JP2019121485A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2019121485A
JP2019121485A JP2017254439A JP2017254439A JP2019121485A JP 2019121485 A JP2019121485 A JP 2019121485A JP 2017254439 A JP2017254439 A JP 2017254439A JP 2017254439 A JP2017254439 A JP 2017254439A JP 2019121485 A JP2019121485 A JP 2019121485A
Authority
JP
Japan
Prior art keywords
solid
positive electrode
current collector
layer
collector layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017254439A
Other languages
Japanese (ja)
Other versions
JP6977554B2 (en
Inventor
哲也 早稲田
Tetsuya Waseda
哲也 早稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017254439A priority Critical patent/JP6977554B2/en
Publication of JP2019121485A publication Critical patent/JP2019121485A/en
Application granted granted Critical
Publication of JP6977554B2 publication Critical patent/JP6977554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide an all-solid battery where the lateral face of the all-solid battery laminate is coated with a resin layer, and even when the all-solid battery laminate is confined by means of a pair of end plates, the all-solid battery laminate can be confined with sufficient pressure.SOLUTION: In the lamination direction of an all-solid battery laminate, thickness of the all-solid battery laminate is larger than the thickness of a resin layer, the positive electrode collector layer and/or the negative electrode collector layer adjoining a pair of end plates, respectively, has an area larger than that of the adjoining positive electrode active material layer and/or the negative electrode active material layer, and the end of the positive electrode collector layer and/or the negative electrode collector layer adjoining the pair of end plates, respectively, has a rim bending toward the opposite side of the end plate adjoining the positive electrode collector layer and/or the negative electrode collector layer.SELECTED DRAWING: Figure 1

Description

本開示は、全固体電池に関する。特に、本開示は、全固体電池積層体の側面が樹脂層で被覆されており、かつ全固体電池積層体の両端面を積層方向に一対のエンドプレートで拘束されている全固体電池に関する。   The present disclosure relates to all solid state batteries. In particular, the present disclosure relates to an all-solid battery in which the side surface of the all-solid battery stack is coated with a resin layer, and both end surfaces of the all-solid battery stack are constrained by a pair of end plates in the stacking direction.

近年、積層電池の実用化に伴い、積層電池を被覆する技術も注目されている。例えば、特許文献1では、全固体電池素子を熱硬化性樹脂又は熱可塑性樹脂から構成される外装体で被覆する技術が開示されている。また、特許文献2では、電解液を用いた電池本体を、熱硬化性樹脂などの未硬化材料で被包し、その後、未硬化性材料を硬化させる技術が開示されている。さらに、特許文献3では、固体電池素子本体の側面に樹脂製の枠体が設けられ、及び固体電極層と、集電体層との間に封止導電性粘着フィルムが設けられている技術が開示されている。   In recent years, with the practical use of laminated batteries, a technology for covering laminated batteries has also attracted attention. For example, Patent Document 1 discloses a technique for covering an all solid battery element with an exterior body made of a thermosetting resin or a thermoplastic resin. Further, Patent Document 2 discloses a technology in which a battery body using an electrolytic solution is encapsulated with an uncured material such as a thermosetting resin, and then the uncured material is cured. Furthermore, in Patent Document 3, there is a technology in which a resin frame is provided on the side surface of the solid battery element body, and a sealing conductive adhesive film is provided between the solid electrode layer and the current collector layer. It is disclosed.

特開2000−106154号公報JP 2000-106154 A 特開2000−251858号公報Unexamined-Japanese-Patent No. 2000-251858 特開2015−076178号公報JP, 2015-076178, A

全固体電池積層体に対して、拘束圧を加えることによって、固体電解質層と活物質層(正極活物質層又は負極活物質層)との界面接合が良好になり、それによって、電池の抵抗が低下することが知られている。   By applying a confining pressure to the all solid battery laminate, the interfacial bonding between the solid electrolyte layer and the active material layer (positive electrode active material layer or negative electrode active material layer) is improved, whereby the battery resistance is improved. It is known to decline.

しかしながら、全固体電池積層体の側面を樹脂層で被覆している場合、エンドプレートを用いて全固体電池積層体の両端面に圧力を加えると、エンドプレートが樹脂層に当接することによって、全固体電池積層体を十分な圧力で拘束することが困難になることがある。   However, in the case where the side surface of the all solid battery laminate is coated with the resin layer, when pressure is applied to both end surfaces of the all solid battery laminate using the end plate, the end plate abuts the resin layer. It may be difficult to constrain the solid state battery stack with sufficient pressure.

したがって、本開示は、上記事情を鑑みてなされたものであり、全固体電池積層体の側面を樹脂層で被覆しており、かつ全固体電池積層体の両端面を一対のエンドプレートで拘束している場合でも、全固体電池積層体を十分な圧力を加えながら拘束できる全固体電池を提供することを目的とする。   Therefore, the present disclosure has been made in view of the above circumstances, in which the side surface of the all solid battery laminate is coated with a resin layer, and both end surfaces of the all solid battery laminate are restrained by a pair of end plates. It is an object of the present invention to provide an all-solid-state battery capable of restraining while applying a sufficient pressure to the all-solid-state battery stack.

本開示の本発明者は、以下の手段により、上記課題を解決できることを見出した。   The inventor of the present disclosure has found that the above-mentioned problems can be solved by the following means.

正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順で積層してなる単位全固体電池を1以上有する全固体電池積層体と、
前記全固体電池積層体の側面を被覆している樹脂層と、
前記全固体電池積層体の両端面を積層方向に拘束している一対のエンドプレートと、
を有し、
前記全固体電池積層体の積層方向において、前記全固体電池積層体の厚さが、前記樹脂層の厚さよりも大きく、
前記一対のエンドプレートのそれぞれに隣接する前記正極集電体層及び/又は前記負極集電体層が、それぞれに隣接する前記正極活物質層及び/又は前記負極活物質層よりも大きい面積を有し、かつ
前記一対のエンドプレートのそれぞれに隣接する前記正極集電体層及び/又は前記負極集電体層の端部が、前記正極集電体層及び/又は前記負極集電体層に隣接するエンドプレートの反対側に向かって屈曲している屈曲周縁部を有する、
全固体電池。
An all solid battery laminate having at least one unit all solid battery formed by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order;
A resin layer covering the side surface of the all solid battery laminate;
A pair of end plates constraining both end faces of the all-solid-state battery stack in the stacking direction;
Have
In the stacking direction of the all-solid-state battery stack, the thickness of the all-solid-state battery stack is larger than the thickness of the resin layer,
The positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the pair of end plates have a larger area than the positive electrode active material layer and / or the negative electrode active material layer adjacent to each other. And an end portion of the positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the pair of end plates is adjacent to the positive electrode current collector layer and / or the negative electrode current collector layer. Having a bending edge which is bent towards the opposite side of the
All solid state battery.

本開示によれば、全固体電池積層体の側面を樹脂層で被覆しており、かつ全固体電池積層体の両端面を一対のエンドプレートで拘束している場合でも、全固体電池積層体を十分な圧力で拘束することができる。   According to the present disclosure, even when the side surface of the all solid battery laminate is coated with a resin layer and both end surfaces of the all solid battery laminate are restrained by a pair of end plates, It can be restrained with sufficient pressure.

図1は、本開示の全固体電池の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the all-solid-state battery of the present disclosure. 図2は、本開示の全固体電池の一例の一部分を示す平面図である。FIG. 2 is a plan view showing a part of an example of the all-solid-state battery of the present disclosure. 図3は、本開示の全固体電池の一例の一部分を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing a part of an example of the all-solid-state battery of the present disclosure.

以下、図面を参照しながら、本開示を実施するための形態について、詳細に説明する。なお、説明の便宜上、各図において、同一又は相当する部分には同一の参照符号を付し、重複説明は省略する。実施の形態の各構成要素は、全てが必須のものであるとは限らず、一部の構成要素を省略可能な場合もある。最も、以下の図に示される形態は本開示の例示であり、本開示を限定するものではない。   Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that, for convenience of explanation, in the respective drawings, the same or corresponding parts will be denoted by the same reference symbols, and redundant description will be omitted. Not all of the components of the embodiment are necessarily required, and some components may be omitted. Mostly, the forms shown in the following figures are examples of the present disclosure and do not limit the present disclosure.

≪全固体電池≫
本開示の全固体電池は、
正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順で積層してなる単位全固体電池を1以上有する全固体電池積層体と、
全固体電池積層体の側面を被覆している樹脂層と、
全固体電池積層体の両端面を積層方向に拘束している一対のエンドプレートと、
を有し、
全固体電池積層体の積層方向において、全固体電池積層体の厚さが、樹脂層の厚さよりも大きく、
一対のエンドプレートのそれぞれに隣接する正極集電体層及び/又は負極集電体層が、それぞれに隣接する正極活物質層及び/又は負極活物質層よりも大きい面積を有し、かつ
一対のエンドプレートのそれぞれに隣接する正極集電体層及び/又は負極集電体層の端部が、当該正極集電体層及び/又は当該負極集電体層に隣接するエンドプレートの反対側に向かって屈曲している屈曲周縁部を有する。
«All solid state battery»
The all solid state battery of the present disclosure is
An all solid battery laminate having at least one unit all solid battery formed by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order;
A resin layer covering the side of the all solid battery laminate,
A pair of end plates constraining both end faces of the all-solid-state battery stack in the stacking direction;
Have
In the stacking direction of the all solid battery stack, the thickness of the all solid battery stack is larger than the thickness of the resin layer,
The positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the pair of end plates has a larger area than the positive electrode active material layer and / or the negative electrode active material layer adjacent to each other, and The end portions of the positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the end plates face the opposite side of the end plate adjacent to the positive electrode current collector layer and / or the negative electrode current collector layer. And has a bent peripheral edge.

図1は、本開示の全固体電池の一例を示す概略断面図である。本開示の全固体電池100は、全固体電池積層体10と、全固体電池積層体10の側面を被覆している樹脂層11と、全固体電池積層体10の両端面を積層方向に拘束している一対のエンドプレート12a及び12bと、を有する。この際、全固体電池積層体10の積層方向において、全固体電池積層体10の厚さTは、樹脂層11の厚さtよりも大きい。また、エンドプレート12aに隣接する正極集電体層1aが、正極集電層1aに隣接する正極活物質層2aよりも大きい面積を有し、かつエンドプレート12aに隣接する正極集電体層1aの端部1aが、エンドプレート12aと反対側に向かって屈曲している屈曲周縁部を有している。同様に、エンドプレート12bに隣接する正極集電体層1dが、正極集電体層1dに隣接する正極活物質層2dよりも大きい面積を有し、かつエンドプレート12bに隣接する正極集電体層1dの端部1dが、エンドプレート12bと反対側に向かって屈曲している屈曲周縁部を有している。 FIG. 1 is a schematic cross-sectional view showing an example of the all-solid-state battery of the present disclosure. The all solid battery 100 of the present disclosure includes the all solid battery stack 10, the resin layer 11 covering the side surface of the all solid battery stack 10, and the both end faces of the all solid battery stack 10 in the stacking direction. And a pair of end plates 12a and 12b. At this time, the thickness T of the all-solid-state battery stack 10 is larger than the thickness t of the resin layer 11 in the stacking direction of the all-solid-state battery stack 10. Further, the positive electrode current collector layer 1a adjacent to the end plate 12a has a larger area than the positive electrode active material layer 2a adjacent to the positive electrode current collection layer 1a, and the positive electrode current collector layer 1a adjacent to the end plate 12a. The end portion 1a x has a bent peripheral portion which is bent toward the opposite side to the end plate 12a. Similarly, the positive electrode current collector layer 1d adjacent to the end plate 12b has a larger area than the positive electrode active material layer 2d adjacent to the positive electrode current collector layer 1d, and the positive electrode current collector adjacent to the end plate 12b. The end 1d x of the layer 1d has a bent peripheral edge that is bent toward the opposite side to the end plate 12b.

上述したように、樹脂層で被覆されている全固体電池では、全固体電池積層体に対して、拘束圧を加える必要がある。しかしながら、このような全固体電池では、エンドプレートなどを用いて全固体電池積層体に圧力を加えると、エンドプレートが樹脂層に当接してしまうことがあるため、全固体電池積層体を十分な圧力で拘束することが困難な場合がある。   As described above, in the all-solid-state battery coated with a resin layer, it is necessary to apply a confining pressure to the all-solid-state battery stack. However, in such an all solid battery, when pressure is applied to the all solid battery stack using an end plate or the like, the end plate may abut against the resin layer, so that the all solid battery stack is sufficient. It may be difficult to restrain by pressure.

これに対して、本開示の全固体電池は、(i)全固体電池積層体の積層方向において、全固体電池積層体の厚さが、樹脂層の厚さよりも大きいこと、及び(ii)一対のエンドプレートのそれぞれに隣接する正極集電体層及び/又は負極集電体層が、それぞれに隣接する正極活物質層及び/又は負極活物質層よりも大きい面積を有し、かつ一対のエンドプレートのそれぞれに隣接する正極集電体層及び/又は負極集電体層の端部が、当該正極集電体層及び/又は当該負極集電体層に隣接するエンドプレートの反対側に向かって屈曲している屈曲周縁部を有していること、という二つの特徴を有する。   On the other hand, in the all-solid battery of the present disclosure, (i) the thickness of the all-solid battery laminate is greater than the thickness of the resin layer in the stacking direction of the all-solid battery laminate, and (ii) a pair The positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the end plates has a larger area than the positive electrode active material layer and / or the negative electrode active material layer adjacent to each other, and the pair of ends The end of the positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the plates is directed to the opposite side of the end plate adjacent to the positive electrode current collector layer and / or the negative electrode current collector layer. It has two features of having a bending peripheral edge which is bent.

本開示の全固体電池は、この特徴(i)及び特徴(ii)を同時に備えることによって、全固体電池積層体を十分な圧力で拘束することができる。以下では、特徴(i)及び特徴(ii)のそれぞれについて、詳細に説明する。   The all-solid-state battery of the present disclosure can restrain the all-solid-state battery stack with sufficient pressure by simultaneously including the feature (i) and the feature (ii). Hereinafter, each of the feature (i) and the feature (ii) will be described in detail.

〈特徴(i)〉
本開示の全固体電池では、全固体電池積層体の積層方向において、全固体電池積層体の厚さは、樹脂層の厚さよりも大きい。ここで、全固体電池積層体の厚さとは、全固体電池積層体の積層方向における両端の距離を指す。例えば、図1において、全固体電池積層体10の積層方向における全固体電池積層体10の厚さは、Tで示されている。
<Feature (i)>
In the all-solid-state battery of the present disclosure, the thickness of the all-solid-state battery stack is greater than the thickness of the resin layer in the stacking direction of the all-solid-state battery stack. Here, the thickness of the all-solid-state battery stack refers to the distance between both ends in the stacking direction of the all-solid-state battery stack. For example, in FIG. 1, the thickness of the all-solid-state battery stack 10 in the stacking direction of the all-solid-state battery stack 10 is indicated by T.

また、全固体電池積層体の積層方向における樹脂層の厚さとは、全固体電池積層体の積層方向における両端の距離を指す。例えば、図1において、全固体電池積層体10の積層方向における樹脂層11の厚さは、tで示されている。この際、Tはtより大きい。   Moreover, the thickness of the resin layer in the lamination direction of an all-solid-state battery laminated body points out the distance of the both ends in the lamination direction of an all-solid-state battery laminated body. For example, in FIG. 1, the thickness of the resin layer 11 in the stacking direction of the all-solid-state battery stack 10 is indicated by t. At this time, T is larger than t.

本開示の全固体電池では、全固体電池積層体が一対のエンドプレートで積層方向に拘束されている。したがって、全固体電池積層体の積層方向において、全固体電池積層体の厚さが、樹脂層の厚さよりも大きいということは、樹脂層と一対のエンドプレートとが、接触していないこと又は弱くのみ接触していることを意味する。   In the all-solid-state battery of the present disclosure, the all-solid-state battery stack is constrained in the stacking direction by a pair of end plates. Therefore, in the stacking direction of the all solid battery stack, the fact that the thickness of the all solid battery stack is larger than the thickness of the resin layer means that the resin layer and the pair of end plates are not in contact or weak It means that only you are in contact.

樹脂層と一対のエンドプレートとが接触していないこと又は弱くのみ接触していることにより、全固体電池積層体を十分な圧力で拘束することができる。また、全固体電池積層体の側面全体が樹脂層で覆われている従来の全固体電池に比べて、本開示の全固体電池は、用いられる樹脂の量が少なく、これは、電池のエネルギー密度向上にも繋がる。   The non-contact or only weak contact between the resin layer and the pair of end plates allows the all-solid-state battery stack to be restrained with a sufficient pressure. In addition, the all-solid-state battery of the present disclosure uses a smaller amount of resin than the conventional all-solid-state battery in which the entire side surface of the all-solid-state battery laminate is covered with a resin layer. It also leads to improvement.

なお、本開示において、全固体電池積層体の積層方向において、全固体電池積層体の厚さの範囲は、特に限定されず、必要とする全固体電池の使用用途や使用目的に合わせて、適宜設定できる。また、樹脂層の厚さの範囲は、全固体電池積層体の厚さの大きさより小さく設定すればよい。   In the present disclosure, the range of the thickness of the all-solid battery laminate is not particularly limited in the stacking direction of the all-solid battery laminate, and is appropriately selected according to the use application and purpose of the required all-solid battery. It can be set. Further, the range of the thickness of the resin layer may be set smaller than the size of the thickness of the all solid battery laminate.

〈特徴(ii)〉
本開示において、一対のエンドプレートのそれぞれに隣接する正極集電体層及び/又は負極集電体層が、それぞれに隣接する正極活物質層及び/又は負極活物質層よりも大きい面積を有し、かつ一対のエンドプレートのそれぞれに隣接する正極集電体層及び/又は負極集電体層の端部が、当該正極集電体層及び/又は当該負極集電体層に隣接するエンドプレートの反対側に向かって屈曲している屈曲周縁部を有する。
<Feature (ii)>
In the present disclosure, the positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the pair of end plates has a larger area than the positive electrode active material layer and / or the negative electrode active material layer adjacent to each other. And an end portion of the positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the pair of end plates is the end plate adjacent to the positive electrode current collector layer and / or the negative electrode current collector layer. It has a bending edge which is bent towards the opposite side.

例えば、図1に示されている全固体電池100では、エンドプレート12aに隣接する正極集電体層1aが、それに隣接する正極活物質層2aよりも大きい面積を有し、かつエンドプレート12aに隣接する正極集電体層1aの端部1aが、正極集電体層1aが隣接するエンドプレート12aの反対側に向かって屈曲している屈曲周縁部を有している。同様に、エンドプレート12bに隣接する正極集電体層1dが、それに隣接する正極活物質層2aよりも大きい面積を有し、かつエンドプレート12bに隣接する正極集電体層1dの端部1dが、正極集電体層1dが隣接するエンドプレート12bの反対側に向かって屈曲している屈曲周縁部を有している。 For example, in the all-solid battery 100 shown in FIG. 1, the positive electrode current collector layer 1a adjacent to the end plate 12a has a larger area than the positive electrode active material layer 2a adjacent thereto, and the end plate 12a The end portion 1a x of the adjacent positive electrode current collector layer 1a has a bent peripheral portion bent toward the opposite side of the end plate 12a adjacent to the positive electrode current collector layer 1a. Similarly, the positive electrode current collector layer 1d adjacent to the end plate 12b has a larger area than the positive electrode active material layer 2a adjacent to the end plate 12b, and the end 1d of the positive electrode current collector layer 1d adjacent to the end plate 12b. x has a bent peripheral portion which is bent toward the opposite side of the end plate 12b adjacent to the positive electrode current collector layer 1d.

本開示において、一対のエンドプレートに隣接する正極集電体層及び/又は負極集電体層の端部に屈曲周縁部を設けるためには、かかる正極集電体層及び/又は負極集電体層の面積は、それらに隣接する正極活物質層及び/又は負極活物質層の面積より大きく設定する必要がある。これによって、かかる正極集電体層及び/又は負極集電体層は、それらに隣接する正極活物質層及び又は負極活物質層からはみ出している部分を有する。このはみ出している部分は、本開示でいう「正極集電体層及び/又は負極集電体層の端部」である。   In the present disclosure, in order to provide a bent peripheral portion at the end of the positive electrode current collector layer and / or the negative electrode current collector layer adjacent to the pair of end plates, the positive electrode current collector layer and / or the negative electrode current collector The area of the layers needs to be set larger than the area of the positive electrode active material layer and / or the negative electrode active material layer adjacent to them. Thus, the positive electrode current collector layer and / or the negative electrode current collector layer have portions protruding from the positive electrode active material layer and / or the negative electrode active material layer adjacent thereto. The protruding portion is the “end portion of the positive electrode current collector layer and / or the negative electrode current collector layer” in the present disclosure.

例えば、エンドプレート12a、正極集電体層1a、及び正極活物質層2aがこの順に積層されている平面図は、図2に示されている。この場合、正極集電体層1aの面積は、それに隣接する正極活物質層2aの面積より大きい。よって、正極集電体層1aは、正極活物質層2aからはみ出している部分Lを有する。このはみ出している部分Lは、正極活物質層2aの端部1aである。 For example, a plan view in which the end plate 12a, the positive electrode current collector layer 1a, and the positive electrode active material layer 2a are stacked in this order is shown in FIG. In this case, the area of the positive electrode current collector layer 1a is larger than the area of the positive electrode active material layer 2a adjacent thereto. Therefore, the positive electrode current collector layer 1a has a portion L protruding from the positive electrode active material layer 2a. The protruding portion L is an end portion 1a x of the positive electrode active material layer 2a.

また、「一対のエンドプレートのそれぞれに隣接する正極集電体層及び/又は負極集電体層の端部が、当該正極集電体層及び/又は当該負極集電体層に隣接するエンドプレートの反対側に向かって屈曲している屈曲周縁部」とは、上記で説明した正極集電体層又は負極集電体層の端部において、それらに隣接するエンドプレートの反対側に向かって折れ曲がっている部分を指す。例えば、図2では、正極集電体層1aの端部1aが、エンドプレート12aの反対側に向かって屈曲している屈曲周縁部は、かかる端部1aにおいて、エンドプレート12aの反対側(すなわち、正極活物質層2aが積層されている側)に向かって折れ曲がっている部分を指す。 In addition, “the end portion of the positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the pair of end plates is adjacent to the positive electrode current collector layer and / or the negative electrode current collector layer. In the end portion of the positive electrode current collector layer or the negative electrode current collector layer described above, the bent peripheral portion bent toward the opposite side of the is bent toward the opposite side of the end plate adjacent thereto. Point to the For example, in FIG. 2, the ends 1a x of the positive electrode collector layer 1a is bent peripheral edge portion is bent toward the opposite side of the end plate 12a, in such end 1a x, opposite to the end plate 12a (That is, the portion bent toward the side on which the positive electrode active material layer 2a is stacked).

本開示において、この特徴(ii)を有することによって、全固体電池積層体がエンドプレートに拘束されている際に、かかる正極集電体層又は負極集電体層が樹脂層に当接する面積を抑制することができる。   In the present disclosure, by having this feature (ii), when the all-solid-state battery laminate is constrained to the end plate, the area where the positive electrode current collector layer or the negative electrode current collector layer abuts on the resin layer is It can be suppressed.

これに関して、上述して屈曲周縁部の存在によって、かかる正極集電体層又は負極集電体層の端部と、それらに隣接するエンドプレートとの間の角度は、0°超、又は10°以上であって、90°以下、60°以下、又は45°以下であることが好ましい。   In this regard, the angle between the end of such positive current collector layer or negative current collector layer and the end plate adjacent thereto is greater than 0 °, or 10 °, depending on the presence of the bending edge as described above. It is preferable that the angle is 90 ° or less, 60 ° or less, or 45 ° or less.

例えば、図3に示されている全固体電池の一部分において、正極集電体層1aの端部1aは、正極集電体層1aが隣接するエンドプレート12aの反対側に向かって屈曲している屈曲周縁部を有している。この屈曲周縁部を有することによって、エンドプレート12aによる加圧時に、正極集電体層1aが樹脂層11に当接する面積を抑制できる。また、正極集電体層1aの端部とエンドプレート12aとの間の角度は、図3において、「α」として示されている。 For example, in a part of the all-solid-state battery shown in FIG. 3, the end 1a x of the positive electrode current collector layer 1a is bent toward the opposite side of the end plate 12a adjacent to the positive electrode current collector layer 1a. Have a bent peripheral edge. By having this bent peripheral portion, the area in which the positive electrode current collector layer 1a abuts on the resin layer 11 can be suppressed when the end plate 12a applies pressure. The angle between the end of the positive electrode current collector layer 1a and the end plate 12a is shown as "α" in FIG.

このように、本開示は、上述した特徴(i)及び特徴(ii)を同時に備えることによって、全固体電池積層体を十分な圧力で拘束することができる。   Thus, the present disclosure can constrain the all-solid-state battery stack with sufficient pressure by simultaneously including the features (i) and (ii) described above.

〈全固体電池の種類及び形状〉
本開示において、全固体電池の種類としては、全固体リチウム電池、全固体ナトリウム電池、全固体マグネシウム電池及び全固体カルシウム電池などを挙げることができ、中でも、全固体リチウム電池及び全固体ナトリウム電池が好ましく、特に、全固体リチウム電池が好ましい。また、本開示の全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でも、二次電池であることが好ましい。二次電池は、繰り返し充放電でき、例えば、車載用電池として有用だからである。
<Type and shape of all solid battery>
In the present disclosure, types of all solid batteries may include all solid lithium batteries, all solid sodium batteries, all solid magnesium batteries, all solid calcium batteries, etc., among which all solid lithium batteries and all solid sodium batteries Preferably, all solid lithium batteries are preferred. Further, the all solid state battery of the present disclosure may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because the secondary battery can be repeatedly charged and discharged, and is useful as, for example, a vehicle-mounted battery.

〈全固体電池積層体〉
本開示において、全固体電池積層体は、1以上の単位全固体電池を有することができる。例えば、図1では、本開示の全固体電池積層体10は、単位全固体電池6a、6b、6c及び6dを有する。また、本開示において、単位全固体電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順で積層してなる。
<All solid battery stack>
In the present disclosure, the all solid battery stack can have one or more unit all solid batteries. For example, in FIG. 1, the all-solid-state battery stack 10 of the present disclosure includes unit all-solid-state batteries 6a, 6b, 6c, and 6d. In the present disclosure, the unit all-solid battery is formed by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order.

本開示にかかる全固体電池積層体は、2以上の単位全固体電池を有する場合、積層方向に隣接する2つの単位全固体電池は、正極及び/又は負極集電体層を共有するモノポーラ型の構成であってよい。したがって、例えば全固体電池積層体は、正極集電体層及び負極集電体層を共有する4つの単位全固体電池の積層体であってよい。   When the all solid battery laminate according to the present disclosure has two or more unit all solid batteries, two unit all solid batteries adjacent in the stacking direction are monopolar type sharing the positive electrode and / or the negative electrode collector layer. It may be a configuration. Thus, for example, the all solid battery stack may be a stack of four unit all solid batteries sharing the positive electrode current collector layer and the negative electrode current collector layer.

より具体的には、例えば図1に示されているように、全固体電池積層体10は、正極集電体層1a、正極活物質層2a、固体電解質層3a、負極活物質層4a、負極集電体層5a(5b)、負極活物質層4b、固体電解質層3b、正極活物質層2b、正極集電体層1b(1c)、正極活物質層2c、固体電解質層3c、負極活物質層4c、負極集電体層5c(5d)、負極活物質層4d、固体電解質層3d、正極活物質層2d、正極集電体層1dを、この順で有することができる。   More specifically, for example, as shown in FIG. 1, the all-solid-state battery stack 10 includes the positive electrode current collector layer 1 a, the positive electrode active material layer 2 a, the solid electrolyte layer 3 a, the negative electrode active material layer 4 a, and the negative electrode Current collector layer 5a (5b), negative electrode active material layer 4b, solid electrolyte layer 3b, positive electrode active material layer 2b, positive electrode current collector layer 1b (1c), positive electrode active material layer 2c, solid electrolyte layer 3c, negative electrode active material The layer 4c, the negative electrode current collector layer 5c (5d), the negative electrode active material layer 4d, the solid electrolyte layer 3d, the positive electrode active material layer 2d, and the positive electrode current collector layer 1d can be provided in this order.

また、全固体電池積層体が2以上の単位全固体電池を有する場合、積層方向に隣接する2つの単位全固体電池は、正極及び負極集電体層の両方として用いられる正極/負極集電体層を共有するバイポーラ型の構成であってよい。したがって、例えば全固体電池積層体は、正極及び負極集電体層の両方として用いられる正極/負極集電体層を共有する3つの単位全固体電池の積層体であってよく、具体的には、正極集電体層、正極活物質層、固体電解質層、負極活物質層、正極/負極集電体層、正極活物質層、固体電解質層、負極活物質層、正極/負極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順で有することができる(図示せず)。   In addition, when the all solid battery laminate has two or more unit all solid batteries, two unit all solid batteries adjacent in the stacking direction are used as both a positive electrode and a negative electrode collector layer. It may be a bipolar configuration that shares layers. Thus, for example, the all solid battery laminate may be a stack of three unit all solid batteries sharing the positive electrode / negative electrode collector layer used as both the positive electrode and the negative electrode collector layer, specifically, Positive electrode current collector layer, positive electrode active material layer, solid electrolyte layer, negative electrode active material layer, positive electrode / negative electrode current collector layer, positive electrode active material layer, solid electrolyte layer, negative electrode active material layer, positive electrode / negative electrode current collector layer A positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer can be provided in this order (not shown).

なお、正極集電体層は、面方向に突出する正極集電体突出部を有していてよく、この正極集電体突出部には、正極集電タブが電気的に接続されていてよい。同様に、負極集電体層は、負極集電体突出部を有していてよく、この負極集電体突出部には、負極集電タブが電気的に接続されていてよい。このようなそれぞれの極の集電体突出部及び集電タブを介して、全固体電池積層体で発生した電力を外部に取り出すことができる。なお、全固体電池積層体が複数の正極又は負極集電体層を有する場合には、それぞれの極の複数の集電体突出部を、互いに電気的に接続したうえで、それぞれの極の集電タブに電気的に接続することができる。   The positive electrode current collector layer may have a positive electrode current collector protrusion projecting in the surface direction, and a positive electrode current collector tab may be electrically connected to the positive electrode current collector protrusion. . Similarly, the negative electrode current collector layer may have a negative electrode current collector protrusion, and the negative electrode current collector tab may be electrically connected to the negative electrode current collector protrusion. Electric power generated in the all-solid-state battery stack can be extracted to the outside through the current collector projections and current collection tabs of the respective electrodes. In the case where the all solid battery laminate has a plurality of positive electrode or negative electrode collector layers, the plurality of current collector protrusions of the respective electrodes are electrically connected to one another, and then the collectors of the respective electrodes are collected. It can be electrically connected to the electrical tab.

(正極集電体層)
正極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、SUS、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。
(Positive current collector layer)
The conductive material used for the positive electrode current collector layer is not particularly limited, and any known material that can be used for the all-solid-state battery can be appropriately adopted. For example, SUS, aluminum, copper, nickel, iron, titanium, carbon and the like can be mentioned.

本開示にかかる正極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。   It does not specifically limit as a shape of the positive electrode collector layer concerning this indication, For example, foil shape, plate shape, mesh shape etc. can be mentioned. Of these, foils are preferred.

(正極活物質層)
正極活物質層は、少なくとも正極活物質を含み、好ましくは後述する固体電解質を更に含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の正極活物質層に用いられる添加剤を含むことができる。
(Positive electrode active material layer)
The positive electrode active material layer contains at least a positive electrode active material, and preferably further includes a solid electrolyte described later. In addition, according to a use application, a use purpose, etc., the additive used for the positive electrode active material layer of all the solid batteries, such as a conductive support agent or a binder, can be included.

本開示において、用いられる正極活物質材料として、特に限定されず、公知のものが用いられる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、LiCo1/3Ni1/3Mn1/3、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li−Mnスピネルなどが挙げられるが、これらに限定されない。 In the present disclosure, the positive electrode active material to be used is not particularly limited, and known materials can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1 + x Mn 2-x- y M y O 4 (M is, Al, Mg, Co, Fe, Ni, and one or more metal elements selected from Zn) such heterogeneous element substituted Li-Mn spinel composition represented by the can be mentioned, It is not limited to these.

導電助剤としては、特に限定されず、公知のものが用いられる。例えば、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維などの炭素材並びに金属材などが挙げられるが、これらに限定されない。   The conductive aid is not particularly limited, and known ones may be used. Examples thereof include, but are not limited to, carbon materials such as VGCF (vapor grown carbon fiber) and carbon nanofibers and metal materials such as carbon nanofibers.

バインダーとしては、特に限定されず、公知のものが用いられる。例えば、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、ブタジエンゴム(BR)若しくはスチレンブタジエンゴム(SBR)などの材料又はこれらの組合せを挙げることができるが、これらに限定されない。   The binder is not particularly limited, and known ones may be used. Examples include, but are not limited to, materials such as polyvinylidene fluoride (PVdF), carboxymethylcellulose (CMC), butadiene rubber (BR) or styrene butadiene rubber (SBR), or combinations thereof.

(固体電解質層)
固体電解質層は、少なくとも固体電解質を含む。固体電解質として、特に限定されず、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、公知の硫化物固体電解質又は公知の酸化物固体電解質を用いることができる。
(Solid electrolyte layer)
The solid electrolyte layer contains at least a solid electrolyte. The solid electrolyte is not particularly limited, and materials usable as the solid electrolyte of the all solid battery can be used. For example, known sulfide solid electrolytes or known oxide solid electrolytes can be used.

硫化物固体電解質の例として、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiBr−LiS−P、LiS−P−LiI−LiBr、LiS−PS5−GeS、LiI−LiS−P、LiI−LiPO−P、及びLiS−P等;硫化物系結晶質固体電解質、例えば、Li10GeP12、Li11、LiPS、及びLi3.250.75等;並びにこれらの組み合わせを挙げることができる。 As an example of a sulfide solid electrolyte, for example, Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 S-P 2 S 5 , LiI-LiBr-Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI-LiBr, Li 2 S-P 2 S5-GeS 2, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, and Li 2 S-P 2 S 5 or the like; sulfide-based crystalline solid electrolyte, for example, Li 10 GeP 2 S 12, Li 7 P 3 S 11, Li 3 PS 4, and Li 3.25 P 0.75 S 4, and the like; And combinations thereof.

酸化物固体電解質の例として、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体などが挙げられるが、これらに限定されない。   Examples of oxide solid electrolytes include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.

固体電解質は、ガラスであっても、結晶化ガラス(ガラスセラミック)であってもよい。また、固体電解質層は、上述した固体電解質以外に、必要に応じてバインダーなどを含んでもよい。具体例として、上述の「正極活物質層」で列挙された「バインダー」と同様であり、ここでは説明を省略する。   The solid electrolyte may be glass or crystallized glass (glass ceramic). In addition to the solid electrolyte described above, the solid electrolyte layer may contain a binder or the like as required. As a specific example, it is the same as the "binder" listed in the above-mentioned "positive electrode active material layer", and the description is omitted here.

(負極活物質層)
負極活物質層は、少なくとも負極活物質を含み、好ましくは上述した固体電解質を更に含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の負極活物質層に用いられる添加剤を含むことができる。
(Anode active material layer)
The negative electrode active material layer contains at least a negative electrode active material, and preferably further contains the solid electrolyte described above. In addition, according to a use application, a use purpose, etc., the additive used for the negative electrode active material layer of all the solid batteries, such as a conductive support agent or a binder, can be included.

本開示において、用いられる負極活物質材料として、特に限定されず、リチウムイオンなどの金属イオンを吸蔵及び放出可能であればよい。例えば、Li、Sn、Si若しくはInなどの金属、リチウムとチタンとの合金、又はハードカーボン、ソフトカーボン若しくはグラファイトなどの炭素材料などが挙げられるが、これらに限定されない。   In the present disclosure, the negative electrode active material to be used is not particularly limited, as long as it can occlude and release metal ions such as lithium ions. Examples thereof include, but are not limited to, metals such as Li, Sn, Si or In, alloys of lithium and titanium, hard carbon, soft carbon, carbon materials such as graphite, and the like.

負極活物質層に用いられる固体電解質、導電助剤、バインダーなどその他の添加剤については、上述した「正極活物質層」及び「固体電解質層」の項目で説明したものを適宜採用することができる。   With regard to the other additives such as the solid electrolyte, the conductive support agent, and the binder used in the negative electrode active material layer, those described in the items of “positive electrode active material layer” and “solid electrolyte layer” described above can be appropriately adopted. .

(負極集電体層)
負極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、SUS、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。
(Anode current collector layer)
The conductive material used for the negative electrode current collector layer is not particularly limited, and any known material that can be used for the all-solid-state battery can be appropriately adopted. For example, SUS, aluminum, copper, nickel, iron, titanium, carbon and the like can be mentioned.

本開示にかかる負極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。   It does not specifically limit as a shape of the negative electrode collector layer concerning this indication, For example, foil shape, plate shape, mesh shape etc. can be mentioned. Of these, foils are preferred.

〈樹脂層〉
樹脂層の材料は、特に限定されず、一般的な全固体電池に用いられる絶縁性のある樹脂材料と同様であってもよい。例えば、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。より具体的に、例えばポリイミド、ポリエステル、ポリプロピレン、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリカーボネートなどが挙げられるが、これらに限定されない。
<Resin layer>
The material of the resin layer is not particularly limited, and may be the same as the insulating resin material used in a general all-solid-state battery. For example, it may be a thermosetting resin or a thermoplastic resin. More specifically, examples include, but are not limited to, polyimide, polyester, polypropylene, polyamide, polystyrene, polyvinyl chloride, polycarbonate and the like.

〈エンドプレート〉
エンドプレートは、全固体電池積層体を拘束できるものであれば、特に限定されず、例えば、金属又は炭素繊維強化プラスチックなど公知のものから構成されてもよい。
<end plate>
The end plate is not particularly limited as long as it can restrain the all-solid-state battery laminate, and may be made of a known one such as metal or carbon fiber reinforced plastic.

また、エンドプレートからの拘束力は、特に限定されず、必要とする全固体電池の使用用途や使用目的に合わせて、適宜設定できる。   Further, the binding force from the end plate is not particularly limited, and can be set as appropriate in accordance with the application and purpose of use of the required all solid battery.

1a、1b、1c、1d 正極集電体層
2a、2b、2c、2d 正極活物質層
3a、3b、3c、3d 固体電解質層
4a、4b、4c、4d 負極活物質層
5a、5b、5c、5d 負極集電体層
6a、6b、6c、6d 単位全固体電池
10 全固体電池積層体
11 樹脂層
12a、12b エンドプレート
1a 正極集電体層1aの端部
1d 正極集電体層1dの端部
100 全固体電池
1a, 1b, 1c, 1d Positive electrode current collector layer 2a, 2b, 2c, 2d Positive electrode active material layer 3a, 3b, 3c, 3d Solid electrolyte layer 4a, 4b, 4c, 4d Negative electrode active material layer 5a, 5b, 5c, 5d negative electrode collector layer 6a, 6b, 6c, 6d unit all solid battery 10 all solid battery laminate 11 resin layer 12a, 12b end plate 1a x end portion of positive electrode collector layer 1a 1d x positive electrode collector layer 1d End 100 of the all-solid-state battery

Claims (1)

正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順で積層してなる単位全固体電池を1以上有する全固体電池積層体と、
前記全固体電池積層体の側面を被覆している樹脂層と、
前記全固体電池積層体の両端面を積層方向に拘束している一対のエンドプレートと、
を有し、
前記全固体電池積層体の積層方向において、前記全固体電池積層体の厚さが、前記樹脂層の厚さよりも大きく、
前記一対のエンドプレートのそれぞれに隣接する前記正極集電体層及び/又は前記負極集電体層が、それぞれに隣接する前記正極活物質層及び/又は前記負極活物質層よりも大きい面積を有し、かつ
前記一対のエンドプレートのそれぞれに隣接する前記正極集電体層及び/又は前記負極集電体層の端部が、前記正極集電体層及び/又は前記負極集電体層に隣接するエンドプレートの反対側に向かって屈曲している屈曲周縁部を有する、
全固体電池。
An all solid battery laminate having at least one unit all solid battery formed by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order;
A resin layer covering the side surface of the all solid battery laminate;
A pair of end plates constraining both end faces of the all-solid-state battery stack in the stacking direction;
Have
In the stacking direction of the all-solid-state battery stack, the thickness of the all-solid-state battery stack is larger than the thickness of the resin layer,
The positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the pair of end plates have a larger area than the positive electrode active material layer and / or the negative electrode active material layer adjacent to each other. And an end portion of the positive electrode current collector layer and / or the negative electrode current collector layer adjacent to each of the pair of end plates is adjacent to the positive electrode current collector layer and / or the negative electrode current collector layer. Having a bending edge which is bent towards the opposite side of the
All solid state battery.
JP2017254439A 2017-12-28 2017-12-28 All solid state battery Active JP6977554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017254439A JP6977554B2 (en) 2017-12-28 2017-12-28 All solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017254439A JP6977554B2 (en) 2017-12-28 2017-12-28 All solid state battery

Publications (2)

Publication Number Publication Date
JP2019121485A true JP2019121485A (en) 2019-07-22
JP6977554B2 JP6977554B2 (en) 2021-12-08

Family

ID=67307870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017254439A Active JP6977554B2 (en) 2017-12-28 2017-12-28 All solid state battery

Country Status (1)

Country Link
JP (1) JP6977554B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497299A (en) * 2020-03-18 2021-10-12 丰田自动车株式会社 All-solid-state battery, method for manufacturing battery element, and method for manufacturing all-solid-state battery
WO2021215125A1 (en) * 2020-04-23 2021-10-28 パナソニックIpマネジメント株式会社 Battery and battery manufacturing method
CN114759266A (en) * 2022-06-15 2022-07-15 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Prefabricated module of solid-state battery, solid-state battery and preparation method of solid-state battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023276A (en) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd Current collector and secondary battery using it
JP2011222573A (en) * 2010-04-05 2011-11-04 Meidensha Corp Electrochemical element unit
JP2013229257A (en) * 2012-04-26 2013-11-07 National Institute Of Advanced Industrial & Technology All-solid lithium secondary battery using sulfur-based cathode material
JP2016058155A (en) * 2014-09-05 2016-04-21 トヨタ自動車株式会社 Battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023276A (en) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd Current collector and secondary battery using it
JP2011222573A (en) * 2010-04-05 2011-11-04 Meidensha Corp Electrochemical element unit
JP2013229257A (en) * 2012-04-26 2013-11-07 National Institute Of Advanced Industrial & Technology All-solid lithium secondary battery using sulfur-based cathode material
JP2016058155A (en) * 2014-09-05 2016-04-21 トヨタ自動車株式会社 Battery pack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497299A (en) * 2020-03-18 2021-10-12 丰田自动车株式会社 All-solid-state battery, method for manufacturing battery element, and method for manufacturing all-solid-state battery
CN113497299B (en) * 2020-03-18 2023-04-18 丰田自动车株式会社 All-solid-state battery, method for manufacturing battery element, and method for manufacturing all-solid-state battery
WO2021215125A1 (en) * 2020-04-23 2021-10-28 パナソニックIpマネジメント株式会社 Battery and battery manufacturing method
CN114759266A (en) * 2022-06-15 2022-07-15 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Prefabricated module of solid-state battery, solid-state battery and preparation method of solid-state battery
CN114759266B (en) * 2022-06-15 2022-10-04 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Prefabricated module of solid-state battery, solid-state battery and preparation method of solid-state battery

Also Published As

Publication number Publication date
JP6977554B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
CN110416629B (en) All-solid-state battery
JP6319335B2 (en) Manufacturing method of all solid state battery
US9142811B2 (en) Current collector having built-in sealing means, and bipolar battery including such a collector
JP6885309B2 (en) Series stacked all-solid-state battery
JP6863299B2 (en) All solid state battery
JP6856042B2 (en) All solid state battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JP5711254B2 (en) Lithium secondary battery separator and lithium secondary battery including the same
CN106469826B (en) Battery with a battery cell
KR20190089071A (en) All solid secondary battery and manufacturing method thereof
JP6977554B2 (en) All solid state battery
JP2011096550A (en) Solid battery, and manufacturing method of solid battery
JP2011150974A (en) Electrode body, and method for manufacturing the same
JP2013093216A (en) Battery
CN112242564A (en) Solid-state battery with capacitor auxiliary interlayer
KR102303703B1 (en) Solid-state battery and method for manufacturing the same
JP2019145285A (en) All-solid battery
JP2019110092A (en) All-solid battery and its manufacturing method
JP2005129393A (en) Secondary battery
JP6962240B2 (en) All solid state battery
JP7003762B2 (en) All solid state battery
CN112599718A (en) Laminated battery
JP2019145286A (en) All-solid battery
US11764445B2 (en) Battery and battery production method
US20240079689A1 (en) Laminate type solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R151 Written notification of patent or utility model registration

Ref document number: 6977554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151