開口を開閉するシャッタ7cが移動可能に設けられている。蒸着材料には、CeOとCeFとの混合材料が用いられる。 The vacuum evaporation mechanism 7 includes an electron beam evaporation source, and includes a crucible 7a for filling the evaporation material and an electron gun 7b for irradiating the evaporation material filled in the crucible 7a with an electron beam. Above the crucible 7a, a shutter 7c for opening and closing the upper opening of the crucible 7a is movably provided. As the vapor deposition material, a mixed material of CeO 2 and CeF 3 is used.

ここで、蒸着材料について図2を用いて説明する。図2は、波長に対する透過率特性を示すグラフであって、縦軸は透過率(%)を表し、横軸は波長(μm)を示す。図2において、グラフаはGe基板の透過率特性を表し、グラフbはCeFの透過率特性を表し、グラフcはCeOの透過率特性を表す。 Here, the vapor deposition material will be described with reference to FIG. FIG. 2 is a graph showing transmittance characteristics with respect to wavelength. The vertical axis represents transmittance (%), and the horizontal axis represents wavelength (μm). In FIG. 2, graph a represents the transmittance characteristic of the Ge substrate, graph b represents the transmittance characteristic of CeF 3 , and graph c represents the transmittance characteristic of CeO 2 .

図2に示すように、赤外線領域用の低屈折率材料であるCe系の蒸着材料は、可視光線領域から10μm帯の赤外線領域まで透明な優れた蒸着材料である。例えば、グラフcに示すように、CeOは可視領域から13μm程度まで広い透過帯域をもっている。またグラフbに示すように、CeFは可視領域から8μm程度までの透過帯域をもっている。CeOは比較的広い透過帯域をもっているが、生産性が高い電子ビーム真空蒸着においては分解して金属的になるために成膜レートが安定しない。このため、成膜はできるが突沸等が発生し外観品質の面で問題がある。CeFは、CeOの透過帯域より狭いことと、赤外線領域の基板としてよく用いられるGe基板との密着性が低いという問題がある。その一方で、CeFは、生産性が高い電子ビーム真空蒸着において、安定的な成膜を実現できる。 As shown in FIG. 2, the Ce-based vapor deposition material, which is a low refractive index material for the infrared region, is an excellent vapor deposition material that is transparent from the visible light region to the 10 μm infrared region. For example, as shown in the graph c, CeO 2 has a wide transmission band from the visible region to about 13 μm. Further, as shown in the graph b, CeF 3 has a transmission band from the visible region to about 8 μm. CeO 2 has a relatively wide transmission band, but in electron beam vacuum deposition with high productivity, it is decomposed and becomes metallic, so that the film formation rate is not stable. Therefore, although film formation is possible, bumping or the like occurs and there is a problem in terms of appearance quality. CeF 3 has a problem that it is narrower than the transmission band of CeO 2 and has low adhesion to a Ge substrate often used as a substrate in the infrared region. On the other hand, CeF 3 can realize stable film formation in electron beam vacuum deposition with high productivity.

そこで本実施形態は、蒸着材料(蒸着材料)に、CeOにCeFを混ぜた混合材料を用いて、生産性の高い電子ビーム真空蒸着により成膜する。混合材料は、CeOに対してCeFを10〜60重量%(10重量%以上から60重量%以下の範囲)としている。すなわち、100重量%のCeOに対してCeFを10〜60重量%とする。より好ましくは、100重量%のCeOに対してCeFを20〜50重量%とし、さらに好ましくは、100重量%のCeOに対してCeFを30〜40重量%とする。 Therefore, in this embodiment, a film is formed by electron beam vacuum vapor deposition with high productivity by using a mixed material in which CeO 2 and CeF 3 are mixed as an evaporation material (deposition material). The mixed material contains CeF 3 in an amount of 10 to 60% by weight (range of 10% by weight to 60% by weight) with respect to CeO 2 . That is, CeF 3 is 10 to 60% by weight with respect to 100% by weight of CeO 2 . More preferably, CeF 3 is 20 to 50% by weight with respect to 100% by weight of CeO 2 , and further preferably, CeF 3 is 30 to 40% by weight with respect to 100% by weight of CeO 2 .

真空容器2の上部の内壁には、ヒータ8が内壁面に沿うように設置されている。ヒータ8は基板Sを温めるために設置されている。   A heater 8 is installed along the inner wall surface of the upper inner wall of the vacuum vessel 2. The heater 8 is installed to warm the substrate S.

次いで、本発明に係る成膜方法の実施形態を説明する。図3は、本発明に係る成膜方法の一実施の形態を示す工程図である。前準備として、基板ホルダ5に基板Sをセットし、これを真空容器2に取り付ける。また、坩堝7aに、蒸着材料としてCeOとCeFとの混合材料を充填し、図3の処理を開始する。混合材料は、CeOに対してCeFを10〜60重量%とする。 Next, an embodiment of a film forming method according to the present invention will be described. FIG. 3 is a process diagram showing an embodiment of a film forming method according to the present invention. As preparation, the substrate S is set on the substrate holder 5 and attached to the vacuum vessel 2. Also, the crucible 7a is filled with a mixed material of CeO 2 and CeF 3 as a vapor deposition material, and the process of FIG. 3 is started. Mixing material, the CeF 3 against CeO 2 and 10 to 60 wt%.

ステップST1において、真空容器2を密閉し、排気装置3を用いて真空容器2の内部を真空排気(減圧)する。真空容器2の内部に臨むように設けられた圧力計8を用いて、真空容器2の内部が、所定の圧力、例えば7×10−4Paに達したかを判定する(ステップST2)。真空容器2の内部が、所定の圧力、例えば7×10−4Paに達していない場合にはステップST1へ戻り、7×10−4Paに達するまで、真空排気を繰り返す。なお、圧力の目標値7×10−4Paは一例にすぎず、例えば、10−2Pa〜10−5Paの高真空範囲内でもよく、さらに超高真空範囲内でもよい。 In step ST1, the vacuum vessel 2 is sealed, and the inside of the vacuum vessel 2 is evacuated (depressurized) using the exhaust device 3. Using the pressure gauge 8 provided so as to face the inside of the vacuum vessel 2, it is determined whether or not the inside of the vacuum vessel 2 has reached a predetermined pressure, for example, 7 × 10 −4 Pa (step ST2). When the inside of the vacuum vessel 2 does not reach a predetermined pressure, for example, 7 × 10 −4 Pa, the process returns to step ST1 and the evacuation is repeated until it reaches 7 × 10 −4 Pa. The target value of pressure 7 × 10 −4 Pa is merely an example, and may be, for example, in a high vacuum range of 10 −2 Pa to 10 −5 Pa, and may be in an ultra high vacuum range.

真空容器2の内部が、所定の圧力に達したら、ステップST3において、真空蒸着機構7による真空蒸着に適した真空度まで減圧されたものとして、基板ホルダ5の回転を開始する。またヒータ8をオンにして、基板200を所定温度(例えば80〜300度)まで温める。なお、本実施形態では、基板ホルダ5の回転を、酸素供給より先に開始しているが、酸素供給の途中又は酸素の導入後に基板Sの回転を開始してもよい。   When the inside of the vacuum vessel 2 reaches a predetermined pressure, the rotation of the substrate holder 5 is started in step ST3 on the assumption that the pressure is reduced to a degree of vacuum suitable for vacuum deposition by the vacuum deposition mechanism 7. Further, the heater 8 is turned on to warm the substrate 200 to a predetermined temperature (for example, 80 to 300 degrees). In the present embodiment, the rotation of the substrate holder 5 is started before the oxygen supply, but the rotation of the substrate S may be started during the oxygen supply or after the introduction of oxygen.

ステップST4において、バルブ6bを開けてガスボンベ6аから酸素ガスを真空容器2の内部に導入する。このとき、マスフローコントローラ6cは、酸素ガスの流量を8sccm以上から40sccm以下の範囲内に設定する。   In step ST4, the valve 6b is opened and oxygen gas is introduced into the vacuum vessel 2 from the gas cylinder 6a. At this time, the mass flow controller 6c sets the flow rate of the oxygen gas within a range from 8 sccm to 40 sccm.

ステップST5において、酸素ガスが真空容器2の内部に供給された状態で、それまで坩堝7aを閉塞していたシャッタ7cを開け、電子銃7bから坩堝7aに電子ビームを照射して、真空蒸着成膜を行う。電子ビームの条件として、80mA以上200mAの範囲内に設定する。CeF単体を蒸着材料に用いて、電子ビーム蒸着方法により蒸着する場合には、電子ビームの条件は30mA程度である。すなわち、本発明に係る成膜方法では、電子ビームの出力値を、CeF単体の蒸着材料で電子ビーム蒸着方法により蒸着させる時に設定される電子ビームの出力値よりも高い値に設定している。言い換えると、本発明に係る成膜方法では、CeOとCeFとの混合物である蒸着材料を成膜するときの成膜エネルギーが、CeF単体材料を成膜するときの成膜エネルギーよりも高くなるように、電子ビームの出力値を設定している。 In step ST5, in a state where oxygen gas is supplied to the inside of the vacuum vessel 2, the shutter 7c that has closed the crucible 7a is opened, and an electron beam is irradiated from the electron gun 7b to the crucible 7a. Do the membrane. The electron beam condition is set within the range of 80 mA to 200 mA. In the case where vapor deposition is performed using CeF 3 alone as a vapor deposition material, the electron beam condition is about 30 mA. That is, in the film forming method according to the present invention, the output value of the electron beam is set to a value higher than the output value of the electron beam set when the CeF 3 simple substance is deposited by the electron beam deposition method. . In other words, in the film formation method according to the present invention, the film formation energy when forming the vapor deposition material, which is a mixture of CeO 2 and CeF 3 , is larger than the film formation energy when forming the CeF 3 simple substance material. The output value of the electron beam is set so as to increase.

ステップST6において、非接触式の膜厚センサ10により、基板S上に形成された薄膜の膜厚が、予め定められた要求膜厚に達しているかを判定する。基板S上に形成された薄膜の膜厚が、予め定められた要求膜厚に達していない場合には、要求膜厚に達するまで、真空蒸着成膜を継続する。   In step ST6, it is determined by the non-contact type film thickness sensor 10 whether the film thickness of the thin film formed on the substrate S has reached a predetermined required film thickness. If the film thickness of the thin film formed on the substrate S does not reach the predetermined required film thickness, the vacuum deposition film formation is continued until the required film thickness is reached.

ステップST7において、基板S上に形成された薄膜の膜厚が、予め定められた要求膜厚に達した場合には、バルブ6bを閉めて、電子銃7bをオフにし、シャッタ7cを閉めて、真空蒸着成膜を終了する。その後、真空容器2の内部圧力を大気圧に戻し、真空容器2から基板ホルダ5を取り出す。   In step ST7, when the film thickness of the thin film formed on the substrate S reaches a predetermined required film thickness, the valve 6b is closed, the electron gun 7b is turned off, the shutter 7c is closed, The vacuum deposition film formation is finished. Thereafter, the internal pressure of the vacuum vessel 2 is returned to atmospheric pressure, and the substrate holder 5 is taken out from the vacuum vessel 2.

次いで、本発明に係る成膜方法で成膜された膜と、CeO単体を蒸着材料として成膜さされた膜との違いを説明する。なお成膜方法は、いずれも電子ビーム真空蒸着法とする。図4は、CeO単体を蒸着材料として用いた時の、成膜後の蒸着材料(CeO)を示す図であり、以下の表1は図4に示す各部位の抵抗値を表す。

Figure 2019137919
Next, a difference between a film formed by the film forming method according to the present invention and a film formed using CeO 2 alone as an evaporation material will be described. Note that any film forming method is an electron beam vacuum deposition method. FIG. 4 is a diagram showing a vapor deposition material (CeO 2 ) after film formation when CeO 2 alone is used as a vapor deposition material. Table 1 below shows resistance values of the respective parts shown in FIG.
Figure 2019137919

図4及び表1に示すように、CeOは電子ビーム真空蒸着法において電子ビームのエネルギーにより分解し絶縁物から金属的になるため、抵抗率が減少する。入射する電子ビームのエネルギーが熱エネルギーに変換される時の効率が変化するために成膜レートが安定しない。 As shown in FIG. 4 and Table 1, CeO 2 is decomposed by the energy of the electron beam in the electron beam vacuum deposition method and becomes metallic from an insulator, so that the resistivity decreases. Since the efficiency when the energy of the incident electron beam is converted into thermal energy changes, the deposition rate is not stable.

本発明に係る成膜方法に使用した蒸着材料は、CeOに対してCeFを10〜60重量%加えた材料をポットミル等で混合したものである。そのため、電子ビームを用いて蒸着する際に、蒸着材料に含まれるCeOの分解量が減るため、表1に示すような抵抗率の減少を抑制できる。その結果として、成膜レートを安定化できる。 The vapor deposition material used for the film-forming method according to the present invention is a material obtained by mixing 10 to 60% by weight of CeF 3 with respect to CeO 2 using a pot mill or the like. Therefore, when vapor deposition is performed using an electron beam, the decomposition amount of CeO 2 contained in the vapor deposition material is reduced, so that a decrease in resistivity as shown in Table 1 can be suppressed. As a result, the film formation rate can be stabilized.

次に、成膜された膜の分光透過率特性について図5を用いて説明する。図5は、波長に対する透過率特性を示すグラフであって、縦軸は透過率(%)を表し、横軸は波長(μm)を示す。図5において、グラフаはGe基板の透過率特性を表し、グラフbはCeOとCeFの混合材料を用いた成膜の透過率特性を表し、グラフcはCeOを単体で用いた成膜の透過率特性を表す。 Next, spectral transmittance characteristics of the formed film will be described with reference to FIG. FIG. 5 is a graph showing transmittance characteristics with respect to wavelength. The vertical axis represents transmittance (%), and the horizontal axis represents wavelength (μm). In FIG. 5, graph a represents the transmittance characteristic of the Ge substrate, graph b represents the transmittance characteristic of the film formation using a mixed material of CeO 2 and CeF 3 , and graph c represents the composition using CeO 2 alone. It represents the transmittance characteristics of the membrane.

図5に示すように、本発明に係る成膜方法で生成された膜は、CeO単体を蒸着材料として成膜したものと同等の光学特性を得ることができ、本発明に係る成膜方法は成膜レートを10%以内の変動幅に抑制できる。 As shown in FIG. 5, the film generated by the film forming method according to the present invention can obtain optical characteristics equivalent to those formed by using CeO 2 alone as a vapor deposition material, and the film forming method according to the present invention. Can suppress the film forming rate to a fluctuation range of 10% or less.

以上のように、本実施形態の成膜方法は、基板の表面に、CeOに対してCeFを10〜60重量%加えた混合材料を成膜する工程を含んでいる。成膜工程は、図3にステップにおいて、ステップST3〜ST6までの工程に相当する。これにより、成膜レートの安定化及び成膜時間の短縮化を実現できる。また本実施形態の成膜方法で成膜された膜は、CeO単体を蒸着材料として成膜したものと同等の光学特性を得ることができる。 As described above, the film forming method of the present embodiment includes a step of forming a film of a mixed material obtained by adding 10 to 60% by weight of CeF 3 to CeO 2 on the surface of the substrate. The film forming process corresponds to the process from step ST3 to step ST6 in the step of FIG. As a result, it is possible to stabilize the film formation rate and shorten the film formation time. In addition, the film formed by the film forming method of the present embodiment can obtain optical characteristics equivalent to those formed using CeO 2 alone as a deposition material.

また本実施形態の成膜方法は、成膜工程において、CeFを分解しながら蒸着材料を基板の表面に成膜する。具体的には、電子ビーム真空蒸着法による成膜工程において、電子ビームの条件として、電子ビームの出力値を80mA以上から200mA以下の間に設定した状態で、酸素を8sccm以上から40sccm以下の範囲内で供給した状態で、CeOに対してCeFを10重量%以上から60重量%以下の範囲で加えた混合材料を基板の表面上に成膜している。 In the film forming method of the present embodiment, the vapor deposition material is formed on the surface of the substrate while decomposing CeF 3 in the film forming process. Specifically, in the film forming process by the electron beam vacuum deposition method, oxygen is set in the range of 80 sccm to 40 sccm with the output value of the electron beam set between 80 mA and 200 mA as the electron beam condition. In this state, a mixed material obtained by adding CeF 3 to CeO 2 in a range of 10 wt% to 60 wt% is formed on the surface of the substrate.

上記のとおり、本実施形態の成膜方法では、電子ビームの出力値は、CeF単体の蒸着材料で電子ビーム蒸着方法により蒸着する時に設定される電子ビームの出力値(約30mA)よりも高い、80mA以上から200mA以下に設定されている。CeOとCeFとの混合材料においても30mA程度から蒸発は始まるが、電子ビームの出力を30mAのまま維持した場合には、CeF主成分の膜が成膜されてしまう。そこで、本実施形態の成膜方法では、CeOとCeFとの混合材料を成膜する時に、酸素を8sccm以上から40sccm以下の範囲内で導入し、CeF単体の成膜エネルギーとしては過剰となる、80〜200mA(80mA以上から200mA以下の範囲)の電子ビーム条件として成膜を行う。 As described above, in the film forming method of the present embodiment, the output value of the electron beam is higher than the output value of the electron beam (about 30 mA) set when the CeF 3 simple substance is deposited by the electron beam deposition method. , 80 mA or more and 200 mA or less. Even in the mixed material of CeO 2 and CeF 3 , evaporation starts from about 30 mA. However, when the output of the electron beam is maintained at 30 mA, a film mainly composed of CeF 3 is formed. Therefore, in the film forming method of the present embodiment, when forming a mixed material of CeO 2 and CeF 3 , oxygen is introduced within a range of 8 sccm to 40 sccm, and the film formation energy of CeF 3 alone is excessive. The film formation is performed under an electron beam condition of 80 to 200 mA (range of 80 mA to 200 mA).

図6に、本実施形態に係る成膜方法で作製した膜のX線回折測定の結果を示す。図6は混合材料成膜時の酸素量と電子ビームの影響を説明するためのグラフであって、縦軸はX線強度を表し、横軸はX線回折角を示す。図6において、グラフаは電子ビームの出力値を120mAとし酸素の流量を16sccmとした場合の特性を表し、グラフbは電子ビームの出力値を30mAとし酸素の流量を4sccmとした場合の特性を表し、グラフcは電子ビームの出力値を30mAとし酸素の流量を0sccmとした場合の特性を表す。グラフаの設定値(電子ビームの出力値及び酸素供給量)が、本実施形態の成膜方法で設定される条件を満たしている。図6に示すように、X線回折測定の結果から、本実施形態の成膜方法で設定される条件を満たす場合には、CeFが分解されており、成膜された膜がCeO膜になっていることが分かる。 FIG. 6 shows the results of X-ray diffraction measurement of a film produced by the film forming method according to this embodiment. FIG. 6 is a graph for explaining the influence of the amount of oxygen and the electron beam at the time of forming the mixed material. The vertical axis represents the X-ray intensity, and the horizontal axis represents the X-ray diffraction angle. In FIG. 6, graph а shows the characteristics when the output value of the electron beam is 120 mA and the flow rate of oxygen is 16 sccm, and graph b shows the characteristics when the output value of the electron beam is 30 mA and the flow rate of oxygen is 4 sccm. The graph c represents the characteristics when the output value of the electron beam is 30 mA and the flow rate of oxygen is 0 sccm. The set values (electron beam output value and oxygen supply amount) of the graph а satisfy the conditions set by the film forming method of the present embodiment. As shown in FIG. 6, from the result of the X-ray diffraction measurement, when the conditions set by the film forming method of this embodiment are satisfied, CeF 3 is decomposed and the formed film is a CeO 2 film. You can see that

本実施形態の成膜方法によれば、CeO単体の蒸着材料で成膜された膜と同等の透過帯域を確保しつつ、CeO単体の蒸着材料で成膜された膜よりも成膜レートを安定化させることができる。 According to the film forming method of this embodiment, while ensuring the same transmission band and the film formed by the vapor deposition material of CeO 2 alone, the film forming rate than films formed by CeO 2 alone evaporation material Can be stabilized.

なお、本実施形態では、成膜工程の条件として、電子ビームの出力条件(電子ビームの出力値を80mA以上から200mA以下とする)及び酸素供給量の条件(酸素を真空容器2内に供給する時の流量を8sccm以上から40sccm以下にする)の2つを設けたが、条件は少なくともいずれか一方の条件を満たせばよいが、2つの条件を満たすことで、成膜工程において、より積極的にCeFを分解させることができる。 In the present embodiment, as conditions for the film forming process, an electron beam output condition (an electron beam output value is 80 mA or more and 200 mA or less) and an oxygen supply amount condition (oxygen is supplied into the vacuum chamber 2). However, it is only necessary to satisfy at least one of the conditions. However, if the two conditions are satisfied, the film formation process is more active. CeF 3 can be decomposed into

なお、本発明に係る成膜方法は、少なくとも真空蒸着法による成膜する工程を含んでいればよく、例えば、真空蒸着法による成膜工程に、スパッタリングにより成膜する工程を加えた上で、成膜を形成してもよい。   Note that the film forming method according to the present invention only needs to include at least a step of forming a film by a vacuum evaporation method. For example, after adding a step of forming a film by sputtering to a film forming step by a vacuum evaporation method, A film may be formed.

《実施例1》
真空蒸着装置(シンクロン社製BMC−700)を用いて、図3に示す電子ビーム蒸着法にて成膜を行った。成膜基板はN−BK7(SCHOTT社製)光学ガラスとSi基板を使用した。成膜条件は下記の表2に示すように、電子ビームの出力値を80mA又は120mAとして、蒸着材料をCeOとCeFとの混合物とし、成膜時の基板温度を100℃、酸素の流量を0sccm、4sccm又は8ccmとした。
Example 1
Film formation was performed by an electron beam evaporation method shown in FIG. 3 using a vacuum evaporation apparatus (BMC-700 manufactured by SYNCHRON Co., Ltd.). As the film formation substrate, N-BK7 (manufactured by SCHOTT) optical glass and Si substrate were used. As shown in Table 2 below, the film formation conditions are such that the output value of the electron beam is 80 mA or 120 mA, the vapor deposition material is a mixture of CeO 2 and CeF 3 , the substrate temperature during film formation is 100 ° C., and the flow rate of oxygen Was set to 0 sccm, 4 sccm, or 8 ccm.

Figure 2019137919
Figure 2019137919

混合物の作成条件は下記の表3に示すように、基板ホルダの回転速度を110rpmとし、回転時間を4時間とし、CeOとCeFとの材料比(混合比)を1:1又は2:1とした。 As shown in Table 3 below, the conditions for preparing the mixture are as follows: the rotation speed of the substrate holder is 110 rpm, the rotation time is 4 hours, and the material ratio (mixing ratio) of CeO 2 and CeF 3 is 1: 1 or 2: It was set to 1.

Figure 2019137919
Figure 2019137919

上記条件の下、図3に示す電子ビーム蒸着法にて成膜された膜に対して、分光光度計(日本分光社製:V−670)、X線回折装置(フィリップス社製:X’Pert MRD)を用いて光学的特性を測定した。また機械的特性は鉛筆硬度試験(JIS K5600 塗料一般試験方法 4.4 引っかき硬度(鉛筆法)に準じた。)、クロスハッチ試験(ISO9211−4)により評価した。   Under the above conditions, a spectrophotometer (manufactured by JASCO Corporation: V-670), an X-ray diffractometer (manufactured by Philips: X'Pert) is applied to the film formed by the electron beam evaporation method shown in FIG. MRD) was used to measure optical properties. The mechanical properties were evaluated by a pencil hardness test (according to JIS K5600 paint general test method 4.4 scratch hardness (pencil method)) and a cross hatch test (ISO 9211-4).

光学的特性の測定結果を図7に示す。図7は、波長に対する透過率特性を示すグラフであって、縦軸は透過率[%]を表し、横軸は波長[nm]を表す。グラフаはN−BK7(SCHOTT社製)基板の透過率特性を表し、グラフbはCeOとCeFとの混合比を1:1とする蒸着材料を用いて成膜された膜の透過率特性を表し、グラフcはCeOとCeFとの混合比を2:1とする蒸着材料を用いて成膜された膜の透過率特性を表し、グラフdはCeO単体の蒸着材料を用いて成膜された膜の透過率特性を表し、グラフeはCeF単体の蒸着材料を用いて成膜された膜の透過率特性を表す。 The measurement results of the optical characteristics are shown in FIG. FIG. 7 is a graph showing transmittance characteristics with respect to wavelength. The vertical axis represents transmittance [%], and the horizontal axis represents wavelength [nm]. Graph a represents the transmittance characteristics of an N-BK7 (manufactured by SCHOTT) substrate, and graph b represents the transmittance of a film formed using a vapor deposition material with a mixing ratio of CeO 2 and CeF 3 of 1: 1. Graph c represents the transmittance characteristics of a film formed using a vapor deposition material with a mixing ratio of CeO 2 and CeF 3 of 2: 1, and graph d represents the vapor deposition material of CeO 2 alone. The graph e represents the transmittance characteristic of a film formed using a vapor deposition material of CeF 3 alone.

グラフdに示すようにCeO単体の蒸着材料を用いた場合には酸素導入による光学的吸収があるが、グラフb及びcに示すようにCeFを混ぜることによって、酸素導入による光学的吸収が見られなかった。これは、CeOに由来する酸素欠損が減少していないものと考えられる。 When a vapor deposition material of CeO 2 alone is used as shown in graph d, there is optical absorption due to oxygen introduction, but by mixing CeF 3 as shown in graphs b and c, optical absorption due to oxygen introduction is reduced. I couldn't see it. This is considered that oxygen deficiency derived from CeO 2 is not reduced.

そして、鉛筆硬度試験及びクロスハッチ試験により、グラフb〜dで表される膜の機械的特性を評価すると、CeOとCeFとを混合させた蒸着材料を用いて成膜した場合には、CeO単体の蒸着材料を用いて成膜した場合と比較して、密着性及び硬度が向上していることを確認できた。このことは、CeFが膜の密着性及び硬度を高めているものと考えられる。 And when the mechanical properties of the film represented by the graphs b to d are evaluated by a pencil hardness test and a cross hatch test, when a film is formed using a vapor deposition material in which CeO 2 and CeF 3 are mixed, It was confirmed that the adhesion and hardness were improved as compared with the case where the film was formed using the vapor deposition material of CeO 2 alone. This is believed to CeF 3 is improving the adhesion and hardness of the film.

上記の実験結果により、CeOに対してCeFを10〜60重量%加えた混合材料を用いて、図3に示す成膜方法で成膜することで、CeO単体を蒸着材料として成膜したものと同等の光学特性を得つつ、CeO単体のときよりも機械的特性の向上を確認でき、また成膜レートの安定化を確認できた。 The above experimental results, using a mixed material obtained by adding CeF 3 10 to 60 wt% with respect to CeO 2, by formed in the deposition method shown in FIG. 3, deposited CeO 2 alone as a vapor deposition material While obtaining optical characteristics equivalent to those obtained, it was possible to confirm the improvement in mechanical characteristics compared to the case of CeO 2 alone, and to confirm the stabilization of the film formation rate.

《実施例2》
真空蒸着装置(シンクロン社製BMC−700)を用いて、図3に示す電子ビーム蒸着法にて成膜を行った。成膜基板はN−BK7(SCHOTT社製)光学ガラスとSi基板を使用した。成膜条件は、電子ビームの出力値を120mAとして、蒸着材料をCeOとCeFとの混合物とし、成膜時の基板温度を200℃、酸素の流量を0sccm、4sccm又は8ccmとした。そして、蒸着材料を110rpmで回転しつつポットミル中で4時間、混錬した。CeOとCeFとの材料比(混合比)を1:1又は2:1とした。
Example 2
Film formation was performed by an electron beam evaporation method shown in FIG. 3 using a vacuum evaporation apparatus (BMC-700 manufactured by SYNCHRON Co., Ltd.). As the film formation substrate, N-BK7 (manufactured by SCHOTT) optical glass and Si substrate were used. The film formation conditions were an electron beam output value of 120 mA, a vapor deposition material of a mixture of CeO 2 and CeF 3 , a substrate temperature during film formation of 200 ° C., and an oxygen flow rate of 0 sccm, 4 sccm, or 8 ccm. The vapor deposition material was kneaded for 4 hours in a pot mill while rotating at 110 rpm. The material ratio (mixing ratio) of CeO 2 and CeF 3 was 1: 1 or 2: 1.

上記条件の下、図3に示す電子ビーム蒸着法にて成膜された膜に対して、分光光度計(日本分光社製:V−670)、X線回折装置(フィリップス社製:X’Pert MRD)を用いて光学的特性を測定した。また機械的特性は鉛筆硬度試験(JIS K5600 塗料一般試験方法 4.4 引っかき硬度(鉛筆法)に準じた。)、クロスハッチ試験(ISO9211−4)により評価した。   Under the above conditions, a spectrophotometer (manufactured by JASCO Corporation: V-670), an X-ray diffractometer (manufactured by Philips: X'Pert) is applied to the film formed by the electron beam evaporation method shown in FIG. MRD) was used to measure optical properties. The mechanical properties were evaluated by a pencil hardness test (according to JIS K5600 paint general test method 4.4 scratch hardness (pencil method)) and a cross hatch test (ISO 9211-4).

さらに比較例として、蒸着材料をCeO単体として、図3に示す電子ビーム蒸着法にて成膜された膜に対して、光学的特性および機械的特性を評価した。 Furthermore, as a comparative example, the vapor deposition material was CeO 2 alone, and the optical characteristics and mechanical characteristics of the film formed by the electron beam vapor deposition method shown in FIG. 3 were evaluated.

実施例2及び比較例における、成膜条件、成膜レート、酸素ガス流量、クロスハッチ試験結果、及び鉛筆硬度試験結果を表4に示す。   Table 4 shows the film forming conditions, film forming rate, oxygen gas flow rate, cross hatch test results, and pencil hardness test results in Example 2 and Comparative Example.

Figure 2019137919
Figure 2019137919

また光学的特性の測定結果を図8及び図9に示す。図8は、波長に対する透過率特性を示すグラフであって、縦軸は透過率[%]を表し、横軸は波長[nm]を表す。図8において、グラフаはN−BK7(SCHOTT社製)基板の透過率特性を表し、グラフbはCeOとCeFとの混合材料を用いて酸素ガス流量16sccmで成膜された膜の透過率特性を表し、グラフcはCeOとCeFとの混合材料を用いて酸素ガス流量4sccmで成膜された膜の透過率特性を表し、グラフdはCeOとCeFとの混合材料を用いて酸素ガス流量0sccmで成膜された膜の透過率特性を表す。また、図9は、X線回折測定の結果を示すグラフであって、縦軸はX線強度を表し、横軸はX線回折角を示す。図9において、グラフаはCeOとCeFとの混合材料を用いて酸素ガス流量16sccmで成膜された膜の特性を表し、グラフbはCeOとCeFとの混合材料を用いて酸素ガス流量4sccmで成膜された膜の特性を表し、グラフbはCeOとCeFとの混合材料を用いて酸素ガス流量0sccmで成膜された膜の特性を表す。 The measurement results of the optical characteristics are shown in FIGS. FIG. 8 is a graph showing transmittance characteristics with respect to wavelength. The vertical axis represents transmittance [%], and the horizontal axis represents wavelength [nm]. In FIG. 8, graph a represents the transmittance characteristics of an N-BK7 (manufactured by SCHOTT) substrate, and graph b represents the transmission of a film formed with a mixed material of CeO 2 and CeF 3 at an oxygen gas flow rate of 16 sccm. Graph c represents the transmittance characteristics of a film formed using a mixed material of CeO 2 and CeF 3 at an oxygen gas flow rate of 4 sccm, and graph d represents the mixed material of CeO 2 and CeF 3. The transmittance characteristics of a film formed using an oxygen gas flow rate of 0 sccm are shown. FIG. 9 is a graph showing the results of X-ray diffraction measurement, in which the vertical axis represents the X-ray intensity and the horizontal axis represents the X-ray diffraction angle. In FIG. 9, graph а represents characteristics of a film formed using a mixed material of CeO 2 and CeF 3 at an oxygen gas flow rate of 16 sccm, and graph b represents oxygen using a mixed material of CeO 2 and CeF 3. The characteristics of the film formed at a gas flow rate of 4 sccm are shown, and the graph b shows the characteristics of the film formed at a oxygen gas flow rate of 0 sccm using a mixed material of CeO 2 and CeF 3 .

図8に示すように、CeOとCeFとの混合物を蒸着材料に用いた時の主構造は、CeO単体を蒸着材料に用いた時と同じような構造になった。一般的に、基板表面にCeOを堆積する時に酸素を導入すると光吸収が生じる。一方、CeOとCeFとの混合物を蒸着材料に用いた時には、CeFが膜に含まれるため、酸素を導入するにより生じる光吸収の発生を抑制できる。その結果として、CeFの分解が確認でき、光吸収が赤外線の領域で抑えることが確認できた。 As shown in FIG. 8, the main structure when a mixture of CeO 2 and CeF 3 was used as the vapor deposition material was the same as that when CeO 2 alone was used as the vapor deposition material. In general, light absorption occurs when oxygen is introduced when CeO 2 is deposited on the substrate surface. On the other hand, when a mixture of CeO 2 and CeF 3 is used for the vapor deposition material, since CeF 3 is contained in the film, the generation of light absorption caused by introducing oxygen can be suppressed. As a result, it was confirmed that CeF 3 was decomposed and light absorption was suppressed in the infrared region.

図9に示すようにX線回折パターンから、結晶構造が酸素レベルで変化していることを確認できた。そして、結晶構造の変化が、成膜材料のフッ化物分解を抑制することに起因する結果として、CeO膜にCeF膜を形成できることを確認した。さらに、上記表4に示すように、CeO単体の蒸着材料を用いて形成された膜と比較して、実施例で形成された膜では、密着性及び硬度が向上した。これにより、CeFが膜としての機械的特性を高めることができた。 As shown in FIG. 9, it was confirmed from the X-ray diffraction pattern that the crystal structure changed at the oxygen level. Then, it was confirmed that the CeF 3 film can be formed on the CeO 2 film as a result of the change in the crystal structure resulting from suppressing the fluoride decomposition of the film forming material. Furthermore, as shown in Table 4 above, the adhesion and hardness of the films formed in the examples were improved as compared to the film formed using the vapor deposition material of CeO 2 alone. Thus, CeF 3 were able to increase the mechanical properties of the film.

上記の実験結果により、CeOにCeFを混合により、CeO単体を蒸着材料として成膜したものと同等の光学特性を得つつ、CeO単体のときよりも機械的特性の向上を確認でき、さらに成膜レートの安定化を確認できた。 From the above experimental results, it is possible to confirm the improvement in mechanical properties compared with the case of using CeO 2 alone while obtaining optical characteristics equivalent to those obtained by mixing CeO 2 with CeF 3 and using CeO 2 alone as a deposition material. Furthermore, stabilization of the film formation rate was confirmed.

Claims (4)

光学薄膜を成膜する成膜方法であって、
基板の表面に、CeOに対してCeFを10〜60重量%加えた混合材料を成膜する成膜工程を含む成膜方法。
A film forming method for forming an optical thin film,
A film forming method including a film forming step of forming a film of a mixed material obtained by adding 10 to 60% by weight of CeF 3 to CeO 2 on the surface of a substrate.
前記成膜工程において、前記CeFを分解しながら前記混合材料を前記基板の表面に成膜する請求項1記載の成膜方法。 The film forming method according to claim 1, wherein in the film forming step, the mixed material is formed on the surface of the substrate while decomposing the CeF 3 . 前記成膜工程は、前記混合材料に電子ビームを照射する工程を含み、
前記電子ビームの出力値が、80mA以上から200mA以下に設定されている請求項1又は2記載の成膜方法。
The film forming step includes a step of irradiating the mixed material with an electron beam,
The film forming method according to claim 1, wherein an output value of the electron beam is set to 80 mA or more and 200 mA or less.
前記成膜工程は、真空容器内に酸素を供給する工程を含み、
前記酸素を前記真空容器内に供給する時の流量が8sccm以上から40sccm以下に設定されている請求項1〜3のいずれか一項に記載の成膜方法。
The film forming step includes a step of supplying oxygen into the vacuum vessel,
The film forming method according to claim 1, wherein a flow rate when the oxygen is supplied into the vacuum container is set to 8 sccm or more and 40 sccm or less.
JP2019021400A 2018-02-13 2019-02-08 Deposition method Active JP6736066B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018023339 2018-02-13
JP2018023339 2018-02-13

Publications (2)

Publication Number Publication Date
JP2019137919A true JP2019137919A (en) 2019-08-22
JP6736066B2 JP6736066B2 (en) 2020-08-05

Family

ID=67693218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019021400A Active JP6736066B2 (en) 2018-02-13 2019-02-08 Deposition method

Country Status (1)

Country Link
JP (1) JP6736066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370278B2 (en) 2019-08-21 2023-10-27 浜松ホトニクス株式会社 Sintered body, sputtering target, film, quantum cascade laser, and film forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370278B2 (en) 2019-08-21 2023-10-27 浜松ホトニクス株式会社 Sintered body, sputtering target, film, quantum cascade laser, and film forming method

Also Published As

Publication number Publication date
JP6736066B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
Jeong et al. Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating
JP5169888B2 (en) Composite tungsten oxide target material and manufacturing method thereof
WO2018143206A1 (en) Film-formation method
CN109182972A (en) Multispectral hard anti-reflection film of large-size sapphire substrate and preparation method thereof
JP2010501736A (en) Method for producing a smooth and dense optical film
JP6381687B2 (en) Method for forming durable MgO-MgF2 composite film for infrared light antireflection coating
JP4337164B2 (en) Optical product and manufacturing method thereof
JP6736066B2 (en) Deposition method
Shakoury et al. Optical and structural properties of TiO2 thin films deposited by RF magnetron sputtering
JP2018536769A (en) Method and production facility for obtaining colored glazing
WO2020077705A1 (en) Method for regulating color of hard coating, and hard coating and preparation method therefor
Bovard Ion-assisted processing of optical coatings
JPH07331412A (en) Optical parts for infrared ray and their production
JP2015114599A (en) Optical multilayer film, optical lens, and production method of optical multilayer film
Depablos‐Rivera et al. Synthesis and Optical Properties of Different Bismuth Niobate Films Grown by Dual Magnetron Co‐Sputtering
JPH0756002A (en) Hard coat layer and its production
JP4126372B2 (en) Solar panel and manufacturing method thereof
Xiao et al. Structure and oxidation resistance of W1–xAlxN composite films
JP2023158648A (en) Optical thin film and method for manufacturing the same
TW201903194A (en) Film forming device and film forming method
JP2009093068A (en) Method of manufacturing scratch-resistant article
WO2015037462A1 (en) Production method for silicon oxide sintered body, and silicon oxide sintered body
Gangalakurti et al. Influence of Deposition Conditions on Properties of Ta2O5 Films Deposited by Ion Beam Sputtering Coating Technique
Patel et al. Structural, optical and wettability properties of zirconium oxide thin films deposited at various helium partial pressure
WO2008123575A1 (en) Vapor deposition material and optical thin film obtained from the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6736066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250