JP2019131877A - LEACHING METHOD OF Sn AND MANUFACTURING METHOD OF Sn - Google Patents

LEACHING METHOD OF Sn AND MANUFACTURING METHOD OF Sn Download PDF

Info

Publication number
JP2019131877A
JP2019131877A JP2018017246A JP2018017246A JP2019131877A JP 2019131877 A JP2019131877 A JP 2019131877A JP 2018017246 A JP2018017246 A JP 2018017246A JP 2018017246 A JP2018017246 A JP 2018017246A JP 2019131877 A JP2019131877 A JP 2019131877A
Authority
JP
Japan
Prior art keywords
leaching
liquid separation
solid
scum
leachate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018017246A
Other languages
Japanese (ja)
Other versions
JP6959160B2 (en
Inventor
拓也 横田
Takuya Yokota
拓也 横田
瑛基 小野
Eiki Ono
瑛基 小野
琢真 武井
Takuma Takei
琢真 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018017246A priority Critical patent/JP6959160B2/en
Publication of JP2019131877A publication Critical patent/JP2019131877A/en
Application granted granted Critical
Publication of JP6959160B2 publication Critical patent/JP6959160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

To provide a leaching method of Sn and a manufacturing method of Sn, capable of suppressing reduction of leaching rate of Sn.SOLUTION: A leaching method of Sn includes a Sn leaching process for leaching Sn to Sn scum containing Pb by using a leaching liquid, and a solid-liquid separation process for conducting solid-liquid separation on the leaching liquid within 1.5 hr. after completion of leaching of Sn in the Sn leaching process.SELECTED DRAWING: Figure 1

Description

本発明は、Snの浸出方法およびSnの製造方法に関する。   The present invention relates to a method for leaching Sn and a method for producing Sn.

例えば、銅製錬などで発生する鉛(Pb)滓などの鉛原料から製品Pbを製造する鉛製錬において、Pbを含有する錫(Sn)スカムが発生する。Snスカムを浸出工程に供すると、浸出液にSnが溶出する。得られた浸出後液に対して電解採取を行うことで、製品Snを製造することができる(例えば、特許文献1参照)。   For example, in lead smelting that produces a product Pb from a lead raw material such as lead (Pb) soot generated in copper smelting or the like, tin (Sn) scum containing Pb is generated. When Sn scum is subjected to the leaching step, Sn elutes in the leaching solution. Product Sn can be manufactured by performing electrowinning on the obtained liquid after leaching (see, for example, Patent Document 1).

特開2013−234356号公報JP 2013-234356 A

しかしながら、Snの浸出工程において、一旦溶出したSnがPbとともに複合酸化物を形成し、沈殿するおそれがある。この場合、Snの浸出率が低下するおそれがある。   However, in the Sn leaching step, Sn once eluted may form a composite oxide together with Pb and precipitate. In this case, the Sn leaching rate may be reduced.

本発明は上記の課題に鑑み、Snの浸出率低下を抑制することができるSnの浸出方法およびSnの製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a Sn leaching method and a Sn manufacturing method capable of suppressing a decrease in Sn leaching rate.

本発明に係るSnの浸出方法は、Pbを含むSnスカムに対し、浸出液を用いてSnを浸出するSn浸出工程と、前記Sn浸出工程におけるSnの浸出の終了後、1.5時間以内に前記浸出液に対して固液分離を行う固液分離工程と、を含むことを特徴とする。   The Sn leaching method according to the present invention includes an Sn leaching step of leaching Sn with respect to Sn scum containing Pb, and within 1.5 hours after completion of Sn leaching in the Sn leaching step. And a solid-liquid separation step of performing solid-liquid separation on the leachate.

本発明に係るSnの浸出方法は、Pbを含むSnスカムに対し、浸出液を用いてSnを浸出するSn浸出工程と、前記Sn浸出工程の開始後、1時間以上3時間以内に前記浸出液に対して固液分離を行う固液分離工程と、を含むことを特徴とする。   The Sn leaching method according to the present invention includes a Sn leaching process for leaching Sn with respect to Sn scum containing Pb, and the leaching liquid within 1 hour to 3 hours after the start of the Sn leaching process. And a solid-liquid separation step of performing solid-liquid separation.

前記Sn浸出工程において、前記浸出液を撹拌してもよい。前記Sn浸出工程で生じる浸出残渣を鉛電気炉または炭酸化工程に供給してもよい。前記Snスカムは、前記鉛電気炉で得られた粗鉛にソーダ処理を行うことで得られるものであってもよい。   In the Sn leaching step, the leachate may be stirred. The leaching residue generated in the Sn leaching step may be supplied to a lead electric furnace or a carbonation step. The Sn scum may be obtained by performing a soda treatment on the crude lead obtained in the lead electric furnace.

本発明に係るSnの製造方法は、上記のSnの浸出方法によって得られた浸出後液に対して電解採取することで、Snを析出させることを特徴とする。   The method for producing Sn according to the present invention is characterized in that Sn is deposited by electrolytically collecting the leached solution obtained by the above-described Sn leaching method.

本発明によれば、Snの浸出率低下を抑制することができるSnの浸出方法およびSnの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the Sn leaching method and Sn manufacturing method which can suppress the leaching rate fall of Sn can be provided.

SnおよびPbを製造する工程の一例について説明する図である。It is a figure explaining an example of the process of manufacturing Sn and Pb. 実施例の測定結果を示す図である。It is a figure which shows the measurement result of an Example. 実施例の測定結果を示す図である。It is a figure which shows the measurement result of an Example. 比較例の測定結果を示す図である。It is a figure which shows the measurement result of a comparative example. 比較例の測定結果を示す図である。It is a figure which shows the measurement result of a comparative example.

以下、本発明を実施するための実施形態について説明する。   Hereinafter, an embodiment for carrying out the present invention will be described.

図1は、製品Snおよび製品Pbを製造する製造工程の一例について説明する図である。図1で例示するように、銅製錬工程、銅電解工程などで発生する鉛滓、キレート中和滓、排バッテリー等の鉛原料に対して脱銅および炭酸化が行われる。脱銅および炭酸化によって得られた炭酸鉛は、Pb原料としてPb電気炉に投入される。炭酸鉛は、Pb電気炉で800℃〜900℃で溶融することによって、粗Pbメタルとスラグとに分離する。   FIG. 1 is a diagram illustrating an example of a manufacturing process for manufacturing the product Sn and the product Pb. As illustrated in FIG. 1, copper removal and carbonation are performed on lead raw materials such as lead soot, chelate neutralization soot, and exhaust batteries generated in a copper smelting process, a copper electrolysis process, and the like. Lead carbonate obtained by copper removal and carbonation is put into a Pb electric furnace as a Pb raw material. Lead carbonate is separated into crude Pb metal and slag by melting at 800 ° C. to 900 ° C. in a Pb electric furnace.

粗Pbメタルには、不純物としてSnが含まれている。そこで、冷却した粗Pbメタルは、ハリス炉に投入される。ハリス炉では、粗Pbメタルがソーダ処理される。ソーダ処理とは、500℃程度に加熱して溶融した粗Pbメタルに、例えば苛性ソーダを添加し、さらに場合により追加の苛性ソーダおよび硝酸ソーダを添加して、Snをソーダ塩(NaSnCO)化して、溶湯表面において固形化させる処理のことである。固形化したSnのソーダ塩は、一般にSnスカムと呼ばれる。Snスカムは、一例として、乾燥した状態で、Snを10mass%〜30mass%含み、Pbを5.0mass%〜20mass%含み、Sbを2mass%〜15mass%含み、Cuを0.5mass%〜5.0mass%含み、Asを1.0mass%〜10mass%含み、Biを0.5mass%〜7.0mass%含む。 The crude Pb metal contains Sn as an impurity. Therefore, the cooled crude Pb metal is put into a Harris furnace. In the Harris furnace, the crude Pb metal is soda-treated. In the soda treatment, for example, caustic soda is added to the crude Pb metal heated to about 500 ° C. and melted, and additional caustic soda and sodium nitrate are added in some cases to convert Sn into a soda salt (Na 2 SnCO 3 ). This is a treatment for solidifying the molten metal surface. Solidified soda salt of Sn is generally called Sn scum. As an example, Sn scum contains 10 mass% to 30 mass% of Sn, 5.0 mass% to 20 mass% of Pb, 2 mass% to 15 mass% of Sb, and 0.5 mass% to 5. 0 mass% is contained, As is contained 1.0 mass% to 10 mass%, and Bi is contained 0.5 mass% to 7.0 mass%.

Snスカムは、Sn製造用のSn原料として利用される。具体的には、Snスカムは、Snを浸出するSn浸出工程に供される。得られた浸出後液は、電解採取工程に供され、製品Snが製造される。Sn浸出工程の浸出残渣は、鉛電気炉または炭酸化工程に繰り返される。一方、ハリス炉で粗Pbメタルをソーダ処理することによって、Pbメタルが得られる。このPbメタルは、電解精製工程に供され、製品Pbが製造される。   Sn scum is used as an Sn raw material for producing Sn. Specifically, the Sn scum is subjected to a Sn leaching process for leaching Sn. The obtained post-leaching solution is subjected to an electrowinning process to produce a product Sn. The leaching residue of the Sn leaching process is repeated in the lead electric furnace or the carbonation process. On the other hand, Pb metal is obtained by soda processing the crude Pb metal in a Harris furnace. This Pb metal is subjected to an electrolytic purification process to produce a product Pb.

Sn浸出工程においては、Snスカムが純水などの浸出液に投入され、当該浸出液に対して加温および攪拌が行われる。Snスカムは、ハリス炉でソーダ処理を行った際に発生するものであるため、純水で浸出した溶液は、アルカリ性を示す。Snは、アルカリ性を示す浸出液中にSnイオンとして溶出する。浸出液のNaOH濃度は、70g/L〜80g/であることが好ましい。浸出液のNaOH濃度が70g/L未満であれば、NaOHなどのアルカリを追加してもよい。また、浸出液のNaOH濃度が低くなることが予想される場合には、浸出液として、純水ではなくNaOH溶液などを用いてもよい。   In the Sn leaching step, Sn scum is put into a leaching solution such as pure water, and the leaching solution is heated and stirred. Since Sn scum is generated when a soda treatment is performed in a Harris furnace, a solution leached with pure water exhibits alkalinity. Sn elutes as Sn ions in the leachate showing alkalinity. The NaOH concentration of the leachate is preferably 70 g / L to 80 g /. If the NaOH concentration of the leachate is less than 70 g / L, an alkali such as NaOH may be added. Moreover, when it is anticipated that the NaOH concentration of the leachate will be lowered, an NaOH solution or the like may be used as the leachate instead of pure water.

また、Snスカムには、Pbも含まれるため、浸出液中にPbイオンが溶出する。このまま加温および攪拌が継続されると、浸出液中において、SnイオンとPbイオンとが共存することになる。SnイオンとPbイオンとが共存する浸出液において、固形分が存在すると、当該固形分を核としてSnおよびPbの複合酸化物が形成されて沈殿する。すなわち、一旦溶出したSnが沈殿することになるため、浸出率が低下してしまう。Sn浸出工程の残渣は、鉛電気炉または炭酸化工程に繰り返されるため、鉛電気炉に対するSnの繰り返し量が増え、処理コストおよびSnのスラグロスが大きくなるおそれがある。   Moreover, since Sn scum contains Pb, Pb ions are eluted in the leachate. If heating and stirring are continued in this state, Sn ions and Pb ions coexist in the leachate. In the leachate in which Sn ions and Pb ions coexist, if a solid content is present, a composite oxide of Sn and Pb is formed and precipitated with the solid content as a nucleus. That is, once eluted Sn is precipitated, the leaching rate is reduced. Since the residue of the Sn leaching process is repeated in the lead electric furnace or the carbonation process, the amount of Sn repeated with respect to the lead electric furnace increases, which may increase the processing cost and Sn slag loss.

そこで、本実施形態においては、浸出工程開始後、ある程度の浸出が進行した後に、固液分離を行う。それにより、SnおよびPbの複合酸化物形成のための核となる固形分が浸出液から除去されるため、SnおよびPbの複合酸化物の形成が抑制される。なお、浸出工程開始後の短時間後に固液分離を行うと、Snの浸出が十分でない場合がある。   Therefore, in the present embodiment, solid-liquid separation is performed after a certain amount of leaching has progressed after the start of the leaching process. Thereby, since the solid content which becomes the nucleus for complex oxide formation of Sn and Pb is removed from the leachate, the formation of complex oxide of Sn and Pb is suppressed. In addition, when solid-liquid separation is performed after a short time after the start of the leaching process, Sn leaching may not be sufficient.

そこで、Snの浸出が終了してからの時間に上限を設ける。Snの浸出が終了する時点は、浸出液中のSn濃度が最大となった時点とする。具体的には、事前に浸出対象のSnスカムのSn浸出のビーカー試験を行い、Snを溶かしきった時点の濃度を確認しておく。実操業のSn浸出工程において、Sn濃度を確認し、Sn濃度が当該確認された濃度の95%以上になれば、その時点が最大濃度の時点と判断してもよい。本実施形態においては、Snの浸出が終了してから1.5時間以内に固液分離を行う。この場合、SnおよびPbの複合酸化物の形成が抑制される。Snの浸出が終了してから1.0時間以内に固液分離を行うことが好ましく、Snの浸出が終了した直後に固液分離を行うことがより好ましい。   Therefore, an upper limit is set for the time after the end of Sn leaching. The time when Sn leaching ends is the time when the Sn concentration in the leaching solution becomes maximum. Specifically, a Sn leaching beaker test of Sn scum to be leached is performed in advance, and the concentration at the time when Sn is completely dissolved is confirmed. In the Sn leaching process in actual operation, the Sn concentration may be confirmed, and if the Sn concentration becomes 95% or more of the confirmed concentration, that point may be determined as the maximum concentration point. In the present embodiment, solid-liquid separation is performed within 1.5 hours after the completion of Sn leaching. In this case, the formation of a composite oxide of Sn and Pb is suppressed. It is preferable to perform solid-liquid separation within 1.0 hour after completion of Sn leaching, and it is more preferable to perform solid-liquid separation immediately after completion of Sn leaching.

または、浸出工程開始後の時間に下限を設けて固液分離を行ってもよい。一方、浸出工程開始後の長時間後に固液分離を行うと、SnおよびPbの複合酸化物の形成が進行してしまう場合がある。そこで、浸出工程開始後の時間に上限を設ける。本実施形態においては、浸出工程開始後の1時間以上、3時間以内に固液分離を行う。それにより、Snを十分に浸出したうえでSnおよびPbの複合酸化物の形成を抑制することができる。なお、浸出工程開始時点は、Snスカムを浸出液に投入した時点である。この手法では、Sn濃度を都度確認しなくてもよく、時間管理だけでよいため、労力がかからない。   Or you may provide a minimum in the time after the leaching process start, and may perform solid-liquid separation. On the other hand, when solid-liquid separation is performed for a long time after the start of the leaching process, formation of a composite oxide of Sn and Pb may proceed. Therefore, an upper limit is set for the time after the start of the leaching process. In this embodiment, solid-liquid separation is performed within 1 hour and 3 hours after the start of the leaching process. Thereby, formation of complex oxides of Sn and Pb can be suppressed after sufficiently leaching Sn. The start time of the leaching process is the time when Sn scum is introduced into the leaching solution. In this method, it is not necessary to check the Sn concentration each time, and only time management is required, so that labor is not required.

なお、核となる固形分は、浸出工程においてSnスカムから溶出しない固形分であって、例えばSnおよびPbの複合酸化物(例えば、PbSnO、PbSn)などである。この固形分が存在することで、SnおよびPbが結晶成長することで、SnおよびPbの複合酸化物が大きくなり、沈殿することになる。核となる固形分の大きさは、特に限定されるものではないが、本実施形態においては、粉から砂程度である。 In addition, the solid content which becomes a nucleus is a solid content which does not elute from Sn scum in the leaching step, and is, for example, a composite oxide of Sn and Pb (for example, PbSnO 3 , Pb 2 Sn 2 O 6 ) or the like. Due to the presence of this solid content, Sn and Pb grow as crystals, and the composite oxide of Sn and Pb becomes larger and precipitates. Although the magnitude | size of solid content used as a nucleus is not specifically limited, In this embodiment, it is a grade from sand to powder.

また、一例として、浸出液中のSnイオン濃度が45g/L〜75g/L、Pbイオン濃度が3g/L〜15g/L、NaOH濃度が50g/L〜90g/L、液温が40℃〜70℃の場合に固液分離を行うことで、浸出液中にSnイオンを多く存在させたうえでSnおよびPbの複合酸化物の形成を抑制することができる。   As an example, the Sn ion concentration in the leachate is 45 g / L to 75 g / L, the Pb ion concentration is 3 g / L to 15 g / L, the NaOH concentration is 50 g / L to 90 g / L, and the liquid temperature is 40 ° C. to 70 ° C. By performing solid-liquid separation in the case of ° C., it is possible to suppress the formation of complex oxides of Sn and Pb while allowing a large amount of Sn ions to be present in the leachate.

(実施例)
実施形態に従って、Snスカムに対してSn浸出工程を行った。用いたSnスカムの組成を表1に示す。なお、各成分濃度は、Snスカムを乾燥させた場合の濃度である。

Figure 2019131877
(Example)
According to the embodiment, the Sn leaching process was performed on the Sn scum. The composition of the Sn scum used is shown in Table 1. In addition, each component density | concentration is a density | concentration at the time of drying Sn scum.
Figure 2019131877

このSnスカム60gに対して純水を200ml加え、65℃で攪拌し、1.5時間後に固液分離を行った。固液分離後のろ液に対して、65℃で攪拌を継続した。その後、金属イオン濃度をICPで分析した。その結果を図2Aおよび図2Bに示す。   200 ml of pure water was added to 60 g of this Sn scum, stirred at 65 ° C., and solid-liquid separation was performed after 1.5 hours. Stirring was continued at 65 ° C. for the filtrate after solid-liquid separation. Thereafter, the metal ion concentration was analyzed by ICP. The results are shown in FIGS. 2A and 2B.

(比較例)
比較例においては、固液分離を行わなかった他は、実施例と同様の条件とした。ICP分析の結果を図3Aおよび図3Bに示す。
(Comparative example)
In the comparative example, the conditions were the same as in the example except that solid-liquid separation was not performed. The results of ICP analysis are shown in FIGS. 3A and 3B.

(分析)
図3Aおよび図3Bに示すように、比較例では、浸出工程開始後3時間を超えたあたりから、Snイオン濃度が低下し、浸出工程開始後24時間でのSn浸出率は79%となった。これに対して、図2Aおよび図2Bに示すように、実施例では、攪拌を継続してもSnイオン濃度の低下は見られなかった。浸出工程開始後24時間でのSn浸出率は、92%となり、比較例よりも大幅に大きくなった。これは、浸出工程開始後、1時間以上3時間以内に固液分離を行ったことで、固形分を核とするSnイオンおよびPbイオンの複合酸化物の形成が抑制されたからであると考えられる。
(analysis)
As shown in FIGS. 3A and 3B, in the comparative example, the Sn ion concentration decreased from about 3 hours after the start of the leaching process, and the Sn leaching rate at 24 hours after the start of the leaching process became 79%. . In contrast, as shown in FIGS. 2A and 2B, in the examples, the Sn ion concentration was not reduced even when stirring was continued. The Sn leaching rate 24 hours after the start of the leaching process was 92%, which was significantly larger than that of the comparative example. This is considered to be because the formation of composite oxides of Sn ions and Pb ions having solid contents as nuclei was suppressed by performing solid-liquid separation within 1 to 3 hours after the start of the leaching process. .

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (6)

Pbを含むSnスカムに対し、浸出液を用いてSnを浸出するSn浸出工程と、
前記Sn浸出工程におけるSnの浸出の終了後、1.5時間以内に前記浸出液に対して固液分離を行う固液分離工程と、を含むことを特徴とするSnの浸出方法。
A Sn leaching step of leaching Sn using a leaching solution for Sn scum containing Pb;
And a solid-liquid separation step of performing solid-liquid separation on the leachate within 1.5 hours after completion of Sn leaching in the Sn leaching step.
Pbを含むSnスカムに対し、浸出液を用いてSnを浸出するSn浸出工程と、
前記Sn浸出工程の開始後、1時間以上3時間以内に前記浸出液に対して固液分離を行う固液分離工程と、を含むことを特徴とするSnの浸出方法。
A Sn leaching step of leaching Sn using a leaching solution for Sn scum containing Pb;
And a solid-liquid separation step of performing solid-liquid separation on the leachate within 1 hour to 3 hours after the start of the Sn leaching step.
前記Sn浸出工程において、前記浸出液を撹拌することを特徴とする請求項1または2に記載のSnの浸出方法。   3. The Sn leaching method according to claim 1, wherein the leaching solution is stirred in the Sn leaching step. 前記Sn浸出工程で生じる浸出残渣を鉛電気炉または炭酸化工程に供給することを特徴とする請求項1〜3のいずれか一項に記載のSnの浸出方法。   The leaching residue produced in the Sn leaching step is supplied to a lead electric furnace or a carbonation step, and the Sn leaching method according to any one of claims 1 to 3. 前記Snスカムは、前記鉛電気炉で得られた粗鉛にソーダ処理を行うことで得られるものであることを特徴とする請求項4記載のSnの浸出方法。   5. The Sn leaching method according to claim 4, wherein the Sn scum is obtained by subjecting crude lead obtained in the lead electric furnace to soda treatment. 請求項1〜5のいずれか一項に記載のSn浸出方法によって得られた浸出後液に対して電解採取することで、Snを析出させることを特徴とするSnの製造方法。   The manufacturing method of Sn characterized by precipitating Sn by carrying out the electrolytic extraction with respect to the liquid after the leaching obtained by the Sn leaching method as described in any one of Claims 1-5.
JP2018017246A 2018-02-02 2018-02-02 Sn leaching method and Sn manufacturing method Active JP6959160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018017246A JP6959160B2 (en) 2018-02-02 2018-02-02 Sn leaching method and Sn manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018017246A JP6959160B2 (en) 2018-02-02 2018-02-02 Sn leaching method and Sn manufacturing method

Publications (2)

Publication Number Publication Date
JP2019131877A true JP2019131877A (en) 2019-08-08
JP6959160B2 JP6959160B2 (en) 2021-11-02

Family

ID=67547243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017246A Active JP6959160B2 (en) 2018-02-02 2018-02-02 Sn leaching method and Sn manufacturing method

Country Status (1)

Country Link
JP (1) JP6959160B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322031A (en) * 2005-05-18 2006-11-30 Dowa Mining Co Ltd Method for recovering metal
JP2009035778A (en) * 2007-08-02 2009-02-19 Dowa Metals & Mining Co Ltd Method for recovering tin
JP2011214021A (en) * 2010-03-31 2011-10-27 Mitsui Mining & Smelting Co Ltd Method of producing valuable metal
JP2014065941A (en) * 2012-09-26 2014-04-17 Dowa Metals & Mining Co Ltd Recovery method of tin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322031A (en) * 2005-05-18 2006-11-30 Dowa Mining Co Ltd Method for recovering metal
JP2009035778A (en) * 2007-08-02 2009-02-19 Dowa Metals & Mining Co Ltd Method for recovering tin
JP2011214021A (en) * 2010-03-31 2011-10-27 Mitsui Mining & Smelting Co Ltd Method of producing valuable metal
JP2014065941A (en) * 2012-09-26 2014-04-17 Dowa Metals & Mining Co Ltd Recovery method of tin

Also Published As

Publication number Publication date
JP6959160B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
CN102634666B (en) Method for dearsenicating fresh high-arsenium lead anode slime under oxygen pressure
JP4219947B2 (en) How to recover lead
KR20210154840A (en) Method of manufacturing battery precursor
TWI465579B (en) Method for recycling metal in waste catalyst comprised of aluminum
CN103757420A (en) Method for recovering lead and silver from zinc leaching residues
CN103993180A (en) Method for recovering valuable metals from scrap copper anode slime
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
CN101328539A (en) Oxidation oven ash hydrometallurgical leaching process
JP2015105413A (en) Method for manufacturing gold powder with high bulk density
JP2007009274A (en) Method for recovering indium
CN106222421A (en) Gold mud treatment method
JPS604892B2 (en) How to recover metal from copper refining anode slime
CN104164567A (en) Method for enriching and recycling niobium and tantalum from waste high-temperature alloy
JP5507310B2 (en) Method for producing valuable metals
JP2010138490A (en) Method of recovering zinc
JP6335519B2 (en) Method for treating antimony-containing material discharged from tin smelting process
JP2014185063A (en) RECOVERY METHOD OF In-Ga-Zn OXIDE FROM IGZO SINTERED COMPACT
CN104004917A (en) Method for recovering terne metal from scrap copper anode mud
JP2019131877A (en) LEACHING METHOD OF Sn AND MANUFACTURING METHOD OF Sn
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
RU2421529C1 (en) Procedure for production of refined silver
JP2013234356A (en) Pyrometallurgy process for lead using high impurity-containing lead slag as raw material
JP6869053B2 (en) How to collect antimony
JP2019085618A (en) Recovery method of antimony
JP2019157240A (en) REMOVAL METHOD OF Sn AND MANUFACTURING METHOD OF Pb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R151 Written notification of patent or utility model registration

Ref document number: 6959160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151