JP2019123002A - Deformation analysis method for material to be pressed - Google Patents

Deformation analysis method for material to be pressed Download PDF

Info

Publication number
JP2019123002A
JP2019123002A JP2018006562A JP2018006562A JP2019123002A JP 2019123002 A JP2019123002 A JP 2019123002A JP 2018006562 A JP2018006562 A JP 2018006562A JP 2018006562 A JP2018006562 A JP 2018006562A JP 2019123002 A JP2019123002 A JP 2019123002A
Authority
JP
Japan
Prior art keywords
deformation
pressed
analysis
stress distribution
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018006562A
Other languages
Japanese (ja)
Other versions
JP6967823B2 (en
Inventor
正彦 福島
Masahiko Fukushima
正彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018006562A priority Critical patent/JP6967823B2/en
Publication of JP2019123002A publication Critical patent/JP2019123002A/en
Application granted granted Critical
Publication of JP6967823B2 publication Critical patent/JP6967823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

To provide a deformation analysis method for a material to be pressed capable of performing a deformation analysis at the time of press forming in short time.SOLUTION: A deformation analysis method for a material to be pressed as the method for analyzing deformation of the material to be pressed when performing mold-opening from a state of performing mold-clamping of the material to be pressed with a press mold includes a correlation acquisition step S41 of acquiring correlation between a stress distribution generated on the material to be pressed when applying a heat load to the material to be pressed and the heat load, a heat load applying step S42 of substituting the stress distribution generated on the material to be pressed in a mold-clamping state with the heat load based on correlation to apply the heat load to an analytic model 10 of the material to be pressed and a deformation analysis step S43 of analyzing the deformation of the analysis model 10 of the material to be pressed when turning to the mold-opening state from the mold-clamping state.SELECTED DRAWING: Figure 2

Description

本発明は、被プレス材の変形解析方法に関する。   The present invention relates to a method of analyzing deformation of a material to be pressed.

例えば、自動車ボデーに用いられる鋼板などのパネル状部品の製造工程においては、プレス成形が一般的に用いられている。このようにプレス成形により得られた部品(以後、プレス部品)は、通常、プレス成形時(特に型締め時)に生じた残留応力によって型開き時にスプリングバックを少なからず生じる。このスプリングバックは寸法精度不良の原因となり得るため、FEM(有限要素法)などを用いた数値解析により事前にプレス成形時の変形を予測し、対策を検討している(例えば、特許文献1を参照)。   For example, in the process of manufacturing panel-like parts such as steel plates used in automobile bodies, press forming is generally used. As described above, a part obtained by press molding (hereinafter referred to as a pressed part) usually causes a considerable amount of springback at the time of mold opening due to the residual stress generated at the time of press molding (particularly at the time of mold clamping). Since this spring back can cause dimensional accuracy defects, deformation during press molding is predicted in advance by numerical analysis using FEM (finite element method) or the like, and measures are considered (for example, Patent Document 1). reference).

特開2013−198927号公報JP, 2013-198927, A

ところで、上述のように、プレス成形時の変形を解析する場合、条件によっては、予め所定の応力分布(残留応力分布)が型締め状態の被プレス材に生じるように、解析条件として被プレス材に所定の応力分布を付与することが望ましい場合がある。この場合、被プレス材の解析モデルに対して所定の応力分布を付与する方式としては、変位又は負荷で付与する方式が一般的であるが、変位や負荷だと、大きさに加えて向きの情報も指定する必要があるため、計算量が膨大になる問題がある。   By the way, when analyzing the deformation at the time of press molding as described above, depending on the conditions, the material to be pressed as an analysis condition so that a predetermined stress distribution (residual stress distribution) is generated in the clamped material in a clamped state. It may be desirable to apply a predetermined stress distribution to the In this case, as a method of applying a predetermined stress distribution to an analysis model of a material to be pressed, a method of applying a displacement or a load is generally used, but in the case of a displacement or a load, in addition to the size, the direction Since it is also necessary to specify information, there is a problem that the amount of calculation becomes enormous.

以上の事情に鑑み、本発明では、プレス成形時の変形解析を短時間で実施可能とすることを、解決すべき技術課題とする。   In view of the above-mentioned circumstances, in the present invention, it is a technical problem to be solved that deformation analysis at the time of press molding can be performed in a short time.

前記課題の解決は、本発明に係る被プレス材の変形解析方法によって達成される。すなわち、この解析方法は、被プレス材をプレス型で型締めした状態から型開きしたときの被プレス材の変形を解析する方法であって、被プレス材に熱荷重を付与した際に被プレス材に生じる応力分布と、熱荷重との相関を取得する相関取得ステップと、相関に基づいて、型締め状態で被プレス材に生じる応力分布を熱荷重で代替して被プレス材の解析モデルに付与する熱荷重付与ステップと、型締め状態から型開き状態としたときの被プレス材の解析モデルの変形を解析する変形解析ステップとを備えた点をもって特徴付けられる。   The solution to the above problem is achieved by the deformation analysis method of a material to be pressed according to the present invention. That is, this analysis method is a method of analyzing the deformation of the material to be pressed when the material to be pressed is opened with the press mold, and when the thermal load is applied to the material to be pressed Based on the correlation acquisition step of acquiring the correlation between the stress distribution occurring in the material and the thermal load and the correlation, the stress distribution occurring in the material to be pressed in the clamped state is replaced with the thermal load to obtain an analysis model of the material to be pressed It is characterized in that it comprises a thermal load application step to be applied, and a deformation analysis step of analyzing deformation of an analysis model of the material to be pressed when the mold is in a mold open state from the mold clamping state.

このように、本発明に係る解析方法では、プレス成形の型締め状態において実際にはプレス荷重など熱以外の要因に基づいて生じる応力分布を解析上では熱荷重で代替して被プレス材の解析モデルに付与するようにした。この種のプレス成形において被プレス材に熱荷重を付与した際に、すなわち型締め状態で熱を付与した際に被プレス材に生じる応力分布と、熱荷重との間には一定の相関が認められる。よって、この相関に基づいて、付与すべき所望の応力分布が型締め状態の被プレス材に生じるように、被プレス材の解析モデルに所定の熱荷重を付与するようにした。これにより、熱の大きさのみを指定すれば足りるため、計算量を従来に比べて大幅に減らすことができる。よって、被プレス材の変形解析に要する時間を短縮しつつも、正確な変形解析を行うことができる。   As described above, in the analysis method according to the present invention, the stress distribution generated based on factors other than heat, such as the press load, in the clamping state of press forming is replaced by the heat load on the analysis to analyze the pressed material Added to the model. When a thermal load is applied to the material to be pressed in this type of press molding, that is, when heat is applied in the mold clamped state, a certain correlation is recognized between the stress distribution generated in the material to be pressed and the thermal load. Be Therefore, based on this correlation, a predetermined thermal load is applied to the analysis model of the material to be pressed so that the desired stress distribution to be applied is generated in the material to be pressed in the clamped state. As a result, since it is sufficient to specify only the magnitude of heat, the amount of calculation can be significantly reduced compared to the prior art. Therefore, accurate deformation analysis can be performed while shortening the time required for deformation analysis of the material to be pressed.

また、本発明に係る被プレス材の変形解析方法においては、相関取得ステップにおいて、被プレス材の基本形状モデルに熱荷重を付与した際に基本形状モデルに生じる応力分布を解析により算出し、算出した応力分布と熱荷重との相関を取得してもよい。   Further, in the deformation analysis method of the material to be pressed according to the present invention, in the correlation acquisition step, the stress distribution generated in the basic shape model when the thermal load is applied to the basic shape model of the material to be pressed is calculated by analysis The correlation between the stress distribution and the thermal load may be acquired.

このように、被プレス材の基本形状モデルに熱荷重を付与した際の応力分布であれば、簡単な解析で求めることができる。よって、上述した応力分布と熱荷重との相関を短時間で取得することができ、これにより被プレス材の変形解析に要する時間をさらに短縮することができる。また、上述した解析は、応力分布と熱荷重との相関(傾向)を取得することを目的として成される解析であるから、被プレス材の形状を忠実に再現した解析モデルでなくとも(実際の形状よりも単純化されたモデルであっても)解析精度の面で特に問題は生じない。   Thus, if it is stress distribution at the time of giving a thermal load to a basic shape model of a material to be pressed, it can ask for by simple analysis. Therefore, the correlation between the stress distribution and the thermal load described above can be acquired in a short time, and the time required for the deformation analysis of the material to be pressed can be further shortened. Moreover, since the above-mentioned analysis is an analysis made for the purpose of acquiring the correlation (the tendency) between the stress distribution and the thermal load, it is not an analysis model that faithfully reproduces the shape of the material to be pressed (actually There is no particular problem in terms of analysis accuracy, even if the model is more simplified than the shape of.

また、本発明に係る被プレス材の変形解析方法においては、被プレス材の解析モデルを、厚み方向に複数のソリッド要素を有するソリッドモデルで形成してもよい。   In the deformation analysis method of the material to be pressed according to the present invention, the analysis model of the material to be pressed may be formed by a solid model having a plurality of solid elements in the thickness direction.

このように、被プレス材の解析モデルを、その厚み方向に複数のソリッド要素を有するソリッドモデルで形成することにより、例えば被プレス材の表面を形成するソリッド要素に熱荷重を付与して、型締め状態において被プレス材に生じる応力分布を再現することができる。よって、被プレス材の厚み方向に正確な応力分布を再現することができ、これにより変形解析の更なる精度向上を図ることが可能となる。もちろん、本発明では、型締めにより被プレス材に生じる応力分布を熱荷重で代替して付与するようにしたので、厚み方向に複数のソリッド要素を有するソリッドモデルを用いた場合であっても、計算時間の増加を抑制しつつ、正確な変形解析を行うことができる。   Thus, by forming an analysis model of the material to be pressed with a solid model having a plurality of solid elements in its thickness direction, for example, a thermal load is applied to the solid element forming the surface of the material to be pressed, The stress distribution generated in the material to be pressed in the tightened state can be reproduced. Therefore, accurate stress distribution can be reproduced in the thickness direction of the material to be pressed, which makes it possible to further improve the accuracy of the deformation analysis. Of course, in the present invention, since the stress distribution generated in the material to be pressed due to the mold clamping is replaced by the thermal load, even in the case of using a solid model having a plurality of solid elements in the thickness direction, Accurate deformation analysis can be performed while suppressing an increase in calculation time.

以上のように、本発明によれば、プレス成形時の変形解析を短時間で実施することが可能となる。   As described above, according to the present invention, deformation analysis at the time of press molding can be performed in a short time.

本発明の一実施形態に係るプレス部品の変形要因解析方法並びに設計方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the deformation factor analysis method of the press part which concerns on one Embodiment of this invention, and a design method. 本発明の一実施形態に係るプレス部品の変形解析方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the deformation | transformation analysis method of the press components concerning one Embodiment of this invention. (a)は本変形解析の対象となるプレス部品の正寸モデル、(b)〜(d)は、プレス成形によりプレス部品に生じ得る変形モードの具体例である。(A) is a full-sized model of a pressed part to be subjected to the deformation analysis, and (b) to (d) are specific examples of deformation modes which can be generated in the pressed part by press forming. プレス成形により所定形状のプレス部品に生じ得る変形モードの具体例を列挙した図である。It is the figure which enumerated the specific example of the deformation mode which may arise in the press part of predetermined shape by press molding. 各変形モードの発生要因となる要因応力分布の具体例を列挙した図である。It is the figure which enumerated the specific example of the factor stress distribution used as the generating factor of each deformation mode. 各変形モードの発生要因となる要因応力分布の一例を模式的に示した図である。It is the figure which showed typically an example of the factor stress distribution which becomes a generation factor of each deformation mode. 図2に示す正寸モデルをソリッド要素で作成した場合の一例に係る要部斜視図である。It is a principal part perspective view which concerns on an example at the time of producing the full size model shown in FIG. 2 by a solid element. 図7に示す正寸モデルに対し要因応力分布を熱荷重で付与した状態を示す要部正面図である。It is a principal part front view which shows the state which applied the factor stress distribution with the thermal load with respect to the full size model shown in FIG. 応力分布と熱荷重との相関を示すグラフである。It is a graph which shows correlation with stress distribution and heat load. 一の変形モードへの各発生要因の寄与度を示すグラフである。It is a graph which shows the contribution of each generating factor to one deformation mode. 他の変形モードへの各発生要因の寄与度を示すグラフである。It is a graph which shows the contribution of each generating factor to other deformation modes. 従来行われていたプレス成形時の応力解析方法の手順を示す模式図である。It is a schematic diagram which shows the procedure of the stress analysis method at the time of press molding conventionally performed.

以下、本発明の一実施形態に係るプレス部品の変形要因解析方法、及びこの解析結果を利用したプレス部品の設計方法の内容を図面に基づき説明する。   Hereinafter, the contents of a method of analyzing deformation factors of a pressed part according to an embodiment of the present invention and a method of designing a pressed part using the analysis result will be described based on the drawings.

図1は、本実施形態に係るプレス部品の設計方法の手順を示している。図3に示すように、この設計方法は、プレス部品の正寸モデルを作成する正寸モデル作成ステップS1と、プレス部品に生じ得る複数の変形モードを設定する変形モード設定ステップS2と、変形モードの発生要因となる要因応力を設定する要因応力設定ステップS3と、要因応力を独立で正寸モデルに付与し、その際の正寸モデルの変形解析を行う変形解析ステップS4と、変形解析ステップS4で得た変形解析結果に基づき、各変形モードに対する発生要因の影響を評価する評価ステップ、ここでは各変形モードに寄与する発生要因の数及びその寄与度の特定を行う寄与度特定ステップS5と、各変形モードに対する発生要因の影響、ここでは各変形モードへの各発生要因の寄与度を正寸モデルに反映させて、プレス部品の設計を行う寄与度反映ステップS6とを備える。   FIG. 1 shows a procedure of a method of designing a pressed part according to the present embodiment. As shown in FIG. 3, in this design method, a full-size model creation step S1 for creating a full-size model of a pressed part, a deformation mode setting step S2 for setting a plurality of deformation modes that may occur in the pressed part, and a deformation mode Factor stress setting step S3 for setting the factor stress that becomes the generation factor of the deformation, deformation analysis step S4 for applying the factor stress independently to the full size model, and performing deformation analysis of the full size model at that time, deformation analysis step S4 An evaluation step for evaluating the influence of the generation factor on each deformation mode based on the deformation analysis result obtained in step b, where a contribution degree specifying step S5 for specifying the number of generation factors contributing to each deformation mode and the contribution degree thereof; The influence of the cause of generation for each deformation mode, in this case the contribution of each cause of generation to each deformation mode, is reflected in the full-size model to design a pressed part. And a degree reflecting step S6.

また、変形解析ステップS4は、図2に示すように、プレス部品に熱荷重を付与した際にプレス部品に生じる応力分布と、熱荷重との相関を取得する相関取得ステップS41と、この相関に基づいて、型締め状態でプレス部品に生じる応力分布を熱荷重で代替してプレス部品の正寸モデルに付与する熱荷重付与ステップS42と、型締め状態から型開き状態としたときのプレス部品の正寸モデルの変形を解析する変形解析ステップS43とを備える。なお、ここでいうプレス部品が本発明に係る被プレス材に相当し、プレス部品の正寸モデルが本発明に係る被プレス材の解析モデルに相当する。以下、各ステップを順に説明する。   In addition, as shown in FIG. 2, in the deformation analysis step S4, a correlation acquisition step S41 for acquiring the correlation between the stress distribution generated in the pressed part when the thermal load is applied to the pressed part and the thermal load, and the correlation Based on the heat load application step S42 of replacing the stress distribution generated in the press part in the mold clamping state with the thermal load and applying to the full size model of the press part, and the press parts when the mold clamping state is changed to the mold opening state And a deformation analysis step S43 for analyzing the deformation of the true size model. In addition, the press part here corresponds to the to-be-pressed material which concerns on this invention, and the full size model of a press part corresponds to the analysis model of the to-be-pressed material which concerns on this invention. Hereinafter, each step will be described in order.

(S1)正寸モデル作成ステップ
このステップでは、変形解析の対象となるプレス部品の正寸モデルを作成する。本実施形態では、プレス部品は、板状部材で構成され、例えば図3(a)に示すように断面ハット形状をなす。故に、プレス部品の正寸モデル10も断面ハット形状をなすように、三次元の解析モデルを作成する。なお、ここでいうプレス部品の正寸モデル10とは、本解析方法の開始前の時点におけるプレス部品の図面寸法を有する解析モデルをいうものとする。
(S1) Exact Model Creation Step In this step, an exact model of a pressed part to be subjected to deformation analysis is created. In the present embodiment, the pressed part is formed of a plate-like member, and has, for example, a cross-sectional hat shape as shown in FIG. 3 (a). Therefore, a three-dimensional analysis model is created so that the full-sized model 10 of the pressed part also has a cross-sectional hat shape. In addition, the full size model 10 of a press part here shall mean the analysis model which has the drawing dimension of the press part in the time before the start of this analysis method.

(S2)変形モード設定ステップ
このステップでは、プレス成形によりプレス部品に生じ得る複数の変形モードを設定する。ここで、具体的な変形モードの選定に際しては、同一形状で異材質の又は類似形状(単純形状を含む)で同材質のプレス部品のプレス成形に係る過去の知見ないしデータ(応力解析、基礎実験や試作などにより得たものを含む)や、同プレス成形に係る学術的検証結果に基づいて行うのがよい。例えば、図3(a)に示すように、断面ハット状をなすプレス部品をプレス成形する場合に生じ得る変形モードとしては、図4に示すように、縦壁部11の反り(第一の変形モードM1)、縦壁部11の開き(第二の変形モードM2)、上壁部12の反り(第三の変形モードM3)、フランジ部14のはね(第四の変形モードM4)などを挙げることができる。
(S2) Deformation Mode Setting Step In this step, a plurality of deformation modes which can be generated in the press part by press molding are set. Here, when selecting a specific deformation mode, past findings or data concerning stress forming of pressed parts of the same shape, different materials or similar shapes (including simple shapes) (stress analysis, basic experiment It is good to carry out based on the academic verification result concerning the same press molding and the thing obtained by trial production etc.) and the same press molding. For example, as shown in FIG. 3A, as a deformation mode that can occur when press-forming a press part having a cross-sectional hat shape, as shown in FIG. Mode M1), opening of vertical wall portion 11 (second deformation mode M2), warping of upper wall portion 12 (third deformation mode M3), splashing of flange portion 14 (fourth deformation mode M4), etc. It can be mentioned.

なお、ここでいう、縦壁部11の反りは、例えば図3(b)に示すように、左右の縦壁部11が互いに遠ざかる向きに曲げ変形を生じるモードを意味する。また、縦壁部11の開きは、例えば図3(c)に示すように、縦壁部11の内面と上壁部12の内面とがなす角度が増大する向きに、縦壁部11と上壁部12とをつなぐ角部(第一角部13)が変形するモードを意味する。また、上壁部12の反りは、例えば図3(d)に示すように、左右の縦壁部11とつながる上壁部12がその長手方向に沿って曲げ変形を生じるモードを意味する。   In addition, the curvature of the vertical wall part 11 here means the mode which produces a bending deformation in the direction in which the vertical wall parts 11 on either side mutually distances, as shown, for example in FIG.3 (b). Further, as shown in FIG. 3C, for example, the opening of the vertical wall portion 11 is in the direction in which the angle between the inner surface of the vertical wall portion 11 and the inner surface of the upper wall portion 12 increases. This means a mode in which the corner (first corner 13) connecting the wall 12 is deformed. The warp of the upper wall portion 12 means, for example, a mode in which the upper wall portion 12 connected to the left and right vertical wall portions 11 causes bending deformation along the longitudinal direction, as shown in FIG. 3D.

もちろん、断面ハット形状をなすプレス部品の形状によっては、例えば図示は省略するが、プレス部品全体のひねり(長手方向に沿った仮想軸線まわりのねじり)や曲げなど、他の変形モードをさらに設定してもよい。   Of course, depending on the shape of the press part having a hat-shaped cross section, for example, although not shown, other deformation modes such as twisting (twisting around a virtual axis along the longitudinal direction) and bending of the entire press part are further set. May be

(S3)要因応力設定ステップ
このステップでは、各変形モードの発生要因となる要因応力、ここでは要因応力分布を変形モードごとに設定する。ここで、具体的な発生要因となる要因応力分布の設定に際しては、変形モードと同様、同一形状で異材質の又は類似形状で同材質のプレス部品のプレス成形に係る過去の知見ないしデータや、同プレス成形に係る学術的検証結果に基づいて行うのがよい。例えば、図4に示すように、断面ハット形状をなすプレス部品をプレス成形する場合に生じ得る複数の変形モードM1〜M4が設定される場合、各変形モードM1(M2〜M4)の発生要因F1(F2〜F5)となる要因応力分布を設定することができる。具体的には、図5に示すように、縦壁部11の反りに係る第一の変形モードM1に対しては、縦壁部11の表裏応力差を第一の発生要因F1(要因応力分布)として挙げることができる。また、縦壁部11の開きに係る第二の変形モードM2に対しては、第一角部13の表裏応力差を第二の発生要因F2(要因応力分布)として挙げることができる。また、上壁部12の反りに係る第三の変形モードM3に対しては、上壁部12の表裏応力差と、上壁部12とフランジ部14との応力差をそれぞれ第三及び第四の発生要因F3,F4
(要因応力分布)として挙げることができる。また、フランジ部14のはねに係る第四の変形モードM4に対しては、縦壁部11とフランジ部14とをつなぐ角部(第二角部15)の表裏応力差を第五の発生要因F5(要因応力分布)として挙げることができる。
(S3) Factorial stress setting step In this step, factorial stress which is a generation factor of each deformation mode, here, factorial stress distribution is set for each deformation mode. Here, when setting the factor stress distribution that is a specific generation factor, as in the deformation mode, past knowledge or data concerning press forming of pressed parts of the same shape, different materials or similar shapes, and the same material, It is good to do based on the academic verification result concerning the same press molding. For example, as shown in FIG. 4, when a plurality of deformation modes M1 to M4 that can occur when a press part having a cross-sectional hat shape is formed by pressing, the generation factor F1 of each deformation mode M1 (M2 to M4) The factor stress distribution which becomes (F2 to F5) can be set. Specifically, as shown in FIG. 5, for the first deformation mode M1 related to the warping of the vertical wall portion 11, the front / back stress difference of the vertical wall portion 11 is the first occurrence factor F1 (factor stress distribution Can be mentioned as In addition, for the second deformation mode M2 related to the opening of the vertical wall portion 11, the front / back stress difference of the first corner portion 13 can be mentioned as a second generation factor F2 (factorial stress distribution). In addition, for the third deformation mode M3 related to the warpage of the upper wall portion 12, third and fourth stress differences between the upper wall portion 12 and the flange portion 14 are respectively calculated. Cause factor of F3 and F4
It can be mentioned as (factorial stress distribution). In addition, for the fourth deformation mode M4 related to the splash of the flange portion 14, the front / back stress difference of the corner portion (second corner portion 15) connecting the vertical wall portion 11 and the flange portion 14 is generated fifth It can be mentioned as a factor F5 (factorial stress distribution).

なお、ここでいう、縦壁部11の表裏応力差(第一の発生要因F1)は、例えば図6に示すように、縦壁部11の中立軸11cに対して外面11a側が長手方向に引張応力σ+、内面11b側が長手方向に圧縮応力σ−を生じる応力分布を意味する。他の発生要因F2〜F5についても同様の応力分布を意味する。   Here, the front / back stress difference (the first generation factor F1) of the vertical wall portion 11 is, for example, shown in FIG. 6 that the outer surface 11a side of the vertical wall portion 11 with respect to the neutral axis 11c The stress σ + means a stress distribution which causes a compressive stress σ− in the longitudinal direction on the inner surface 11b side. The same stress distribution means the other generation factors F2 to F5.

もちろん、上述のように、断面ハット形状をなすプレス部品に、プレス部品全体のひねりや曲げなど、他の変形モードをさらに設定する場合には、これら他の変形モードの発生要因となる要因応力(要因応力分布)を個別に設定してもよい。   Of course, as described above, when further setting other deformation modes such as twisting or bending of the entire press part to the press part having a cross-sectional hat shape, the factor stress which causes generation of these other deformation modes ( The factor stress distribution) may be set individually.

(S4)変形解析ステップ
このステップでは、各変形モードの発生要因となる要因応力(要因応力分布)を単独で正寸モデル10に付与したときの正寸モデル10の変形解析を行う。例えば図4に示す複数の変形モードM1〜M4と図5に示す要因応力分布(発生要因F1〜F5)を設定している場合、正寸モデル10に対して第一の発生要因F1となる要因応力分布(図6を参照)を単独で付与して、その際の正寸モデル10の変形を解析する(第一の変形モードM1に対する変形解析)。また、第二の発生要因F2となる要因応力分布(図5を参照)を単独で正寸モデル10に付与して、その際の正寸モデル10の変形を解析する(第二の変形モードM2に対する変形解析)。また、第三及び第四の発生要因F3,F4となる要因応力分布(図5を参照)をそれぞれ単独で正寸モデル10に付与して、その際の正寸モデル10の変形を解析する(何れも第三の変形モードM3に対する変形解析)。また、第五の発生要因F5となる要因応力分布(図5を参照)を単独で正寸モデル10に付与して、その際の正寸モデル10の変形を解析する(第四の変形モードM4に対する変形解析)。要は、ステップS2で設定した変形モードの数だけ(一の変形モードに対して二以上の発生要因が設定できる場合にはその発生要因の数だけ)、正寸モデル10の変形解析を行う。
(S4) Deformation Analysis Step In this step, deformation analysis of the true-size model 10 when the factor stress (factor stress distribution) that is a generation factor of each deformation mode is independently applied to the true-size model 10 is performed. For example, when the plurality of deformation modes M1 to M4 shown in FIG. 4 and the factor stress distribution (generation factors F1 to F5) shown in FIG. 5 are set, the factor that becomes the first generation factor F1 with respect to the full size model 10 The stress distribution (see FIG. 6) is independently applied to analyze the deformation of the full-sized model 10 at that time (deformation analysis for the first deformation mode M1). Also, the factor stress distribution (see FIG. 5) serving as the second occurrence factor F2 is independently imparted to the full size model 10, and the deformation of the full size model 10 at that time is analyzed (second deformation mode M2 Deformation analysis). In addition, factorial stress distributions (see FIG. 5) serving as the third and fourth occurrence factors F3 and F4 are individually applied to the full size model 10, and the deformation of the full size model 10 at that time is analyzed All are deformation analysis for the third deformation mode M3). In addition, the factor stress distribution (see FIG. 5) serving as the fifth generation factor F5 is independently imparted to the full size model 10, and the deformation of the full size model 10 at that time is analyzed (fourth deformation mode M4 Deformation analysis). The point is that the deformation analysis of the true-size model 10 is performed by the number of deformation modes set in step S2 (when the number of generation causes can be set for one deformation mode, the number of generation causes).

ここで、本実施形態では、要因応力分布を熱荷重で正寸モデル10に付与する(熱荷重付与ステップS42)。なお、ここでいう要因応力分布が本発明に係る応力分布に相当する。また、この場合、例えば図7に示すように、解析モデルとしての正寸モデル10を、その厚み方向に複数のソリッド要素21〜23を有するソリッドモデルで形成し、特定のソリッド要素(ここでは、プレス部品の表面を形成する厚み方向表面側のソリッド要素22,23)に熱荷重を付与することで、各変形モードM1〜M4の発生要因F1〜F5となる要因応力分布を再現する。この際、正寸モデル10の厚み方向中央側に位置するソリッド要素21を拘束した状態で、熱荷重を付与してもよい。   Here, in the present embodiment, the factor stress distribution is applied to the true size model 10 by a thermal load (thermal load application step S42). The factor stress distribution referred to here corresponds to the stress distribution according to the present invention. Further, in this case, as shown in FIG. 7, for example, the full size model 10 as an analysis model is formed by a solid model having a plurality of solid elements 21 to 23 in the thickness direction, and a specific solid element (here, By applying a thermal load to the solid elements 22 and 23) on the surface side in the thickness direction that forms the surface of the pressed part, the factor stress distribution that is the generation factor F1 to F5 of each of the deformation modes M1 to M4 is reproduced. At this time, a thermal load may be applied in a state in which the solid element 21 located on the center side in the thickness direction of the true-size model 10 is restrained.

具体的には、図8に示すように、プレス成形の型締め状態において、正寸モデル10の表裏一方の側に位置するソリッド要素22の節点22aに対して正の熱24を付与(加熱)し、表裏他方の側に位置するソリッド要素23の節点23aに対して負の熱25を付与(冷却)することで、正寸モデル10の所定部位に所望の熱荷重を付与して、プレス成形の型締め状態における所定の応力分布(要因応力分布)を再現できる。例えば表裏一方の側に位置するソリッド要素22が縦壁部11の内面11b(図6を参照)を構成し、表裏他方の側に位置するソリッド要素23が縦壁部11の外面11a(図6を参照)を構成する場合、ソリッド要素22の節点22aに正の熱24を付与し、ソリッド要素23の節点23aに負の熱25を付与することで、型締め状態において図6に示す応力分布(要因応力分布)、すなわち図3(b)に示す第一の変形モードM1の第一の発生要因F1となる要因応力分布(縦壁部11の表裏応力差)を付与することができる。なお、厚み方向中央側のソリッド要素21を拘束する場合、このソリッド要素21の節点21aもまた拘束した状態で上述した要因応力分布が付与される。このようにして要因応力分布を付与した後、型締め状態から型開き状態としたときの正寸モデル10の変形を解析する(変形解析ステップS43)。   Specifically, as shown in FIG. 8, in the press-clamped state, positive heat 24 is applied (heated) to the nodes 22a of the solid element 22 located on the front and back sides of the full-size model 10 By applying (cooling) negative heat 25 to the nodal point 23a of the solid element 23 located on the other side of the front and back sides, thereby applying a desired thermal load to a predetermined portion of the full size model 10, and press forming It is possible to reproduce a predetermined stress distribution (factorial stress distribution) in the clamped state of. For example, solid elements 22 located on the front and back sides constitute the inner surface 11b (see FIG. 6) of the vertical wall 11, and solid elements 23 located on the other side are the outer surface 11a of the vertical wall 11 (FIG. 6). 6) by applying positive heat 24 to the nodes 22a of the solid element 22 and applying negative heat 25 to the nodes 23a of the solid element 23, the stress distribution shown in FIG. (Factor stress distribution), that is, a factor stress distribution (difference between front and back stress of the vertical wall portion 11) which is the first generation factor F1 of the first deformation mode M1 shown in FIG. 3B can be provided. When the solid element 21 on the center side in the thickness direction is constrained, the above-described factor stress distribution is applied while the node 21a of the solid element 21 is also constrained. After giving the factorial stress distribution in this manner, the deformation of the true-size model 10 when the mold clamping state is changed to the mold opening state is analyzed (deformation analysis step S43).

なお、この際に付与する熱24,25(熱荷重)の大きさは、予め正寸モデル10もしくは正寸モデル10をさらに単純化した形状の解析モデル(基本形状モデル)に熱荷重を付与した際の応力分布と、熱荷重との相関を解析で取得しておき(相関取得ステップS41)、当該相関に基づいて設定することができる。この種のプレス成形において、板状部材で構成されるプレス部品に熱荷重を付与した際の応力分布と熱荷重との間には、図9に示すように、線形の相関が認められる傾向にあるので、容易に想定される要因応力分布を熱荷重で代替することが可能となる。   The magnitude of heat 24 and 25 (thermal load) applied at this time was determined by applying thermal load to an analysis model (basic shape model) having a shape obtained by further simplifying the true size model 10 or the true size model 10 in advance. The correlation between the stress distribution at that time and the thermal load is acquired by analysis (correlation acquisition step S41), and the correlation can be set based on the correlation. As shown in FIG. 9, a linear correlation tends to be recognized between the stress distribution and the thermal load when a thermal load is applied to a press part composed of a plate-like member in this type of press molding. Because of this, it is possible to replace the easily assumed factor stress distribution with a thermal load.

(S5)寄与度特定ステップ
このステップでは、変形解析ステップS4で得た正寸モデル10の変形解析結果に基づき、各変形モードに寄与する発生要因の数、及び各変形モードへの各発生要因の寄与度を特定する。例えば変形解析ステップS4において、図5に示す第一の変形モードM1の発生要因F1となる要因応力分布を型締め状態の正寸モデル10に付与した場合、型開き状態で正寸モデル10に上記第一の変形モードM1(一次の変形モード)が生じると共に、別の変形モード(例えば第二の変形モードM2など二次的な変形モード)、場合によってはさらに別の変形モード(例えば第三の変形モードM3など三次的な変形モード)を生じることがある。この場合、各変形モードM1〜M3に係る正寸モデル10の変形量から、各変形モードM1〜M3の発生要因(例えば第一〜第四の発生要因F1〜F4)の寄与度を特定する。具体的には、解析により得られた一つの変形解析結果を、変形モードM1〜M3ごとの変形量に分解し、分解した変形量の大きさに基づいて、対応する各発生要因F1〜F4の寄与度を算定する。
(S5) Contribution Degree Specifying Step In this step, based on the deformation analysis result of the full size model 10 obtained in the deformation analysis step S4, the number of generation factors contributing to each deformation mode and each generation factor to each deformation mode Identify the degree of contribution. For example, in the deformation analysis step S4, when the factor stress distribution serving as the generation factor F1 of the first deformation mode M1 shown in FIG. 5 is applied to the full size model 10 in the mold clamped state, the full size model 10 in the mold opened state is While the first deformation mode M1 (primary deformation mode) occurs, another deformation mode (for example, a secondary deformation mode such as the second deformation mode M2), and in some cases still another deformation mode (for example, the third deformation mode) A third-order deformation mode (such as deformation mode M3) may occur. In this case, the degree of contribution of the generation factors (for example, the first to fourth generation factors F1 to F4) of the deformation modes M1 to M3 is specified from the deformation amounts of the full size model 10 according to the deformation modes M1 to M3. Specifically, one deformation analysis result obtained by analysis is decomposed into deformation amounts for each of the deformation modes M1 to M3, and the corresponding generation factors F1 to F4 are calculated based on the size of the decomposed deformation amount. Calculate the degree of contribution.

同様に、他の変形モードM2〜M4の発生要因F2〜F5となる要因応力分布を正寸モデル10に付与したときの変形解析結果についても、発生が認められた変形モードの発生要因の数、及びその寄与度を特定する。このようにして、全ての発生要因について得られた正寸モデル10の変形解析結果について、当該変形に寄与した発生要因の数とその寄与度を特定する。例えば図10に示すある一つの変形モードに対する変形解析結果においては、発生要因Aの寄与度が最も高く、相対的に発生要因Bの寄与度は低い。これに対して、図11に示す他の変形モードに対する変形解析結果においては、発生要因Bの寄与度が最も高く、これに次いで発生要因Aの寄与度が高いことが分かる。このことから、ある一つの変形モードの発生要因が他の変形モードの発生要因として寄与していること、及びその寄与度が明確に把握できる。また、各々の変形モードに寄与する発生要因の数、及び種類(例えば図10に示す変形モードでは3種類、図11に示す変形モードでは4種類)も一目で分かる。以上より、正寸モデル10に係るプレス部品のプレス成形時の変形メカニズム(の少なくとも傾向)が解明可能となる。なお、図10及び図11は、あくまでも変形解析結果に基づく寄与度の分布を表現する方式の一つとして例示したものであり、各発生要因A〜Eと、図5に示す発生要因F1〜F5との間に、直接的な関係はない。   Similarly, with regard to the deformation analysis result when applying the factor stress distribution that causes the other deformation modes M2 to M4 to be the generation factors F2 to F5 to the full size model 10, the number of generation causes of the deformation mode in which the generation is recognized, And their contributions. In this way, with respect to the deformation analysis result of the true-size model 10 obtained for all the generation factors, the number of generation factors contributing to the deformation and the contribution thereof are specified. For example, in the deformation analysis result for one deformation mode shown in FIG. 10, the contribution degree of the generation factor A is the highest, and the contribution degree of the generation factor B is relatively low. On the other hand, in the deformation analysis results for the other deformation modes shown in FIG. 11, it can be seen that the contribution degree of the generation factor B is the highest, followed by the contribution degree of the generation factor A. From this, it can be clearly understood that the generation factor of one deformation mode contributes as the generation factor of the other deformation mode, and the degree of contribution thereof. In addition, the number and types of generation factors contributing to each deformation mode (for example, three types in the modification mode shown in FIG. 10 and four types in the modification mode shown in FIG. 11) can also be seen at a glance. From the above, it becomes possible to elucidate (at least the tendency of) the deformation mechanism at the time of press forming of the pressed part according to the full size model 10. 10 and 11 are merely illustrated as one of the methods for expressing the distribution of the degree of contribution based on the deformation analysis result, and each of the generation factors A to E and the generation factors F1 to F5 shown in FIG. There is no direct relationship with them.

(S6)寄与度反映ステップ(再設計ステップ)
このステップでは、以上のステップS1〜S5により得られた各変形モードへの各発生要因の影響(ここでは寄与度)を正寸モデル10に反映させて、プレス部品の設計(再設計)を行う。具体的には、変形モードごとにその発生要因の寄与度が判明しているので、当該寄与度に応じて、各発生要因となる要因応力分布が極力小さくなるように、正寸モデル10の対応部位の形状を変更する。形状変更の具体例としては、その変形モードに応じて、座面の追加、ビードの追加などを挙げることができる。あるいは、剛性向上を目的とした板厚の増大化(板状部の重ね合わせなどを含む)などを挙げることができる。
(S6) Contribution degree reflection step (redesign step)
In this step, the design (redesign) of the pressed part is performed by reflecting the influence (in this case, the degree of contribution) of each generation factor to each deformation mode obtained in the above steps S1 to S5 on the full size model 10 . Specifically, since the contribution degree of the occurrence factor is known for each deformation mode, the correspondence of the normal size model 10 is made so that the factor stress distribution which becomes each occurrence factor becomes as small as possible according to the contribution degree. Change the shape of the part. As a specific example of shape change, addition of a seat surface, addition of a bead, etc. can be mentioned according to the deformation mode. Alternatively, an increase in plate thickness (including superposition of plate-like portions) for the purpose of rigidity improvement can be mentioned.

また、複数の発生要因が相互に対応する変形モードに影響を及ぼし合っている場合には、各発生要因の変形モードに対する寄与度に応じて、個々の設計変更を実施するのがよい。これにより、変形を相殺して、プレス成形後の製品(プレス部品)に変形が生じないようにすることも可能となる。   In addition, in the case where a plurality of generation factors affect the deformation modes corresponding to each other, it is preferable to implement an individual design change according to the degree of contribution of each generation factor to the deformation mode. This makes it possible to offset the deformation and prevent deformation of the product after press molding (pressed part).

このように、本発明に係るプレス部品の変形解析方法では、プレス成形の型締め状態において実際にはプレス荷重等の外部因子に基づいて生じる応力分布を解析上では熱荷重で代替してプレス部品の解析モデル(正寸モデル10)に付与するようにした。この種のプレス成形において被プレス材(ここではプレス部品)に熱荷重を付与した際に、すなわち型締め状態で熱を付与した際に被プレス材に生じる応力分布と、熱荷重との間には一定の相関が認められる(図9を参照)。よって、この相関に基づいて、付与すべき所望の応力分布が型締め状態のプレス部品に生じるように、プレス部品の解析モデルとしての正寸モデル10に所定の熱荷重を付与するようにした。これにより、熱の大きさのみを指定すれば足りるため、計算量を従来に比べて大幅に減らすことができる。よって、プレス部品の変形解析に要する時間を短縮することができる。   As described above, in the deformation analysis method of a pressed part according to the present invention, a stress distribution which is actually generated based on an external factor such as a press load in a press-clamped state is replaced by a thermal load in analysis. It applied to the analysis model (size model 10) of When a thermal load is applied to a material to be pressed (press parts in this case) in this type of press forming, that is, a stress distribution generated in the material to be pressed when heat is applied in a clamped state, and the thermal load There is a certain correlation (see FIG. 9). Therefore, based on this correlation, a predetermined thermal load is applied to the full size model 10 as an analysis model of the pressed part so that the desired stress distribution to be applied is generated in the clamped part. As a result, since it is sufficient to specify only the magnitude of heat, the amount of calculation can be significantly reduced compared to the prior art. Therefore, the time required for deformation analysis of the pressed part can be shortened.

また、本実施形態に係るプレス部品の変形要因解析方法では、プレス成形によりプレス部品に生じ得る複数の変形モード(例えば図4に示す第一〜第四の変形モードM1〜M4)と、各変形モードの発生要因(例えば図5に示す第一〜第六の発生要因F1〜F5)となる要因応力分布を変形モードごとに設定し、これら要因応力分布を単独でプレス部品の正寸モデル10に付与したときの正寸モデル10の変形解析を行って、変形解析結果に基づき、各変形モードに対する発生要因の影響、具体的には各変形モードに寄与する発生要因の数、及び各変形モードへの各発生要因の寄与度を特定するようにした。これにより以下のような作用効果を得ることが可能となる。   Further, in the deformation factor analysis method of a pressed part according to the present embodiment, a plurality of deformation modes (for example, first to fourth deformation modes M1 to M4 shown in FIG. 4) which can be generated in the pressed part by press forming, and each deformation The factor stress distribution which becomes the generation factor of the mode (for example, the first to sixth generation factors F1 to F5 shown in FIG. 5) is set for each deformation mode, and these factor stress distributions are independently Perform deformation analysis of the full size model 10 when applied, and based on the deformation analysis result, the influence of the generation factor on each deformation mode, specifically, the number of generation factors contributing to each deformation mode, and to each deformation mode We decided to identify the degree of contribution of each occurrence factor. This makes it possible to obtain the following effects.

すなわち、従来、プレス成形時の変形解析は、例えば図12に示すように、被プレス材1aをプレス型2,3の間に配置した状態(図12(a)を参照)から、型締めを行った状態(図12(b)を参照)、そして型開きを行った状態(図12(c))までの各ステップの順に、被プレス材1a〜1cの応力解析を行うことにより、プレス成形後の変形(図12(d)を参照)を予測していた。そのため、プレス成形後の被プレス材1c(ここではプレス部品)には、型締めにより生じる残留応力分布、及びこの残留応力分布が原因となって生じる型開き後の変形(例えば上述したプレス成形後の形状1cと正規形状1c’との差分など)がそれぞれ一つの結果として得られるに過ぎなかった。   That is, conventionally, as shown in, for example, FIG. 12, deformation analysis at the time of press molding is performed from the state where the material to be pressed 1a is disposed between the press dies 2 and 3 (see FIG. 12A). By performing stress analysis on the materials to be pressed 1a to 1c in the order of each step up to the state (refer to FIG. 12 (b)) and the state (refer to FIG. 12 (c)) where the mold is opened The later deformation (see FIG. 12 (d)) was predicted. Therefore, the residual stress distribution produced by clamping the mold and the deformation after mold opening caused by the residual stress distribution (for example, after the above-described press molding) are applied to the material to be pressed 1c after press molding (here, the pressed part) The difference between the shape 1c and the normal shape 1c ', etc.) is only obtained as one result.

これに対して、本実施形態に係る変形要因解析方法では、プレス成形によりプレス部品に生じた変形を、部位ごとの変形あるいは単純な変形(例えば図3(b)〜(d)等に示す複数の変形モードM1,M2…)に分解して評価することにした。また、その評価を定量的に行うために、各変形モードM1,M2…の発生要因となる要因応力分布を、プレス成形前の解析モデル(被プレス材1aの解析モデル)ではなく、完成品としてのプレス部品の正寸モデル10(図3(a)を参照)に付与し、正寸モデル10の変形解析を行うことにした。そして、この変形解析結果に基づき、各変形モードM1,M2…に寄与する発生要因の数、及び各変形モードM1,M2…への各発生要因の寄与度を特定した。このように、各変形モードの発生要因となる要因応力分布を付与して、その際の正寸モデル10の変形解析結果を分析することにより、一の変形モードの発生要因が他の変形モードの発生要因に及ぼす影響(寄与度)を客観的に評価することができる。よって、上述した変形解析をプレス部品の正寸モデル10の全ての部位及び全ての種類の変形モードに対して行うことで、プレス部品全体の変形要因を系統的に特定、整理して把握(可視化)することができる(図10及び図11を参照)。これにより部品種ごとに的確な対策を講じることが可能となる。また、変形モードごとに各発生要因の寄与率が明確になるので、変形モード個々に応じた対策を容易に講じることができる。また、製品図面段階で寸法精度不良の原因となる変形要因が解明できれば、例えば寸法精度不良の対策効果と二次的な不具合が発生するリスクとを、事前に織り込んで正寸モデル10を再設計することができるので、図面完成度を短期間で高めることが可能となる。従って、低コストにプレス部品の設計を行うことが可能となる。もちろん、プレス成形時の変形要因が解明できていれば、部品種の変更があった場合でも、上述した解析結果に基づく対策を、容易に類似部品に展開することが可能となる。   On the other hand, in the deformation factor analysis method according to the present embodiment, the deformation generated in the press part by press molding is a deformation or simple deformation for each part (for example, a plurality of parts shown in FIG. 3 (b) to (d)) In the deformation mode M1, M2 ...). In addition, in order to quantitatively evaluate the evaluation, the factor stress distribution that causes each deformation mode M1, M2 ... as a finished product, not the analysis model before press forming (the analysis model of the material to be pressed 1a) It applied to the full size model 10 (refer FIG. 3 (a)) of the press part of, and decided to perform the deformation analysis of the full size model 10. FIG. Then, based on the deformation analysis result, the number of generation factors contributing to each deformation mode M1, M2... And the contribution degree of each generation factor to each deformation mode M1, M2. As described above, the factor stress distribution that causes each deformation mode is added, and the analysis result of the deformation analysis of the full-size model 10 at that time is performed. It is possible to objectively evaluate the influence (the degree of contribution) on the occurrence factor. Therefore, by performing the above-mentioned deformation analysis on all parts of the full-size model 10 of the pressed part and all kinds of deformation modes, the deformation factors of the entire pressed part are systematically specified, organized and grasped (visualization) ) (See FIGS. 10 and 11). This makes it possible to take appropriate measures for each part type. Further, since the contribution rate of each occurrence factor becomes clear for each deformation mode, it is possible to easily take measures according to each deformation mode. In addition, if it is possible to elucidate deformation factors that cause dimensional accuracy defects at the product drawing stage, redesign the full-size model 10, for example, by incorporating in advance the countermeasure effect of the dimensional accuracy defects and the risk of generating secondary defects. It is possible to improve the degree of completeness of the drawing in a short period of time. Therefore, it becomes possible to design a pressed part at low cost. Of course, if the deformation factor at the time of press molding can be clarified, even if there is a change in part type, it becomes possible to easily develop measures based on the above analysis results to similar parts.

また、これら要因応力分布は、単純な変形である変形モードに対応しているため、熱荷重の付与による要因応力分布の再現であっても、高い再現精度を得ることができ、これにより正確に解析を行うことが可能となる。もちろん、プレス部品は、板状など薄肉形状に形成されるものであるから、その表裏に正負の熱24,25を付与して、所定の応力分布を再現し易い。   Moreover, since these factor stress distributions correspond to the deformation mode which is a simple deformation, even if the factor stress distribution is reproduced by the application of a thermal load, high reproduction accuracy can be obtained, which makes it possible to accurately It becomes possible to analyze. Of course, since the pressed parts are formed in a thin shape such as a plate, positive and negative heats 24 and 25 are applied to the front and back to easily reproduce a predetermined stress distribution.

また、本実施形態では、解析モデルとしての正寸モデル10を、その厚み方向に複数のソリッド要素21〜23を有するソリッドモデルで形成し、特定のソリッド要素(ここでは、厚み方向表面側のソリッド要素22,23)に熱荷重を付与することで、各変形モードM1〜M4の発生要因F1〜F5となる要因応力分布を再現するようにした。このように、厚み方向に複数のソリッド要素を有するソリッドモデルで正寸モデル10を作成することにより、厚み方向に正確な応力分布を再現することができる。もちろん、上記応力分布を熱荷重で代替して正寸モデル10に付与することにより、計算時間を抑えつつ、正確な変形解析を行うことが可能となる。   Further, in the present embodiment, the full size model 10 as an analysis model is formed by a solid model having a plurality of solid elements 21 to 23 in the thickness direction, and a specific solid element (here, a solid on the surface side in the thickness direction) By applying a thermal load to the elements 22 and 23), the factor stress distribution that is the generation factor F1 to F5 of each of the deformation modes M1 to M4 is reproduced. As described above, by creating the full-size model 10 using a solid model having a plurality of solid elements in the thickness direction, it is possible to reproduce an accurate stress distribution in the thickness direction. Of course, by substituting the above-mentioned stress distribution with the thermal load and applying it to the full-sized model 10, it becomes possible to conduct accurate deformation analysis while suppressing the calculation time.

以上、本発明の一実施形態について述べたが、本発明に係る被プレス材の変形解析方法は、その趣旨を逸脱しない範囲において、上記以外の構成を採ることも可能である。   As mentioned above, although one Embodiment of this invention was described, the deformation | transformation analysis method of the to-be-pressed material which concerns on this invention can also take the structure of that excepting the above in the range which does not deviate from the meaning.

例えば上記実施形態では、解析モデルとしての正寸モデル10を、その厚み方向に3つのソリッド要素21〜23を有するソリッドモデルで形成し(図7を参照)、特定のソリッド要素22,23に熱荷重を付与する場合を例示したが、もちろんこれ以外の形態をなすソリッドモデルを採用することも可能である。例えば図示は省略するが、正寸モデル10を、その厚み方向に2つのソリッド要素(節点は3つ)を有するソリッドモデルで形成することもでき、あるいは厚み方向に4つ以上のソリッド要素を有するソリッドモデルで形成することも可能である。ただし、あまりに厚み方向のソリッド要素の数が多すぎると、応力分布を熱荷重で代替することの利点(計算時間の低減化)が失われるおそれがあるため、解析すべき被プレス材の形状、許容可能な計算時間との兼ね合いで、厚み方向のソリッド要素の数を設定するのがよい。もちろん、解析精度の面で特に問題がないのであれば、ソリッドモデルに代えてシェルモデルを採用してもかまわない。   For example, in the above embodiment, the full-size model 10 as an analysis model is formed of a solid model having three solid elements 21 to 23 in its thickness direction (see FIG. 7), and heat is applied to specific solid elements 22 and 23. Although the case of applying the load has been illustrated, it is of course possible to adopt a solid model having another form. For example, although not shown, the full-size model 10 can be formed as a solid model having two solid elements (three nodes) in the thickness direction, or four or more solid elements in the thickness direction It is also possible to form a solid model. However, if there are too many solid elements in the thickness direction, the advantage of reducing the stress distribution by thermal load (reduction of calculation time) may be lost, so the shape of the material to be analyzed, The number of solid elements in the thickness direction should be set in consideration of the allowable calculation time. Of course, if there is no particular problem in terms of analysis accuracy, a shell model may be adopted instead of the solid model.

また、上記実施形態では、プレス部品として、断面ハット形状をなすものを解析対象とした場合を説明したが(図3等を参照)、もちろん、断面ハット形状以外の形態をなすプレス部品(被プレス材)に対しても本発明を適用することは可能である。すなわち、プレス成形可能な限りにおいて任意の形状の被プレス材に対して本発明に係る変形解析方法を適用することが可能である。   Further, in the above embodiment, although the case where a press-shaped part having a cross-sectional hat shape is used as an analysis target has been described (see FIG. 3 etc.), of course, a press part having a form other than the cross-sectional hat shape Material is also applicable to the present invention. That is, it is possible to apply the deformation analysis method according to the present invention to a material to be pressed having an arbitrary shape as long as press forming is possible.

また、上記実施形態では、プレス成形時の変形要因解析方法の変形解析ステップS4において、プレス部品の正寸モデル10に対し、各変形モードの発生要因となる要因応力分布を熱(熱荷重)で代替して付与する場合を例示したが、もちろんこれ以外の変形解析方法にも本発明を適用することが可能である。すなわち、型締め状態で被プレス材に生じる応力分布である限りにおいて、要因応力分布以外の応力分布を本発明に係る熱荷重で代替して解析モデルに付与することも可能である。   Further, in the above embodiment, in the deformation analysis step S4 of the deformation factor analysis method at the time of press molding, with respect to the full size model 10 of the pressed part, the factor stress distribution serving as the generation factor of each deformation mode is heat (heat load) Although the case of giving it as an alternative is illustrated, it is of course possible to apply the present invention to other deformation analysis methods. That is, as long as the stress distribution is generated in the material to be pressed in the clamped state, it is possible to substitute the stress distribution other than the factor stress distribution with the thermal load according to the present invention and give it to the analysis model.

また、プレス成形の種類も特に問わず、例えば冷間プレス成形の他、温間プレス成形や熱間プレス成形など加熱された状態のワーク(被プレス材)にプレス成形を施す場合にも、本発明を適用できることはもちろんである。   In addition, regardless of the type of press forming, for example, when performing press forming on a work (pressed material) in a heated state such as warm press forming or hot press forming other than cold press forming, Of course, the invention can be applied.

1a〜1c 被プレス材
2,3 プレス型
10 プレス部品の正寸モデル
11 縦壁部
11c 中立軸
12 上壁部
13 第一角部
14 フランジ部
15 第二角部
21〜23 ソリッド要素
21a〜23a 節点
F1-F5,A〜E 発生要因
M1〜M4 変形モード
S1 正寸モデル作成ステップ
S2 変形モード設定ステップ
S3 要因応力設定ステップ
S4 変形解析ステップ
S41 相関取得ステップ
S42 熱荷重付与ステップ
S43 変形解析ステップ
S5 寄与度特定ステップ(評価ステップ)
S6 寄与度反映ステップ(再設計ステップ)
1a to 1c Pressed materials 2 and 3 Press mold 10 Exact size model 11 of press parts Vertical wall 11c Neutral axis 12 Upper wall 13 First corner 14 Flange 15 Second corner 21 to 23 Solid elements 21a to 23a Nodal point F1-F5, AE Generation factor M1 to M4 Deformation mode S1 Correct model creation step S2 Deformation mode setting step S3 Factor stress setting step S4 Deformation analysis step S41 Correlation acquisition step S42 Thermal load application step S43 Deformation analysis step S5 Contribution Degree identification step (evaluation step)
S6 contribution degree reflection step (redesign step)

Claims (3)

被プレス材をプレス型で型締めした状態から型開きしたときの前記被プレス材の変形を解析する方法であって、
前記被プレス材に熱荷重を付与した際に前記被プレス材に生じる応力分布と、前記熱荷重との相関を取得する相関取得ステップと、
前記相関に基づいて、前記型締め状態で前記被プレス材に生じる応力分布を前記熱荷重で代替して前記被プレス材の解析モデルに付与する熱荷重付与ステップと、
前記型締め状態から前記型開き状態としたときの前記被プレス材の解析モデルの変形を解析する変形解析ステップとを備えた、被プレス材の変形解析方法。
A method of analyzing deformation of a material to be pressed when the material to be pressed is opened from the state of being clamped with a press die,
A correlation acquisition step of acquiring a correlation between a stress distribution generated in the material to be pressed when the thermal load is applied to the material to be pressed and the thermal load;
A thermal load applying step of replacing the stress distribution generated in the pressed material in the clamped state with the thermal load based on the correlation and applying the analysis model of the pressed material;
A deformation analysis method of a material to be pressed, comprising: a deformation analysis step of analyzing a deformation of an analysis model of the material to be pressed when the mold clamping state is changed to the mold opening state.
前記相関取得ステップにおいて、前記被プレス材の基本形状モデルに熱荷重を付与した際に前記基本形状モデルに生じる応力分布を解析により算出し、前記算出した応力分布と前記熱荷重との相関を取得する請求項1に記載の被プレス材の変形解析方法。   In the correlation acquisition step, when a thermal load is applied to the basic shape model of the material to be pressed, the stress distribution occurring in the basic shape model is calculated by analysis, and the correlation between the calculated stress distribution and the thermal load is acquired The deformation analysis method of a to-be-pressed material according to claim 1. 前記被プレス材の解析モデルを、厚み方向に複数のソリッド要素を有するソリッドモデルで形成する請求項1に記載の被プレス材の変形解析方法。   The deformation analysis method of a pressed material according to claim 1, wherein the analysis model of the pressed material is formed by a solid model having a plurality of solid elements in a thickness direction.
JP2018006562A 2018-01-18 2018-01-18 Deformation analysis method of the material to be pressed Active JP6967823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006562A JP6967823B2 (en) 2018-01-18 2018-01-18 Deformation analysis method of the material to be pressed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006562A JP6967823B2 (en) 2018-01-18 2018-01-18 Deformation analysis method of the material to be pressed

Publications (2)

Publication Number Publication Date
JP2019123002A true JP2019123002A (en) 2019-07-25
JP6967823B2 JP6967823B2 (en) 2021-11-17

Family

ID=67397249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006562A Active JP6967823B2 (en) 2018-01-18 2018-01-18 Deformation analysis method of the material to be pressed

Country Status (1)

Country Link
JP (1) JP6967823B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121273A (en) * 2001-10-19 2003-04-23 Hitachi Ltd Residual stress estimation method and device
JP2005083810A (en) * 2003-09-05 2005-03-31 Toshiba Corp Heat transfer analyzing method, recording medium having heat transfer analyzing program recorded thereon, heat transfer analyzer and residual stress analyzing method
JP2013198927A (en) * 2012-03-26 2013-10-03 Jfe Steel Corp Method of analyzing press forming

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121273A (en) * 2001-10-19 2003-04-23 Hitachi Ltd Residual stress estimation method and device
JP2005083810A (en) * 2003-09-05 2005-03-31 Toshiba Corp Heat transfer analyzing method, recording medium having heat transfer analyzing program recorded thereon, heat transfer analyzer and residual stress analyzing method
JP2013198927A (en) * 2012-03-26 2013-10-03 Jfe Steel Corp Method of analyzing press forming

Also Published As

Publication number Publication date
JP6967823B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP4633625B2 (en) Determination of the geometry model at the metal sheet forming stage
JP5002411B2 (en) Model design system
US8489368B2 (en) Method for determining the deformability of a body
CN108664686B (en) Method for designing a die surface
US20170140081A1 (en) Model setting method, forming simulation method, production method of forming tool, program, computer-readable recording medium having program recorded thereon, and finite element model
Wang et al. Springback compensation of automotive panel based on three-dimensional scanning and reverse engineering
Siswanto et al. An alternate method to springback compensation for sheet metal forming
Kahhal et al. Multi-objective optimization of sheet metal forming die using genetic algorithm coupled with RSM and FEA
CN104550496A (en) Dynamic die matching precision compensation method
JPH10138310A (en) Determination of optimum molding condition of injection molding machine
JP5911466B2 (en) Method and system for determining draw model in press molding
JP2019123002A (en) Deformation analysis method for material to be pressed
JP2004042098A (en) Forming simulation analysis method
JP2003340529A (en) Analysis system for springback of press-formed product
JP7036521B2 (en) Deformation factor analysis method for pressed parts and design method for pressed parts using this analysis result
JP2002126834A (en) Mold and its designing apparatus, designing method or manufacturing apparatus, and formed product
WO2020235288A1 (en) Method and device for identifying springback-amount discrepancy-causing sites
CN110355284A (en) Profile member for being configured to the method for the profile member of molding die and being manufactured by means of this method
JP2008221253A (en) Simulation analysis method and method of designing mold
Biba et al. Automated extrusion die design integrated with simulation of material flow
JP2008033435A (en) Forging method using shape prediction technique
JP7484862B2 (en) Mold design method, mold manufacturing method, and program
Burchitz et al. Influence of numerical parameters on springback prediction in sheet metal forming
JP6077329B2 (en) Welding deformation calculation system and calculation program
Banabic et al. Numerical Simulation of the Sheet Metal Forming Processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6967823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250