JP7036521B2 - Deformation factor analysis method for pressed parts and design method for pressed parts using this analysis result - Google Patents

Deformation factor analysis method for pressed parts and design method for pressed parts using this analysis result Download PDF

Info

Publication number
JP7036521B2
JP7036521B2 JP2018006560A JP2018006560A JP7036521B2 JP 7036521 B2 JP7036521 B2 JP 7036521B2 JP 2018006560 A JP2018006560 A JP 2018006560A JP 2018006560 A JP2018006560 A JP 2018006560A JP 7036521 B2 JP7036521 B2 JP 7036521B2
Authority
JP
Japan
Prior art keywords
deformation
factor
analysis
mode
size model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018006560A
Other languages
Japanese (ja)
Other versions
JP2019123001A (en
Inventor
正彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018006560A priority Critical patent/JP7036521B2/en
Publication of JP2019123001A publication Critical patent/JP2019123001A/en
Application granted granted Critical
Publication of JP7036521B2 publication Critical patent/JP7036521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、プレス部品の変形要因解析方法、及びこの解析結果を利用したプレス部品の設計方法に関する。 The present invention relates to a method for analyzing deformation factors of pressed parts and a method for designing pressed parts using the analysis results.

例えば、自動車ボデーに用いられる鋼板などのパネル状部品の製造工程においては、プレス成形が一般的に用いられている。このようにプレス成形により得られた部品(以後、プレス部品)は、通常、プレス成形時(型締め時)に生じた残留応力によって型開き時にスプリングバックを少なからず生じる。このスプリングバックは寸法精度不良の原因となり得るため、FEM(有限要素法)などの数値解析により事前にプレス成形時の変形を予測し、対策を検討している(例えば、特許文献1を参照)。 For example, press molding is generally used in the manufacturing process of panel-shaped parts such as steel plates used for automobile bodies. In the parts obtained by press molding (hereinafter referred to as press parts) as described above, springback usually occurs not a little at the time of mold opening due to the residual stress generated at the time of press molding (during mold clamping). Since this springback can cause poor dimensional accuracy, deformation during press molding is predicted in advance by numerical analysis such as FEM (finite element method), and countermeasures are being studied (see, for example, Patent Document 1). ..

特開2013-198927号公報Japanese Unexamined Patent Publication No. 2013-198927

このように、事前にプレス成形時の変形を予測する場合、従来は、正規形状(図面通りの形状)と予測形状との差分に基づき、プレス部品又は金型(プレス型)の設計変更を行っていた。しかしながら、この際の変更箇所や変更量は、主に作業者の経験則に基づいて設定されており、プレス成形によるプレス部品の変形メカニズムを把握した上での適切な設計変更と言えるものではなかった。そのため、例えば近年の軽量化への対策として、超ハイテンなどの高張力鋼を適用することを検討した場合、これまで培ってきたプレス成形時の変形に関する知見やデータをそのまま高張力鋼に転用することは難しく、基礎実験や従来通りの応力解析などを繰り返し行って、上記変形に関する知見やデータを一から収集する手間が生じる。 In this way, when predicting deformation during press forming in advance, conventionally, the design of the pressed part or die (pressing die) is changed based on the difference between the normal shape (shape as shown in the drawing) and the predicted shape. Was there. However, the changed part and the amount of change at this time are mainly set based on the empirical rule of the operator, and cannot be said to be an appropriate design change after understanding the deformation mechanism of the pressed part by press forming. rice field. Therefore, for example, when considering the application of high-strength steel such as ultra-high-tensile steel as a measure to reduce weight in recent years, the knowledge and data on deformation during press forming that have been cultivated so far will be diverted to high-strength steel as it is. This is difficult, and it takes time and effort to repeatedly perform basic experiments and conventional stress analysis to collect knowledge and data on the above deformation from scratch.

以上の事情に鑑み、本発明では、プレス成形時の変形メカニズムを解明することにより、プレス部品の設計精度を汎用的にかつ容易に高めることを、解決すべき技術課題とする。 In view of the above circumstances, in the present invention, it is a technical problem to be solved to improve the design accuracy of the pressed parts in a versatile and easy manner by elucidating the deformation mechanism at the time of press molding.

前記課題の解決は、本発明に係るプレス部品の変形要因解析方法によって達成される。すなわち、この解析方法は、プレス成形により得られるプレス部品の正寸モデルを作成する正寸モデル作成ステップと、プレス成形によりプレス部品に生じ得る複数の変形モードを設定する変形モード設定ステップと、各変形モードの発生要因となる要因応力を変形モードごとに設定する要因応力設定ステップと、要因応力を単独で正寸モデルに付与したときの正寸モデルの変形解析を行う変形解析ステップとを備えた点をもって特徴付けられる。なお、ここでいうプレス部品の正寸モデルとは、本解析方法の開始前の時点におけるプレス部品の図面寸法を有する解析モデルをいうものとする。 The solution to the above problems is achieved by the method for analyzing deformation factors of pressed parts according to the present invention. That is, this analysis method includes a right-size model creation step for creating a right-size model of a pressed part obtained by press molding, and a deformation mode setting step for setting a plurality of deformation modes that can occur in the pressed part by press molding. It is equipped with a factor stress setting step that sets the factor stress that causes the deformation mode for each deformation mode, and a deformation analysis step that analyzes the deformation of the right size model when the factor stress is applied to the right size model independently. Characterized by dots. The exact size model of the pressed part referred to here means an analysis model having the drawing dimensions of the pressed part at the time before the start of this analysis method.

従来、プレス成形時の変形解析は、例えば図1に示すように、被プレス材1aをプレス型2,3の間に配置した状態(図1(a)を参照)から、型締めを行った状態(図1(b)を参照)、そして型開きを行った状態(図1(c))までの各ステップの順に、被プレス材1a~1cの応力解析を行うことにより、プレス成形後の変形(図1(d)を参照)を予測していた。そのため、プレス成形後の被プレス材1c(すなわちプレス部品)には、型締めにより生じる残留応力分布、及びこの残留応力分布が原因となって生じる型開き後の変形(例えば上述したプレス成形後の形状1cと正規形状1c’との差分など)がそれぞれ一つの結果として得られるに過ぎなかった。 Conventionally, in the deformation analysis during press molding, for example, as shown in FIG. 1, the die is fastened from the state where the material 1a to be pressed is arranged between the press dies 2 and 3 (see FIG. 1A). After press molding, stress analysis of the materials to be pressed 1a to 1c is performed in the order of each step up to the state (see FIG. 1 (b)) and the state in which the mold is opened (FIG. 1 (c)). Deformation (see FIG. 1 (d)) was predicted. Therefore, the material 1c to be pressed (that is, the pressed part) after press molding has a residual stress distribution caused by mold clamping and deformation after mold opening caused by this residual stress distribution (for example, after the above-mentioned press molding). The difference between the shape 1c and the normal shape 1c', etc.) was obtained as only one result.

これに対して、本発明では、従来のように時系列的な手順とは異なる手順を経て、スプリングバックなどの変形の要因を特定するようにした。すなわち、本発明では、プレス成形によりプレス部品に生じた変形を、部位ごとの変形あるいは単純な変形(例えば図2(b)~(d)等に示す複数の変形モードM1,M2…)に分解して評価することにした。また、その評価を定量的に行うために、各変形モードM1,M2…の発生要因となる要因応力を、プレス成形前の解析モデル(被プレス材1aの解析モデル)ではなく、完成品としてのプレス部品の正寸モデル10(図2(a)を参照)に付与し、正寸モデル10の変形解析を行うことにした。このように、各変形モードの発生要因となる要因応力を付与して、その際の正寸モデルの変形解析結果を分析することにより、例えば一の変形モードの発生要因が上記正寸モデルにおける当該変形モードに及ぼす影響を客観的に評価することができる。よって、上述した変形解析をプレス部品の全ての部位及び全ての種類の変形モードに対して行うことで、プレス部品全体の変形要因を系統的に特定、整理して把握(可視化)することができる。これにより部品種ごとに的確な対策を講じることが可能となる。また、変形モードごとに発生要因の影響が明確になるので、変形モード個々に応じた対策を容易に講じることができる。また、製品図面段階で寸法精度不良の原因となる変形要因が解明できれば、例えば寸法精度不良の対策効果と二次的な不具合が発生するリスクとを、事前に織り込んで設計することができるので、図面完成度を短期間で高めることが可能となる。従って、低コストにプレス部品の設計を行うことが可能となる。もちろん、プレス成形時の変形要因が解明できていれば、部品種の変更があった場合でも、上述した解析結果に基づく対策を、容易に類似部品に展開することが可能となる。 On the other hand, in the present invention, the cause of deformation such as springback is specified through a procedure different from the conventional time-series procedure. That is, in the present invention, the deformation generated in the pressed part by press molding is decomposed into deformation for each part or simple deformation (for example, a plurality of deformation modes M1, M2 ... Shown in FIGS. 2 (b) to 2 (d)). I decided to evaluate it. Further, in order to quantitatively evaluate the factors, the factor stresses that cause the deformation modes M1, M2 ... It was decided to apply it to the exact size model 10 of the pressed part (see FIG. 2A) and perform deformation analysis of the exact size model 10. In this way, by applying the factor stress that causes each deformation mode and analyzing the deformation analysis result of the exact size model at that time, for example, the cause of one deformation mode is the said in the above size model. The effect on the deformation mode can be objectively evaluated. Therefore, by performing the above-mentioned deformation analysis for all parts of the pressed parts and all types of deformation modes, it is possible to systematically identify, organize, and grasp (visualize) the deformation factors of the entire pressed parts. .. This makes it possible to take appropriate measures for each part type. In addition, since the influence of the cause of occurrence is clarified for each deformation mode, it is possible to easily take measures according to each deformation mode. In addition, if the deformation factors that cause dimensional accuracy defects can be clarified at the product drawing stage, for example, the effectiveness of countermeasures against dimensional accuracy defects and the risk of secondary defects can be factored into the design in advance. It is possible to improve the degree of completion of drawings in a short period of time. Therefore, it is possible to design the stamped parts at low cost. Of course, if the deformation factor at the time of press molding is clarified, it is possible to easily apply the measures based on the above-mentioned analysis results to similar parts even if the parts type is changed.

また、本発明に係るプレス部品の変形要因解析方法は、変形解析結果に基づき、各変形モードに対する発生要因の影響を評価する評価ステップをさらに備えてもよい。また、その場合、例えば各変形モードに寄与する発生要因の寄与度を特定することで、上記影響を評価してもよく、あるいは、各変形モードに寄与する発生要因の数、及び各変形モードへの各発生要因の寄与度を特定することで、上記影響を評価してもよい。 Further, the deformation factor analysis method for pressed parts according to the present invention may further include an evaluation step for evaluating the influence of the generation factor on each deformation mode based on the deformation analysis result. Further, in that case, the above influence may be evaluated by, for example, specifying the contribution degree of the generating factor contributing to each deformation mode, or the number of generating factors contributing to each deformation mode and each deformation mode. The above-mentioned influence may be evaluated by specifying the degree of contribution of each of the factors causing the above.

このように寄与度を用いて評価することにより、例えば一の変形モードの発生要因が他の変形モードの発生要因に及ぼす影響を具体的かつ客観的に評価することができる。よって、プレス部品の変形要因をより一層明確に系統的に特定、整理して把握(可視化)することが可能となる。 By evaluating using the degree of contribution in this way, for example, it is possible to specifically and objectively evaluate the influence of one deformation mode generation factor on the other deformation mode generation factors. Therefore, it is possible to more clearly and systematically identify, organize, and grasp (visualize) the deformation factors of the pressed parts.

以上のように、本発明によれば、プレス成形時の変形メカニズムを解明することにより、プレス部品の設計精度を汎用的にかつ容易に高めることが可能となる。 As described above, according to the present invention, by elucidating the deformation mechanism at the time of press molding, it is possible to improve the design accuracy of the pressed parts in a versatile and easy manner.

従来行われていたプレス成形時の応力解析方法の手順を示す模式図である。It is a schematic diagram which shows the procedure of the stress analysis method at the time of press molding which was performed conventionally. 本発明の一実施形態に係るプレス部品の変形要因解析手法の概念を示す模式図で、(a)は解析対象となるプレス部品の正寸モデル、(b)~(d)は、プレス成形によりプレス部品に生じ得る変形モードの具体例である。It is a schematic diagram which shows the concept of the deformation factor analysis method of the pressed part which concerns on one Embodiment of this invention, (a) is the exact size model of the pressed part to be analyzed, (b) to (d) are by press molding. This is a specific example of a deformation mode that can occur in a pressed part. 本発明の一実施形態に係るプレス部品の設計方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the design method of the pressed part which concerns on one Embodiment of this invention. プレス成形により所定形状のプレス部品に生じ得る変形モードの具体例を列挙した図である。It is a figure which listed the specific example of the deformation mode which can occur in the pressed part of a predetermined shape by press molding. 各変形モードの発生要因となる要因応力分布の具体例を列挙した図である。It is a figure which listed the concrete example of the factor stress distribution which becomes the occurrence factor of each deformation mode. 各変形モードの発生要因となる要因応力分布の一例を模式的に示した図である。It is a figure which showed the example of the factor stress distribution which becomes the occurrence factor of each deformation mode schematically. 図2に示す正寸モデルをソリッド要素で作成した場合の一例に係る要部斜視図である。It is a main part perspective view which concerns on an example of the case where the exact size model shown in FIG. 2 is made of solid elements. 図7に示す正寸モデルに対し要因応力分布を熱で付与した状態を示す要部正面図である。It is a front view of the main part which shows the state which applied the factor stress distribution by heat to the exact size model shown in FIG. 7. 一の変形モードへの各発生要因の寄与度を示すグラフである。It is a graph which shows the contribution degree of each occurrence factor to one deformation mode. 他の変形モードへの各発生要因の寄与度を示すグラフである。It is a graph which shows the contribution degree of each occurrence factor to other deformation modes.

以下、本発明の一実施形態に係るプレス部品の変形要因解析方法、及びこの解析結果を利用したプレス部品の設計方法の内容を図面に基づき説明する。 Hereinafter, the contents of the deformation factor analysis method of the pressed part according to the embodiment of the present invention and the design method of the pressed part using the analysis result will be described with reference to the drawings.

図3は、本実施形態に係るプレス部品の設計方法の手順を示している。図3に示すように、この設計方法は、プレス部品の正寸モデルを作成する正寸モデル作成ステップS1と、プレス部品に生じ得る複数の変形モードを設定する変形モード設定ステップS2と、変形モードの発生要因となる要因応力を設定する要因応力設定ステップS3と、要因応力を独立で正寸モデルに付与し、その際の正寸モデルの変形解析を行う変形解析ステップS4と、変形解析ステップS4で得た変形解析結果に基づき、各変形モードに対する発生要因の影響を評価する評価ステップ、ここでは各変形モードに寄与する発生要因の数及びその寄与度の特定を行う寄与度特定ステップS5と、各変形モードに対する発生要因の影響、ここでは各変形モードへの各発生要因の寄与度を正寸モデルに反映させて、プレス部品の設計を行う寄与度反映ステップS6とを備える。このうち、正寸モデル作成ステップS1から寄与度特定ステップ(評価ステップ)S5までの各ステップが、本発明に係るプレス部品の変形要因解析方法を構成している。なお、以下では、図2等に示すように、断面ハット形状をなすプレス部品に対して、プレス成形時の変形要因解析を施す場合を例にとって説明する。 FIG. 3 shows a procedure of a method for designing a pressed part according to the present embodiment. As shown in FIG. 3, this design method includes an exact size model creation step S1 for creating an exact size model of a pressed part, a deformation mode setting step S2 for setting a plurality of deformation modes that can occur in the pressed part, and a deformation mode. Factor stress setting step S3 that sets the factor stress that causes the occurrence of Based on the deformation analysis result obtained in the above, an evaluation step for evaluating the influence of the generating factors on each deformation mode, here, a contribution specifying step S5 for specifying the number of generating factors contributing to each deformation mode and the contribution degree thereof. It is provided with a contribution reflection step S6 for designing a pressed part by reflecting the influence of the generation factor on each deformation mode, here, the contribution of each generation factor to each deformation mode in the exact size model. Of these, each step from the exact size model creation step S1 to the contribution degree specifying step (evaluation step) S5 constitutes the deformation factor analysis method for the pressed part according to the present invention. In the following, as shown in FIG. 2 and the like, a case where a deformation factor analysis at the time of press molding is performed on a pressed part having a cross-sectional hat shape will be described as an example.

(S1)正寸モデル作成ステップ
このステップでは、解析対象となるプレス部品の正寸モデルを作成する。本実施形態では、プレス部品は、板状部材で構成され、例えば図2(a)に示すように断面ハット形状をなす。故に、プレス部品の正寸モデル10も断面ハット形状をなすように、三次元の解析モデルを作成する。
(S1) Exact size model creation step In this step, an exact size model of the pressed part to be analyzed is created. In the present embodiment, the pressed part is composed of a plate-shaped member and has a cross-sectional hat shape as shown in FIG. 2A, for example. Therefore, a three-dimensional analysis model is created so that the exact size model 10 of the pressed part also has a cross-sectional hat shape.

(S2)変形モード設定ステップ
このステップでは、プレス成形によりプレス部品に生じ得る複数の変形モードを設定する。ここで、具体的な変形モードの選定に際しては、同一形状で異材質の又は類似形状(単純形状を含む)で同材質のプレス部品のプレス成形に係る過去の知見ないしデータ(応力解析、基礎実験や試作などにより得たものを含む)や、同プレス成形に係る学術的検証結果に基づいて行うのがよい。例えば、図2(a)に示すように、断面ハット状をなすプレス部品をプレス成形する場合に生じ得る変形モードとしては、図4に示すように、縦壁部11の反り(第一の変形モードM1)、縦壁部11の開き(第二の変形モードM2)、上壁部12の反り(第三の変形モードM3)、フランジ部14のはね(第四の変形モードM4)などを挙げることができる。
(S2) Deformation Mode Setting Step In this step, a plurality of deformation modes that may occur in the pressed part by press forming are set. Here, when selecting a specific deformation mode, past knowledge or data (stress analysis, basic experiment) related to press molding of pressed parts of the same shape but different material or similar shape (including simple shape) and the same material. It is better to do it based on the academic verification results related to the press molding. For example, as shown in FIG. 2A, as a deformation mode that can occur when a pressed part having a cross-sectional hat shape is press-molded, as shown in FIG. 4, the warp of the vertical wall portion 11 (first deformation). Mode M1), opening of the vertical wall portion 11 (second deformation mode M2), warpage of the upper wall portion 12 (third deformation mode M3), splashing of the flange portion 14 (fourth deformation mode M4), and the like. Can be mentioned.

なお、ここでいう、縦壁部11の反りは、例えば図2(b)に示すように、左右の縦壁部11が互いに遠ざかる向きに曲げ変形を生じるモードを意味する。また、縦壁部11の開きは、例えば図2(c)に示すように、縦壁部11の内面と上壁部12の内面とがなす角度が増大する向きに、縦壁部11と上壁部12とをつなぐ角部(第一角部13)が変形するモードを意味する。また、上壁部12の反りは、例えば図2(d)に示すように、左右の縦壁部11とつながる上壁部12がその長手方向に沿って曲げ変形を生じるモードを意味する。 The warp of the vertical wall portion 11 here means, for example, as shown in FIG. 2B, a mode in which the left and right vertical wall portions 11 are bent and deformed in a direction away from each other. Further, the opening of the vertical wall portion 11 is such that the vertical wall portion 11 and the vertical wall portion 11 are opened in a direction in which the angle between the inner surface of the vertical wall portion 11 and the inner surface of the upper wall portion 12 increases, as shown in FIG. It means a mode in which the corner portion (first corner portion 13) connecting the wall portion 12 is deformed. Further, the warp of the upper wall portion 12 means a mode in which the upper wall portion 12 connected to the left and right vertical wall portions 11 bends and deforms along the longitudinal direction thereof, for example, as shown in FIG. 2 (d).

もちろん、断面ハット形状をなすプレス部品の形状によっては、例えば図示は省略するが、プレス部品全体のひねり(長手方向に沿った仮想軸線まわりのねじり)や曲げなど、他の変形モードをさらに設定してもよい。 Of course, depending on the shape of the pressed part that forms the cross-sectional hat shape, for example, although not shown, other deformation modes such as twisting (twisting around the virtual axis along the longitudinal direction) and bending of the entire pressed part can be further set. You may.

(S3)要因応力設定ステップ
このステップでは、各変形モードの発生要因となる要因応力、ここでは要因応力分布を変形モードごとに設定する。ここで、具体的な発生要因となる要因応力分布の設定に際しては、変形モードと同様、同一形状で異材質の又は類似形状で同材質のプレス部品のプレス成形に係る過去の知見ないしデータや、同プレス成形に係る学術的検証結果に基づいて行うのがよい。例えば、図4に示すように、断面ハット形状をなすプレス部品をプレス成形する場合に生じ得る複数の変形モードM1~M4が設定される場合、各変形モードM1(M2~M4)の発生要因F1(F2~F5)となる要因応力分布を設定することができる。具体的には、図5に示すように、縦壁部11の反りに係る第一の変形モードM1に対しては、縦壁部11の表裏応力差を第一の発生要因F1(要因応力分布)として挙げることができる。また、縦壁部11の開きに係る第二の変形モードM2に対しては、第一角部13の表裏応力差を第二の発生要因F2(要因応力分布)として挙げることができる。また、上壁部12の反りに係る第三の変形モードM3に対しては、上壁部12の表裏応力差と、上壁部12とフランジ部14との応力差をそれぞれ第三及び第四の発生要因F3,F4(要因応力分布)として挙げることができる。また、フランジ部14のはねに係る第四の変形モードM4に対しては、縦壁部11とフランジ部14とをつなぐ角部(第二角部15)の表裏応力差を第五の発生要因F5(要因応力分布)として挙げることができる。
(S3) Factor stress setting step In this step, the factor stress that is the cause of each deformation mode, here, the factor stress distribution is set for each deformation mode. Here, when setting the factor stress distribution that is a specific factor, as in the deformation mode, past knowledge or data related to press molding of pressed parts with the same shape but different material or similar shape and the same material, etc. It is better to do it based on the academic verification results related to the press molding. For example, as shown in FIG. 4, when a plurality of deformation modes M1 to M4 that can occur when a pressed part having a cross-sectional hat shape is press-formed, the cause F1 of each deformation mode M1 (M2 to M4) is set. The factor stress distribution that becomes (F2 to F5) can be set. Specifically, as shown in FIG. 5, for the first deformation mode M1 related to the warp of the vertical wall portion 11, the stress difference between the front and back surfaces of the vertical wall portion 11 is the first generation factor F1 (factor stress distribution). ). Further, for the second deformation mode M2 related to the opening of the vertical wall portion 11, the front-back stress difference of the first corner portion 13 can be mentioned as the second generation factor F2 (factor stress distribution). Further, for the third deformation mode M3 related to the warp of the upper wall portion 12, the stress difference between the front and back surfaces of the upper wall portion 12 and the stress difference between the upper wall portion 12 and the flange portion 14 are set to the third and fourth, respectively. Can be mentioned as the factors F3 and F4 (factor stress distribution) that occur. Further, for the fourth deformation mode M4 related to the splash of the flange portion 14, the fifth generation of the front and back stress difference of the corner portion (second corner portion 15) connecting the vertical wall portion 11 and the flange portion 14 is generated. It can be mentioned as a factor F5 (factor stress distribution).

なお、ここでいう、縦壁部11の表裏応力差(第一の発生要因F1)は、例えば図6に示すように、縦壁部11の中立軸11cに対して外面11a側が長手方向に引張応力σ+、内面11b側が長手方向に圧縮応力σ-を生じる応力分布を意味する。他の発生要因F2~F5についても同様の応力分布を意味する。 As shown in FIG. 6, for example, the stress difference between the front and back surfaces of the vertical wall portion 11 (first factor F1) is such that the outer surface 11a side is pulled in the longitudinal direction with respect to the neutral shaft 11c of the vertical wall portion 11. It means a stress distribution in which stress σ + and compressive stress σ− are generated in the longitudinal direction on the inner surface 11b side. The same stress distribution is meant for other factors F2 to F5.

もちろん、上述のように、断面ハット形状をなすプレス部品に、プレス部品全体のひねりや曲げなど、他の変形モードをさらに設定する場合には、これら他の変形モードの発生要因となる要因応力(要因応力分布)を個別に設定してもよい。 Of course, as described above, when other deformation modes such as twisting and bending of the entire pressed part are further set for the pressed part having a cross-sectional hat shape, the factor stress that causes these other deformation modes ( Factor stress distribution) may be set individually.

(S4)変形解析ステップ
このステップでは、各変形モードの発生要因となる要因応力(要因応力分布)を単独で正寸モデル10に付与したときの正寸モデル10の変形解析を行う。例えば図4に示す複数の変形モードM1~M4と図5に示す要因応力分布(発生要因F1~F5)を設定している場合、正寸モデル10に対して第一の発生要因F1となる要因応力分布(図6を参照)を単独で付与して、その際の正寸モデル10の変形を解析する(第一の変形モードM1に対する変形解析)。また、第二の発生要因F2となる要因応力分布(図5を参照)を単独で正寸モデル10に付与して、その際の正寸モデル10の変形を解析する(第二の変形モードM2に対する変形解析)。また、第三及び第四の発生要因F3,F4となる要因応力分布(図5を参照)をそれぞれ単独で正寸モデル10に付与して、その際の正寸モデル10の変形を解析する(何れも第三の変形モードM3に対する変形解析)。また、第五の発生要因F5となる要因応力分布(図5を参照)を単独で正寸モデル10に付与して、その際の正寸モデル10の変形を解析する(第四の変形モードM4に対する変形解析)。要は、ステップS2で設定した変形モードの数だけ(一の変形モードに対して二以上の発生要因が設定できる場合にはその発生要因の数だけ)、正寸モデル10の変形解析を行う。
(S4) Deformation analysis step In this step, deformation analysis of the regular size model 10 is performed when the factor stress (factorial stress distribution) that causes each deformation mode is independently applied to the regular size model 10. For example, when a plurality of deformation modes M1 to M4 shown in FIG. 4 and factor stress distributions (generation factors F1 to F5) shown in FIG. 5 are set, the factor that becomes the first generation factor F1 with respect to the exact size model 10. A stress distribution (see FIG. 6) is applied independently, and the deformation of the positive size model 10 at that time is analyzed (deformation analysis for the first deformation mode M1). Further, the factor stress distribution (see FIG. 5) that becomes the second generation factor F2 is independently applied to the regular size model 10 and the deformation of the regular size model 10 at that time is analyzed (second deformation mode M2). Deformation analysis for). Further, the factor stress distributions (see FIG. 5) that are the third and fourth generation factors F3 and F4 are independently applied to the exact size model 10 and the deformation of the exact size model 10 at that time is analyzed (). Deformation analysis for the third deformation mode M3). Further, the factor stress distribution (see FIG. 5) that becomes the fifth generation factor F5 is independently applied to the regular size model 10 and the deformation of the regular size model 10 at that time is analyzed (fourth deformation mode M4). Deformation analysis for). In short, the deformation analysis of the exact size model 10 is performed for the number of deformation modes set in step S2 (if two or more generation factors can be set for one deformation mode, the number of the generation factors).

なお、正寸モデル10に対する要因応力分布の付与の手法は任意であり、一般的な荷重、変位、応力(初期応力)などを付与することができる。例えば本実施形態では、熱(熱荷重)で要因応力分布を正寸モデル10に付与する。また、この場合、例えば図7に示すように、解析モデルとしての正寸モデル10を、その厚み方向に複数のソリッド要素21~23を有するソリッドモデルで形成し、特定のソリッド要素(ここでは、プレス部品の表面を形成する厚み方向表面側のソリッド要素22,23)に熱荷重を付与することで、各変形モードM1~M4の発生要因F1~F5となる要因応力分布を再現する。この際、正寸モデル10の厚み方向中央側に位置するソリッド要素21を拘束した状態で、熱荷重を付与してもよい。 The method of applying the factor stress distribution to the positive size model 10 is arbitrary, and general loads, displacements, stresses (initial stresses), and the like can be applied. For example, in the present embodiment, the factor stress distribution is applied to the positive size model 10 by heat (heat load). Further, in this case, for example, as shown in FIG. 7, the exact size model 10 as an analysis model is formed by a solid model having a plurality of solid elements 21 to 23 in the thickness direction thereof, and a specific solid element (here, here). By applying a thermal load to the solid elements 22, 23) on the surface side in the thickness direction forming the surface of the pressed component, the factor stress distributions that are the factors F1 to F5 that generate the deformation modes M1 to M4 are reproduced. At this time, a thermal load may be applied while the solid element 21 located on the center side in the thickness direction of the positive size model 10 is restrained.

具体的には、図8に示すように、プレス成形の型締め状態において、正寸モデル10の表裏一方の側に位置するソリッド要素22の節点22aに対して正の熱24を付与(加熱)し、表裏他方の側に位置するソリッド要素23の節点23aに対して負の熱25を付与(冷却)することで、正寸モデル10の所定部位に所望の熱荷重を付与して、プレス成形の型締め状態における所定の応力分布(要因応力分布)を再現できる。例えば表裏一方の側に位置するソリッド要素22が縦壁部11の内面11b(図6を参照)を構成し、表裏他方の側に位置するソリッド要素23が縦壁部11の外面11a(図6を参照)を構成する場合、ソリッド要素22の節点22aに正の熱24を付与し、ソリッド要素23の節点23aに負の熱25を付与することで、型締め状態において図6に示す応力分布(要因応力分布)、すなわち図2(b)に示す第一の変形モードM1の第一の発生要因F1となる要因応力分布(縦壁部11の表裏応力差)を付与することができる。なお、厚み方向中央側のソリッド要素21を拘束する場合、このソリッド要素21の節点21aもまた拘束した状態で上述した要因応力分布が付与される。このようにして要因応力分布を付与した後、型締め状態から型開き状態としたときの正寸モデル10の変形を解析する。 Specifically, as shown in FIG. 8, positive heat 24 is applied (heated) to the node 22a of the solid element 22 located on one side of the front and back sides of the positive size model 10 in the mold clamping state of press molding. Then, by applying (cooling) negative heat 25 to the node 23a of the solid element 23 located on the other side of the front and back, a desired heat load is applied to a predetermined portion of the exact size model 10 and press molding is performed. It is possible to reproduce a predetermined stress distribution (factorial stress distribution) in the mold clamping state. For example, the solid element 22 located on one side of the front and back constitutes the inner surface 11b (see FIG. 6) of the vertical wall portion 11, and the solid element 23 located on the other side of the front and back constitutes the outer surface 11a of the vertical wall portion 11 (FIG. 6). By applying positive heat 24 to the node 22a of the solid element 22 and applying negative heat 25 to the node 23a of the solid element 23, the stress distribution shown in FIG. 6 is applied in the mold clamping state. (Factor stress distribution), that is, a factor stress distribution (front and back stress difference of the vertical wall portion 11) which is the first generation factor F1 of the first deformation mode M1 shown in FIG. 2B can be imparted. When the solid element 21 on the center side in the thickness direction is constrained, the above-mentioned factor stress distribution is applied with the node 21a of the solid element 21 also constrained. After applying the factor stress distribution in this way, the deformation of the exact size model 10 when the mold is changed from the mold-clamped state to the mold-opened state is analyzed.

なお、この際に付与する熱24,25(熱荷重)の大きさは、例えば予め正寸モデル10もしくは正寸モデル10をさらに単純化した形状の解析モデルに熱荷重を付与した際の応力分布と、熱荷重との相関を解析で取得しておき、当該相関に基づいて設定することが可能である。 The magnitude of the heat 24, 25 (heat load) applied at this time is, for example, the stress distribution when the heat load is applied to the analysis model having a shape obtained by further simplifying the regular size model 10 or the regular size model 10 in advance. And, it is possible to acquire the correlation with the heat load by analysis and set it based on the correlation.

(S5)寄与度特定ステップ
このステップでは、変形解析ステップS4で得た正寸モデル10の変形解析結果に基づき、各変形モードに対する発生要因の影響、ここでは各変形モードに寄与する発生要因の数、及び各変形モードへの各発生要因の寄与度を特定する。例えば変形解析ステップS4において、図5に示す第一の変形モードM1の発生要因F1となる要因応力分布を型締め状態の正寸モデル10に付与した場合、型開き状態で正寸モデル10に上記第一の変形モードM1(一次の変形モード)が生じると共に、別の変形モード(例えば第二の変形モードM2など二次的な変形モード)、場合によってはさらに別の変形モード(例えば第三の変形モードM3など三次的な変形モード)を生じることがある。この場合、各変形モードM1~M3に係る正寸モデル10の変形量から、各変形モードM1~M3の発生要因(例えば第一~第四の発生要因F1~F4)の寄与度を特定する。具体的には、解析により得られた一つの変形解析結果を、変形モードM1~M3ごとの変形量に分解し、分解した変形量の大きさに基づいて、対応する各発生要因F1~F4の寄与度を算定する。
(S5) Contribution degree specifying step In this step, the influence of the generating factors on each deformation mode, here, the number of generating factors contributing to each deformation mode, based on the deformation analysis result of the exact size model 10 obtained in the deformation analysis step S4. , And the contribution of each factor to each deformation mode. For example, in the deformation analysis step S4, when the factor stress distribution that becomes the generation factor F1 of the first deformation mode M1 shown in FIG. A first transformation mode M1 (primary transformation mode) occurs, and another transformation mode (eg, a secondary transformation mode such as the second transformation mode M2), and in some cases yet another transformation mode (eg, a third transformation mode). Deformation mode M3 and other tertiary deformation modes) may occur. In this case, the degree of contribution of the generation factors (for example, the first to fourth generation factors F1 to F4) of each deformation mode M1 to M3 is specified from the deformation amount of the exact size model 10 related to each deformation mode M1 to M3. Specifically, one deformation analysis result obtained by the analysis is decomposed into deformation amounts for each of the deformation modes M1 to M3, and the corresponding generation factors F1 to F4 are based on the magnitude of the decomposed deformation amount. Calculate the contribution.

同様に、他の変形モードM2~M4の発生要因F2~F5となる要因応力分布を正寸モデル10に付与したときの変形解析結果についても、発生が認められた変形モードの発生要因の数、及びその寄与度を特定する。このようにして、全ての発生要因について得られた正寸モデル10の変形解析結果について、当該変形に寄与した発生要因の数とその寄与度を特定する。例えば図9に示すある一つの変形モードに対する変形解析結果においては、発生要因Aの寄与度が最も高く、相対的に発生要因Bの寄与度は低い。これに対して、図10に示す他の変形モードに対する変形解析結果においては、発生要因Bの寄与度が最も高く、これに次いで発生要因Aの寄与度が高いことが分かる。このことから、ある一つの変形モードの発生要因が他の変形モードの発生要因として寄与していること、及びその寄与度が明確に把握できる。また、各々の変形モードに寄与する発生要因の数、及び種類(例えば図9に示す変形モードでは3種類、図10に示す変形モードでは4種類)も一目で分かる。以上より、正寸モデル10に係るプレス部品のプレス成形時の変形メカニズム(の少なくとも傾向)が解明可能となる。なお、図9及び図10は、あくまでも変形解析結果に基づく寄与度の分布を表現する方式の一つとして例示したものであり、各発生要因A~Eと、図5に示す発生要因F1~F5との間に、直接的な関係はない。 Similarly, regarding the deformation analysis results when the factor stress distributions that are the factors F2 to F5 of the other deformation modes M2 to M4 are applied to the exact size model 10, the number of factors that cause the deformation modes that are found to occur, And its contribution. In this way, with respect to the deformation analysis results of the exact size model 10 obtained for all the generation factors, the number of generation factors that contributed to the deformation and the degree of contribution thereof are specified. For example, in the deformation analysis result for one deformation mode shown in FIG. 9, the contribution of the generation factor A is the highest, and the contribution of the generation factor B is relatively low. On the other hand, in the deformation analysis results for the other deformation modes shown in FIG. 10, it can be seen that the contribution of the generation factor B is the highest, followed by the contribution of the generation factor A. From this, it can be clearly understood that the factor that causes one deformation mode contributes as the factor that causes another deformation mode, and the degree of contribution thereof. Further, the number and types of generation factors contributing to each deformation mode (for example, 3 types in the deformation mode shown in FIG. 9 and 4 types in the deformation mode shown in FIG. 10) can be known at a glance. From the above, it becomes possible to elucidate (at least the tendency) of the deformation mechanism (at least the tendency) of the pressed parts according to the exact size model 10 at the time of press molding. Note that FIGS. 9 and 10 are merely exemplified as one of the methods for expressing the distribution of the degree of contribution based on the deformation analysis result, and the factors A to E and the factors F1 to F5 shown in FIG. 5 are illustrated. There is no direct relationship with.

(S6)寄与度反映ステップ(再設計ステップ)
このステップでは、以上のステップS1~S5により得られた各変形モードへの各発生要因の影響(ここでは寄与度)を正寸モデル10に反映させて、プレス部品の設計(再設計)を行う。具体的には、変形モードごとにその発生要因の寄与度が判明しているので、当該寄与度に応じて、各発生要因となる要因応力分布が極力小さくなるように、正寸モデル10の対応部位の形状を変更する。形状変更の具体例としては、その変形モードに応じて、座面の追加、ビードの追加などを挙げることができる。あるいは、剛性向上を目的とした板厚の増大化(板状部の重ね合わせなどを含む)などを挙げることができる。
(S6) Contribution reflection step (redesign step)
In this step, the influence of each generation factor (contribution degree in this case) on each deformation mode obtained by the above steps S1 to S5 is reflected in the exact size model 10 to design (redesign) the pressed part. .. Specifically, since the contribution of the factors that cause each deformation mode is known, the exact size model 10 is supported so that the factor stress distribution that causes each factor becomes as small as possible according to the contribution. Change the shape of the part. Specific examples of the shape change include addition of a seat surface and addition of a bead according to the deformation mode. Alternatively, increasing the plate thickness (including superimposing plate-shaped portions) for the purpose of improving rigidity can be mentioned.

また、複数の発生要因が相互に対応する変形モードに影響を及ぼし合っている場合には、各発生要因の変形モードに対する寄与度に応じて、個々の設計変更を実施するのがよい。これにより、変形を相殺して、プレス成形後の製品(プレス部品)に変形が生じないようにすることも可能となる。 Further, when a plurality of generation factors influence each other's corresponding deformation modes, it is preferable to carry out individual design changes according to the degree of contribution of each generation factor to the deformation mode. This makes it possible to offset the deformation and prevent the product (pressed parts) after press molding from being deformed.

このように、本実施形態に係るプレス部品の変形要因解析方法では、プレス成形によりプレス部品に生じ得る複数の変形モード(例えば図4に示す第一~第四の変形モードM1~M4)と、各変形モードの発生要因(例えば図5に示す第一~第六の発生要因F1~F5)となる要因応力分布を変形モードごとに設定し、これら要因応力分布を単独でプレス部品の正寸モデル10に付与したときの正寸モデル10の変形解析を行って、変形解析結果に基づき、各変形モードに寄与する発生要因の数、及び各変形モードへの各発生要因の寄与度を特定するようにした。このように、各変形モードの発生要因となる要因応力分布を付与して、その際の正寸モデル10の変形解析結果を分析することにより、一の変形モードの発生要因が他の変形モードの発生要因に及ぼす影響(寄与度)を客観的に評価することができる。よって、上述した変形解析をプレス部品の正寸モデル10の全ての部位及び全ての種類の変形モードに対して行うことで、プレス部品全体の変形要因を系統的に特定、整理して把握(可視化)することができる(図9及び図10を参照)。これにより部品種ごとに的確な対策を講じることが可能となる。また、変形モードごとに各発生要因の寄与率が明確になるので、変形モード個々に応じた対策を容易に講じることができる。また、製品図面段階で寸法精度不良の原因となる変形要因が解明できれば、例えば寸法精度不良の対策効果と二次的な不具合が発生するリスクとを、事前に織り込んで正寸モデル10を再設計することができるので、図面完成度を短期間で高めることが可能となる。従って、低コストにプレス部品の設計を行うことが可能となる。もちろん、プレス成形時の変形要因が解明できていれば、部品種の変更があった場合でも、上述した解析結果に基づく対策を、容易に類似部品に展開することが可能となる。 As described above, in the method for analyzing the deformation factors of the pressed parts according to the present embodiment, a plurality of deformation modes (for example, the first to fourth deformation modes M1 to M4 shown in FIG. 4) that may occur in the pressed parts by press molding are used. Factor stress distributions that are the factors that cause each deformation mode (for example, the first to sixth factors F1 to F5 shown in FIG. 5) are set for each deformation mode, and these factor stress distributions are independently set as an exact size model of the pressed part. Deformation analysis of the exact size model 10 when assigned to 10 is performed, and the number of generation factors contributing to each deformation mode and the degree of contribution of each generation factor to each deformation mode are specified based on the deformation analysis result. I made it. In this way, by assigning the factor stress distribution that causes each deformation mode and analyzing the deformation analysis result of the exact size model 10 at that time, the factor that causes one deformation mode is the other deformation mode. It is possible to objectively evaluate the effect (contribution) on the factors that cause it. Therefore, by performing the above-mentioned deformation analysis for all parts and all types of deformation modes of the exact size model 10 of the pressed parts, the deformation factors of the entire pressed parts are systematically identified, organized and grasped (visualized). ) (See FIGS. 9 and 10). This makes it possible to take appropriate measures for each part type. In addition, since the contribution rate of each generation factor is clarified for each deformation mode, it is possible to easily take measures according to each deformation mode. In addition, if the deformation factors that cause dimensional accuracy defects can be clarified at the product drawing stage, for example, the correct size model 10 will be redesigned by incorporating in advance the countermeasure effect of dimensional accuracy defects and the risk of secondary defects. Therefore, it is possible to improve the degree of completion of the drawing in a short period of time. Therefore, it is possible to design the stamped parts at low cost. Of course, if the deformation factor at the time of press molding is clarified, it is possible to easily apply the measures based on the above-mentioned analysis results to similar parts even if the parts type is changed.

また、本実施形態では、プレス成形の型拘束状態(型締め状態)において正寸モデル10に要因応力分布を熱で付与するようにした。この種の応力解析においては、応力分布は、変位又は通常の荷重で付与するのが一般的であるが、変位や通常の荷重だと、大きさに加えて向きの情報も指定する必要があるため、計算量が膨大になる問題がある。これに対して、本実施形態では、実際には熱ではなくプレス荷重に起因する要因応力分布を解析上では敢えて熱で付与するようにした。これにより、熱の大きさのみを指定すれば足りるため、計算量を従来に比べて大幅に減らすことができる。よって、解析時間を短縮することができる。 Further, in the present embodiment, the factor stress distribution is applied to the exact size model 10 by heat in the mold restraint state (mold tightening state) of press molding. In this type of stress analysis, the stress distribution is generally applied by displacement or normal load, but in the case of displacement or normal load, it is necessary to specify orientation information in addition to magnitude. Therefore, there is a problem that the amount of calculation becomes enormous. On the other hand, in the present embodiment, the factor stress distribution caused by the press load, not the heat, is intentionally applied by heat in the analysis. As a result, since it is sufficient to specify only the magnitude of heat, the amount of calculation can be significantly reduced as compared with the conventional case. Therefore, the analysis time can be shortened.

また、これら要因応力分布は、単純な変形である変形モードに対応しているため、熱荷重の付与による要因応力分布の再現であっても、高い再現精度を得ることができ、これにより正確に解析を行うことが可能となる。もちろん、プレス部品は、板状など薄肉形状に形成されるものであるから、その表裏に正負の熱を付与して、所定の応力分布を再現し易い。 In addition, since these factor stress distributions correspond to the deformation mode, which is a simple deformation, high reproduction accuracy can be obtained even when the factor stress distribution is reproduced by applying a thermal load, which makes it accurate. It becomes possible to perform analysis. Of course, since the pressed parts are formed in a thin-walled shape such as a plate, it is easy to apply positive and negative heat to the front and back surfaces to reproduce a predetermined stress distribution.

また、本実施形態では、解析モデルとしての正寸モデル10を、その厚み方向に複数のソリッド要素21~23を有するソリッドモデルで形成し、特定のソリッド要素(ここでは、厚み方向表面側のソリッド要素22,23)に熱荷重を付与することで、各変形モードM1~M4の発生要因F1~F5となる要因応力分布を再現するようにした。通常、パネル状部品など板状をなす部品の応力解析においては、計算時間の短縮のために、シェル要素など厚み方向にソリッド要素が一つとなる解析モデルを用いることが一般的であるが、本実施形態のように、厚み方向に複数のソリッド要素を有するソリッドモデルで正寸モデル10を作成することにより、厚み方向に正確な応力分布を再現することができる。もちろん、本実施形態では、当該応力分布を熱荷重で代替して正寸モデル10に付与するようにしたので、計算時間を抑えつつ、正確な変形解析を行うことが可能となる。 Further, in the present embodiment, the exact size model 10 as an analysis model is formed by a solid model having a plurality of solid elements 21 to 23 in the thickness direction thereof, and a specific solid element (here, a solid on the surface side in the thickness direction) is formed. By applying a thermal load to the elements 22 and 23), the factor stress distributions that are the factors F1 to F5 that generate the deformation modes M1 to M4 are reproduced. Normally, in stress analysis of plate-shaped parts such as panel-shaped parts, it is common to use an analysis model in which one solid element such as a shell element is used in the thickness direction in order to shorten the calculation time. By creating the exact size model 10 with a solid model having a plurality of solid elements in the thickness direction as in the embodiment, it is possible to reproduce an accurate stress distribution in the thickness direction. Of course, in the present embodiment, since the stress distribution is substituted by the thermal load and applied to the exact size model 10, it is possible to perform accurate deformation analysis while suppressing the calculation time.

以上、本発明の一実施形態について述べたが、本発明に係るプレス部品の変形要因解析方法及びプレス部品の設計方法は、その趣旨を逸脱しない範囲において、上記以外の構成を採ることも可能である。 Although one embodiment of the present invention has been described above, the method for analyzing the deformation factor of the pressed part and the method for designing the pressed part according to the present invention can adopt a configuration other than the above as long as the purpose is not deviated. be.

例えば上記実施形態では、評価ステップとして、各変形モードに寄与する発生要因の数、及び各変形モードへの各発生要因の寄与度を特定することで、各変形モードに対する発生要因の影響を評価する場合を説明したが、もちろんこれには限定されない。各変形モードに対する発生要因の影響が何らかの形態で評価され得る限りにおいて、他の評価項目を採用することも可能である。 For example, in the above embodiment, as an evaluation step, the influence of the generating factors on each deformation mode is evaluated by specifying the number of generating factors contributing to each deformation mode and the contribution degree of each generating factor to each deformation mode. I have explained the case, but of course it is not limited to this. It is also possible to adopt other evaluation items as long as the influence of the generating factor on each deformation mode can be evaluated in some form.

また、上記実施形態では、プレス部品として、断面ハット形状をなすものを解析対象とした場合を説明したが(図2等を参照)、もちろん、断面ハット形状以外の形態をなすプレス部品に対しても本発明を適用することは可能である。すなわち、プレス成形可能な限りにおいて任意の形状のプレス部品に対して本発明に係る変形要因解析方法及びその解析結果を利用した設計方法を適用することが可能である。また、この場合、プレス部品の形状応じて複数の変形モードを設定し、かつその発生要因となる要因応力分布を設定することが可能である。 Further, in the above embodiment, the case where a pressed part having a cross-sectional hat shape is targeted for analysis has been described (see FIG. 2 and the like), but of course, for a pressed part having a form other than the cross-sectional hat shape. It is also possible to apply the present invention. That is, it is possible to apply the deformation factor analysis method according to the present invention and the design method using the analysis result to the press parts having any shape as long as press molding is possible. Further, in this case, it is possible to set a plurality of deformation modes according to the shape of the pressed part and set the factor stress distribution that causes the occurrence thereof.

また、上記実施形態では、変形解析ステップS4において、プレス部品の正寸モデル10に対し、各変形モードの発生要因となる要因応力分布を熱(熱荷重)で付与する場合を例示したが、計算時間が許す限りにおいて、他の項目(変位、荷重、初期応力など)で正寸モデル10に要因応力分布を付与してもかまわない。 Further, in the above embodiment, in the deformation analysis step S4, a case where a factor stress distribution that causes each deformation mode is applied by heat (heat load) to the exact size model 10 of the pressed part is illustrated. As long as time permits, the factor stress distribution may be given to the positive size model 10 by other items (displacement, load, initial stress, etc.).

1a~1c 被プレス材
2,3 プレス型
10 プレス部品の正寸モデル
11 縦壁部
11c 中立軸
12 上壁部
13 第一角部
14 フランジ部
15 第二角部
21~23 ソリッド要素
21a~23a 節点
F1-F5,A~E 発生要因
M1~M4 変形モード
S1 正寸モデル作成ステップ
S2 変形モード設定ステップ
S3 要因応力設定ステップ
S4 変形解析ステップ
S5 寄与度特定ステップ(評価ステップ)
S6 寄与度反映ステップ(再設計ステップ)
1a to 1c Pressed material 2, 3 Press mold 10 Correct size model of pressed parts 11 Vertical wall part 11c Neutral shaft 12 Upper wall part 13 First corner part 14 Flange part 15 Second corner part 21 to 23 Solid elements 21a to 23a Nodes F1-F5, A to E Generation factors M1 to M4 Deformation mode S1 Full size model creation step S2 Deformation mode setting step S3 Factor stress setting step S4 Deformation analysis step S5 Contribution degree identification step (evaluation step)
S6 Contribution reflection step (redesign step)

Claims (2)

プレス成形により得られるプレス部品の変形要因解析方法であって、
前記プレス部品の正寸モデルを作成する正寸モデル作成ステップと、
前記プレス成形により前記プレス部品に生じ得る複数の変形モードを設定する変形モード設定ステップと、
前記各変形モードの発生要因となる要因応力を前記変形モードごとに設定する要因応力設定ステップと、
前記要因応力を単独で前記正寸モデルに付与したときの前記正寸モデルの変形解析を行う変形解析ステップと、
前記変形解析ステップで得た変形解析結果に基づき、前記各変形モードに対する前記発生要因の影響を評価する評価ステップさらに備え
前記評価ステップで、前記各変形モードに対する前記発生要因の影響として、前記各変形モードに寄与する前記発生要因の数、及び前記各変形モードへの前記各発生要因の寄与度を特定する、プレス部品の変形要因解析方法。
It is a method of analyzing deformation factors of pressed parts obtained by press molding.
The step of creating an exact size model for creating an exact size model of the pressed part, and
A deformation mode setting step for setting a plurality of deformation modes that may occur in the pressed part by the press molding, and a deformation mode setting step.
The factor stress setting step for setting the factor stress that causes the occurrence of each deformation mode for each deformation mode, and
A deformation analysis step for performing deformation analysis of the exact size model when the factor stress is independently applied to the exact size model, and
Based on the deformation analysis result obtained in the deformation analysis step, an evaluation step for evaluating the influence of the generation factor on each deformation mode is further provided .
In the evaluation step, as the influence of the generation factor on each deformation mode, the number of the generation factors contributing to each deformation mode and the degree of contribution of each generation factor to each deformation mode are specified. Deformation factor analysis method.
請求項1に記載の変形要因解析方法により得た変形解析結果を前記正寸モデルに反映させて、前記プレス部品の設計を行う、プレス部品の設計方法。 A method for designing a pressed part, wherein the pressed part is designed by reflecting the deformation analysis result obtained by the deformation factor analysis method according to claim 1 in the exact size model.
JP2018006560A 2018-01-18 2018-01-18 Deformation factor analysis method for pressed parts and design method for pressed parts using this analysis result Active JP7036521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006560A JP7036521B2 (en) 2018-01-18 2018-01-18 Deformation factor analysis method for pressed parts and design method for pressed parts using this analysis result

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006560A JP7036521B2 (en) 2018-01-18 2018-01-18 Deformation factor analysis method for pressed parts and design method for pressed parts using this analysis result

Publications (2)

Publication Number Publication Date
JP2019123001A JP2019123001A (en) 2019-07-25
JP7036521B2 true JP7036521B2 (en) 2022-03-15

Family

ID=67397233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006560A Active JP7036521B2 (en) 2018-01-18 2018-01-18 Deformation factor analysis method for pressed parts and design method for pressed parts using this analysis result

Country Status (1)

Country Link
JP (1) JP7036521B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046349A (en) 2012-08-31 2014-03-17 Jfe Steel Corp Springback suppression component and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046349A (en) 2012-08-31 2014-03-17 Jfe Steel Corp Springback suppression component and method of manufacturing the same

Also Published As

Publication number Publication date
JP2019123001A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP4894294B2 (en) Press forming analysis method
Gan et al. Die design method for sheet springback
Govik et al. Finite element simulation of the manufacturing process chain of a sheet metal assembly
KR101893312B1 (en) Model configuration method, forming simulation method, manufacturing method for forming tool, program, computer readable recording medium with program stored therein, and finite element model
US8046098B2 (en) Curved surface forming method of a metal plate
Tisza Numerical modelling and simulation in sheet metal forming
Jansson et al. Optimization of draw-in for an automotive sheet metal part: an evaluation using surrogate models and response surfaces
RU2477663C2 (en) Method, device, program and elastic recoil cause analysis record carrier
JP5910224B2 (en) Press forming analysis method
Firat Computer aided analysis and design of sheet metal forming processes:: Part III: Stamping die-face design
JP6547763B2 (en) Springback amount prediction method
KR20030077456A (en) A method for determining a die profile for forming a metal part having a desired shape and associated methods
JP5941320B2 (en) Mold shape simulation system, program and method
JP4995052B2 (en) Strength prediction evaluation method and apparatus, program, and recording medium
Baùon et al. Improved method of springback compensation in metal forming analysis
JP7036521B2 (en) Deformation factor analysis method for pressed parts and design method for pressed parts using this analysis result
JP2005266892A (en) Mold designing support system and method, and program for supporting mold designing
JP6967823B2 (en) Deformation analysis method of the material to be pressed
JP2007229761A (en) Method, device, and program for predicting existence of wrinkle on material to be formed in press forming, and press forming method
Vrolijk et al. A study with ESI PAM-STAMP® on the influence of tool deformation on final part quality during a forming process
Liu et al. FE simulation for concurrent design and manufacture of automotive sheet-metal parts
Tisza Numerical modeling and simulation in sheet metal forming academic and industrial perspectives
Konrad et al. Influence of Geometrical Shapes and Sheet Thicknesses on the Dimensional Accuracy of Single and Assembled Parts
Adnan et al. Effect of annealing, thickness ratio and bend angle on springback of AA6061-T6 with non-uniform thickness section
Banabic et al. Numerical Simulation of the Sheet Metal Forming Processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7036521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150