JP2019133741A - 蓄電モジュール - Google Patents

蓄電モジュール Download PDF

Info

Publication number
JP2019133741A
JP2019133741A JP2016104967A JP2016104967A JP2019133741A JP 2019133741 A JP2019133741 A JP 2019133741A JP 2016104967 A JP2016104967 A JP 2016104967A JP 2016104967 A JP2016104967 A JP 2016104967A JP 2019133741 A JP2019133741 A JP 2019133741A
Authority
JP
Japan
Prior art keywords
electrode terminal
positive electrode
aluminum positive
horn
high hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016104967A
Other languages
English (en)
Inventor
範幸 大西
Noriyuki Onishi
範幸 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2016104967A priority Critical patent/JP2019133741A/ja
Priority to PCT/JP2016/084479 priority patent/WO2017203731A1/ja
Priority to CN201680086110.1A priority patent/CN109196684A/zh
Priority to US16/200,217 priority patent/US20190148706A1/en
Publication of JP2019133741A publication Critical patent/JP2019133741A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

【課題】大電流を連続放出可能で、且つ圧接強度が確保される蓄電モジュールを提供すること。【解決手段】蓄電モジュールは、少なくとも2つの蓄電セル本体と、一つの蓄電セル本体の内部から、積層方向と交わる方向に段差なく突出した、0.4mmを超え1mm以下の積層方向の厚みを有する板状のアルミニウム正極端子と、アルミニウム正極端子と積層方向視で重なりを有し、重なり合う蓄電セル本体の内部から段差なく突出した高硬度負極端子と、アルミニウム正極端子の表面に設けられた少なくとも一つの超音波圧接のホーン跡と積層方向視で重なる領域で、アルミニウム正極端子と高硬度負極端子とが溶着することにより形成された超音波圧接部とを備える。全体として、アルミニウム正極端子が突出する突出方向とアルミニウム正極端子の表面上で交わる幅方向におけるホーン跡の幅が、突出方向におけるホーン跡の長さよりも長くなるように形成されている。【選択図】図4

Description

本発明は、蓄電モジュールに関する。
近年、ビークルの動力源としてモータを利用しようとする動きがある。これに伴い、モータに電力を供給する蓄電モジュールの技術も発展してきている。
ビークルには、大きな電力を蓄えることが可能な、耐振動性及び放熱性に優れた蓄電モジュールの搭載が望まれている。近年では、直列に接続された複数の扁平型の単電池を有する電池モジュールとしての組電池が開発されている。ビークル等の駆動には大きなエネルギーが要求される。この要求に応えるため、単電池は大型化する傾向を有する。
蓄電モジュールとしては、例えば、リチウムイオン電池モジュールが挙げられる。このような蓄電モジュールにおける単電池は、正極タブ及び負極タブを備えている。単電池の正極タブ及び負極タブは超音波接合されている。これによって、複数の単電池が直列接続される。
例えば特許文献1には、超音波接合の接合構造に関する技術が提案されている。
特許第4946098号公報
上述したように、直列接続された複数の単電池を備える組電池において、個々の組電池は大型化する傾向にある。このため、例えば、悪路走行中などにビークルに振動が加わると、ビークルに搭載された組電池の電極タブに大きな振動が伝わり易くなる。組電池には、振動に耐え得るような電極タブの接合強度を確保することが要求されている。
ところで、組電池の組立工程において、一方の単電池と別の単電池とに備えられた電極タブ同士が超音波接合される時、超音波接合装置によって電極タブに振動が加えられる。この時、電極タブに応力がかかってしまう。このため、電極タブの接合強度を確保することが困難となる場合がある。例えば、電極タブ同士が超音波接合される時、電極タブの接合部は、超音波接合装置のホーンとアンビルに挟持される。このため、電極タブの接合部から端部までの材料部分が、アンビルとホーンとに挟持される接合部に振り回される現象が起きる。この結果、接合部との境界に疲労による亀裂が発生する場合がある。
特許文献1の超音波接合の接合構造では、電極タブに屈曲成形部が形成されている。これによって、応力の吸収が図られる。例えば、アルミニウム板からなる上板において屈曲成形部が形成される。これにより、厚さ0.4mmのアルミニウム板と、厚さ0.2mmの銅板を重ね合わせた構造において、亀裂の発生の防止を図ろうとしている。
組電池には、例えばモータ等に供給可能な電流の増大、及び、電力の供給を継続可能な期間の長期化が求められている。つまり、組電池には、容量の増大が求められている。組電池に対する容量増大の要求に応じて、組電池を構成する単電池の容量が増大する傾向にある。単電池の容量増大に伴い、単電池からの電流を伝導する電極タブには、許容電流の増大が求められる。ところが、電極タブの幅の増大は、単電池自体の幅による制約を受ける。そこで、電極タブの許容電流を増大するため、電極タブの厚さを増大することが考えられる。
しかしながら、電極タブとしてのアルミニウム板の厚さが0.4mmを超えると、特許文献1の技術に基づく接合構造では、接合強度を確保することが困難となる場合がある。厚さが0.4mmを超えると、電極タブの剛性が高くなるため、屈曲成形部における応力吸収の能力が低下する。しかも、屈曲成形部には、構造上応力が集中しやすい。このため、屈曲成形部において電極タブに割れが生じ易くなってしまう。
本発明の目的は、大電流を連続放出可能で、且つ接合強度が確保された電池モジュールを提供することである。
本発明は、上述した課題を解決するために、以下の構成を採用する。
(1) 蓄電モジュールであって、
前記蓄電モジュールは、
積層された少なくとも2つの蓄電セル本体と、
前記少なくとも2つの蓄電セル本体のうちの一つの蓄電セル本体の内部から、前記積層方向と交わる方向に段差なく突出した、0.4mmを超え1mm以下の前記積層方向の厚みを有する板状のアルミニウム正極端子と、
前記アルミニウム正極端子と前記積層方向視で重なりを有し、前記一つの蓄電セル本体と前記積層方向に重なり合う蓄電セル本体の内部から段差なく突出した、アルミニウムより高い硬度を有する導電性材料からなる板状の高硬度負極端子と、
0.4mmを超え1mm以下の厚みを有し段差なく突出した前記アルミニウム正極端子の表面に設けられた少なくとも一つの超音波圧接のホーン跡と前記積層方向視で重なる領域で、段差なく突出した前記アルミニウム正極端子と段差なく突出した前記高硬度負極端子とが溶着することにより形成された超音波圧接部であって、前記少なくとも一つの超音波圧接のホーン跡は、全体として、前記アルミニウム正極端子が突出する突出方向と前記アルミニウム正極端子の表面上で交わる幅方向におけるホーン跡の幅が、前記突出方向におけるホーン跡の長さよりも長くなるように形成されている、超音波圧接部とを備える。
(1)の蓄電モジュールによれば、アルミニウム正極端子が0.4mmを超える厚みを有する。このため、蓄電セル本体の大容量化に対応することが可能である。(1)の蓄電モジュールは、大電流の連続放出が可能である。
板状のアルミニウム正極端子は、蓄電セル本体から段差なく突出している。積層方向に重なり合う蓄電セル本体から、アルミニウムより高い硬度を有する導電性材料からなる板状の高硬度負極端子が段差なく突出している。(1)の蓄電モジュールは、アルミニウム正極端子と高硬度負極端子が溶着した超音波圧接部を備えている。超音波圧接部は、通常、アルミニウム正極端子と高硬度負極端子が積層方向視で重なる部分の少なくとも一部が圧接されるとともに超音波の振動を受けることによって形成される。超音波圧接では、超音波圧接装置の共振体としてのホーンと受け治具としてのアンビルとの間に、アルミニウム正極端子と高硬度負極端子が重なった状態で挟み込まれる。アルミニウム正極端子にホーンから超音波振動が加えられる。圧接対象と接触するホーンの接触面には、細かな突起が設けられている。(1)の蓄電モジュールにおけるアルミニウム正極端子は、超音波圧接のホーン跡を有する。このようなホーン跡は、アルミニウム正極端子にホーンが押し当てられることによって形成されることができる。超音波圧接部は、ホーン跡と前記積層方向視で重なる領域に設けられる。
超音波圧接の工程において、ホーンからアルミニウム正極端子に直接振動が加えられる。アルミニウム正極端子は0.4mmを超える厚みを有するため、高い剛性を有する。このため、重量が大きい蓄電セル本体に対し強く固定される。また、0.4mmを超える厚みを有するアルミニウム正極端子は、重量が大きい。このため、アルミニウム正極端子は全体として動きにくい。他方、アルミニウム正極端子は、高硬度負極端子よりも低い硬度を有している。即ち、アルミニウム正極端子は高硬度負極端子に対し相対的に柔らかい材料で形成されている。このため、アルミニウム正極端子のうち、ホーンに設けられた突起に接触する部分は、突起からの振動を直接に受け局所的に振動しやすい。
アルミニウム正極端子は全体として動きにくく、ホーンに設けられた突起に接触する部分は局所的に振動しやすい。この結果、超音波圧接において、アルミニウム正極端子のうち、ホーンの突起と接触する部分と、周辺部分との相対的な変位量が大きい。このため、ホーンの振動のエネルギーが高い効率で両端子の接触部分に到達する。

このため、超音波圧接部における圧接強度が確保される。
また、アルミニウム正極端子及び高硬度負極端子は、2つの蓄電セル本体の各々から段差なしに突出し、超音波圧接部で接合されている。このため、蓄電セル本体から突出したアルミニウム正極端子及び高硬度負極端子は、超音波圧接部に向かって互いに近づくように斜めに延びる。ホーン跡は、全体として、突出方向への長さよりも長い幅を有する。このため、超音波圧接の処理でアルミニウム正極端子及び高硬度負極端子がホーンとアンビルとの間に挟まれる直前に、超音波圧接部となる領域におけるアルミニウム正極端子と高硬度負極端子との間隔について、場所ごとの差が小さい。従って、超音波圧接部となる領域において、アルミニウム正極端子及び高硬度負極端子がホーンとアンビルとに押しつけられ変位する距離について、場所ごとの差が抑えられる。よって、超音波圧接において、アルミニウム正極端子及び高硬度負極端子に割れ等の損傷が生じる事態の発生が抑えられる。従って、超音波圧接部における圧接強度が確保される。
アルミニウム正極端子における全体としてのホーン跡の幅は、少なくとも一つのホーン跡の突出方向へ投影された像の長さに相当する。少なくとも一つのホーン跡の突出方向へ投影された像の長さは、一つのホーン跡を突出方向と垂直な仮想面に投影した像の長さである。例えば複数のホーン跡のそれぞれの投影像が離れている場合、投影された像の長さは、それぞれの投影像の長さの和である。また、例えば複数のホーン跡のそれぞれの投影像が重なる場合、投影された像の長さは、重なった投影像の長さである。また、アルミニウム正極端子における全体としてのホーン跡の長さは、少なくとも一つのホーン跡が幅方向へ投影された像の長さに相当する。少なくとも一つのホーン跡が幅方向へ投影された像の長さは、一つのホーン跡を幅方向と垂直な仮想面に投影した像の長さである。例えば複数のホーン跡のそれぞれの投影像が離れている場合、投影された像の長さは、それぞれの投影像の長さの和である。また、例えば複数のホーン跡のそれぞれの投影像が重なる場合、投影された像の長さは、重なった投影像の長さである。
ホーン跡は、超音波圧接装置のホーンが押し当てられることによって形成される跡である。超音波圧接装置のホーンに設けられた接触面は、圧接対象と接する。ホーンの接触面には、複数の細かな突起が配列されている。ホーン跡は、これらの突起が入り込んでできた凹部の配列で構成される。ホーン跡は、複数の凸部の配列で構成されるアンビルの跡とは対照的な形状を有する。
高硬度負極端子は、蓄電セル本体の電気端子に適した導電性材料で形成される。アルミニウムより高い硬度を有する高硬度負極端子の材料の一例として、銅又はニッケル等の金属が挙げられる。
次に、(1)でいう段差(step)について説明する。アルミニウム正極端子及び高硬度負極端子の各々は、蓄電セル本体の内部から、蓄電セル本体の周縁部に設けられた開口を通って、蓄電セル本体の外部に露出するように設けられている。アルミニウム正極端子及び高硬度負極端子の各々は、蓄電セル本体の開口において蓄電セル本体の周縁部と接合されている。これにより、蓄電セル本体の各開口は封止されている。従って、アルミニウム正極端子及び高硬度負極端子の各々は、蓄電セル本体の開口を封止するように蓄電セル本体の周縁部と接合された封止部分と、超音波圧接部が形成された圧接部分と、封止部分と圧接部分との間に位置する中間部分とを有する。蓄電セル本体から突出方向Lに見ると、封止部分と、中間部分と、圧接部分とが、この順に並ぶ。アルミニウム正極端子の封止部分と中間部分と圧接部分とが、積層方向T(図1参照)において同じ位置(高さ)に位置する場合、アルミニウム正極端子は、段差無く突出している。また、アルミニウム正極端子の封止部分及び圧接部分の各々が積層方向Tにおいて異なる位置(高さ)に位置している場合であっても、封止部分と中間部分とが連続する曲面(湾曲面)又は平面を成し、且つ中間部分と圧接部分とが連続する曲面(湾曲面)又は平面を成していれば、アルミニウム正極端子は、段差無く突出している。また、アルミニウム正極端子の封止部分及び圧接部分の各々が突出方向Lに延び且つ積層方向Tにおいて異なる位置(高さ)に位置している場合であっても、突出方向Lに延びる封止部分と圧接部分とが、中間部分を介して、全体として、連続する曲面を成している場合にも、アルミニウム正極端子は、段差無く突出している。アルミニウム正極端子の封止部分と中間部分とは実質的に角を成さないように連続し、且つ中間部分と圧接部分とは実質的に角を成さないように連続する場合にも、アルミニウム正極端子は、段差無く突出している。段差なしに突出する形状は、滑らかな曲面を有する形状を含む。段差なしの形状は、例えば、幅方向W(図1参照)に延びる線に沿った折れ曲がりなしの形状を含まない。段差なしに突出する形状は、例えば湾曲する形状を含む。高硬度負極端子についても、アルミニウム正極端子と同様である。上記(1)の構成では、アルミニウム正極端子及び高硬度負極端子の双方が、段差無く突出している。これに対し、蓄電モジュールのアルミニウム正極端子又は高硬度負極端子のいずれか一方が段差を有している場合、前記蓄電モジュールは上記(1)の要件を具備しない。特許文献1(特許第4946098号公報)では、例えば、特許文献1の図4に示されるように、正極端子の封止部分と中間部分と圧接部分とがクランク状を成している。特許文献1では、封止部分と中間部分とが、連続する曲面(湾曲面)又は平面を成しておらず、角を成している。また、特許文献1では、中間部分と圧接部分とが、連続する曲面(湾曲面)又は平面を成しておらず、角を成している。特許文献1の構成は、上記(1)の要件を具備しない。
また、本発明は、以下のような構成を採用することができる。
(2) (1)の蓄電モジュールであって、
前記少なくとも一つの超音波圧接のホーン跡は、全体として、前記アルミニウム正極端子の前記幅方向における長さの1/3以上である幅を有する。
(2)の蓄電モジュールによれば、アルミニウム正極端子と高硬度負極端子が、アルミニウム正極端子の幅方向における長さの1/3以上に亘って圧接されている。このため、超音波圧接部における圧接強度が確保されるとともに、端子の幅に対応した十分な電気的接続が確保される。
(3) (1)又は(2)の蓄電モジュールであって、
前記少なくとも一つのホーン跡は、複数のホーン跡であり、
前記複数のホーン跡の各々の前記突出方向の長さが、前記複数のホーン跡の各々の前記幅方向の長さよりも短い。
(3)の蓄電モジュールの超音波圧接部は、例えば、アルミニウム正極端子と高硬度負極端子においてホーンとアンビルに挟む領域を順次ずらしながら、複数回に亘り超音波圧接の作業を実施することにより形成できる。1回の超音波圧接の処理により、1つの超音波圧接のホーン跡が形成される。ホーン跡の各々の突出方向の長さが、前記幅方向の長さより短いので、各回の超音波圧接の処理において、アルミニウム正極端子及び高硬度負極端子がホーンとアンビルとに押しつけられ変位する距離について、場所ごとの差が抑えられる。従って、超音波圧接において、アルミニウム正極端子及び高硬度負極端子に割れ等の損傷が生じる事態の発生が抑えられる。
(4) (1)から(3)いずれか1の蓄電モジュールであって、
前記アルミニウム正極端子の剛性は、前記高硬度負極端子の剛性よりも高い。
(4)の蓄電モジュールによれば、ホーン跡が設けられるアルミニウム正極端子の剛性が高硬度負極端子の剛性よりも高い。このため、アルミニウム正極端子の、蓄電セル本体に対する固定力が大きい。従って、ホーンが有する突起と接触する部分の、接触しない部分に対する相対的な変位量がより大きい。このため、超音波圧接部における圧接強度がより確保される。
(5) (1)から(4)いずれか1の蓄電モジュールであって、
前記アルミニウム正極端子の厚みは前記高硬度負極端子の厚みよりも大きい。
(5)の蓄電モジュールは、超音波圧接の処理において、振動を印加するホーンが、相対的に薄い高硬度負極端子ではなく、厚いアルミニウム正極端子に押し当てられる。厚いアルミニウム正極端子は、薄い高硬度負極端子と比べて、全体としての慣性が大きい。このため、端子において、ホーンが有する突起と接触する部分の、接触しない部分に対する相対的な変位量がより大きい。このため、超音波圧接部における圧接強度がより確保される。
(6) (5)の蓄電モジュールであって、
前記高硬度負極端子は、前記アルミニウム正極端子よりも大きく湾曲している。
(6)の蓄電モジュールによれば、アルミニウム正極端子よりも薄い高硬度負極端子が、アルミニウム正極端子よりも大きく湾曲することによって、アルミニウム正極端子の湾曲の程度が抑えられる。このため、相対的に厚いアルミニウム正極端子に生じる機械的なストレスが軽減される。このため、超音波圧接部における圧接強度がより確保される。
(7) (6)の蓄電モジュールであって、
前記蓄電セル本体から突出したアルミニウム正極端子の先端は、前記アルミニウム正極端子と接する前記高硬度負極端子の先端よりも突出している。
(7)の蓄電モジュールによれば、アルミニウム正極端子の先端が高硬度負極端子の先端よりも突出していることによって、高硬度負極端子のより大きな湾曲が確保される。この結果、相対的により厚いアルミニウム正極端子に生じる機械的なストレスが軽減される。このため、超音波圧接部における圧接強度がより確保される。
本発明の蓄電モジュールによれば、大電流を連続放出可能で、且つ圧接強度が確保される。
本発明の一実施形態の蓄電モジュールを示す斜視図である。 図1に示す蓄電モジュールの側面図である。 図1に示す蓄電モジュールの部分拡大図である。 図1に示す蓄電モジュールの部分平面図である。 図4に示す蓄電モジュールの5−5線断面を示す部分断面図である。 超音波圧接部を形成するための超音波圧接工程を説明する概略図である。
以下、本発明を、好ましい実施形態に基づいて図面を参照しつつ説明する。
図1は、本発明の一実施形態の蓄電モジュールを示す斜視図である。図2は、図1に示す蓄電モジュールの側面図である。図3は、図1に示す蓄電モジュールの部分拡大図である。
図1に示す蓄電モジュール100は、4つの蓄電セル10A,10B,10C,10Dを備えている。4つの蓄電セル10A〜10Dは、互いに同じ構成を有している。蓄電セル10A〜10Dのそれぞれは平板状である。4つの蓄電セル10A〜10Dは積層されている。蓄電セル10A〜10Dが積層される方向を積層方向Tと称する。なお、4つの蓄電セル10A〜10Dの間には、例えば放熱板等、蓄電セルとは別の部材が介在してもよい。
蓄電セル10A,10B,10C,10Dは、蓄電セル本体11A,11B,11C,11Dと、アルミニウム正極端子12A,12B,12C,12Dと、高硬度負極端子13A,13B,13C,13Dとそれぞれを有している。4つの蓄電セル10A〜10Dは、電気的に直列に接続されている。なお、蓄電モジュール100の平面視において、アルミニウム正極端子12A及び高硬度負極端子13Aが突出する方向を突出方向Lと称する。アルミニウム正極端子12A上で突出方向Lと交わる方向を幅方向Wと称する。
4つの蓄電セル10A〜10Dは、突出方向Lにおけるアルミニウム正極端子12A〜12Dと高硬度負極端子13A〜13Dの位置が互い違いに配置されるように積層方向Tに積層されている。蓄電セル10Aのアルミニウム正極端子12Aと、蓄電セル10Aと積層方向Tに重なり合う蓄電セル10Bの高硬度負極端子13Bとの間には、超音波圧接部14Aが設けられている。また、アルミニウム正極端子12Bと高硬度負極端子13Cとの間には、超音波圧接部14Bが設けられている。アルミニウム正極端子12Cと高硬度負極端子13Dとの間には、超音波圧接部14Cが設けられている。図3には、3つの超音波圧接部14A,14B,14Cのうち、2つの超音波圧接部14A,14Cのみが示されている。
このように、図1に示す蓄電モジュール100は、蓄電セル本体11A〜11Dと、アルミニウム正極端子12A,12B,12C,12Dと、高硬度負極端子13A,13B,13C,13Dと超音波圧接部14A,14B,14Cとを備えている。
蓄電モジュール100は、ビークル駆動用蓄電モジュールである。ただし、蓄電モジュール100は、ビークル以外の装置に用いられてもよい。蓄電モジュール100は、例えばビークル等の装置に搭載され、電源として機能する。蓄電モジュール100は、例えば、図示しないケースに収容され蓄電パックを構成する。蓄電モジュール100は、100A以上の電流を連続出力できる。蓄電モジュール100は、例えば、100A以上の電流を15分以上連続出力できる。ただし、蓄電モジュール100が連続出力できる時間は、15分未満であってもよい。また、蓄電モジュール100が連続出力できる最大電流は、100A未満であってもよい。
蓄電セル10Aの各要素について説明する。残りの蓄電セル10B〜10Dの構成は、蓄電セル10Aと同じである。
蓄電セル本体11Aは、平板状である。蓄電セル本体11Aは、その内部に、図示しない正極、負極、及びセパレータを有している。正極、負極、及びセパレータは可撓性を有するシート状の収容体111Aに収容されている。収容体111Aとしては、例えば、樹脂ラミネート金属箔が挙げられる。図示しない正極、負極、及びセパレータは、収容体111Aの中で積層方向Tに積層されている。
アルミニウム正極端子12A、及び高硬度負極端子13Aの各々は、蓄電セル本体11Aの内部から、蓄電セル本体11Aの周縁部Sに設けられた開口を通って、蓄電セル本体11Aの外部に露出するように設けられている。アルミニウム正極端子12A、及び高硬度負極端子13Aの各々は、蓄電セル本体11Aの開口において蓄電セル本体11Aの周縁部Sと接合されている。これにより、蓄電セル本体11Aの各開口は封止されている。
アルミニウム正極端子12Aは、アルミニウムからなる板状の部材である。アルミニウム正極端子12Aは、蓄電セル本体11Aの内部から突出している。アルミニウム正極端子12Aは、蓄電セル本体11Aから段差なく突出している。アルミニウム正極端子12Aは、蓄電セル10Aの正極端子である。アルミニウム正極端子12Aは、蓄電セル本体11Aの内部で、図示しない正極と電気的に接続されている。アルミニウム正極端子12Aは、100A以上の電流を連続通電可能な厚みを有する。アルミニウム正極端子12Aの積層方向Tでの厚みは、0.4mmを超え1mm以下である。アルミニウム正極端子12Aの厚みは、100Aの電流の仕様に、余裕を見込む観点から、0.5mm以上1mm以下が好ましい。
高硬度負極端子13Aは、板状の部材である。高硬度負極端子13Aは、アルミニウムより高い硬度を有する導電性材料からなる部材である。高硬度負極端子13Aは、例えば、銅からなる部材である。高硬度負極端子13Aは、メッキ加工された表面を有している。但し、高硬度負極端子13Aは、メッキ加工されていなくともよい。高硬度負極端子13Aは、蓄電セル本体11Aの内部から突出している。高硬度負極端子13Aは、蓄電セル本体11Aから段差なく突出している。本実施形態において、高硬度負極端子13Aは、蓄電セル本体11Aの内部からアルミニウム正極端子12Aが突出する向きとは逆向きに突出している。高硬度負極端子13Aは、蓄電セル10Aの負極端子である。高硬度負極端子13Aは、蓄電セル本体11Aの内部で、図示しない負極と電気的に接続されている。
高硬度負極端子13Aの積層方向Tでの厚みは、アルミニウム正極端子12Aの厚みより小さい。銅の導電率は、アルミニウムよりも高いので、高硬度負極端子13Aは、アルミニウム正極端子12Aと同じ大きさの電流を許容することができる。
高硬度負極端子13Aの積層方向Tでの厚みは、100Aの電流を連続通電可能な仕様に適用する観点から、例えば、0.24mmを超え0.6mm以下である。高硬度負極端子13Aの厚みは、100A以上の電流に対し、余裕を見込んで0.3mm以上0.6mm以下が好ましい。本実施形態では、高硬度負極端子13Aの厚みはアルミニウム正極端子12Aの厚みより小さいので、高硬度負極端子13Aは、アルミニウム正極端子12Aより小さい曲げ剛性を有する。
4つの蓄電セル10A〜10Dは、アルミニウム正極端子12Aと高硬度負極端子13Aが突出方向Lに互い違いに配置されるように積層方向Tに積層されている。4つの蓄電セル本体11A〜11Dのうち、例えば一つの蓄電セル本体11Aから突出したアルミニウム正極端子12Aと、蓄電セル本体11Aと重なり合う蓄電セル本体11Bから突出した高硬度負極端子13Bとは、積層方向T視で重なりを有する。本実施形態では、アルミニウム正極端子12Aと高硬度負極端子13Bとは、積層方向T視で重なっている。
アルミニウム正極端子12A及び高硬度負極端子13Bは、蓄電セル本体11A,11Bから突出方向Lに離れるのに従い互いに近づくように延びている。
図4は、図1に示す蓄電モジュール100の部分平面図である。図5は、図4に示す蓄電モジュール100の5−5線断面を示す部分断面図である。なお、図5において、蓄電セル本体内部の詳細は省略されている。
アルミニウム正極端子12A及び高硬度負極端子13Bの接触部分には、超音波圧接部14Aが設けられている。超音波圧接部14Aは、アルミニウム正極端子12A及び高硬度負極端子13Bが溶着することにより形成されている。超音波圧接部14Aは、超音波圧接によって形成される。
アルミニウム正極端子12Aには、3つの超音波圧接のホーン跡HOa,HOb,HOcが設けられている。なお、超音波圧接のホーン跡の数は、少なくとも一つであればよく、特に限定されない。図4に示すように、超音波圧接部14Aは、超音波圧接のホーン跡HOa,HOb,HOcと積層方向T視で重なる領域に設けられている。アルミニウム正極端子12A及び高硬度負極端子13Bは、超音波圧接部14Aで接合されている。アルミニウム正極端子12A及び高硬度負極端子13Bは、超音波圧接部14Aで電気的に接続されている。
アルミニウム正極端子12Aは、封止部分121Aと、中間部分122Aと、圧接部分123Aとを有する。封止部分121Aは、蓄電セル本体11Aの開口を封止するように蓄電セル本体11Aの周縁部Sと接合された部分である。圧接部分123Aは、超音波圧接部14Aが形成された部分である。中間部分122Aは、封止部分121Aと圧接部分123Aとの間に位置する部分である。アルミニウム正極端子12Aは、蓄電セル本体11Aから段差無く突出している。封止部分121Aと中間部分122Aとは、連続する曲面(湾曲面)を成している。また、中間部分122Aと圧接部分123Aとが、連続する曲面(湾曲面)を成している。封止部分121Aと中間部分122Aとは実質的に角を成さないように連続している。また、中間部分122Aと圧接部分123Aとは実質的に角を成さないように連続している。アルミニウム正極端子12Aは、折り目を有さない。アルミニウム正極端子12Aは、曲げ加工されていない。
高硬度負極端子13Bは、アルミニウム正極端子12Aと同様に、封止部分131Bと、中間部分132Bと、圧接部分133Bとを有する。高硬度負極端子13Bは、蓄電セル本体11Bから段差無く突出している。封止部分131Bと中間部分132Bとは、連続する曲面(湾曲面)を成している。また、中間部分132Bと圧接部分133Bとが、連続する曲面(湾曲面)を成している。封止部分131Bと中間部分132Bとは実質的に角を成さないように連続している。また、中間部分132Bと圧接部分133Bとは実質的に角を成さないように連続している。高硬度負極端子13Bは、折り目を有さない。高硬度負極端子13Bは、曲げ加工されていない。
ホーン跡HOa,HOb,HOcのそれぞれは、錐体状の穴hの配列である。より詳細には、穴hは、截頭錐体形状を有する。なお、ホーン跡の断面視形状は、特に限定されない。ホーン跡は、例えば、複数の凹部の配列からなる。錐体状の穴hの配列は、複数の凹部の配列の一例である。截頭錐体形状の穴hは、凹部の一例である。ホーン跡HOa,HOb,HOcのそれぞれは、互いに同じ形状を有している。ホーン跡HOa,HOb,HOcのそれぞれは、超音波圧接装置のホーン51(図6参照)が押しつけられることによって形成される。ホーン跡HOa,HOb,HOcのそれぞれの幅方向Wの長さWaは、突出方向Lにおける長さDaよりも長い。
3つのホーン跡HOa,HOb,HOcは、3つのホーン跡HOa,HOb,HOcの全体の幅方向Wの長さWAが、突出方向Lの長さDAよりも長くなるように形成されている。
アルミニウム正極端子12Aにおけるホーン跡HOa,HOb,HOcの全体の幅方向Wの長さWAは、3つのホーン跡HOa,HOb,HOcの突出方向Lへ投影された像の長さに相当する。本実施形態において、3つのホーン跡HOa,HOb,HOcのそれぞれの突出方向Lへの投影像は離れている。全体としてのホーン跡HOa,HOb,HOcの投影像の幅方向Wの長さWA、即ち幅WAは、ホーン跡HOa,HOb,HOcのそれぞれの投影像の長さWa,Wb,Wcの和である。
また、3つのホーン跡HOa,HOb,HOcの突出方向Lの長さDAは、ホーン跡HOa,HOb,HOcの幅方向Wへ投影された像の長さに相当する。3つのホーン跡HOa,HOb,HOcのそれぞれの幅方向Wへ投影された像は重なっている。全体としてのホーン跡HOa,HOb,HOcの突出方向Lの長さDAは、重なった投影像の長さである。
3つのホーン跡HOa,HOb,HOcの全体の突出方向Lにおける長さDAは、幅方向Wの長さWAよりも短い。
3つのホーン跡HOa,HOb,HOcの全体の幅方向Wの長さWA、即ち幅WAは、アルミニウム正極端子12Aの幅方向Wにおける長さWhの1/3以上である。つまり、幅方向Wについて、アルミニウム正極端子12A及び高硬度負極端子13Bが、長さWhの1/3以上に亘って溶着している。
高硬度負極端子13Aには、3つのホーン跡HOa,HOb,HOcに対応する位置に、超音波圧接のアンビル跡AN(図5参照)が形成されている。アンビル跡ANは、ホーン跡HOa,HOb,HOcを構成する穴hに相応した凸部の配列である。
図4及び図5に示す超音波圧接部14Aは、アルミニウム正極端子12Aと高硬度負極端子13Aの、積層方向T視で重なる部分の少なくとも一部が、圧接されるとともに超音波の振動を受けることによって形成される。
図6は、超音波圧接部14Aを形成するための超音波圧接工程を説明する概略図である。
超音波圧接工程では、超音波圧接装置50が利用される。超音波圧接装置50は、ホーン51及びアンビル52を備えている。ホーン51は、超音波振動の共振体として機能する。圧接対象と接触するホーン51の接触面には、突起51pが配列している。突起51pのそれぞれは、錐体状である。詳細には、突起51pのそれぞれは、截頭錐体状である。アンビル52は、受け治具として機能する。圧接対象と接触するアンビル52の接触面には、ホーン51の突起51pに相応する位置に溝が形成されている。
アルミニウム正極端子12A及び高硬度負極端子13Aは重なった状態で、ホーン51とアンビル52の間に挟み込まれる。なお、ホーン51とアンビル52との間に挟み込まれる前のアルミニウム正極端子12A及び高硬度負極端子13Aには、段差が形成されておらず、例えば、曲げ加工を施されていない。アルミニウム正極端子12Aと高硬度負極端子13Aが、ホーン51とアンビル52によって圧接される。ホーン51からアルミニウム正極端子12Aに直接振動が加えられる。特に、アルミニウム正極端子12Aのうち、少なくとも突起51pと接触する部分が強い振動を受ける。
圧接されるとともに、振動を受けたアルミニウム正極端子12Aが高硬度負極端子13Aと溶着する。この結果、アルミニウム正極端子12Aにホーン跡HOa,HOb,HOcが形成される。積層方向Tで、ホーン跡HOa,HOb,HOcと重なる位置に超音波圧接部14Aが形成される。
本実施形態では、アルミニウム正極端子12Aに3つのホーン跡HOa,HOb,HOcが設けられている。このような構成は、ホーン51とアンビル52の間に、アルミニウム正極端子12A及び高硬度負極端子13Aを、位置を変えながら3回挟み込むことによって形成される。
アルミニウム正極端子12Aの硬度は、高硬度負極端子13Aの硬度よりも小さい。しかし、アルミニウム正極端子12Aの厚みは、高硬度負極端子13Aの厚みよりも大きい。アルミニウム正極端子12Aは、大電流の連続通電を許容するため0.4mmを超える厚みを有する。このため、アルミニウム正極端子12Aの剛性は、高硬度負極端子13Aの剛性よりも高い。アルミニウム正極端子12Aは、高い剛性を有しているため、重量が大きい蓄電セル本体11Aに対し強く固定される。また、0.4mmを超える厚みを有するアルミニウム正極端子12Aは、大きな重量を有するので、大きな慣性を有する。このため、アルミニウム正極端子12Aは、例えば0.4mm以下の厚みを有するアルミニウム正極端子を有する場合と比べ、振動を与えても全体として動きにくい。
アルミニウム正極端子12Aは、この一方で、高硬度負極端子13Bに対し柔らかい材料で形成されている。このため、アルミニウム正極端子12Aのうち、ホーン51に設けられた突起51pに接触する部分は、突起51pからの振動を直接に受け局所的に振動しやすい。
アルミニウム正極端子12Aは全体として動きにくく、ホーン51に設けられた突起51pに接触する部分が局所的に振動しやすい。この結果、超音波圧接において、アルミニウム正極端子12Aのうち、ホーン51の突起51pと接触する部分の、その周辺部分に対する変位量が大きい。このため、ホーン51の振動のエネルギーが高い効率で両端子12A,13Bの接触部分に到達する。また、アルミニウム正極端子12Aは、0.4mmを超える厚みを有する。このため、アルミニウム正極端子12Aのうちホーン51の突起51pによって絞り出されるように押された部分も、接合強度を確保するのに十分な厚みを有する。つまり、アルミニウム正極端子12Aは、十分な厚みを維持しつつ、高硬度負極端子13Aに食い込む。また、アルミニウム正極端子12Aは、1mm以下の厚みを有する。このため、突起51pから受ける振動が高硬度負極端子13Aとの接触部分に効率よく伝わる。この結果、アルミニウム正極端子12Aと高硬度負極端子13Aとが、より強固に溶着する。このため、超音波圧接部14A(図5参照)における圧接強度が確保される。
また、アルミニウム正極端子12A及び高硬度負極端子13Bは、2つの蓄電セル本体11A,11Bの各々から段差なしに突出し、超音波圧接部14A(図5参照)で接合されている。このため、蓄電セル本体11A,11Bから突出したアルミニウム正極端子12A及び高硬度負極端子13Bは、蓄電セル本体11A,11Bから離れるに従い、互いに近づくように延びる。図4に示すように、ホーン跡HOa,HOb,HOcは、全体として、突出方向Lでの長さDAよりも長い幅方向Wでの長さWAを有する。このため、図6に示すように、アルミニウム正極端子12A及び高硬度負極端子13Bがホーン51とアンビル52との間に挟まれる時に、アルミニウム正極端子12Aと高硬度負極端子13Bとの間隔について、場所ごとの差が小さい。特に、突出方向Lにおける場所ごとの前記間隔の差が小さい。従って、超音波圧接部14A(図5参照)となる領域において、アルミニウム正極端子12A及び高硬度負極端子13Bがホーン51及びアンビル52に押しつけられ変位する距離について、場所ごとの差が抑えられる。従って、アルミニウム正極端子12A及び高硬度負極端子13Bがホーン51及びアンビル52に接触してから、ホーン51及びアンビル52による挟み込みが完了するまでの、アルミニウム正極端子12A及び高硬度負極端子13Bの変形量が小さい。
また、ホーン跡HOa,HOb,HOcの各々の突出方向Lの長さDaが、幅方向Wの長さWa,Wb,Wcよりも短い。このため、各回の超音波圧接の処理において、アルミニウム正極端子12A及び高硬度負極端子13Bがホーン51とアンビル52とに押されて変位する距離について、場所ごとの差が抑えられる。
従って、超音波圧接において、アルミニウム正極端子12A及び高硬度負極端子13Bに割れ等の損傷が生じる事態の発生が抑えられる。また、アルミニウム正極端子12Aと高硬度負極端子13Bとが圧接される時に、アルミニウム正極端子12Aと高硬度負極端子13Bとの圧接面において、圧力のバラツキが生じ難くなる。特に、突出方向Lにおいて、圧接面内における圧力のバラツキが生じ難くなる。その結果、超音波圧接部14Aの全体としての圧接強度の均一性が向上する。従って、超音波圧接部14A(図5参照)における圧接強度が確保される。
また、アルミニウム正極端子12A及び高硬度負極端子13Bの双方は、2つの蓄電セル本体11A,11Bの各々から段差なしに突出している。このため、例えば、高い剛性を有するアルミニウム正極端子12Aにホーン51から振動が加えられた場合に、振動の応力が、特定の箇所に集中し難い。従って、アルミニウム正極端子12Aに損傷が生じる事態の発生が抑えられる。つまり、アルミニウム正極端子12A及び高硬度負極端子13Bの良好な接続が確保される。
また、図5に示すように、本実施形態の蓄電モジュール100において、高硬度負極端子13Bは、アルミニウム正極端子12Aよりも大きく湾曲している。アルミニウム正極端子12Bの先端は、高硬度負極端子13Bの先端よりも突出している。このことによって、高硬度負極端子13Bのより大きな湾曲が確保されている。このため、高硬度負極端子13Bより厚いアルミニウム正極端子12Aに生じる機械的なストレスが軽減される。この結果、超音波圧接部14Aにおける圧接強度がより確保される。
図4に示すようにアルミニウム正極端子12A及び高硬度負極端子13Bが、アルミニウム正極端子12Aの幅方向における長さWhの1/3以上に亘って圧接されている。このため、ホーン跡HOa,HOb,HOcと重なる超音波圧接部14Aの全体について、圧接強度が確保されるとともに、端子12A,13Bの幅Whに対応した十分な電気的接続が確保される。
以上、アルミニウム正極端子12Aと、高硬度負極端子13Aと、超音波圧接部14Aとについて説明した。以上の説明は、残りのアルミニウム正極端子12B,12Cと、高硬度負極端子13C,13Dと、超音波圧接部14B,14Cとについても適用される。
なお、上述した実施形態では、4つの蓄電セル10A〜10Dを備えた蓄電モジュールの例を説明した。ただし、蓄電モジュールが備える蓄電セルの数は2以上であればよい。
また、本発明の蓄電モジュールの構成は、アルミニウム正極端子の先端が高硬度負極端子の先端よりも突出している構成に限られない。例えば、高硬度負極端子の先端が、アルミニウム正極端子の先端よりも突出してもよい。また、本発明の蓄電モジュールにおいて、高硬度負極端子は、アルミニウム正極端子よりも大きく湾曲していなくともよい。例えば、アルミニウム正極端子が高硬度負極端子よりも大きく湾曲していてもよい。
また、本発明の蓄電モジュールにおいて、アルミニウム正極端子の厚みは高硬度負極端子の厚みよりも小さくてもよい。例えば、高硬度負極端子の材料として、ニッケルが採用される場合、同じ電流を許容するアルミニウム正極端子の厚みは高硬度負極端子の厚みよりも小さくなる。この場合、アルミニウム正極端子の剛性は、高硬度負極端子の剛性よりも低くてもよい。
また、上述した実施形態では、高硬度負極端子13Aとアルミニウム正極端子12Aとが逆向きに突出した蓄電セル10A〜10Dの例を説明した。但し、高硬度負極端子及びアルミニウム正極端子はこれに限られず、例えば、蓄電セルの同じ辺から同じ向きに並んで突出していてもよい。
また、本発明の蓄電モジュールにおいて、ホーン跡の各々の突出方向の長さは、幅方向の長さよりも長くてもよい。例えば、このようなホーン跡を幅方向により多く配置することによって、ホーン跡が、全体として、アルミニウム正極端子の幅方向における長さの1/3以上とすることが可能である。
またさらに、本発明の蓄電モジュールにおいて、ホーン跡が、全体として、アルミニウム正極端子の幅方向における長さの1/3未満であってもよい。ただし、超音波圧接部で許容される電流から、ホーン跡が、全体として、アルミニウム正極端子の幅方向における長さの1/2以上であることが好ましい。
上記実施形態に用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではない。ここに示されかつ述べられた特徴事項の如何なる均等物をも排除するものではなく、本発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。本発明は、多くの異なった形態で具現化され得るものである。この開示は本発明の原理の実施形態を提供するものと見なされるべきである。それらの実施形態は、本発明をここに記載しかつ/又は図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、実施形態がここに記載されている。ここに記載した実施形態に限定されるものではない。本発明は、この開示に基づいて当業者によって認識され得る、均等な要素、修正、削除、組み合わせ、改良及び/又は変更を含むあらゆる実施形態をも包含する。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施形態に限定されるべきではない。本発明は、クレームで用いられた用語に基づいて広く解釈されるべきである。
100 蓄電モジュール
10A,10B,10C,10D 蓄電セル
11A,11B,11C,11D 蓄電セル本体
12A,12B,12C,12D アルミニウム正極端子
13A,13B,13C,13D 高硬度負極端子
14A,14B,14C 超音波圧接部
111A,111B,111C,111D 収容体
HOa,HOb,HOc ホーン跡
L 突出方向
T 積層方向
W 幅方向

Claims (7)

  1. 蓄電モジュールであって、
    前記蓄電モジュールは、
    積層された少なくとも2つの蓄電セル本体と、
    前記少なくとも2つの蓄電セル本体のうちの一つの蓄電セル本体の内部から、前記積層方向と交わる方向に段差なく突出した、0.4mmを超え1mm以下の前記積層方向の厚みを有する板状のアルミニウム正極端子と、
    前記アルミニウム正極端子と前記積層方向視で重なりを有し、前記一つの蓄電セル本体と前記積層方向に重なり合う蓄電セル本体の内部から段差なく突出した、アルミニウムより高い硬度を有する導電性材料からなる板状の高硬度負極端子と、
    0.4mmを超え1mm以下の厚みを有し段差なく突出した前記アルミニウム正極端子の表面に設けられた少なくとも一つの超音波圧接のホーン跡と前記積層方向視で重なる領域で、段差なく突出した前記アルミニウム正極端子と段差なく突出した前記高硬度負極端子とが溶着することにより形成された超音波圧接部であって、前記少なくとも一つの超音波圧接のホーン跡は、全体として、前記アルミニウム正極端子が突出する突出方向と前記アルミニウム正極端子の表面上で交わる幅方向におけるホーン跡の幅が、前記突出方向におけるホーン跡の長さよりも長くなるように形成されている、超音波圧接部とを備える。
  2. 請求項1記載の蓄電モジュールであって、
    前記少なくとも一つの超音波圧接のホーン跡は、全体として、前記アルミニウム正極端子の前記幅方向における長さの1/3以上である幅を有する。
  3. 請求項1又は2記載の蓄電モジュールであって、
    前記少なくとも一つのホーン跡は、複数のホーン跡であり、
    前記複数のホーン跡の各々の前記突出方向の長さが、前記複数のホーン跡の各々の前記幅方向の長さよりも短い。
  4. 請求項1から3いずれか1に記載の蓄電モジュールであって、
    前記アルミニウム正極端子の剛性は、前記高硬度負極端子の剛性よりも高い。
  5. 請求項1から4いずれか1に記載の蓄電モジュールであって、
    前記アルミニウム正極端子の厚みは前記高硬度負極端子の厚みよりも大きい。
  6. 請求項5に記載の蓄電モジュールであって、
    前記高硬度負極端子は、前記アルミニウム正極端子よりも大きく湾曲している。
  7. 請求項6に記載の蓄電モジュールであって、
    前記蓄電セル本体から突出したアルミニウム正極端子の先端は、前記アルミニウム正極端子と接する前記高硬度負極端子の先端よりも突出している。
JP2016104967A 2016-05-26 2016-05-26 蓄電モジュール Pending JP2019133741A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016104967A JP2019133741A (ja) 2016-05-26 2016-05-26 蓄電モジュール
PCT/JP2016/084479 WO2017203731A1 (ja) 2016-05-26 2016-11-21 蓄電モジュール
CN201680086110.1A CN109196684A (zh) 2016-05-26 2016-11-21 蓄电模块
US16/200,217 US20190148706A1 (en) 2016-05-26 2018-11-26 Accumulator module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016104967A JP2019133741A (ja) 2016-05-26 2016-05-26 蓄電モジュール

Publications (1)

Publication Number Publication Date
JP2019133741A true JP2019133741A (ja) 2019-08-08

Family

ID=60412180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016104967A Pending JP2019133741A (ja) 2016-05-26 2016-05-26 蓄電モジュール

Country Status (4)

Country Link
US (1) US20190148706A1 (ja)
JP (1) JP2019133741A (ja)
CN (1) CN109196684A (ja)
WO (1) WO2017203731A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090498A (ko) * 2019-01-21 2020-07-29 주식회사 엘지화학 혼 및 용접 장치
CN110323402A (zh) * 2019-06-17 2019-10-11 东莞新能源科技有限公司 电池组件及电化学装置
WO2021020032A1 (ja) * 2019-07-31 2021-02-04 ビークルエナジージャパン株式会社 超音波ホーン、二次電池及び二次電池の製造方法
KR102506245B1 (ko) * 2019-11-14 2023-03-03 주식회사 엘지에너지솔루션 전지 모듈, 전지 모듈 제조 방법 및 전지 모듈을 포함하는 전지 팩
JP7327311B2 (ja) * 2020-07-22 2023-08-16 トヨタ自動車株式会社 組電池
CN113097655B (zh) * 2021-05-10 2023-05-30 厦门海辰储能科技股份有限公司 极片、电芯组件和电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394874B1 (en) * 2002-05-08 2006-08-23 Nissan Motor Co., Ltd. Secondary cell module and method of its production
JP2004178860A (ja) * 2002-11-25 2004-06-24 Nissan Motor Co Ltd シート状二次電池の電極接続方法
JP3775396B2 (ja) * 2003-03-17 2006-05-17 三菱マテリアル株式会社 平板状単電池の組電池
JP4946098B2 (ja) * 2006-03-02 2012-06-06 日産自動車株式会社 超音波接合の接合構造
CN101315990B (zh) * 2007-05-29 2010-06-09 上海比亚迪有限公司 一种电池组
JP2011009516A (ja) * 2009-06-26 2011-01-13 Tdk Corp 電子部品の製造方法及び電子部品
CN101692505B (zh) * 2009-10-20 2011-07-06 江苏华富控股集团有限公司 一种用于动力型软包装锂离子蓄电池组装过程中的极耳连接方法
US9005799B2 (en) * 2010-08-25 2015-04-14 Lg Chem, Ltd. Battery module and methods for bonding cell terminals of battery cells together
KR101765769B1 (ko) * 2010-12-29 2017-08-07 에스케이이노베이션 주식회사 배터리 모듈 및 전극 탭 초음파 용접 방법
CN202549967U (zh) * 2012-03-03 2012-11-21 吉安市优特利科技有限公司 一种锂离子动力电池多极耳与盖板的连接方式

Also Published As

Publication number Publication date
US20190148706A1 (en) 2019-05-16
CN109196684A (zh) 2019-01-11
WO2017203731A1 (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2017203731A1 (ja) 蓄電モジュール
JP5214692B2 (ja) 電池
WO2020066240A1 (ja) 二次電池
JP6094850B2 (ja) 蓄電素子
JP6357439B2 (ja) 蓄電モジュール
JP5176312B2 (ja) 組電池およびその製造方法
JP6967413B2 (ja) 蓄電装置及び蓄電装置の製造方法
CN105990559B (zh) 蓄电元件
KR102323041B1 (ko) 전극 탭 용접부의 압접부 크기가 상이한 전극조립체 및 이를 제조하는 초음파 용접 장치
JP4946098B2 (ja) 超音波接合の接合構造
JP5076698B2 (ja) 電池
JP6414478B2 (ja) 組電池及び組電池の製造方法
JP2002231214A (ja) 電 池
JP2014060045A (ja) 二次電池の電極構造
JP2018166212A (ja) 蓄電モジュール
JP3963165B2 (ja) 組電池
JP6789858B2 (ja) 組電池の製造方法及び製造装置
JP5002984B2 (ja) 組電池の製造方法および製造装置
JP5510439B2 (ja) 超音波接合の接合構造
JP7305367B2 (ja) 蓄電素子の製造方法、蓄電素子、接合方法、及び接合体
JP5586722B2 (ja) 電池及び電池の超音波接合方法
JP2018166211A (ja) 蓄電モジュール
JP6466296B2 (ja) 電池及び電池製造方法
JP2021150145A (ja) 電池モジュール
WO2018155090A1 (ja) 組電池及び組電池用バスバ