JP2019132213A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2019132213A
JP2019132213A JP2018015896A JP2018015896A JP2019132213A JP 2019132213 A JP2019132213 A JP 2019132213A JP 2018015896 A JP2018015896 A JP 2018015896A JP 2018015896 A JP2018015896 A JP 2018015896A JP 2019132213 A JP2019132213 A JP 2019132213A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
peripheral wall
wall portion
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018015896A
Other languages
Japanese (ja)
Inventor
雅文 瀧
Masafumi Taki
雅文 瀧
義輝 及川
Yoshiteru Oikawa
義輝 及川
隆之 小沼
Takayuki Konuma
隆之 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018015896A priority Critical patent/JP2019132213A/en
Publication of JP2019132213A publication Critical patent/JP2019132213A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

To provide an internal combustion engine contributing to diversifying a technique of controlling an injection amount of a flame jet.SOLUTION: An internal combustion engine comprises an auxiliary chamber partition wall that has a peripheral wall part 58a contacting with an inner wall of a vertical hole extending from a combustion chamber along a central axial line Cp of an ignition plug, and a bottom wall part 58b continuing from the peripheral wall part 58a and expanding from the vertical hole toward the combustion chamber, and that communicates with the combustion chamber with an ignition point of the ignition plug covered with the peripheral wall part 58a and the bottom wall part 58b. The peripheral wall part 58a has a plurality of jetting holes 67 having a different thickness t in a circumferential direction around the central axial line Cp, and penetrating the peripheral wall part 58a in a thickness t direction to face to the combustion chamber.SELECTED DRAWING: Figure 7

Description

本発明は、点火プラグの中心軸線に沿って燃焼室から延びる縦孔の内壁に接する周壁部と、周壁部から連続して、縦孔から前記燃焼室に向かって張り出す底壁部とを有し、周壁部と底壁部とで点火プラグの点火点を覆って燃焼室に通じる副室を形成する副室隔壁を備える内燃機関に関する。   The present invention has a peripheral wall portion in contact with the inner wall of the vertical hole extending from the combustion chamber along the center axis of the ignition plug, and a bottom wall portion continuously extending from the vertical wall toward the combustion chamber. In addition, the present invention relates to an internal combustion engine including a sub-chamber partition wall in which a peripheral wall portion and a bottom wall portion cover an ignition point of a spark plug and form a sub-chamber communicating with a combustion chamber.

例えば特許文献1は、点火プラグの先端に装着されて点火プラグの点火点を覆い、シリンダーヘッドの縦孔にねじ込まれるプラグカバーを開示する。プラグカバーは点火プラグの先端に点火室を形成する。プラグカバーには、点火室と燃焼室とを相互に連通する噴孔が形成される。点火室内で混合気が点火されると、火炎ジェットが噴孔から燃焼室に噴出する。   For example, Patent Document 1 discloses a plug cover that is attached to the tip of a spark plug, covers an ignition point of the spark plug, and is screwed into a vertical hole of a cylinder head. The plug cover forms an ignition chamber at the tip of the spark plug. The plug cover is formed with an injection hole that allows the ignition chamber and the combustion chamber to communicate with each other. When the air-fuel mixture is ignited in the ignition chamber, a flame jet is ejected from the nozzle hole into the combustion chamber.

特開2009−270538号公報JP 2009-270538 A

燃焼室を囲むシリンダーの内壁とプラグカバーとの距離に応じて、シリンダーの内壁に向けられる噴孔の孔径や配置密度は設定される。噴孔の孔径および配置密度に基づき燃焼室内では火炎ジェットの均質化が図られる。しかしながら、プラグカバーの材質や強度に応じて噴孔の孔径や配置密度には限界があり、火炎ジェットの噴射量を制御する術の多様化が望まれる。   Depending on the distance between the inner wall of the cylinder surrounding the combustion chamber and the plug cover, the hole diameter and arrangement density of the nozzle holes directed to the inner wall of the cylinder are set. Based on the hole diameter and arrangement density of the nozzle holes, the flame jet is homogenized in the combustion chamber. However, the hole diameter and arrangement density of the nozzle holes are limited depending on the material and strength of the plug cover, and diversification of the technique for controlling the injection amount of the flame jet is desired.

本発明は、上記実状に鑑みてなされたもので、火炎ジェットの噴射量を制御する術の多様化に寄与する内燃機関を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an internal combustion engine that contributes to diversification of techniques for controlling the injection amount of a flame jet.

本発明の第1側面によれば、点火プラグの中心軸線に沿って燃焼室から延びる縦孔の内壁に接する周壁部と、前記周壁部から連続して、前記縦孔から前記燃焼室に向かって張り出す底壁部とを有し、前記周壁部と前記底壁部とで点火プラグの点火点を覆って前記燃焼室に通じる副室を形成する副室隔壁を備える内燃機関において、前記周壁部は、前記中心軸線回りの周方向に異なる肉厚を有し、前記肉厚の方向に前記周壁部を貫通して前記燃焼室に臨む複数の噴孔を有する内燃機関が提供される。   According to the first aspect of the present invention, a peripheral wall portion that is in contact with an inner wall of a vertical hole extending from the combustion chamber along the center axis of the ignition plug, and continuous from the peripheral wall portion toward the combustion chamber from the vertical hole. An internal combustion engine having a sub-chamber partition wall that forms a sub-chamber that covers an ignition point of a spark plug and communicates with the combustion chamber by the peripheral wall portion and the bottom wall portion. Is provided with an internal combustion engine having a plurality of injection holes that have different thicknesses in the circumferential direction around the central axis, and penetrate the peripheral wall portion in the thickness direction to face the combustion chamber.

第2側面によれば、第1側面の構成に加えて、前記周壁部は、外周の軸芯から偏心した軸芯を有する内周を有する。   According to the second aspect, in addition to the configuration of the first side surface, the peripheral wall portion has an inner circumference having an axis that is eccentric from the outer axis.

第3側面によれば、第1または第2側面の構成に加えて、前記周壁部では、小さい肉厚の領域に比べて大きい肉厚の領域で前記噴孔の孔径は大きい。   According to the third aspect, in addition to the configuration of the first or second side surface, in the peripheral wall portion, the hole diameter of the nozzle hole is large in a region having a large thickness compared to a region having a small thickness.

第4側面によれば、第1〜第3側面のいずれか1の構成に加えて、前記噴孔は、前記中心軸線回りで放射状に延びる。   According to the fourth aspect, in addition to the configuration of any one of the first to third side surfaces, the nozzle hole extends radially around the central axis.

第5側面によれば、第1〜第4側面のいずれか1の構成に加えて、前記周壁部には、前記点火点と前記噴孔との間の空間に臨んで前記中心軸線に指向する燃料噴射通路が形成される。   According to the fifth aspect, in addition to the configuration of any one of the first to fourth side surfaces, the peripheral wall portion faces the space between the ignition point and the nozzle hole and is directed to the central axis. A fuel injection passage is formed.

第6側面によれば、第5側面の構成に加えて、前記燃焼室内に配置されて、前記燃焼室に開口する1つの吸気ポートの開閉を司る1つの吸気弁と、前記燃焼室内に配置されて、前記燃焼室に開口する1つの排気ポートの開閉を司る1つの排気弁とを備え、吸気弁の中心軸線と排気弁の中心軸線とを含む仮想平面に直交し、前記点火プラグの中心軸線を含む仮想平面内に前記燃料噴射通路の中心軸線は配置される。   According to the sixth aspect, in addition to the configuration of the fifth aspect, one intake valve that is disposed in the combustion chamber and that opens and closes one intake port that opens to the combustion chamber, and the combustion chamber is disposed. An exhaust valve that opens and closes one exhaust port that opens to the combustion chamber, and is orthogonal to a virtual plane that includes a central axis of the intake valve and a central axis of the exhaust valve, and the central axis of the ignition plug The central axis of the fuel injection passage is disposed in a virtual plane including

第7側面によれば、第1〜第6側面のいずれか1の構成に加えて、内燃機関は、開放端で前記燃焼室外の空間に開放される前記縦孔、および、前記縦孔の前記開放端で前記縦孔の縁から前記中心軸線に直交する仮想平面に沿って外側に広がる支持面を有するシリンダーヘッドを備え、前記副室隔壁は、前記周方向に複数の分割体に分割されるとともに、前記中心軸線回りで連続し前記支持面に押し当てられるフランジを有する。   According to the seventh aspect, in addition to the configuration of any one of the first to sixth aspects, the internal combustion engine includes the vertical hole that is opened to the space outside the combustion chamber at an open end, and the vertical hole. A cylinder head having a support surface extending outward along an imaginary plane perpendicular to the central axis from an edge of the vertical hole at an open end, and the sub-chamber partition wall is divided into a plurality of divided bodies in the circumferential direction And a flange that is continuous around the central axis and pressed against the support surface.

第8側面によれば、第8側面の構成に加えて、前記噴孔の孔径は前記燃焼室側に比べて前記周壁部の内面側で大きい。   According to the eighth aspect, in addition to the configuration of the eighth side surface, the hole diameter of the injection hole is larger on the inner surface side of the peripheral wall portion than on the combustion chamber side.

第9側面によれば、第7または第8側面の構成に加えて、前記分割体は、前記副室隔壁の完成体の破断で生じ、再結合される破断面を有する。   According to the ninth aspect, in addition to the configuration of the seventh or eighth aspect, the divided body has a fractured surface that is generated by the fracture of the completed body of the sub-chamber partition wall and is recombined.

第10側面によれば、第7または第8側面の構成に加えて、前記分割体の合わせ面には、前記合わせ面同士が重なった際に前記噴孔を形作る窪みが形成される。   According to the tenth aspect, in addition to the configuration of the seventh or eighth side surface, the mating surface of the divided body is formed with a recess that forms the nozzle hole when the mating surfaces overlap each other.

第1側面によれば、副室隔壁の周壁部では肉厚の大きさに応じて噴孔の長さは調整されることができる。噴孔の長さに応じて噴孔の通気抵抗は変化することから、肉厚の設定に応じて燃焼室内で火炎ジェットの分布は制御されることができる。   According to the first aspect, the length of the nozzle hole can be adjusted according to the thickness of the peripheral wall portion of the sub-chamber partition wall. Since the ventilation resistance of the nozzle hole changes according to the length of the nozzle hole, the distribution of the flame jet in the combustion chamber can be controlled according to the setting of the wall thickness.

第2側面によれば、外周および内周の偏心に応じて周壁部では簡単に周方向に異なる肉厚は実現されることができる。   According to the second aspect, different thicknesses in the circumferential direction can be easily realized in the peripheral wall portion according to the eccentricity of the outer periphery and the inner periphery.

第3側面によれば、孔径が大きいほど噴孔から多量の火炎ジェットは噴射される。火炎ジェットが多量に噴射されても周壁部の肉厚が大きければ熱負荷応力は低減される。副室隔壁の耐久性は向上する。   According to the third aspect, a larger number of flame jets are ejected from the nozzle holes as the hole diameter is larger. Even if a large amount of flame jet is injected, the thermal load stress is reduced if the thickness of the peripheral wall is large. The durability of the sub chamber partition is improved.

第4側面によれば、周壁部の外周は燃焼室内で中心軸線回りに広がるので、噴孔が中心軸線回りで放射状に配列されると、燃料室内の火炎ジェットは均質化されることができる。   According to the fourth aspect, since the outer periphery of the peripheral wall portion extends around the central axis in the combustion chamber, the flame jets in the fuel chamber can be homogenized when the nozzle holes are arranged radially around the central axis.

第5側面によれば、周方向に周壁部の肉厚が異なることから、周壁部の内周で囲まれる点火空間は点火プラグの中心軸線から偏倚し、噴射燃料の旋回流化が図られることで、点火空間内で空気の撹拌が促進され、着火性や燃焼効率は高められることができる。   According to the fifth aspect, since the thickness of the peripheral wall portion is different in the circumferential direction, the ignition space surrounded by the inner periphery of the peripheral wall portion is deviated from the center axis of the spark plug, and swirling of the injected fuel is achieved. Thus, stirring of air is promoted in the ignition space, and ignitability and combustion efficiency can be improved.

第6側面によれば、燃料噴射通路に接続される燃料噴射弁は吸気弁と排気弁との間で吸気弁の中心軸線と排気弁の中心軸線とを含む仮想平面に直交する仮想平面に沿って傾斜することができ、吸気弁および排気弁に干渉せずに燃料噴射弁の配置スペースは十分に確保されることができる。   According to the sixth aspect, the fuel injection valve connected to the fuel injection passage is along a virtual plane orthogonal to a virtual plane including the central axis of the intake valve and the central axis of the exhaust valve between the intake valve and the exhaust valve. The fuel injection valve can be sufficiently arranged without interfering with the intake valve and the exhaust valve.

第7側面によれば、副室隔壁は周方向に複数の分割体に分割されるので、周壁部の内面の加工条件が緩和され、点火空間の形状の自由度は広がるとともに、副室隔壁はフランジでシリンダーヘッドに位置決めされるので、周壁部が縦孔にねじ込まれてシリンダーヘッドに固定される場合と違って、周壁部の薄型化は実現され、個々の分割体の形状の制約は緩和されることができる。   According to the seventh aspect, since the sub chamber partition is divided into a plurality of divided bodies in the circumferential direction, the processing conditions of the inner surface of the peripheral wall portion are relaxed, the degree of freedom of the shape of the ignition space is widened, and the sub chamber partition is Since the flange is positioned on the cylinder head, unlike the case where the peripheral wall is screwed into the vertical hole and fixed to the cylinder head, the peripheral wall can be made thinner and the restrictions on the shape of the individual divided bodies are relaxed. Can.

第7側面によれば、燃焼室に向かって噴孔の孔径は縮小するので、噴孔から火炎ジェットの噴射力は高められることができる。前述のように副室隔壁が周方向に複数の分割体に分割されることで、いわゆる逆孔となる周壁部の内面からの加工は実現されることができる。   According to the seventh aspect, since the hole diameter of the injection hole is reduced toward the combustion chamber, the injection force of the flame jet can be increased from the injection hole. As described above, the sub-chamber partition wall is divided into a plurality of divided bodies in the circumferential direction, so that processing from the inner surface of the peripheral wall portion serving as a so-called reverse hole can be realized.

第9側面によれば、分割体の合わせ面は破断面で形成され、複雑な立体形状の破断面で分割体同士は接合されることから、合わせ面で火炎ジェットの漏れが防止されるとともに、生産性と性能とは高められることができる。   According to the ninth aspect, the mating surface of the divided body is formed with a fracture surface, and the divided bodies are joined with each other with a complicated three-dimensional fracture surface, so that leakage of the flame jet at the mating surface is prevented, Productivity and performance can be increased.

第10側面によれば、合わせ面が重なるだけで噴孔が確立されるので、ドリルなどによる穴開け作業が省略されるとともに、こうした分割体は鍛造加工で成型されることができるので、生産性は向上することができる。   According to the tenth aspect, since the injection hole is established only by overlapping the mating surfaces, the drilling operation by a drill or the like is omitted, and such a divided body can be formed by forging, so that productivity is improved. Can be improved.

本発明の一実施形態に係る自動二輪車の構造を概略的に示す側面図である。1 is a side view schematically showing a structure of a motorcycle according to an embodiment of the present invention. 図1の主要部拡大側面図である。It is a principal part expanded side view of FIG. 図2の3−3線に沿った拡大断面図である。FIG. 3 is an enlarged cross-sectional view taken along line 3-3 in FIG. 2. 図2の4−4線に沿った拡大断面図である。FIG. 4 is an enlarged cross-sectional view taken along line 4-4 of FIG. 図3の主要部拡大断面図である。It is a principal part expanded sectional view of FIG. 図5の6−6線に沿った拡大断面図である。FIG. 6 is an enlarged cross-sectional view taken along line 6-6 of FIG. 図5の7−7線に沿った拡大断面図である。FIG. 7 is an enlarged cross-sectional view taken along line 7-7 in FIG. 一具体例に係る副室隔壁の製造方法を概略的に示す概念図である。It is a conceptual diagram which shows roughly the manufacturing method of the subchamber partition which concerns on one specific example. 他の実施形態に係る副室隔壁の構造を概略的に示す拡大斜視図である。It is an expansion perspective view which shows roughly the structure of the subchamber partition which concerns on other embodiment. 図7に対応し、噴孔の孔径を概略的に示す副室隔壁の拡大断面図である。FIG. 8 is an enlarged cross-sectional view of the sub chamber partition wall corresponding to FIG. 7 and schematically showing the hole diameter of the nozzle hole. 一具体例に係る副室隔壁の製造方法を概略的に示す概念図である。It is a conceptual diagram which shows roughly the manufacturing method of the subchamber partition which concerns on one specific example. 鍛造加工で成形される分割体の合わせ面を概略的に示す分割体の拡大平面図である。It is an enlarged plan view of a divided body schematically showing a mating surface of the divided body formed by forging. 図4に対応し、他の実施形態に係る内燃機関の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of an internal combustion engine according to another embodiment corresponding to FIG. 4.

以下、添付図面を参照しつつ本発明の一実施形態を説明する。ここで、車体の上下前後左右は自動二輪車に乗車した乗員の目線に基づき規定されるものとする。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. Here, the top, bottom, front, back, left and right of the vehicle body are defined based on the eyes of the occupant riding the motorcycle.

図1は本発明の一実施形態に係る自動二輪車(鞍乗り型車両の一具体例)の全体構成を概略的に示す。自動二輪車11の車体フレーム12は、ヘッドパイプ13と、ヘッドパイプ13から後方に後ろ下がりに延びる左右1対のメインフレーム14と、個々のメインフレーム14の後端に個別に結合されてメインフレーム14の後端から下方に延び、クロスパイプ(図示されず)で相互に接続される左右1対のピボットフレーム15と、メインフレーム14よりも下方でヘッドパイプ13から下方に延びるダウンフレーム16とを備える。ダウンフレーム16は、車幅方向の左右中央位置でヘッドパイプ13から下方に延びる1つの上フレーム16aと、上フレーム16aの下端から左右に分岐し、個々に対応のピボットフレーム15の下端に連結される左右1対の下パイプフレーム16bとで構成される。ダウンフレーム16の上フレーム16aは、ヘッドパイプ13から後方に遠ざかるにつれてメインフレーム14から下方に遠ざかる。   FIG. 1 schematically shows the overall configuration of a motorcycle (a specific example of a saddle-ride type vehicle) according to an embodiment of the present invention. A body frame 12 of the motorcycle 11 is individually coupled to a head pipe 13, a pair of left and right main frames 14 extending rearward and rearwardly from the head pipe 13, and rear ends of the individual main frames 14. A pair of left and right pivot frames 15 extending downward from the rear end and connected to each other by a cross pipe (not shown), and a down frame 16 extending downward from the head pipe 13 below the main frame 14 are provided. . The down frame 16 is branched from the lower end of the upper frame 16a to the left and right at one upper frame 16a extending downward from the head pipe 13 at the left and right center position in the vehicle width direction, and individually connected to the lower ends of the corresponding pivot frames 15. And a pair of left and right lower pipe frames 16b. The upper frame 16 a of the down frame 16 moves away from the main frame 14 as it moves backward from the head pipe 13.

ヘッドパイプ13には、車軸17回りで回転自在に前輪WFを支持するフロントフォーク18が操向可能に支持される。フロントフォーク18にはヘッドパイプ13の上側でハンドルバー19が結合される。ピボットフレーム15には、車軸21回りで回転自在に後輪WRを支持するスイングアーム22が支軸23回りで揺動自在に支持される。支軸23は車幅方向に水平に延びる。   A front fork 18 that supports the front wheel WF is rotatably supported on the head pipe 13 so as to be rotatable around the axle 17. A handle bar 19 is coupled to the front fork 18 above the head pipe 13. A swing arm 22 that supports the rear wheel WR so as to be rotatable around the axle 21 is supported on the pivot frame 15 so as to be swingable around the support shaft 23. The support shaft 23 extends horizontally in the vehicle width direction.

前輪WFおよび後輪WRの間で車体フレーム12に内燃機関24は搭載される。内燃機関24は、左右のピボットフレーム15の間であって左右の下パイプフレーム16bで挟まれる空間に配置されてピボットフレーム15および下パイプフレーム16bに連結されるクランクケース25と、クランクケース25に結合されて、クランクケース25から上方に延びて、前傾するシリンダー軸線Cを有するシリンダーブロック26と、シリンダーブロック26に結合されるシリンダーヘッド27と、シリンダーヘッド27に結合されるヘッドカバー28とを備える。クランクケース25には、後輪WRの車軸21に平行に延びる回転軸線S回りで回転するクランクシャフトが支持される。クランクシャフトの回転運動は伝動装置(図示されず)を経て後輪WRに伝達される。クランクシャフトの一端にはAGC(直流発電機)といった補機が連結されケースカバー25aで覆われる。ここでは、内燃機関24は例えば単気筒内燃機関に構成される。以下、一般的な内燃機関と共通する構造については詳細な説明を割愛することがある。   The internal combustion engine 24 is mounted on the vehicle body frame 12 between the front wheel WF and the rear wheel WR. The internal combustion engine 24 is disposed in a space between the left and right pivot frames 15 and sandwiched between the left and right lower pipe frames 16b and connected to the pivot frame 15 and the lower pipe frame 16b. A cylinder block 26 that is coupled and extends upward from the crankcase 25 and has a forwardly inclined cylinder axis C, a cylinder head 27 that is coupled to the cylinder block 26, and a head cover 28 that is coupled to the cylinder head 27. . The crankcase 25 supports a crankshaft that rotates about a rotation axis S that extends parallel to the axle 21 of the rear wheel WR. The rotational movement of the crankshaft is transmitted to the rear wheel WR via a transmission (not shown). An auxiliary machine such as an AGC (DC generator) is connected to one end of the crankshaft and is covered with a case cover 25a. Here, the internal combustion engine 24 is configured as a single cylinder internal combustion engine, for example. Hereinafter, a detailed description of a structure common to a general internal combustion engine may be omitted.

シリンダーヘッド27の一側面には、メインフレーム14およびダウンフレーム16の間の空間に配置されて、後述されるように燃焼室に向けて燃料を噴射する燃料噴射弁29と、メインフレーム14およびダウンフレーム16の間の空間に配置されて、後述されるように、生成するポンプ圧に応じて燃料噴射弁29に燃料を供給する燃料ポンプ31とが取り付けられる。燃料噴射弁29には、燃料ポンプ31の吐出管31aから延びて燃料噴射弁29および燃料ポンプ31を繋ぎ、燃料ポンプ31から燃料噴射弁29に燃料を導入する燃料配管32が結合される。   On one side of the cylinder head 27, a fuel injection valve 29 is disposed in a space between the main frame 14 and the down frame 16, and injects fuel toward the combustion chamber as will be described later. A fuel pump 31 that is disposed in the space between the frames 16 and supplies fuel to the fuel injection valve 29 according to the generated pump pressure is attached as will be described later. The fuel injection valve 29 is connected to a fuel pipe 32 that extends from the discharge pipe 31 a of the fuel pump 31 and connects the fuel injection valve 29 and the fuel pump 31, and introduces fuel from the fuel pump 31 to the fuel injection valve 29.

内燃機関24の上方でメインフレーム14には燃料タンク34が支持される。燃料タンク34内には、燃料タンク34から燃料を吐出する一次燃料ポンプ35が配置される。燃料ポンプ31の吸入管31bには、一次燃料ポンプ35から延びて一次燃料ポンプ35および燃料ポンプ31を繋ぎ、一次燃料ポンプ35のポンプ圧に基づき一次燃料ポンプ35から燃料ポンプ31に燃料を供給する一次燃料管36が結合される。燃料タンク34の後方で車体フレーム12には乗員シート37が搭載される。自動二輪車11の運転にあたって乗員は乗員シート37を跨ぐ。   A fuel tank 34 is supported on the main frame 14 above the internal combustion engine 24. A primary fuel pump 35 that discharges fuel from the fuel tank 34 is disposed in the fuel tank 34. The suction pipe 31b of the fuel pump 31 extends from the primary fuel pump 35 and connects the primary fuel pump 35 and the fuel pump 31, and supplies fuel from the primary fuel pump 35 to the fuel pump 31 based on the pump pressure of the primary fuel pump 35. A primary fuel tube 36 is coupled. An occupant seat 37 is mounted on the vehicle body frame 12 behind the fuel tank 34. When driving the motorcycle 11, the occupant straddles the occupant seat 37.

図2に示されるように、シリンダーブロック26はシリンダー軸線Cに沿ってピストン38の線形往復運動を案内する。ピストン38には、クランクケース25内でクランクシャフトのクランクに連結されるコネクティングロッド39が接続される。コネクティングロッド39はピストン38の線形往復運動をクランクシャフトの回転運動に変換する。   As shown in FIG. 2, the cylinder block 26 guides the linear reciprocation of the piston 38 along the cylinder axis C. Connected to the piston 38 is a connecting rod 39 connected to the crankshaft crank in the crankcase 25. The connecting rod 39 converts the linear reciprocating motion of the piston 38 into the rotational motion of the crankshaft.

図3に示されるように、シリンダーヘッド27には、ピストン38およびシリンダーヘッド27の間に形成される燃焼室41の頂上位置で燃焼室41に通じ、燃料噴射弁29の噴射口が臨む副室42が設けられる。シリンダーヘッド27には、第1点火プラグ43を受け入れて、シリンダー軸線C上に第1点火プラグ43の中心軸線Cpを配置する挿入孔44と、燃料噴射弁29を受け入れて、シリンダー軸線Cから第1傾斜角αで倒れる軸線上に燃料噴射弁29の中心軸線を配置する差し込み孔45と、第2点火プラグ46を受け入れて、シリンダー軸線Cから第1傾斜角αよりも大きい第2傾斜角βで倒れる軸線上に第2点火プラグ46の中心軸線を配置するねじ込み孔47とが形成される。第1点火プラグ43の電極(点火点)43aは副室42内の空間に臨む。第2点火プラグ46の電極は燃焼室41内の空間に臨む。燃料噴射弁29は、第1点火プラグ43の中心軸線に対して傾斜する姿勢で保持され、副室42に噴射口を臨ませ、燃焼室41に向けて副室42内で燃料を噴射する。ここでは、こうして燃料噴射通路45aに対して燃料噴射弁29を寝かせることで燃料噴射弁29の上端と燃料ポンプ31との間に隙間は確保されることができる。   As shown in FIG. 3, the cylinder head 27 is connected to the combustion chamber 41 at the top position of the combustion chamber 41 formed between the piston 38 and the cylinder head 27, and is a sub chamber in which the injection port of the fuel injection valve 29 faces. 42 is provided. The cylinder head 27 receives the first spark plug 43 and receives the fuel injection valve 29 and the insertion hole 44 for arranging the center axis Cp of the first spark plug 43 on the cylinder axis C. A second inclination angle β that is larger than the first inclination angle α from the cylinder axis C by receiving the insertion hole 45 that arranges the central axis of the fuel injection valve 29 on the axis that falls at an inclination angle α and the second spark plug 46. A screw-in hole 47 for arranging the central axis of the second spark plug 46 is formed on the axis that falls down. The electrode (ignition point) 43 a of the first spark plug 43 faces the space in the sub chamber 42. The electrode of the second spark plug 46 faces the space in the combustion chamber 41. The fuel injection valve 29 is held in a posture inclined with respect to the central axis of the first spark plug 43, the injection port faces the sub chamber 42, and the fuel is injected into the sub chamber 42 toward the combustion chamber 41. Here, a gap can be secured between the upper end of the fuel injection valve 29 and the fuel pump 31 by laying the fuel injection valve 29 in the fuel injection passage 45a.

図4に示されるように、内燃機関24は、シリンダーヘッド27に形成されて、シリンダーヘッド27の後壁面に連結される吸気管48に連通して燃焼室41で開口する吸気ポート27aの開閉を司る1対の吸気弁49と、同様にシリンダーヘッド27に形成されて、シリンダーヘッド27の前壁面に連結される排気管51に連通して燃焼室41で開口する排気ポート27bの開閉を司る1対の排気弁52とを備える。図2に示されるように、吸気弁49には、側面視でシリンダー軸線Cよりも後方に位置して、クランクシャフトの回転軸線Sに平行な軸心を有する吸気用カムシャフト53aが接続される。言い換えると、吸気用カムシャフト53aは、クランクシャフトの回転軸線Sに平行でシリンダー軸線Cを含む仮想平面よりも車体後方に配置される。排気弁52には、側面視でシリンダー軸線Cよりも前方に位置して、クランクシャフトの回転軸線Sに平行な軸心を有する排気用カムシャフト53bが接続される。言い換えると、排気用カムシャフト53bは、クランクシャフトの回転軸線Sに平行であってシリンダー軸線Cを含む仮想平面よりも車体前方に配置される。吸気用カムシャフト53aおよび排気用カムシャフト53bには、クランクシャフトから吸気用カムシャフト53aおよび排気用カムシャフト53bに動力を伝達する動弁系54が接続される。動弁系54は、吸気用カムシャフト53aに固定されるスプロケット54a、および、排気用カムシャフト53bに固定されるスプロケット54bに巻き掛けられるカムチェーン54cを備える。   As shown in FIG. 4, the internal combustion engine 24 opens and closes an intake port 27 a formed in the cylinder head 27 and communicating with an intake pipe 48 connected to the rear wall surface of the cylinder head 27 and opening in the combustion chamber 41. A pair of intake valves 49 for controlling the same and an exhaust port 27b that is formed in the cylinder head 27 and communicates with an exhaust pipe 51 connected to the front wall surface of the cylinder head 27 and opens in the combustion chamber 41 1 And a pair of exhaust valves 52. As shown in FIG. 2, the intake valve 49 is connected to an intake camshaft 53a that is positioned rearward of the cylinder axis C in a side view and has an axis parallel to the rotation axis S of the crankshaft. . In other words, the intake camshaft 53a is arranged behind the imaginary plane parallel to the rotation axis S of the crankshaft and including the cylinder axis C. Connected to the exhaust valve 52 is an exhaust camshaft 53b that is positioned in front of the cylinder axis C in a side view and has an axis parallel to the rotation axis S of the crankshaft. In other words, the exhaust camshaft 53b is disposed in front of the vehicle body relative to a virtual plane that is parallel to the rotation axis S of the crankshaft and includes the cylinder axis C. The intake camshaft 53a and the exhaust camshaft 53b are connected to a valve train 54 that transmits power from the crankshaft to the intake camshaft 53a and the exhaust camshaft 53b. The valve train 54 includes a sprocket 54a fixed to the intake camshaft 53a and a cam chain 54c wound around the sprocket 54b fixed to the exhaust camshaft 53b.

図3に示されるように、吸気用カムシャフト53aは、シリンダーヘッド27の一側面から他側面に向かってクランクシャフトの回転軸線Sに平行に延びる回転軸線Xを有する。燃料ポンプ31は、シリンダーヘッド27の一側面で、吸気用カムシャフト53aの延長線上に配置されて吸気用カムシャフト53aに連結される。動弁系54のスプロケット54aおよびカムチェーン54cはシリンダーヘッド27の他側面に配置される。燃料ポンプ31は、吸入管31bおよび吐出管31aにそれぞれ配置される開閉弁と、吸入管31bおよび吐出管31aに通じる圧力室55aの容積を変化させるプランジャー55bと、吸気用カムシャフト53aに同軸に連結されて、プランジャー55bの往復動を生み出すカム部材55cとを備え、吸気用カムシャフト53aから駆動力を受けて高圧の燃料を吐出する往復動式の燃料ポンプで構成される。   As shown in FIG. 3, the intake camshaft 53 a has a rotation axis X that extends in parallel with the rotation axis S of the crankshaft from one side surface of the cylinder head 27 toward the other side surface. The fuel pump 31 is disposed on one side of the cylinder head 27 on an extension line of the intake camshaft 53a and connected to the intake camshaft 53a. The sprocket 54 a and the cam chain 54 c of the valve train 54 are disposed on the other side of the cylinder head 27. The fuel pump 31 is coaxial with the open / close valves disposed in the suction pipe 31b and the discharge pipe 31a, the plunger 55b for changing the volume of the pressure chamber 55a communicating with the suction pipe 31b and the discharge pipe 31a, and the intake camshaft 53a. And a reciprocating fuel pump that receives a driving force from the intake camshaft 53a and discharges high-pressure fuel.

図5に示されるように、挿入孔44は、燃焼室41の壁面で開口する燃焼室41側の副室孔部(縦孔)44a、および、副室孔部44aよりも大径であって副室孔部44aに環状の段差(支持面)56で接続されるプラグ孔部44bを有する。副室孔部44aは、第1点火プラグ43の中心軸線Cpに沿って燃焼室41から延びて、段差56で仕切られる開放端で燃焼室41外の空間に開放される。段差56は、副室孔部44aの開放端で副室孔部44aの縁から第1点火プラグ43の中心軸線Cpに直交する仮想平面に沿って外側に広がる。ここでは、段差56は円形の開放端を囲む環状に形成される。副室孔部44aには、第1点火プラグ43の点火点43aを覆って第1点火プラグ43の先端との間に燃焼室41に通じる副室42を形成し、段差56上に重なるフランジ57を有する副室隔壁58が挿入される。副室隔壁58は例えばステンレス鋼材から形成される。フランジ57上に環状の第1シール部材59が重なる。第1シール部材59は軸方向の金属シールである。   As shown in FIG. 5, the insertion hole 44 has a larger diameter than the sub chamber hole (vertical hole) 44a on the combustion chamber 41 side that opens at the wall surface of the combustion chamber 41 and the sub chamber hole 44a. A plug hole 44b connected to the sub chamber hole 44a by an annular step (support surface) 56 is provided. The sub chamber hole 44 a extends from the combustion chamber 41 along the central axis Cp of the first spark plug 43 and is opened to a space outside the combustion chamber 41 at an open end partitioned by a step 56. The step 56 extends outward from the edge of the sub chamber hole 44a at the open end of the sub chamber hole 44a along a virtual plane perpendicular to the central axis Cp of the first spark plug 43. Here, the step 56 is formed in an annular shape surrounding the circular open end. A sub chamber 42 that covers the ignition point 43 a of the first spark plug 43 and communicates with the tip of the first spark plug 43 is formed in the sub chamber hole 44 a, and a flange 57 that overlaps the step 56. A sub-chamber partition wall 58 having the above is inserted. The sub chamber partition wall 58 is made of, for example, a stainless steel material. An annular first seal member 59 overlaps the flange 57. The first seal member 59 is an axial metal seal.

プラグ孔部44bには、フランジ57に向かって先端で第1シール部材59を押し付け、第1点火プラグ43を保持しつつ第1点火プラグ43の先端を副室42に対して位置決めする点火プラグホルダー61が挿入される。シリンダーヘッド27には挿入孔44および差し込み孔45は個別に形成されることから、燃料噴射弁29は点火プラグホルダー61から独立してシリンダーヘッド27に取り付けられる。   An ignition plug holder that presses the first seal member 59 toward the flange 57 toward the flange 57 and positions the tip of the first spark plug 43 with respect to the sub chamber 42 while holding the first spark plug 43. 61 is inserted. Since the insertion hole 44 and the insertion hole 45 are individually formed in the cylinder head 27, the fuel injection valve 29 is attached to the cylinder head 27 independently of the spark plug holder 61.

点火プラグホルダー61は、第1点火プラグ43に同軸に円筒形状に形成され、先端で副室隔壁58のフランジ57との間に第1シール部材59を挟む円筒部61aと、円筒部61aの上端に接続されて第1点火プラグ43に同軸に円筒形状に形成され、外周にねじ溝を有するねじ部61bとを有する。点火プラグホルダー61は銅系の材質から成形される。第1シール部材59は副室隔壁58と点火プラグホルダー61の間に挟まれて外気から副室42の空間を遮断する。第1点火プラグ43は点火プラグホルダー61にねじ込まれる。点火プラグホルダー61のねじ溝62は第1点火プラグ43のねじ溝63に軸方向に重なる位置に配置される。   The spark plug holder 61 is formed in a cylindrical shape coaxially with the first spark plug 43, and has a cylindrical portion 61a sandwiching the first seal member 59 between the flange 57 of the sub chamber partition wall 58 at the tip, and an upper end of the cylindrical portion 61a. The first spark plug 43 is coaxially formed in a cylindrical shape and has a thread portion 61b having a thread groove on the outer periphery. The spark plug holder 61 is formed from a copper-based material. The first seal member 59 is sandwiched between the sub chamber partition wall 58 and the spark plug holder 61 to block the space of the sub chamber 42 from the outside air. The first spark plug 43 is screwed into the spark plug holder 61. The thread groove 62 of the spark plug holder 61 is disposed at a position overlapping the thread groove 63 of the first spark plug 43 in the axial direction.

円筒部61aの外周には、点火プラグホルダー61およびプラグ孔部44bの内壁の間に挟まれる環状の第2シール部材64が装着される。第2シール部材64は径方向の樹脂製シールである。第2シール部材64は、燃焼室41側の挿入孔44内の空間と外気側の挿入孔44内の空間とを相互に遮断する。   An annular second seal member 64 sandwiched between the inner wall of the spark plug holder 61 and the plug hole 44b is mounted on the outer periphery of the cylindrical portion 61a. The second seal member 64 is a radial resin seal. The second seal member 64 blocks the space in the insertion hole 44 on the combustion chamber 41 side from the space in the insertion hole 44 on the outside air side.

副室隔壁58は、シリンダー軸線(基準軸線)Cに沿って燃焼室41から延びる副室孔部44aに挿入されて、シリンダー軸線C回りで副室孔部44aの内壁に接する周壁部58aと、周壁部58aから連続して、副室孔部44aから燃焼室41に向かって張り出す底壁部58bとを有し、周壁部58aと底壁部58bとで、燃焼室41に通じる副室42を形成する。第1点火プラグ43は周壁部58aの上方に配置される。底壁部58bは燃焼室41に向かってドーム形状に膨らむ。したがって、底壁部58bの肉厚は中央(シリンダー軸線C)に近づくほど増加する。   The sub chamber partition wall 58 is inserted into a sub chamber hole 44a extending from the combustion chamber 41 along the cylinder axis (reference axis) C, and has a peripheral wall 58a that contacts the inner wall of the sub chamber hole 44a around the cylinder axis C. The sub-chamber 42 has a bottom wall portion 58b continuously extending from the sub-chamber hole portion 44a toward the combustion chamber 41. The sub-chamber 42 communicates with the combustion chamber 41 by the peripheral wall portion 58a and the bottom wall portion 58b. Form. The first spark plug 43 is disposed above the peripheral wall portion 58a. The bottom wall portion 58b swells in a dome shape toward the combustion chamber 41. Therefore, the thickness of the bottom wall portion 58b increases as it approaches the center (cylinder axis C).

副室隔壁58の周壁部58aは、上端でフランジ57を支持する第1外径D1の第1筒部65aと、第1筒部65aの下端から連続して、燃焼室41に近づくにつれて径方向に縮小する縮径部65bと、縮径部65bの下端から連続して第1外径D1よりも小さい第2外径D2の第2筒部65cとを有する。副室孔部44aは副室隔壁58の縮径部65bに対応して燃焼室41に近づくにつれて径方向に縮小する縮径部66を有する。副室隔壁58の縮径部65bおよび副室孔部44aの縮径部66は相互に接触し合ってラビリンス構造を形成する。第1筒部65a、縮径部65bおよび第2筒部65cは満遍なく副室孔部44aの内壁に接する。   The peripheral wall portion 58a of the sub-chamber partition wall 58 has a first cylindrical portion 65a having a first outer diameter D1 that supports the flange 57 at the upper end, and a radial direction as it approaches the combustion chamber 41 continuously from the lower end of the first cylindrical portion 65a. And a second cylindrical portion 65c having a second outer diameter D2 smaller than the first outer diameter D1 continuously from the lower end of the reduced diameter portion 65b. The sub chamber hole 44 a has a reduced diameter portion 66 corresponding to the reduced diameter portion 65 b of the sub chamber partition wall 58 that decreases in the radial direction as it approaches the combustion chamber 41. The reduced diameter portion 65b of the sub chamber partition wall 58 and the reduced diameter portion 66 of the sub chamber hole 44a are in contact with each other to form a labyrinth structure. The first cylindrical portion 65a, the reduced diameter portion 65b, and the second cylindrical portion 65c are uniformly in contact with the inner wall of the sub chamber hole 44a.

第2筒部65cで周壁部58aの肉厚(壁厚)は底壁部58bに向かうにつれて増加する。ここでは、第2筒部65cは、底壁部58bに向かうにつれて先細るテーバー形状の空間を形成する。周壁部58aの下端で周壁部58aには、肉厚(壁の厚み)の方向に周壁部58aを貫通し、燃焼室41に副室42を接続する複数の噴孔67が形成される。図6に示されるように、副室隔壁58の外周には、フランジ57から連続して周方向の特定位置で径方向に外側に突出する位置決め突起68が形成される。副室孔部44aには、周方向の特定位置で段差56から窪んで軸方向に位置決め突起68を受け入れる凹部69が形成される。位置決め突起68が凹部69に嵌まることで、中心軸線Cp回りで副室隔壁58の角位置は位置決めされることができる。   The wall thickness (wall thickness) of the peripheral wall portion 58a in the second cylindrical portion 65c increases toward the bottom wall portion 58b. Here, the 2nd cylinder part 65c forms the taber-shaped space which tapers as it goes to the bottom wall part 58b. A plurality of injection holes 67 are formed in the peripheral wall portion 58a at the lower end of the peripheral wall portion 58a so as to penetrate the peripheral wall portion 58a in the direction of wall thickness (wall thickness) and connect the sub chamber 42 to the combustion chamber 41. As shown in FIG. 6, a positioning protrusion 68 is formed on the outer periphery of the sub chamber partition wall 58 so as to protrude radially outward at a specific position in the circumferential direction continuously from the flange 57. The sub chamber hole 44a is formed with a recess 69 that is recessed from the step 56 at a specific position in the circumferential direction and receives the positioning protrusion 68 in the axial direction. By fitting the positioning protrusion 68 into the recess 69, the angular position of the sub chamber partition wall 58 can be positioned around the central axis Cp.

図7に示されるように、副室隔壁58の周壁部58aは、第1点火プラグ43の中心軸線Cp回りの周方向に異なる肉厚tを有する。ここでは、周壁部58aは、第1軸芯Cfに中心を有する第1径長さR1の円形輪郭断面の外周71と、第2軸芯Csに中心を有する第1径長さR1よりも小さい第2径長さR2の円形輪郭断面の内周72とを有し、第2軸芯Csは第1軸芯Cfから偏心する。こうした偏心に基づき周壁部58aの肉厚tは連続的に変化する。噴孔67は第1点火プラグ43の中心軸線Cp回りで放射状に延びる。噴孔67は、中心軸線Cp回りで等間隔(等しい角度間隔)に配列される。ここでは、個々の噴孔67の中心軸線は第1点火プラグ43の中心軸線Cpに交差する。周壁部58aでは、小さい肉厚の領域に比べて大きい肉厚の領域で噴孔67の孔径は大きい。   As shown in FIG. 7, the peripheral wall portion 58 a of the sub chamber partition wall 58 has a different thickness t in the circumferential direction around the central axis Cp of the first spark plug 43. Here, the peripheral wall portion 58a is smaller than the outer periphery 71 of the circular contour cross section having the first diameter length R1 centered on the first axis Cf and the first diameter length R1 centered on the second axis Cs. The second axial center Cs is eccentric from the first axial center Cf. Based on such eccentricity, the wall thickness t of the peripheral wall portion 58a continuously changes. The nozzle holes 67 extend radially around the central axis Cp of the first spark plug 43. The nozzle holes 67 are arranged at equal intervals (equal angular intervals) around the central axis Cp. Here, the central axis of each nozzle hole 67 intersects the central axis Cp of the first spark plug 43. In the peripheral wall part 58a, the hole diameter of the injection hole 67 is large in a thick region compared to a small thick region.

図5に示されるように、シリンダーブロック27には、差し込み孔45の前端から延びて、燃料噴射弁29よりも小径の燃料噴射通路45aが形成される。燃料噴射通路45aの中心軸線は燃料噴射弁29の軸線Qの第1傾斜角αよりも小さい傾斜角でシリンダー軸線Cに交差する。こうして燃料噴射通路45aに対して燃料噴射弁29が傾斜することで、図3に示されるように、燃料噴射弁29の上端と燃料ポンプ31との間に隙間は確保されることができる。周壁部58aは、燃料噴射通路45aの一部として、第1点火プラグ43の点火点43aと噴孔67との間の空間に開口する通路73を有する。図7に示されるように、通路73は第1点火プラグ43の中心軸線Cpに指向する。燃料噴射通路45aは、燃料噴射弁29の噴射口から通路73の開口に通じる。燃料噴射弁29は副室42内の底壁部58bに向かって燃料を噴射する。燃料の噴射域は噴孔67から外れるように形成される。   As shown in FIG. 5, a fuel injection passage 45 a that extends from the front end of the insertion hole 45 and has a smaller diameter than the fuel injection valve 29 is formed in the cylinder block 27. The central axis of the fuel injection passage 45 a intersects the cylinder axis C with an inclination angle smaller than the first inclination angle α of the axis Q of the fuel injection valve 29. By tilting the fuel injection valve 29 with respect to the fuel injection passage 45a in this way, a gap can be secured between the upper end of the fuel injection valve 29 and the fuel pump 31, as shown in FIG. The peripheral wall portion 58a has a passage 73 that opens into a space between the ignition point 43a of the first spark plug 43 and the injection hole 67 as a part of the fuel injection passage 45a. As shown in FIG. 7, the passage 73 is directed to the central axis Cp of the first spark plug 43. The fuel injection passage 45 a leads from the injection port of the fuel injection valve 29 to the opening of the passage 73. The fuel injection valve 29 injects fuel toward the bottom wall portion 58 b in the sub chamber 42. The fuel injection area is formed so as to be out of the injection hole 67.

次に本実施形態に係る内燃機関の動作を説明する。慣性力でピストン38が下降する際に吸気弁49が開くと、吸気ポート27aから空気が燃焼室41に導入される。ピストン38が上昇すると、燃焼室41の容積は縮小し、空気は圧縮される。燃料噴射弁29から副室42に向かって燃料は噴射される。噴射された燃料は燃料噴射通路45a(通路73を含む)から副室42に導入される。副室42内で混合気は生成される。燃料噴射弁29には燃料ポンプ31から高圧の燃料が供給される。   Next, the operation of the internal combustion engine according to this embodiment will be described. If the intake valve 49 is opened when the piston 38 is lowered by the inertial force, air is introduced into the combustion chamber 41 from the intake port 27a. When the piston 38 rises, the volume of the combustion chamber 41 is reduced and the air is compressed. Fuel is injected from the fuel injection valve 29 toward the sub chamber 42. The injected fuel is introduced into the sub chamber 42 from the fuel injection passage 45a (including the passage 73). An air-fuel mixture is generated in the sub chamber 42. High pressure fuel is supplied from the fuel pump 31 to the fuel injection valve 29.

副室42内で第1点火プラグ43が混合気に着火する。副室42内で混合気は燃焼する。気体は膨張する。その結果、副室42の噴孔67から燃焼室41内に火炎ジェットが噴出する。こうして燃焼室41全体で燃焼が実現される。燃焼に応じて燃焼室41内の空気は膨張し、ピストン38を押し下げる。慣性力でピストン38が上昇する際に排気弁52が開くと、排気ポート27bから燃焼後の気体は排出される。こうした一連の動作が繰り返され内燃機関24では動力は生成される。   The first spark plug 43 ignites the air-fuel mixture in the sub chamber 42. The air-fuel mixture burns in the sub chamber 42. The gas expands. As a result, a flame jet is ejected from the nozzle hole 67 of the sub chamber 42 into the combustion chamber 41. In this way, combustion is realized in the entire combustion chamber 41. In response to combustion, the air in the combustion chamber 41 expands and pushes down the piston 38. When the exhaust valve 52 is opened when the piston 38 is lifted by the inertial force, the burned gas is discharged from the exhaust port 27b. Such a series of operations is repeated to generate power in the internal combustion engine 24.

本実施形態に係る内燃機関24では、副室隔壁58の周壁部58aに、第1点火プラグ43の中心軸線Cp回りの周方向に異なる肉厚tを有する。そうして副室隔壁58の周壁部58aには、肉厚tの方向に周壁部58aを貫通して燃焼室41に臨む複数の噴孔67が形成される。副室隔壁58の周壁部58aでは肉厚tの大きさに応じて噴孔67の長さは調整される。噴孔67の長さに応じて噴孔67の通気抵抗は変化することから、肉厚tの設定に応じて燃焼室41内で火炎ジェットの分布は制御されることができる。   In the internal combustion engine 24 according to the present embodiment, the peripheral wall portion 58 a of the sub chamber partition wall 58 has a different thickness t in the circumferential direction around the central axis Cp of the first spark plug 43. Thus, a plurality of injection holes 67 are formed in the peripheral wall portion 58a of the sub-chamber partition wall 58 so as to penetrate the peripheral wall portion 58a in the direction of the thickness t and face the combustion chamber 41. In the peripheral wall portion 58a of the sub chamber partition wall 58, the length of the nozzle hole 67 is adjusted according to the thickness t. Since the ventilation resistance of the nozzle hole 67 changes according to the length of the nozzle hole 67, the distribution of the flame jet can be controlled in the combustion chamber 41 according to the setting of the wall thickness t.

本実施形態では、副室隔壁58の周壁部58aは、外周71の第1軸芯Cfから偏心した第2軸芯Csを有する内周72を有する。外周71および内周72の偏心に応じて周壁部58aでは簡単に周方向に異なる肉厚tは実現される。特に、周壁部58aは、第1軸芯Cfに中心を有する第1径長さR1の円形断面形状の外周71と、第2軸芯Csに中心を有する第1径長さR1よりも小さい第2径長さR2の円形断面形状の内周72とを有し、第2軸芯Csは第1軸芯Cfから偏心することから、偏心に基づき周壁部58aの肉厚tは連続的に変化する。   In the present embodiment, the peripheral wall portion 58 a of the sub chamber partition wall 58 has an inner periphery 72 having a second axis Cs that is eccentric from the first axis Cf of the outer periphery 71. Depending on the eccentricity of the outer periphery 71 and the inner periphery 72, a different wall thickness t in the circumferential direction can be easily realized in the peripheral wall portion 58a. In particular, the peripheral wall 58a has a circular cross-sectional outer periphery 71 having a first diameter length R1 centered on the first axis Cf and a first diameter length R1 smaller than the first diameter length R1 centered on the second axis Cs. And the inner diameter 72 of the circular cross-section of the two-diameter length R2, and the second axis Cs is eccentric from the first axis Cf, so that the wall thickness t of the peripheral wall 58a continuously changes based on the eccentricity. To do.

周壁部58aでは、小さい肉厚の領域に比べて大きい肉厚の領域で噴孔67の孔径は大きい。孔径が大きいほど噴孔67から多量の火炎ジェットは噴射される。火炎ジェットが多量に噴射されても周壁部58aの肉厚が大きければ熱負荷応力は低減される。その結果、副室隔壁58の耐久性は向上する。   In the peripheral wall part 58a, the hole diameter of the injection hole 67 is large in a thick region compared to a small thick region. The larger the hole diameter, the more flame jets are ejected from the nozzle hole 67. Even if a large amount of flame jet is injected, the thermal load stress is reduced if the thickness of the peripheral wall portion 58a is large. As a result, the durability of the sub chamber partition wall 58 is improved.

噴孔67は、第1点火プラグ43の中心軸線Cp回りで放射状に延びる。周壁部58aの外周71は燃焼室41内で第1点火プラグ43の中心軸線Cp回りに広がるので、噴孔67が第1点火プラグ43の中心軸線Cp回りで放射状に配列されると、燃料室41内の火炎ジェットは均質化されることができる。   The nozzle holes 67 extend radially around the central axis Cp of the first spark plug 43. Since the outer periphery 71 of the peripheral wall portion 58a extends around the central axis Cp of the first spark plug 43 in the combustion chamber 41, when the nozzle holes 67 are arranged radially around the central axis Cp of the first spark plug 43, the fuel chamber The flame jet in 41 can be homogenized.

本実施形態では、副室隔壁58の周壁部58aに、第1点火プラグ43の点火点43aと噴孔67との間の空間に臨んで第1点火プラグ43の中心軸線Cpに指向する燃料噴射通路45aの通路73が形成される。副室隔壁58では周方向に周壁部58aの肉厚tが異なることから、周壁部58aの内周で囲まれる点火空間は第1点火プラグ43の中心軸線Cpから偏倚し、噴射燃料の旋回流化が図られることで、点火空間内で空気の撹拌が促進され、着火性や燃焼効率は高められることができる。   In the present embodiment, fuel injection directed to the central axis Cp of the first spark plug 43 facing the space between the ignition point 43 a of the first spark plug 43 and the injection hole 67 on the peripheral wall portion 58 a of the sub chamber partition wall 58. A passage 73 of the passage 45a is formed. Since the wall thickness t of the peripheral wall portion 58a differs in the circumferential direction in the sub chamber partition wall 58, the ignition space surrounded by the inner periphery of the peripheral wall portion 58a is deviated from the central axis Cp of the first spark plug 43, and the swirling flow of the injected fuel As a result, the agitation of air is promoted in the ignition space, and the ignitability and combustion efficiency can be improved.

次に本実施形態に係る副室隔壁58の製造方法を簡単に説明する。副室隔壁58はステンレス鋼材から形成されることができる。副室隔壁58の外周71が例えば切削加工で削り出され、続いて副室隔壁58の内周72が例えばドリル加工で削り出される。図8に示されるように、切削加工に応じてフランジ57、第1筒部65aの外面74a、縮径部65bおよび第2筒部65cの外面74bが削り出される。その後、第1ドリルDrで縮径部65bまで均一径の空間が穿たれる。こうして第1筒部65aは形成される。続いて、テーパー形状の第2ドリルで残りの空間が穿たれる。こうして第2筒部65cは形成される。第1ドリルDrおよび第2ドリルの軸心Cdが外周71の軸芯Cfから偏心すれば、軸芯Cfから偏心した軸芯Csを有する内周72は簡単に削り出されることができる。   Next, a method for manufacturing the sub chamber partition wall 58 according to this embodiment will be briefly described. The sub chamber partition wall 58 can be formed of a stainless steel material. The outer periphery 71 of the sub chamber partition wall 58 is cut out by, for example, cutting, and then the inner periphery 72 of the sub chamber partition wall 58 is cut out by, for example, drilling. As shown in FIG. 8, the flange 57, the outer surface 74a of the first cylindrical portion 65a, the reduced diameter portion 65b, and the outer surface 74b of the second cylindrical portion 65c are cut out in accordance with the cutting process. Thereafter, a space having a uniform diameter is drilled to the reduced diameter portion 65b by the first drill Dr. Thus, the first cylinder portion 65a is formed. Subsequently, the remaining space is drilled with a tapered second drill. In this way, the 2nd cylinder part 65c is formed. If the axis Cd of the first drill Dr and the second drill is eccentric from the axis Cf of the outer circumference 71, the inner circumference 72 having the axis Cs eccentric from the axis Cf can be easily cut out.

その他、予め内周72の軸芯Csに同心の外周面が形成された素材が用意されて、素材の外周が軸芯Csから偏心する軸芯Cf回りで削られて外周71が成形されてもよい。素材は例えば鍛造加工に基づき成型されればよい。素材では軸芯Cs回りで周方向に肉厚が一定に維持されるので、鍛造加工にあたって素材の設計の複雑化は回避されることができる。   In addition, a material in which a concentric outer peripheral surface is formed on the shaft core Cs of the inner periphery 72 is prepared in advance, and the outer periphery of the material is shaved around the shaft core Cf eccentric from the shaft core Cs to form the outer periphery 71. Good. The material may be molded based on forging, for example. Since the thickness of the material is kept constant in the circumferential direction around the axis Cs, the design of the material can be prevented from becoming complicated in the forging process.

図9は他の実施形態に係る副室隔壁75を概略的に示す。副室隔壁75は前述の副室隔壁58と同様に周壁部75aおよび底壁部75bを有する。周壁部75aは、前述の周壁部58aと同様に、上端でフランジ57を支持する第1外径D1の第1筒部65aと、第1筒部65aの下端から連続して、燃焼室41に近づくにつれて径方向に縮小する縮径部65bと、縮径部65bの下端から連続して第1外径D1よりも小さい第2外径D2の第2筒部65cとを有する。以下、前述の副室隔壁58と同様な構成には同一の参照符号が付され重複する説明は割愛される。   FIG. 9 schematically shows a sub-chamber partition wall 75 according to another embodiment. The sub chamber partition 75 has a peripheral wall portion 75a and a bottom wall portion 75b in the same manner as the sub chamber partition wall 58 described above. Similar to the above-described peripheral wall portion 58a, the peripheral wall portion 75a is connected to the combustion chamber 41 continuously from the first cylindrical portion 65a having the first outer diameter D1 that supports the flange 57 at the upper end and the lower end of the first cylindrical portion 65a. It has a reduced diameter portion 65b that decreases in the radial direction as it approaches, and a second cylindrical portion 65c having a second outer diameter D2 that is smaller than the first outer diameter D1 continuously from the lower end of the reduced diameter portion 65b. Hereinafter, the same reference numerals are given to the same components as those of the above-described sub chamber partition wall 58, and redundant description is omitted.

副室隔壁75は、第1点火プラグ43の中心軸線Cp回りで周方向に複数の分割体76、77に分割される。分割体76、77の合わせ面78、79は例えば外周71の軸芯Cfを含む仮想平面内に配置されればよい。このとき、副室隔壁58の完成体では段差56に押し当てられるフランジ57は軸芯Cf回りで周方向に連続する。こうして副室隔壁75は周方向に複数の分割体76、77に分割されるので、周壁部75aの内面の加工条件が緩和され、点火空間の形状の自由度は広がるとともに、副室隔壁75はフランジ57でシリンダーヘッド27に位置決めされるので、周壁部75aが縦孔44aにねじ込まれてシリンダーヘッド27に固定される場合と違って、周壁部75aの薄型化は実現され、個々の分割体76、77の形状の制約は緩和される。   The sub chamber partition wall 75 is divided into a plurality of divided bodies 76 and 77 in the circumferential direction around the central axis Cp of the first spark plug 43. For example, the mating surfaces 78 and 79 of the divided bodies 76 and 77 may be arranged in a virtual plane including the axis Cf of the outer periphery 71. At this time, in the completed body of the sub chamber partition wall 58, the flange 57 pressed against the step 56 continues in the circumferential direction around the axis Cf. Thus, since the sub chamber partition wall 75 is divided into a plurality of divided bodies 76 and 77 in the circumferential direction, the processing conditions of the inner surface of the peripheral wall portion 75a are relaxed, the degree of freedom of the shape of the ignition space is widened, and the sub chamber partition wall 75 is Since the flange 57 positions the cylinder head 27, unlike the case where the peripheral wall 75a is screwed into the vertical hole 44a and fixed to the cylinder head 27, the peripheral wall 75a is thinned and the individual divided bodies 76 are realized. 77, the shape constraints are relaxed.

図10に示されるように、本実施形態に係る副室隔壁75では噴孔67の孔径は燃焼室41側に比べて周壁部75aの内面側で大きい。このように燃焼室41に向かって噴孔67の孔径は縮小するので、噴孔67から火炎ジェットの噴射力は高められる。前述のように副室隔壁75が周方向に複数の分割体76、77に分割されることで、いわゆる逆孔となる周壁部75aの内面からの加工は実現されることができる。   As shown in FIG. 10, in the sub chamber partition wall 75 according to the present embodiment, the hole diameter of the injection hole 67 is larger on the inner surface side of the peripheral wall portion 75a than on the combustion chamber 41 side. Thus, since the hole diameter of the injection hole 67 decreases toward the combustion chamber 41, the injection force of the flame jet from the injection hole 67 is increased. As described above, the sub-chamber partition wall 75 is divided into the plurality of divided bodies 76 and 77 in the circumferential direction, whereby processing from the inner surface of the peripheral wall portion 75a serving as a so-called reverse hole can be realized.

次に本実施形態に係る副室隔壁75の製造方法を説明する。ここでは、例えばいわゆるかち割りコンロッドの製造方法が採用される。具体的には、製造にあたって前述の副室隔壁58のように副室隔壁の成形体81は用意される。成形体81では噴孔67は形成されていなくてもよい。図11に示されるように、成形体81の外周にはかち割り線82が刻まれる。かち割り線82は外周71の軸芯Cfを含む仮想平面内で描かれればよい。続いて成形体81の内部空間にかち割り用の楔型83が挿入される。挿入方向に楔型83に荷重が加えられると、楔型83は成形体81の内部空間よりも大きい形状を有することから、成形体81はかち割り線82に沿って2つに分断される。こうして個々の分割体84a、84bでは、完成体の破断で生じる破断面85が合わせ面として形成される。破断面85が重ねられて再結合されると、分割体84a、84bは再び完成体に仕上げられる。こうして副室隔壁75は製造される。分割体84a、84bの合わせ面は破断面85で形成され、複雑な立体形状の破断面85で分割体84a、84b同士は接合されることから、合わせ面で火炎ジェットの漏れが防止されるとともに、生産性と性能とは高められることができる。   Next, a method for manufacturing the sub chamber partition wall 75 according to this embodiment will be described. Here, for example, a so-called split connecting rod manufacturing method is employed. Specifically, a sub-partition body molded body 81 is prepared as in the sub-partition partition wall 58 described above during manufacture. The injection hole 67 may not be formed in the molded body 81. As shown in FIG. 11, a split line 82 is engraved on the outer periphery of the molded body 81. The dividing line 82 may be drawn in a virtual plane including the axis Cf of the outer periphery 71. Subsequently, a wedge type 83 for splitting is inserted into the internal space of the molded body 81. When a load is applied to the wedge mold 83 in the insertion direction, since the wedge mold 83 has a shape larger than the internal space of the molded body 81, the molded body 81 is divided into two along the split line 82. Thus, in each of the divided bodies 84a and 84b, a fracture surface 85 generated by the fracture of the finished body is formed as a mating surface. When the fracture surfaces 85 are overlapped and recombined, the divided bodies 84a and 84b are finished into finished bodies again. Thus, the sub chamber partition 75 is manufactured. The mating surfaces of the divided bodies 84a and 84b are formed by the fracture surface 85, and the divided bodies 84a and 84b are joined to each other by the complicated three-dimensional fracture surface 85, so that leakage of the flame jet is prevented at the mating surface. Productivity and performance can be increased.

副室隔壁75の製造にあたって個々の分割体76、77ごとに鍛造加工が用いられてもよい。このとき、図12に示されるように、分割体76の合わせ面78、79には、合わせ面78、79同士が重なった際に噴孔67を形作る窪み溝86が形成されてもよい。合わせ面78、79が重なるだけで噴孔67が確立されるので、ドリルなどによる穴開け作業が省略されるとともに、こうした分割体76、77は鍛造加工で成型されることができるので、生産性は向上する。鍛造加工では、金型の形状に倣って縮径部65bまで空間を有する第1筒部65aが形成され、テーパー形状の第2ドリルで残りの空間が穿たれてもよい。   For the production of the sub-chamber partition wall 75, forging may be used for each of the divided bodies 76 and 77. At this time, as shown in FIG. 12, a recessed groove 86 that forms the injection hole 67 when the mating surfaces 78 and 79 overlap each other may be formed in the mating surfaces 78 and 79 of the divided body 76. Since the injection hole 67 is established only by the overlapping of the mating surfaces 78 and 79, the drilling operation by a drill or the like is omitted, and the divided bodies 76 and 77 can be formed by forging, so that productivity is improved. Will improve. In the forging process, the first cylindrical portion 65a having a space up to the reduced diameter portion 65b may be formed following the shape of the mold, and the remaining space may be drilled with a tapered second drill.

その他、図13に示されるように、いずれの実施形態に係る副室隔壁58、75も気筒ごとに1つの吸気弁49と1つの排気弁52とを備える内燃機関24aに適用されることができる。このとき、通路73を含む燃料噴射通路45aの中心軸線87は、吸気弁49の中心軸線と排気弁52の中心軸線とを含む仮想平面88に直交し、第1点火プラグ43の中心軸線Cpを含む仮想平面89内に配置される。燃料噴射通路45aに接続される燃料噴射弁29は吸気弁49と排気弁52との間で吸気弁49の中心軸線と排気弁52の中心軸線とを含む仮想平面88に直交する仮想平面89に沿って傾斜することができ、吸気弁49および排気弁52に干渉せずに燃料噴射弁29の配置スペースは十分に確保されることができる。   In addition, as shown in FIG. 13, the sub-chamber partition walls 58 and 75 according to any of the embodiments can be applied to the internal combustion engine 24a including one intake valve 49 and one exhaust valve 52 for each cylinder. . At this time, the central axis 87 of the fuel injection passage 45a including the passage 73 is orthogonal to a virtual plane 88 including the central axis of the intake valve 49 and the central axis of the exhaust valve 52, and the central axis Cp of the first spark plug 43 is The virtual plane 89 is included. The fuel injection valve 29 connected to the fuel injection passage 45 a is arranged on a virtual plane 89 orthogonal to a virtual plane 88 including the central axis of the intake valve 49 and the central axis of the exhaust valve 52 between the intake valve 49 and the exhaust valve 52. Accordingly, the fuel injection valve 29 can be sufficiently disposed in the space without interfering with the intake valve 49 and the exhaust valve 52.

24…内燃機関、24a…内燃機関、27…シリンダーヘッド、27a…吸気ポート、27b…排気ポート、41…燃焼室、42…副室、43…点火プラグ(第1点火プラグ)、43a…点火点、44a…副室孔部(縦孔)、45a…燃料噴射通路、49…吸気弁、52…排気弁、56…支持面(段差)、57…フランジ、58…副室隔壁、58a…周壁部、58b…底壁部、67…噴孔、71…外周、72…内周、75…副室隔壁、75a…周壁部、75b…底壁部、76…分割体、77…分割体、78…合わせ面、79…合わせ面、84a…分割体、84b…分割体、85…破断面、86…窪み溝、88…(吸気弁の中心軸線および排気弁の中心軸線を結ぶ)仮想平面、89…(仮想平面に直交する)仮想平面、Cf…(外周の)第1軸芯、Cp…(点火プラグの)中心軸線、Cs…(内周の)第2軸芯、t…(周壁部の)肉厚。
24 ... Internal combustion engine, 24a ... Internal combustion engine, 27 ... Cylinder head, 27a ... Intake port, 27b ... Exhaust port, 41 ... Combustion chamber, 42 ... Sub-chamber, 43 ... Spark plug (first spark plug), 43a ... Ignition point , 44a ... sub chamber hole (vertical hole), 45a ... fuel injection passage, 49 ... intake valve, 52 ... exhaust valve, 56 ... support surface (step), 57 ... flange, 58 ... sub chamber partition, 58a ... peripheral wall 58b ... bottom wall portion, 67 ... injection hole, 71 ... outer periphery, 72 ... inner periphery, 75 ... sub-chamber partition wall, 75a ... peripheral wall portion, 75b ... bottom wall portion, 76 ... divided body, 77 ... divided body, 78 ... Matching surface, 79 ... mating surface, 84a ... divided body, 84b ... divided body, 85 ... fracture surface, 86 ... hollow groove, 88 ... virtual plane (connecting the central axis of the intake valve and the central axis of the exhaust valve), 89 ... Virtual plane (perpendicular to virtual plane), Cf ... (outer) first axis , Cp ... (spark plug) central axis, Cs ... (inner circumference) of the second axial (of the peripheral wall portion) t ... thickness.

Claims (10)

点火プラグ(43)の中心軸線(Cp)に沿って燃焼室(41)から延びる縦孔(44a)の内壁に接する周壁部(58a;75a)と、前記周壁部(58a;75a)から連続して、前記縦孔(44a)から前記燃焼室(41)に向かって張り出す底壁部(58b;75b)とを有し、前記周壁部(58a;75a)と前記底壁部(58b;75b)とで点火プラグ(43)の点火点(43a)を覆って前記燃焼室(41)に通じる副室(42)を形成する副室隔壁(58;75)を備える内燃機関(24;24a)において、
前記周壁部(58a;75a)は、前記中心軸線(Cp)回りの周方向に異なる肉厚(t)を有し、前記肉厚(t)の方向に前記周壁部(58a;75a)を貫通して前記燃焼室(41)に臨む複数の噴孔(67)を有する
ことを特徴とする内燃機関。
A peripheral wall portion (58a; 75a) contacting the inner wall of the vertical hole (44a) extending from the combustion chamber (41) along the central axis (Cp) of the spark plug (43), and continuous from the peripheral wall portion (58a; 75a). A bottom wall portion (58b; 75b) projecting from the vertical hole (44a) toward the combustion chamber (41), and the peripheral wall portion (58a; 75a) and the bottom wall portion (58b; 75b). ) And a sub-chamber partition wall (58; 75) that forms a sub-chamber (42) that covers the ignition point (43a) of the spark plug (43) and communicates with the combustion chamber (41). In
The peripheral wall portion (58a; 75a) has a different thickness (t) in the circumferential direction around the central axis (Cp) and penetrates the peripheral wall portion (58a; 75a) in the direction of the thickness (t). An internal combustion engine having a plurality of nozzle holes (67) facing the combustion chamber (41).
請求項1に記載の内燃機関において、前記周壁部(58a;75a)は、外周(71)の軸芯(Cf)から偏心した軸芯(Cs)を有する内周(72)を有することを特徴とする内燃機関。   2. The internal combustion engine according to claim 1, wherein the peripheral wall portion (58 a; 75 a) has an inner periphery (72) having an axis (Cs) eccentric from an axis (Cf) of the outer periphery (71). An internal combustion engine. 請求項1または2に記載の内燃機関において、前記周壁部(58a;75a)では、小さい肉厚(t)の領域に比べて大きい肉厚(t)の領域で前記噴孔(67)の孔径は大きいことを特徴とする内燃機関。   3. The internal combustion engine according to claim 1, wherein, in the peripheral wall portion (58 a; 75 a), the hole diameter of the injection hole (67) is larger in a region having a larger thickness (t) than in a region having a smaller thickness (t). Is an internal combustion engine characterized by being large. 請求項1〜3のいずれか1項に記載の内燃機関において、前記噴孔(67)は、前記中心軸線(Cp)回りで放射状に延びることを特徴とする内燃機関。   The internal combustion engine according to any one of claims 1 to 3, wherein the nozzle hole (67) extends radially around the central axis (Cp). 請求項1〜4のいずれか1項に記載の内燃機関において、前記周壁部(58a;75a)には、前記点火点(43a)と前記噴孔(67)との間の空間に臨んで前記中心軸線(Cp)に指向する燃料噴射通路(45a)が形成されることを特徴とする内燃機関。   5. The internal combustion engine according to claim 1, wherein the peripheral wall portion (58 a; 75 a) faces the space between the ignition point (43 a) and the injection hole (67). An internal combustion engine having a fuel injection passage (45a) directed toward the central axis (Cp). 請求項5に記載の内燃機関において、
前記燃焼室(41)内に配置されて、前記燃焼室(41)に開口する1つの吸気ポート(27a)の開閉を司る1つの吸気弁(49)と、
前記燃焼室(41)内に配置されて、前記燃焼室(41)に開口する1つの排気ポート(27b)の開閉を司る1つの排気弁(52)とを備え、
吸気弁(49)の中心軸線と排気弁(52)の中心軸線とを含む仮想平面(88)に直交し、前記点火プラグ(43)の中心軸線(Cp)を含む仮想平面(89)内に前記燃料噴射通路(45a)の中心軸線は配置される
ことを特徴とする内燃機関。
The internal combustion engine according to claim 5,
A single intake valve (49) disposed in the combustion chamber (41) for controlling opening and closing of a single intake port (27a) that opens to the combustion chamber (41);
An exhaust valve (52) disposed in the combustion chamber (41) for controlling the opening and closing of one exhaust port (27b) opening to the combustion chamber (41);
In a virtual plane (89) perpendicular to the virtual plane (88) including the central axis of the intake valve (49) and the central axis of the exhaust valve (52) and including the central axis (Cp) of the spark plug (43). The internal combustion engine, wherein a central axis of the fuel injection passage (45a) is disposed.
請求項1〜6のいずれか1項に記載の内燃機関において、
開放端で前記燃焼室(41)外の空間に開放される前記縦孔(44a)、および、前記縦孔(44a)の前記開放端で前記縦孔(44a)の縁から前記中心軸線(Cp)に直交する仮想平面に沿って外側に広がる支持面(56)を有するシリンダーヘッド(27)を備え、
前記副室隔壁(58;75)は、前記周方向に複数の分割体(76、77;84a、84b)に分割されるとともに、前記中心軸線(Cp)回りで連続し前記支持面(56)に押し当てられるフランジ(57)を有する
ことを特徴とする内燃機関。
The internal combustion engine according to any one of claims 1 to 6,
The vertical hole (44a) opened to the space outside the combustion chamber (41) at the open end, and the central axis (Cp) from the edge of the vertical hole (44a) at the open end of the vertical hole (44a) A cylinder head (27) having a support surface (56) extending outward along a virtual plane orthogonal to
The sub-chamber partition wall (58; 75) is divided into a plurality of divided bodies (76, 77; 84a, 84b) in the circumferential direction, and continues around the central axis (Cp) to support the support surface (56). An internal combustion engine having a flange (57) pressed against the engine.
請求項7に記載の内燃機関において、前記噴孔(67)の孔径は前記燃焼室(41)側に比べて前記周壁部(75a)の内面側で大きいことを特徴とする内燃機関。   The internal combustion engine according to claim 7, wherein the hole diameter of the injection hole (67) is larger on the inner surface side of the peripheral wall portion (75a) than on the combustion chamber (41) side. 請求項7または8に記載の内燃機関において、前記分割体(84a、84b)は、前記副室隔壁(75)の完成体の破断で生じ、再結合される破断面(85)を有することを特徴とする内燃機関。   9. The internal combustion engine according to claim 7, wherein the divided body (84 a, 84 b) has a fracture surface (85) that is generated when the completed body of the sub-chamber partition wall (75) is broken and recombined. A characteristic internal combustion engine. 請求項7または8に記載の内燃機関において、前記分割体(76、77)の合わせ面(78、79)には、前記合わせ面(78、79)同士が重なった際に前記噴孔(67)を形作る窪み溝(86)が形成されることを特徴とする内燃機関。
The internal combustion engine according to claim 7 or 8, wherein the nozzle holes (67) are formed when the mating surfaces (78, 79) overlap with the mating surfaces (78, 79) of the divided bodies (76, 77). An internal combustion engine characterized in that a recess groove (86) is formed.
JP2018015896A 2018-01-31 2018-01-31 Internal combustion engine Pending JP2019132213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018015896A JP2019132213A (en) 2018-01-31 2018-01-31 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018015896A JP2019132213A (en) 2018-01-31 2018-01-31 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2019132213A true JP2019132213A (en) 2019-08-08

Family

ID=67545867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018015896A Pending JP2019132213A (en) 2018-01-31 2018-01-31 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2019132213A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173524A (en) * 1981-01-17 1982-10-25 Bosch Gmbh Robert Internal combustion engine ignited from outside
JPH0730329U (en) * 1993-10-25 1995-06-06 三菱重工業株式会社 Combustion chamber of a sub-chamber internal combustion engine
JPH1047064A (en) * 1996-08-02 1998-02-17 Yanmar Diesel Engine Co Ltd Auxiliary chamber structure of prechamber type gas engine
JP2001003753A (en) * 1999-06-21 2001-01-09 Mitsubishi Heavy Ind Ltd Auxiliary chamber system of gas engine
JP2011208499A (en) * 2010-03-26 2011-10-20 Osaka Gas Co Ltd Engine and ignition plug mounted on the same
JP2017101647A (en) * 2015-12-04 2017-06-08 株式会社デンソー Internal combustion engine and ignition plug
JP2018096218A (en) * 2016-12-08 2018-06-21 三菱重工エンジン&ターボチャージャ株式会社 Auxiliary chamber type gas engine
JP2019031961A (en) * 2017-08-09 2019-02-28 トヨタ自動車株式会社 Internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173524A (en) * 1981-01-17 1982-10-25 Bosch Gmbh Robert Internal combustion engine ignited from outside
JPH0730329U (en) * 1993-10-25 1995-06-06 三菱重工業株式会社 Combustion chamber of a sub-chamber internal combustion engine
JPH1047064A (en) * 1996-08-02 1998-02-17 Yanmar Diesel Engine Co Ltd Auxiliary chamber structure of prechamber type gas engine
JP2001003753A (en) * 1999-06-21 2001-01-09 Mitsubishi Heavy Ind Ltd Auxiliary chamber system of gas engine
JP2011208499A (en) * 2010-03-26 2011-10-20 Osaka Gas Co Ltd Engine and ignition plug mounted on the same
JP2017101647A (en) * 2015-12-04 2017-06-08 株式会社デンソー Internal combustion engine and ignition plug
JP2018096218A (en) * 2016-12-08 2018-06-21 三菱重工エンジン&ターボチャージャ株式会社 Auxiliary chamber type gas engine
JP2019031961A (en) * 2017-08-09 2019-02-28 トヨタ自動車株式会社 Internal combustion engine

Similar Documents

Publication Publication Date Title
CA2921629C (en) Pre-chamber gas valve
EP1777385A2 (en) Internal combustion engine with auxiliary combustion chamber
US10196963B2 (en) Internal combustion engine
JP6307102B2 (en) cylinder head
JP2000136725A (en) Cylinder for layered scavenging two cycle engine
JP5019973B2 (en) Cylinder for two-cycle engine and manufacturing method thereof
JP2019132213A (en) Internal combustion engine
US6041499A (en) Method for manufacturing a cylinder for two-stroke internal combustion engine and the cylinder manufactured thereby
JP2019116865A (en) Internal combustion engine
KR20120083704A (en) Forming method for outlet part of injection pump
JP6078630B2 (en) Cylinder head and engine
JP2018172975A (en) Internal combustion engine
JP2017214914A (en) Engine combustion chamber structure
JP2005264815A (en) Internal combustion engine
JP6640178B2 (en) Internal combustion engine
US20020000038A1 (en) Method for manufacturing a cylinder for internal combustion engine
JPH1182242A (en) Injection nozzle fixing structure of internal combustion engine
WO2020196209A1 (en) Auxiliary chamber type internal combustion engine
JP7260331B2 (en) Internal combustion engine with auxiliary combustion chamber
KR20230035606A (en) Prechamber spark plug and internal combustion engine with optimized cap
JP2003049822A (en) Connecting rod of internal combustion engine
JP2021080899A (en) Internal combustion engine
JP2020165392A (en) Cylinder injection engine
JP5059727B2 (en) Core support structure
JP4480686B2 (en) Combustion chamber structure of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220323