JP2019119632A - Porous carbon, and production method thereof - Google Patents

Porous carbon, and production method thereof Download PDF

Info

Publication number
JP2019119632A
JP2019119632A JP2017253982A JP2017253982A JP2019119632A JP 2019119632 A JP2019119632 A JP 2019119632A JP 2017253982 A JP2017253982 A JP 2017253982A JP 2017253982 A JP2017253982 A JP 2017253982A JP 2019119632 A JP2019119632 A JP 2019119632A
Authority
JP
Japan
Prior art keywords
porous carbon
fatty acid
carbon
sugar
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017253982A
Other languages
Japanese (ja)
Other versions
JP6933370B2 (en
Inventor
史織 久保
Shiori Kubo
史織 久保
井村 知弘
Tomohiro Imura
知弘 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017253982A priority Critical patent/JP6933370B2/en
Publication of JP2019119632A publication Critical patent/JP2019119632A/en
Application granted granted Critical
Publication of JP6933370B2 publication Critical patent/JP6933370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To produce porous carbon having an oxygen-containing functional group such as a hydroxyl group, a carbonyl group, and a carboxyl group, and a functional group such as an alkyl group by a simple process of low energy consumption from an inexpensive carbon precursor (carbon source).SOLUTION: Porous carbon is produced by a simple process of low energy consumption in which a fatty acid ester of sugar as a carbon precursor (carbon source) is subjected to hydrothermal treatment at 100-350°C without using a structural mold agent (template), wherein the porous carbon has an oxygen-containing functional group such as a hydroxyl group, a carbonyl group, and a carboxyl group, and a functional group such as an alkyl group.SELECTED DRAWING: Figure 1

Description

本発明は、多孔質炭素及びその製造方法に関する。   The present invention relates to porous carbon and a method for producing the same.

多孔質炭素は、その細孔を利用して、吸着剤、分離材、触媒担体、カラム担体、薬物包含材等として産業界で非常に重要な材料である。さらに近年では、細孔空間を電解質の効率移動空間として利用した二次電池やキャパシタ、センサーなどの炭素電極としての利用が幅広く実用化されており、分離材や電極材料としての利用においては、化学修飾により機能性を付与した多孔質炭素が好ましく用いられている。   Porous carbon is a material which is very important in the industry as an adsorbent, separating material, catalyst carrier, column carrier, drug-containing material, etc. by utilizing its pores. Furthermore, in recent years, the use as a carbon electrode in secondary batteries, capacitors, sensors, etc., in which the pore space is used as an efficiency transfer space for electrolytes, has been widely put to practical use. The porous carbon which provided functionality by modification is preferably used.

多孔質炭素は種々の方法により製造されるが、その1つに、界面活性剤又はブロック共重合体などの両親媒性化合物を構造鋳型剤として用い、それらの存在下で炭素前駆体(炭素源)の炭素化を進行させる、いわゆる有機テンプレート法がある。
例えば、特許文献1には、モノマーおよび/またはプレポリマー中に、鋳型である界面活性剤のミセルを形成させた後、前記モノマーおよび/またはプレポリマーを重合硬化させて、ミセル含有有機ポリマーを形成し、さらにこの有機ポリマーを焼成して炭素化を行う方法が開示されている。また、特許文献2、非特許文献1、2等には、構造鋳型剤としてブロック共重合体を用い、炭素前駆体として、フェノールとホルムアルデヒド、またはレゾルシノールなどのフェノール系樹脂を用いていることが開示されている。
しかしながら、これらの方法では、原料の分子内に含酸素官能基が少ないこと、炭素化には、高温熱処理が必要であり、その際に官能基を失うこと、などが要因となり、得られる炭素材料中の含酸素官能基の量は限られる。そのため、分離担体や電極材料としての利用に重要な、化学修飾による炭素への機能性の付与は難しい。また、これらの方法で得られる炭素材料は、水相での用途は限られることが予想される。
Porous carbon can be produced by various methods, one of which is using amphiphilic compounds such as surfactants or block copolymers as structural templating agents, in the presence of carbon precursors (carbon sources There is a so-called organic template method in which carbonization of) is advanced.
For example, Patent Document 1 describes that after forming a micelle of a surfactant which is a template in a monomer and / or prepolymer, the monomer and / or prepolymer is polymerized and cured to form a micelle-containing organic polymer. Furthermore, a method of calcining this organic polymer to carry out carbonization is disclosed. Patent Document 2 and Non-Patent Documents 1 and 2 disclose that a block copolymer is used as a structure templating agent and a phenol-based resin such as phenol and formaldehyde or resorcinol is used as a carbon precursor. It is done.
However, in these methods, there are few oxygen-containing functional groups in the molecules of the raw material, high temperature heat treatment is necessary for carbonization, and at this time the functional groups are lost, etc. The amount of oxygenated functional groups in it is limited. Therefore, it is difficult to impart functionality to carbon by chemical modification, which is important for use as a separation carrier or an electrode material. Moreover, the carbon materials obtained by these methods are expected to have limited applications in the aqueous phase.

一方、糖の水熱反応生成物からなる炭素材料の炭素骨格がフラン骨格を基本骨格として含むことは既に公知であり、糖やバイオマスを原料とした水熱合成によれば、含酸素官能基を豊富に有する炭素材料が得られる(非特許文献3、4)。また、キチン、キトサン、グルコースアミン等の窒素を含む糖を炭素源とした水熱合成によれば、窒素がドープされた炭素材料が得られることも公知になっている(非特許文献5)。
こうした糖の水熱合成に、ブロック共重合体などの両親媒性化合物を有機テンプレートとする合成手法を組み合わせることにより、多孔質炭素を得ることができる(非特許文献6)。しかしながら、現在発表されている、有機テンプレートを用いるプロセスでは、数百℃以上(例えば550℃)の不活性雰囲気下での加熱処理による構造鋳型剤の熱分解除去が必要であり、合成におけるエネルギーコストが余計にかかる。また、加熱処理時に、表面官能基の量が減少することを防ぐことができない。
On the other hand, it is already known that the carbon skeleton of a carbon material comprising a hydrothermal reaction product of sugar contains a furan skeleton as a basic skeleton, and according to hydrothermal synthesis using sugar or biomass as a raw material, an oxygen-containing functional group An abundant carbon material is obtained (non-patent documents 3 and 4). Moreover, it is also known that a carbon material doped with nitrogen can be obtained by hydrothermal synthesis using a nitrogen-containing sugar such as chitin, chitosan, glucoseamine as a carbon source (Non-patent Document 5).
Porous carbon can be obtained by combining hydrothermal synthesis of such a sugar with a synthesis method using an amphiphilic compound such as a block copolymer as an organic template (Non-patent Document 6). However, currently published processes using an organic template require thermal removal of the structural templating agent by heat treatment under an inert atmosphere of several hundred degrees C. or higher (eg 550 degrees C.), and the energy cost in synthesis is It costs extra. Moreover, it can not prevent that the quantity of surface functional groups reduces at the time of heat processing.

また、無機のテンプレート法として、シリカ多孔体などの無機多孔体を構造テンプレートとして用い、その細孔内に、糖類等の炭素前駆体(炭素源)を浸漬させた後、水熱処理し、最後に無機多孔体をフッ化水素酸などの強酸で溶解除去する方法がある(非特許文献7、8等)。該方法によれば、表面官能基を有し、かつ多孔性の炭素材料を得ることができる。
しかし、得られる多孔体の細孔構造は、シリカ多孔体の逆構造(レプリカ)であって、前記の界面活性剤や両親媒性ポリマー等の高次集合体の構造をそのまま反映したものではない。例えば、ヘキサゴナル構造と呼ばれる、ハニカム状のチャンネル構造を得ることは非常に困難と思われる。さらに、この方法では、シリカ多孔体そのものの合成が必要であるほか、強酸によるエッチングなどの工業的生産にはそぐわないステップを必要とするため、産業界での実用化の面で問題がある。
In addition, as an inorganic template method, an inorganic porous body such as a porous silica body is used as a structural template, a carbon precursor (carbon source) such as saccharides is immersed in the pores thereof, and then hydrothermal treatment is performed. There is a method of dissolving and removing the inorganic porous material with a strong acid such as hydrofluoric acid (Non-patent Documents 7 and 8). According to this method, a porous carbon material having surface functional groups can be obtained.
However, the pore structure of the obtained porous body is the reverse structure (replica) of the silica porous body, and does not directly reflect the structure of the above-mentioned higher-order aggregate such as surfactant or amphiphilic polymer. . For example, it seems very difficult to obtain a honeycomb channel structure called a hexagonal structure. Furthermore, this method requires the synthesis of the porous silica itself and a step that is incompatible with industrial production such as etching with a strong acid, which is problematic in terms of practical application in the industrial world.

一方、特許文献4及び非特許文献9には、アルギン酸やペクチン、アミロース、キトサンなどの炭水化物を原料として、構造鋳型剤(テンプレート)を用いることなく、メソ孔を有する多孔質炭素を得ることが記載されている。これらの文献に記載の方法では、多糖を、水に溶解させ、加温することで、粘性の高いゲルを得、該ゲルを冷却することにより、多糖分子が水素結合により繋がれた多糖ゲルを得、その後さらに該多糖ゲルを乾燥させた後、有機酸存在下、数百℃で、真空または不活性雰囲気下焼成することにより、多孔質炭素を得ている。
しかしながら、この方法では、構造形成は、水による多糖ネットワークの膨潤と多糖分子間の水素結合に基づくため、構造形成における配向性の誘発は容易ではなく、よって、得られる炭素材料のナノ構造に、明確な配向性を持たせたり、配向の度合いや種類を制御したりすることは難しい。また、焼成により炭素ネットワークの芳香族化が進み、400℃付近以上の温度で焼成すると、含酸素官能基の多くが損失されてしまう。
On the other hand, Patent Document 4 and Non-Patent Document 9 describe that porous carbon having mesopores is obtained without using a structural templating agent (template), using a carbohydrate such as alginic acid, pectin, amylose, or chitosan as a raw material. It is done. In the methods described in these documents, polysaccharides are dissolved in water and heated to obtain gels with high viscosity, and by cooling the gels, polysaccharide gels in which polysaccharide molecules are linked by hydrogen bonds are obtained. The obtained polysaccharide gel is then dried and then calcined at a temperature of several hundreds ° C. in a vacuum or an inert atmosphere in the presence of an organic acid to obtain porous carbon.
However, in this method, the structure formation is based on the swelling of the polysaccharide network by water and the hydrogen bond between the polysaccharide molecules, so induction of the orientation in the structure formation is not easy, and hence the nanostructure of the resulting carbon material It is difficult to give clear orientation or to control the degree and type of orientation. Moreover, the aromatization of the carbon network proceeds by firing, and when firing is performed at a temperature of about 400 ° C. or more, most of the oxygen-containing functional groups are lost.

特開2004−59904号公報Unexamined-Japanese-Patent No. 2004-59904 特開2014−34475号公報JP 2014-34475 A 特開2010−267542号公報JP, 2010-267542, A 国際公開第2009/037354号International Publication No. 2009/037354

Y.Meng,D.Gu,F.Zhang,Y.Shi,H.Yang,Z.Li,Z.Yu,B. Tu,D.Zhao,Angew.Chem.Int.Ed.2005,44,7053-7059.Y. Meng, D .; Gu, F. et al. Zhang, Y .; Shi, H. Yang, Z. Li, Z. Yu, B. Tu, D. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053-7059. C.Liang,K.Hong,G.A.Guiochon,J.W.Mays,S.Dai,Angew.Chem.Int.Ed.2004,43,5785-5789.C. Liang, K .; Hong, G. et al. A. Guiochon, J.J. W. Mays, S. Dai, Angew. Chem. Int. Ed. 2004, 43, 5785-5789. M-M.Titirici,M.Antonietti,Chem.Soc.Rev.2010,39,103-116.M-M. Titirici, M .; Antonietti, Chem. Soc. Rev. 2010, 39, 103-116. C.Falco,F.P.Caballero,F.Babonneau,C.Gervais,G.Laurent.M-M,Titirici.N.Baccile,Langmuir,2011,27,14460.C. Falco, F., et al. P. Caballero, F .; Babonneau, C .; Gervais, G., et al. Laurent. M-M, Titirici. N. Baccile, Langmuir, 2011, 27, 14460. R.J.White,M.Antonietti,M-M.Titirici,J.Mater.Chem. 2009,19,8645.R. J. White, M. Antonietti, M-M. Titirici, J.J. Mater. Chem. 2009, 19, 8645. S.Kubo,R.J.White,N.Yoshizawa,M.Antonietti,M-M.Titirici,Chem.Mater.2011,23,4882-4885.S. Kubo, R .; J. White, N.J. Yoshizawa, M .; Antonietti, M-M. Titirici, Chem. Mater. 2011, 23, 482-488. M-M.Titirici,A.Thomas,M.Antonietti,J.Mater.Chem.2007,17,3412-3418.M-M. Titirici, A .; Thomas, M .; Antonietti, J.J. Mater. Chem. 2007, 17, 3412-3418. M-M.Titirici,A.Thomas,M.Antonietti,Adv.Funct.Mater.2007,17,1010-1018.M-M. Titirici, A .; Thomas, M .; Antonietti, Adv. Funct. Mater. 2007, 17, 1010-1018. Budarin et al.,Angew.Chem.Int.Ed.2006,45,3782-3786.Budarin et al. , Angew. Chem. Int. Ed. 2006, 45, 378-2786.

前述のとおり、官能基を有する多孔質炭素を、簡便かつエネルギー消費の少ない手法で、安価な原料を用いて得ることが望まれている。また、炭素源の重合をより直接的にかつ精密に制御できる可能性を利用して、薄膜や単分子・二分子膜、各種基板との積層体を形成することが期待されている。   As described above, it is desired to obtain porous carbon having a functional group using an inexpensive raw material in a simple and energy-saving manner. In addition, it is expected to form a laminate with a thin film, a single molecule / bilayer film, and various substrates by utilizing the possibility of directly and precisely controlling the polymerization of a carbon source.

本発明は、こうした現状を鑑みてなされたものであって、安価な炭素前駆体(炭素源)を用いて、簡便かつエネルギー消費の少ない手法で、ヒドロキシル基、カルボニル基、カルボキシル基などの含酸素官能基やアルキル基などの官能基を有する多孔質炭素を提供することを目的とするものである。   The present invention has been made in view of the present situation, and uses an inexpensive carbon precursor (carbon source) in a simple and energy-saving manner, using an oxygen-containing compound such as a hydroxyl group, a carbonyl group or a carboxyl group. An object of the present invention is to provide porous carbon having a functional group or a functional group such as an alkyl group.

上記目的を達成すべく鋭意検討を重ねた結果、炭素前駆体(炭素源)として糖の脂肪酸エステルを用いることにより、構造鋳型剤(テンプレート)を用いることなく、簡便かつエネルギー消費の少ない手法で、ヒドロキシル基、カルボニル基、カルボキシル基などの含酸素官能基やアルキル基などの官能基を有する多孔質炭素を製造できるという知見を得た。   As a result of intensive studies aimed at achieving the above object, by using a fatty acid ester of sugar as a carbon precursor (carbon source), it is possible to use a simple and energy-saving method without using a structural templating agent (template). It has been found that porous carbon having a functional group such as an oxygen-containing functional group such as a hydroxyl group, a carbonyl group or a carboxyl group, or an alkyl group can be produced.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]糖の脂肪酸エステルを原料とする水熱反応生成物からなる多孔質炭素。
[2]炭素骨格に前記脂肪酸由来のアルキル基を含有することを特徴とする[1]に記載の多孔質炭素。
[3]前記脂肪酸のアルキル基が、二重結合を含んでもよい炭素数1〜100のアルキル基であることを特徴とする[1]又は[2]に記載の多孔質炭素。
[4]糖の脂肪酸エステルを原料とする水熱反応生成物の焼成物からなる多孔質炭素。
[5]炭素骨格にヒドロキシル基を含有することを特徴とする[4]に記載の多孔質炭素。
[6]前記糖が、窒素を含んでいてもよい、単糖、二糖又は多糖、或いはこれらの2種類以上の混合物である[1]〜[5]のいずれかに記載の多孔質炭素。
[7]前記糖の脂肪酸エステルが、モノエステル、ジエステル又はポリエステル、或いはこれらの2種類以上の混合物である[1]〜[6]のいずれかに記載の多孔質炭素。
[8]窒素吸着測定により算出される全細孔容量が、0.04〜5cm/gであることを特徴とする[1]〜[7]のいずれかに記載の多孔質炭素。
[9]配向性のナノ構造を有することを特徴とする[1]〜[8]のいずれかに記載の多孔質炭素。
[10][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする吸着剤。
[11][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする多孔質担体。
[12]前記多孔質担体が、触媒担体、分離担体、クロマト担体、生体分子足場材、生体分子捕捉材、薬物包含材又は香料担体のいずれかである[11]に記載の多孔質担体。
[13][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする電極材。
[14][13]に記載の電極材を用いた電極を備えた二次電池。
[15][13]に記載の電極材を用いた電極を備えた電気化学キャパシタ。
[16][13]に記載の電極材を用いた電極を備えた燃料電池。
[17][13]に記載の電極材を用いた電極を備えたセンサー。
[18][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする食品用添加剤。
[19][1]〜[9]のいずれかに記載の多孔質炭素を含有する食品。
[20][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする化粧品用添加剤。
[21]糖の脂肪酸エステルを100〜350℃で水熱処理し、得られた固体を水及び有機溶媒で洗浄した後、乾燥させることを特徴とする多孔質炭素の製造方法。
[22]前記脂肪酸のアルキル基が、二重結合を含んでもよい炭素数1〜100のアルキル基である[21]に記載の多孔質炭素の製造方法。
[23]前記糖が、窒素を含んでいてもよい、単糖、二糖又は多糖、或いはこれらの2種類以上の混合物である[21]又は[22]に記載の多孔質炭素の製造方法。
[24]前記糖の脂肪酸エステルが、モノエステル、ジエステル又はポリエステル、或いはこれらの2種類以上の混合物である[21]〜[23]のいずれかに記載の多孔質炭素の製造方法。
[25][21]〜[24]のいずれかに記載の方法で多孔質炭素を製造した後、さらに焼成することを特徴とする多孔質炭素の製造方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] Porous carbon consisting of a hydrothermal reaction product made from fatty acid esters of sugars.
[2] The porous carbon according to [1], wherein the carbon skeleton contains an alkyl group derived from the fatty acid.
[3] The porous carbon according to [1] or [2], wherein the alkyl group of the fatty acid is an alkyl group having 1 to 100 carbon atoms which may contain a double bond.
[4] Porous carbon consisting of a fired product of a hydrothermal reaction product made from fatty acid esters of sugars.
[5] The porous carbon according to [4], which contains a hydroxyl group in its carbon skeleton.
[6] The porous carbon according to any one of [1] to [5], wherein the sugar is a monosaccharide, a disaccharide or a polysaccharide which may contain nitrogen, or a mixture of two or more of them.
[7] The porous carbon according to any one of [1] to [6], wherein the fatty acid ester of the sugar is a monoester, a diester or a polyester, or a mixture of two or more thereof.
[8] The porous carbon according to any one of [1] to [7], wherein the total pore volume calculated by nitrogen adsorption measurement is 0.04 to 5 cm 3 / g.
[9] The porous carbon according to any one of [1] to [8], which has an oriented nano structure.
[10] An adsorbent mainly composed of porous carbon according to any one of [1] to [9].
[11] A porous carrier comprising the porous carbon as a main component according to any one of [1] to [9].
[12] The porous carrier according to [11], wherein the porous carrier is any of a catalyst carrier, a separation carrier, a chromatography carrier, a biomolecule scaffolding material, a biomolecule capturing material, a drug-containing material or a fragrance carrier.
[13] An electrode material containing porous carbon as a main component according to any one of [1] to [9].
The secondary battery provided with the electrode using the electrode material as described in [14] [13].
[15] An electrochemical capacitor comprising an electrode using the electrode material according to [13].
[16] A fuel cell provided with an electrode using the electrode material according to [13].
The sensor provided with the electrode using the electrode material as described in [17] [13].
[18] A food additive based on porous carbon according to any one of [1] to [9].
[19] A food containing porous carbon according to any one of [1] to [9].
[20] A cosmetic additive based on porous carbon according to any one of [1] to [9].
[21] A method for producing porous carbon comprising hydrothermally treating a fatty acid ester of a sugar at 100 to 350 ° C., washing the obtained solid with water and an organic solvent, and drying it.
[22] The method for producing porous carbon according to [21], wherein the alkyl group of the fatty acid is an alkyl group having 1 to 100 carbon atoms which may contain a double bond.
[23] The method for producing porous carbon according to [21] or [22], wherein the sugar is a monosaccharide, a disaccharide or a polysaccharide which may contain nitrogen, or a mixture of two or more thereof.
[24] The method for producing porous carbon according to any one of [21] to [23], wherein the fatty acid ester of the sugar is a monoester, a diester or a polyester, or a mixture of two or more thereof.
[25] A method for producing porous carbon, comprising the steps of producing porous carbon by the method according to any one of [21] to [24], and further calcining.

本発明によれば、安価な原料を用いて、ヒドロキシル基、カルボニル基、カルボキシル基などの含酸素官能基及びアルキル基等の原料由来の官能基を残したままの多孔質炭素を、簡便かつエネルギー消費の少ない手法で得ることができる。また、本発明によれば、不活性雰囲気下で焼成した後の多孔質炭素において、芳香族性が高まるばかりでなく、ヒドロキシル基等の含酸素官能基を有する多孔質炭素を得ることができる。さらに、本発明によれば、厚さ数十〜200nm程度のシート状炭素(炭素薄膜)を得ることができる。   According to the present invention, using inexpensive raw materials, it is simple and energy-saving to form porous carbon while leaving functional groups derived from raw materials such as hydroxyl-containing functional groups such as hydroxyl groups, carbonyl groups and carboxyl groups and alkyl groups. It can be obtained by a method of low consumption. Moreover, according to the present invention, not only the aromaticity is enhanced but also porous carbon having an oxygen-containing functional group such as a hydroxyl group can be obtained in the porous carbon after firing in an inert atmosphere. Furthermore, according to the present invention, sheet-like carbon (carbon thin film) having a thickness of several tens to about 200 nm can be obtained.

実施例1〜6および比較例1、2で得られる材料のフーリエ変換赤外吸収スペクトルFourier Transform Infrared Absorption Spectra of Materials Obtained in Examples 1 to 6 and Comparative Examples 1 and 2 実施例7〜8および比較例3で得られる材料のフーリエ変換赤外吸収スペクトルFourier Transform Infrared Absorption Spectra of Materials Obtained in Examples 7 to 8 and Comparative Example 3 実施例1〜8で得られる材料の窒素吸着等温線Nitrogen adsorption isotherm of materials obtained in Examples 1 to 8 比較例1および2で得られる材料の窒素吸着等温線Nitrogen adsorption isotherm of materials obtained in Comparative Examples 1 and 2 実施例1で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 1 実施例1で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 1 実施例2で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 2 実施例2で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 2 実施例3で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 3 実施例4で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 4 実施例4で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 4 実施例5で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 5 実施例5で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 5 実施例6で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 6 比較例1で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Comparative Example 1 比較例1で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Comparative Example 1 比較例2で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Comparative Example 2 実施例7で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 7 実施例7で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 7 実施例8で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 8 比較例3で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Comparative Example 3

本発明の多孔質炭素は、原料として糖の脂肪酸エステルを用い、その水熱反応により得られるものであって、原料に糖の脂肪酸エステルを用いることにより、基本骨格である炭素骨格内に、該脂肪酸エステルに由来のアルキル基を含有すること、或いは、該水熱反応により得られた生成物の焼成物からなるものであることを特徴とするものである。
また、本発明の多孔質炭素の製造方法は、炭素前駆体(炭素源)として糖の脂肪酸エステルを用い、これを100〜350℃で水熱処理し、得られた固体を水及び有機溶媒で洗浄した後、乾燥させる、或いはさらに、焼成することを特徴とするものである。
The porous carbon of the present invention is obtained by a hydrothermal reaction using a fatty acid ester of sugar as a raw material, and by using a fatty acid ester of sugar as a raw material, the carbon skeleton which is a basic skeleton is It is characterized in that it contains an alkyl group derived from a fatty acid ester, or consists of a calcined product of the product obtained by the hydrothermal reaction.
Moreover, the method for producing porous carbon of the present invention uses a fatty acid ester of sugar as a carbon precursor (carbon source), which is hydrothermally treated at 100 to 350 ° C., and the obtained solid is washed with water and an organic solvent It is then characterized by drying or baking.

本発明において、水熱反応の原料として用いる糖の脂肪酸エステルは、両親媒性分子であるため、従来のような鋳型を用いずとも、多孔質炭素を得ることができる。
また、本発明によれば、従来のような鋳型を除去するに必要な焼成工程を必要としないため、ヒドロキシル基、カルボニル基、カルボキシル基などの含酸素官能基および上記両親媒性分子由来のアルキル基などの官能基を有する多孔質炭素を得ることができる。
さらに、両親媒性分子であるショ糖脂肪酸エステルを原料とする本発明の手法によれば、厚さ数十〜200nm程度のシート状炭素(炭素薄膜)や、単分子・二分子膜および各種基板との積層体の形成が可能となる。
In the present invention, since the fatty acid ester of sugar used as a raw material of the hydrothermal reaction is an amphiphilic molecule, porous carbon can be obtained without using a conventional template.
Further, according to the present invention, since the calcining step required to remove the template as in the prior art is not required, an oxygen-containing functional group such as a hydroxyl group, a carbonyl group or a carboxyl group and an alkyl derived from the above amphiphilic molecule Porous carbon having a functional group such as a group can be obtained.
Furthermore, according to the method of the present invention using sucrose fatty acid ester, which is an amphiphilic molecule, as a raw material, sheet carbon (carbon thin film) having a thickness of about several tens to 200 nm, monomolecular / bimolecular film, and various substrates It is possible to form a laminate with the

以下、本発明の多孔質炭素及びその製造方法についてさらに詳しく説明する。   Hereinafter, the porous carbon of the present invention and the method for producing the same will be described in more detail.

[糖の脂肪酸エステル]
本発明においては、水熱反応の炭素源として、糖の脂肪酸エステルを用いる。
糖としては、果糖、ブドウ糖などの単糖、ショ糖などの二糖、アルギン酸、ペクチン、アミロース等の多糖、又はキチン、キトサン、グルコースアミン等の窒素を含む糖のいずれでもよく、或いはこれらの2種類以上の混合物であっても良い。
また、脂肪酸エステルとしては、脂肪酸の結合数が、1のモノエステル、2のジエステル、又は3以上のポリエステル、或いはこれらの2種類以上の混合物が用いられる。
[Fatty acid ester of sugar]
In the present invention, fatty acid esters of sugar are used as a carbon source of hydrothermal reaction.
The sugar may be any of monosaccharides such as fructose and glucose, disaccharides such as sucrose, polysaccharides such as alginic acid, pectin and amylose, and nitrogen-containing sugars such as chitin, chitosan and glucoseamine, or two of these It may be a mixture of more than one kind.
In addition, as the fatty acid ester, a monoester of 1 fatty acid, a diester of 2 or a polyester of 3 or more, or a mixture of 2 or more of these is used.

このように、本発明において用いられる糖の脂肪酸エステルは特に限定されないが、例えば、下記の式1〜3で表されるもの、或いはこれらの混合物等が挙げられる。ただし、式中、脂肪酸部位は、上記化学構造式とは異なる部位に導入されていても良い。言い換えれば、糖のどの部位のOH基がエステル化されてアルキル基が伸長しているかは問わない。   Thus, the fatty acid ester of the sugar used in the present invention is not particularly limited, and examples thereof include those represented by the following formulas 1 to 3 or mixtures thereof. However, in the formula, the fatty acid moiety may be introduced at a site different from the above-mentioned chemical structural formula. In other words, it does not matter which OH group of the sugar is esterified to extend the alkyl group.

Figure 2019119632
Figure 2019119632

Figure 2019119632
Figure 2019119632

Figure 2019119632
Figure 2019119632

脂肪酸のアルキル基は、二重結合を含んでいてもよく、上記式中のnが、1〜100、好ましくは、1〜50、さらに好ましくは1〜20のものが用いられる。
本発明の糖の脂肪酸エステルは、アルキル鎖長の異なる糖の脂肪酸エステルを混合して用いてもよく、さらに、ジエステルおよびポリエステルにおいては、一つの糖の脂肪酸エステルの分子に2種類以上の異なるアルキル鎖長を含んでいてもよい。言い換えれば、ジエステルおよびポリエステルにおいては、糖の一分子内のOH基から、異なる鎖長のアルキル基が伸長していても良い。
また、本発明における糖の脂肪酸エステルは、合成品でもよく、或いは、入手可能な市販品でも良い。入手容易な市販品としては、具体的には、ショ糖ラウリン酸エステル、ショ糖ステアリン酸エステル、ショ糖ベヘニン酸エステル等が挙げられる。
The alkyl group of the fatty acid may contain a double bond, and in the above formula, n is 1 to 100, preferably 1 to 50, more preferably 1 to 20.
The fatty acid ester of the sugar of the present invention may be used as a mixture of fatty acid esters of sugars having different alkyl chain lengths, and further, in the case of diesters and polyesters, two or more different alkyls per molecule of fatty acid ester of one sugar. The chain length may be included. In other words, in diesters and polyesters, alkyl groups of different chain lengths may extend from the OH group in one molecule of sugar.
The fatty acid ester of sugar in the present invention may be a synthetic product or a commercially available product. Specific examples of readily available commercial products include sucrose laurate, sucrose stearate, sucrose behenate and the like.

[水熱合成]
本発明の多孔質炭素は、以下の1〜3の工程で合成される。
工程1:糖の脂肪酸エステルを水に溶解させ、溶液を密閉加熱する工程
工程2:得られる固体を回収し、室温で洗浄した後、乾燥させる工程
工程3:乾燥後の固体を加温下で溶媒洗浄した後、乾燥させる工程
ただし、用いる原料の種類によっては工程3を省略しても良い。
以下、順に説明する。
Hydrothermal synthesis
The porous carbon of the present invention is synthesized in the following steps 1 to 3.
Step 1: Dissolve sugar fatty acid ester in water and tightly heat the solution Step 2: Recover the resulting solid, wash at room temperature, and dry Step 3: Dry the dried solid under heating A step of drying after solvent washing However, depending on the type of raw material to be used, step 3 may be omitted.
The following will be described in order.

(工程1)
前記工程1は、濃度1〜70重量パーセントの糖の脂肪酸エステルの水溶液(以下、「原料水溶液」ということもある)を、100〜350℃において密閉容器内で、1時間以上加熱することにより行われる。
水熱反応の原料である原料水溶液中に、従来用いられている、例えば、ポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオキシドトリブロック共重合体などの両親媒性ポリマーや、ドデシル硫酸ナトリウムなどの一般的な界面活性剤、ポリスチレン粒子などの有機コロイド又はシリカ粒子などの無機コロイドなどのテンプレート剤を加えて使用しても良い。また、従来のシリカ多孔体などの無機多孔質テンプレート剤を加えて使用しても良い。また、これらの従来のテンプレート剤を2種類以上混合して加えても良い。
また、前記原料水溶液中に、従来の、果糖、ブドウ糖などの単糖、ショ糖などの二糖、アルギン酸、ペクチン、アミロース等の多糖、又はキチン、キトサン、グルコースアミン等の窒素を含む糖、或いはこれらの2種類以上の混合物を加えても良い。
また、前記原料水溶液中に、窒素や硫黄をドープするための添加物を加えても良い。こうした添加剤として、システイン、アルブミン、オボアルブミン、チオフェンアルデヒドなどが挙げられる。
また、前記原料水溶液中に、pH調整剤を添加して合成しても良い。
さらに、前記原料水溶液中に、塩酸、硫酸、硝酸、ボロン酸などの無機酸またはトルエンスルホン酸などの有機酸等の酸、或いは、水酸化ナトリウム、水酸化アンモニウムなどの無機塩基等の塩基を加えても良い。
さらに、細孔膨潤剤として、例えば、ヘキサンやトリメチルベンゼン、シメンなどの有機系の添加物を加えても良い。
さらにまた、o/wエマルジョン、コロイド分散剤と組み合わせて用いてもよい。
(Step 1)
The above step 1 is carried out by heating an aqueous solution of a fatty acid ester of sugar having a concentration of 1 to 70% by weight (hereinafter sometimes referred to as “raw material aqueous solution”) at 100 to 350 ° C. in a sealed container for 1 hour or more. It will be.
For example, an amphiphilic polymer such as polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer conventionally used in a raw material aqueous solution which is a raw material of a hydrothermal reaction, or a general interface such as sodium dodecyl sulfate Activators, organic colloids such as polystyrene particles, or inorganic colloids such as silica particles may be added and used. Moreover, you may add and use inorganic porous template agents, such as the conventional silica porous body. Also, two or more of these conventional template agents may be mixed and added.
In addition, conventional monosaccharides such as fructose and glucose, disaccharides such as sucrose, polysaccharides such as alginic acid, pectin and amylose, or nitrogen-containing sugars such as chitin, chitosan and glucoseamine, or the like in the raw material aqueous solution A mixture of two or more of these may be added.
Further, an additive for doping nitrogen or sulfur may be added to the raw material aqueous solution. Such additives include cysteine, albumin, ovalbumin, thiophene aldehyde and the like.
Moreover, you may add and synthesize | combine a pH adjuster in the said raw material aqueous solution.
Furthermore, an acid such as an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid or boronic acid or an organic acid such as toluenesulfonic acid or a base such as an inorganic base such as sodium hydroxide or ammonium hydroxide is added to the aqueous solution of the raw material. It is good.
Furthermore, as a pore swelling agent, for example, an organic additive such as hexane, trimethylbenzene or cymene may be added.
Furthermore, they may be used in combination with o / w emulsions and colloid dispersants.

(工程2、3)
本発明の多孔質炭素は、水熱合成反応で得られた固体を水及び有機溶媒で洗浄した後、乾燥させることにより得られる。有機溶媒としては、特に限定されないが、エタノール、アセトン、ジエチルエーテルなどが好ましく用いられる。
具体的には、水熱合成後に得られる茶色い固体を、十分な量の水および有機溶媒でそれぞれ室温以上の温度で洗浄した後、室温以上の温度で3時間以上乾燥させる。真空条件下において乾燥させても良い。本乾燥後の茶色い固体に有機溶媒を十分量加え、室温以上の温度で1時間以上、撹拌洗浄する。攪拌洗浄後の茶色い固体を室温以上の温度で3時間以上乾燥させることにより、目的とする糖の脂肪酸由来の多孔質炭素材料を得る。真空条件下において乾燥させても良い。また有機溶媒による攪拌洗浄およびその後の乾燥工程は、用いる糖の脂肪酸エステルの種類によっては省いても良い。
上記の1回目の乾燥の代わりに、凍結乾燥法による乾燥を行っても良い。すなわち、十分な量の水および有機溶媒で洗浄した後に、試料に含まれる有機溶媒を水で置換した後、凍結乾燥を行う。
また上記の2回目の乾燥後に塩基による洗浄を行っても良い。
(Steps 2 and 3)
The porous carbon of the present invention can be obtained by washing the solid obtained by the hydrothermal synthesis reaction with water and an organic solvent and then drying it. The organic solvent is not particularly limited, but ethanol, acetone, diethyl ether and the like are preferably used.
Specifically, the brown solid obtained after hydrothermal synthesis is washed with a sufficient amount of water and an organic solvent respectively at a temperature of room temperature or more, and then dried at a temperature of room temperature or more for 3 hours or more. It may be dried under vacuum conditions. A sufficient amount of the organic solvent is added to the brown solid after this drying, and the mixture is stirred and washed at a temperature of room temperature or more for 1 hour or more. The brown solid after stirring and washing is dried at a temperature above room temperature for 3 hours or more to obtain a porous carbon material derived from the target fatty acid of sugar. It may be dried under vacuum conditions. The stirring and washing with an organic solvent and the subsequent drying step may be omitted depending on the type of fatty acid ester of sugar used.
Instead of the first drying described above, drying by lyophilization may be performed. That is, after washing with a sufficient amount of water and an organic solvent, the organic solvent contained in the sample is replaced with water and then freeze-dried.
After the second drying described above, washing with a base may be performed.

[水熱反応生成物]
本発明において、糖の脂肪酸エステルを原料とする水熱合成により得られた多孔質炭素は、炭素骨格内に糖由来の含酸素官能基および脂肪酸由来のアルキル基を有し、大きさ数〜数百μmの塊状の形状や、厚さ数nm〜数μm程度のシート状の形状をなす。塊状およびシート状形状はさらに、数〜数十nmの微粒子が互いに連結した構造もしくは、太さ数〜数十nmの共連続様の構造からなっている。さらに、本微粒子の連結形態に緩やかな配向性を持たせることができる。得られた粉体は窒素吸着による細孔評価では、0.04〜3cm/gの細孔容量を示す。
[Hydrothermal reaction product]
In the present invention, porous carbon obtained by hydrothermal synthesis using a fatty acid ester of a sugar as a raw material has an oxygen-containing functional group derived from a sugar and an alkyl group derived from a fatty acid in a carbon skeleton, It forms a massive shape of 100 μm and a sheet-like shape with a thickness of several nm to several μm. The massive and sheet-like shapes further have a structure in which fine particles of several to several tens of nm are connected to one another or a bicontinuous structure of several to several tens of nm in thickness. Furthermore, the connection form of the present fine particles can have a gentle orientation. The obtained powder exhibits a pore volume of 0.04 to 3 cm 3 / g in pore evaluation by nitrogen adsorption.

(不活性雰囲気下での焼成処理)
通常、糖から水熱合成手法で得られる炭素骨格は、400〜500℃以上での不活性雰囲気下における焼成により炭素骨格の芳香族化が進行し、焼成温度の更なる上昇とともに、炭素材料は良好な電気伝導性を帯び電極材料などとしての用途が開けることが知られている。
本発明においても、前記の乾燥後の多孔質炭素を、さらに不活性雰囲気下で焼成することにより、芳香族性を高めることができる。
具体的には、前記乾燥後の多孔質炭素を、50mL/min以上の不活性ガスフロー下において、200℃以上の温度で焼成する。不活性ガスとしては、窒素やアルゴン、ヘリウム等が用いられる。
(Firing treatment under inert atmosphere)
In general, the carbon skeleton obtained from saccharides by hydrothermal synthesis proceeds by firing in an inert atmosphere at 400 to 500 ° C. or more, the aromatization of the carbon skeleton proceeds, and the carbon material It is known that it can be used as an electrode material or the like having good electrical conductivity.
Also in the present invention, the aromaticity can be enhanced by further baking the dried porous carbon under an inert atmosphere.
Specifically, the dried porous carbon is fired at a temperature of 200 ° C. or more under an inert gas flow of 50 mL / min or more. Nitrogen, argon, helium or the like is used as the inert gas.

糖から得られた炭素材料を焼成した後の炭素材料は、焼成により炭素ネットワークの芳香族化が進み、通常400℃付近以上の温度で焼成すると、含酸素官能基の多くが損失されてしまう(特許文献4、非特許文献9参照)。
これに対し、本発明における、糖の脂肪酸エステルの水熱合成から得られた炭素材料を不活性雰囲気下で焼成して得られた多孔質炭素は、比較的高い芳香族性とともに、含酸素官能基(ヒドロキシル基)を含有することを特徴としている。
また、本発明における、この焼成後の多孔質炭素は、大きさ数〜数百μmの塊状の形状や、厚さ数nm〜数μm程度のシート状の形状をなし、塊状およびシート状の形状はさらに、数〜数十nmの微粒子が互いに連結した構造からなっている。
After calcining the carbon material obtained from the sugar, the carbon material proceeds with aromatization of the carbon network, and when calcinated usually at a temperature of about 400 ° C. or more, most of the oxygen-containing functional groups are lost ( Patent Document 4 and Non-Patent Document 9).
On the other hand, the porous carbon obtained by firing the carbon material obtained from the hydrothermal synthesis of fatty acid esters of sugars in the present invention in an inert atmosphere has relatively high aromaticity and oxygen-containing functional properties. It is characterized by containing a group (hydroxyl group).
In the present invention, the porous carbon after firing has a massive shape of several to several hundred μm in size and a sheet-like shape of several nm to several μm in thickness, and is a massive and sheet-like shape. Furthermore, it has a structure in which fine particles of several to several tens of nm are connected to each other.

さらに、本発明における、この焼成後の多孔質炭素は、窒素吸着による細孔評価では、0.2〜5cm/gの細孔容量を示す。通常、糖そのものから得られる炭素材料を同様に不活性雰囲気下で焼成した場合の細孔容量は、0.15cm−1以下である(L.Yu et al.,Langmuir,2012,28.12373参照)ことからみて、本発明においては、原料として糖の脂肪酸エステルを用いることにより、より細孔容量が大きいものが得られるといえる。 Furthermore, the porous carbon after this calcination in the present invention exhibits a pore volume of 0.2 to 5 cm 3 / g in pore evaluation by nitrogen adsorption. Usually, the pore volume when the carbon material obtained from the sugar itself is similarly calcined under an inert atmosphere is 0.15 cm 3 g −1 or less (L. Yu et al., Langmuir, 2012, 28. From the viewpoint of 12373), it can be said that in the present invention, by using a fatty acid ester of sugar as a raw material, one having a larger pore volume can be obtained.

本発明の、糖の脂肪酸エステルを原料とする水熱反応生成物からなる多孔質炭素、或いは該水熱反応生成物の焼成物からなる多孔質炭素は、その小さな孔(細孔)を利用して、吸着剤、及び触媒担体、分離担体、クロマト担体、生体分子足場材、生体分子捕捉材、薬物包含材又は香料担体等の多孔質担体として用いることができるばかりでなく、細孔空間を電解質の効率移動空間として利用した二次電池やキャパシタ、燃料電池、センサーなどの炭素電極としての利用が可能である。
また、本発明の多孔質炭素は、糖の脂肪酸エステルを原料とするものであるため、環境負荷が少ないばかりでなく、生体分子足場材、生体分子捕捉材、薬物包含材等の医療用途に好ましく用いることができ、さらに、食品、食品用添加剤又は化粧品添加剤等にも用いることができる。
また、本発明の多孔質炭素は、ヒドロキシル基やカルボニル基、カルボキシル基などの含酸素官能基や糖の脂肪酸エステル由来のアルキル基などの官能基を有するため、これらの官能基を用いて、種々の機能性を付与した多孔質炭素を提供することができる。
The porous carbon consisting of a hydrothermal reaction product starting from a fatty acid ester of a sugar according to the present invention or the porous carbon consisting of a fired product of the hydrothermal reaction product utilizes its small pores (pores) Not only can it be used as a porous carrier such as adsorbent and catalyst carrier, separation carrier, chromatography carrier, biomolecule scaffolding material, biomolecule trapping material, drug inclusion material or perfume carrier, the pore space can be used as electrolyte It can be used as a carbon electrode for secondary batteries, capacitors, fuel cells, sensors, etc., which were used as an efficient moving space.
In addition, since the porous carbon of the present invention uses fatty acid esters of sugar as a raw material, it has not only a small environmental load, but is preferably used for medical applications such as biomolecular scaffolds, biomolecular capture agents, and drug inclusion materials. It can also be used as food, food additive, cosmetic additive and the like.
In addition, since the porous carbon of the present invention has functional groups such as an oxygen-containing functional group such as a hydroxyl group, a carbonyl group and a carboxyl group or an alkyl group derived from a fatty acid ester of sugar, various kinds of functional groups can be used using these functional groups. The porous carbon which provided the functionality of (1) can be provided.

以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれにより限定して解釈されるものではない。   EXAMPLES The present invention will be described in more detail based on examples given below, but the invention is not meant to be limited thereby.

[評価方法]
以下に記載する実施例及び比較例で得られた炭素材料に含まれる官能基を、フーリエ変換赤外吸収分光法により確認した。
図1(A)(B)は、実施例1〜6及び比較例1、2で得られた炭素材料のフーリエ変換赤外吸収スペクトルであり、(B)は、脂肪酸由来のアルキル基の吸収ピークを詳細に解析するために、(A)のスペクトルの波数4000−2000cm−1の範囲を拡大したものである。
図2は、実施例7、8及び比較例3で得られた炭素材料のフーリエ変換赤外吸収スペクトルである。
[Evaluation method]
The functional groups contained in the carbon materials obtained in Examples and Comparative Examples described below were confirmed by Fourier transform infrared absorption spectroscopy.
1 (A) and (B) show Fourier transform infrared absorption spectra of the carbon materials obtained in Examples 1 to 6 and Comparative Examples 1 and 2, and (B) shows absorption peaks of alkyl groups derived from fatty acids. In order to analyze in detail, the wave number 4000-2000 cm < -1 > range of the spectrum of (A) is expanded.
FIG. 2 shows Fourier transform infrared absorption spectra of the carbon materials obtained in Examples 7 and 8 and Comparative Example 3.

また、実施例及び比較例で得られた炭素材料の全細孔容積を、窒素吸着法により測定した。
図3は、実施例1〜8で得られた炭素材料の窒素吸着等温線であり、図4は、比較例1,2で得られた炭素材料の窒素吸着等温線である。
Moreover, the total pore volume of the carbon material obtained by the Example and the comparative example was measured by the nitrogen adsorption method.
FIG. 3 is a nitrogen adsorption isotherm of the carbon materials obtained in Examples 1 to 8, and FIG. 4 is a nitrogen adsorption isotherm of the carbon materials obtained in Comparative Examples 1 and 2.

さらに、実施例及び比較例で得られた炭素材料について、走査型電子顕微鏡及び透過型電子顕微鏡による観察を行った。なお、透過型電子顕微鏡による観察は、得られた粒子を、より詳細に観察するためのものであり、得られた炭素材料を熱硬化性樹脂中に包埋し、該包埋材料をミクロトームで厚さ数十〜100nmに薄切して得た薄片試料を観察した。
図5〜図21は、実施例及比較例で得られた炭素材料の各観察像である。
Furthermore, about the carbon material obtained by the Example and the comparative example, observation by a scanning electron microscope and a transmission electron microscope was performed. In addition, the observation by a transmission electron microscope is for observing the obtained particles in more detail, and the obtained carbon material is embedded in a thermosetting resin, and the embedding material is used as a microtome. A thin slice sample obtained by slicing to a thickness of several tens to 100 nm was observed.
5 to 21 are respective observation images of the carbon materials obtained in Examples and Comparative Examples.

[実施例1]
(工程1)
糖の脂肪酸エステルとして、分子式C305712で表される、ショ糖ステアリン酸エステル(第一工業製薬株式会社 DKエステルSS,HLB19、モノエステル率;約100%)4gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常3層に分かれて析出するが、そのうち最も比重の小さい、最上層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させることにより、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
Example 1
(Step 1)
Sucrose stearic acid ester (Daiichi Kogyo Seiyaku Co., Ltd. DK ester SS, HLB19, monoester ratio; about 100%) represented by molecular formula C 30 H 57 O 12 as fatty acid ester of sugar 10 mL of deionized water Dissolved in water. After left to stand overnight, it was heated at 120 ° C. for 103 hours in a closed vessel.
(Step 2)
The resulting brown solid was collected. The top layer, which usually separates into three layers and precipitates, is the smallest in specific gravity. After pouring about 40 mL of deionized water and shaking with a shaker, it was centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. The supernatant solution was removed, and this operation was repeated twice more. The resulting precipitate was dried at 65 ° C. overnight or more.
(Step 3)
To the dried brown solid was added 50 mL of ethanol, and the mixture was stirred and washed at 60 ° C. overnight. After washing, centrifugation was performed, and after removing the supernatant, 40 mL of ethanol was added and shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once more. The precipitate was dried at 65 ° C. overnight or more to obtain a target sucrose fatty acid ester-derived carbon material.

(フーリエ変換赤外吸収スペクトル)
実施例1で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、2955cm−1付近(CH対称伸縮振動)、2920cm−1付近(vCH逆対称)、および2851cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も有することが分かった。
(Fourier transform infrared absorption spectrum)
In the carbon material obtained in Example 1, a peak attributed to C = O (stretching, 1800 to 1520 cm −1 ) or OH (stretching, 3700 to 3100 cm −1 ) derived from a carboxyl group or a carbonyl group is observed Thus, it was found that an oxygen-containing functional group was present in the carbon material. Furthermore, characteristic peaks are seen in the alkyl group derived from fatty acid in the vicinity of 2955 cm −1 (CH 3 symmetric stretching vibration), in the vicinity of 2920 cm −1 (vCH 2 antisymmetry), and in the vicinity of 2851 cm −1 (vCH 2 symmetry) It turned out that it also has an alkyl group.

(窒素吸着等温線)
実施例1で得られた炭素材料は、高相対圧付近において、わずかではあるが等温線の立ち上がりが見られ、算出された全細孔容量は0.04cm/g(表2)であった。
(Nitrogen adsorption isotherm)
The carbon material obtained in Example 1 showed a slight rise in the isotherm near high relative pressure, and the calculated total pore volume was 0.04 cm 3 / g (Table 2). .

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例1で得られた炭素材料の走査型電子顕微鏡像を図5に示す。数〜数十nmの粒子が互いに連なり、数〜数十μmの大きさの粒子が形成されている様子が観察された。
実施例1で得られた炭素材料の透過型電子顕微鏡像を図6に示す。幹の太さが数十nm程度の共連続様の構造が形成されている様子が観察された。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 1 is shown in FIG. It was observed that particles of several to several tens of nm were connected to one another to form particles of several to several tens of μm in size.
A transmission electron microscope image of the carbon material obtained in Example 1 is shown in FIG. It was observed that a bicontinuous structure with a stem thickness of several tens of nm was formed.

よって、本実施例から、糖の脂肪酸エステルを原料とした水熱合成により多孔質炭素が得られ、その材料は含酸素官能基およびアルキル基を有することが分かった。
なお、実施例1の工程2において、3層に分かれて析出する固体のうち、比重の最も大きい最下層を取り出し、それ以外の操作を実施例1と同様に行っても炭素材料が得られたが、その炭素材料では脂肪酸由来のアルキル基は有しなかった。
Therefore, from this example, it was found that porous carbon was obtained by hydrothermal synthesis using a fatty acid ester of sugar as a raw material, and the material had an oxygen-containing functional group and an alkyl group.
In the step 2 of Example 1, the lowermost layer having the largest specific gravity was taken out of the solid separated into three layers and the carbon material was obtained even if other operations were performed in the same manner as in Example 1. However, the carbon material did not have an alkyl group derived from fatty acid.

[実施例2]
本実施例では、実施例1と同じショ糖脂肪酸エステルを用い、工程2において比重の二番目に小さい中間層を取り出した。本実施例における工程を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C305712で表される、ショ糖ステアリン酸エステル(第一工業製薬株式会社 DKエステルSS,HLB19、モノエステル率;約100%)4gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常3層に分かれて析出するが、そのうち実施例1とは異なり、二番目に比重の小さい中間層を取り出した。約40mLの脱イオン水を注いで、シェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させることにより、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
Example 2
In the present example, the same sucrose fatty acid ester as in Example 1 was used, and in Step 2, the intermediate layer with the second smallest specific gravity was taken out. The steps in this example are shown below.
(Step 1)
Sucrose stearic acid ester (Daiichi Kogyo Seiyaku Co., Ltd. DK ester SS, HLB19, monoester ratio; about 100%) represented by molecular formula C 30 H 57 O 12 as fatty acid ester of sugar 10 mL of deionized water Dissolved in water. After left to stand overnight, it was heated at 120 ° C. for 103 hours in a closed vessel.
(Step 2)
The resulting brown solid was collected. Usually, the layer was separated into three layers, but the intermediate layer having the second smallest specific gravity was taken out unlike the first example. About 40 mL of deionized water was poured, shaken with a shaker, and centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. The supernatant solution was removed, and this operation was repeated twice more. The resulting precipitate was dried at 65 ° C. overnight or more.
(Step 3)
To the dried brown solid was added 50 mL of ethanol, and the mixture was stirred and washed at 60 ° C. overnight. After washing, centrifugation was performed, and after removing the supernatant, 40 mL of ethanol was added and shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once more. The precipitate was dried at 65 ° C. overnight or more to obtain a target sucrose fatty acid ester-derived carbon material.

(フーリエ変換赤外吸収スペクトル)
実施例2で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、波数2955cm−1付近(CH対称伸縮振動)、2924cm−1付近(vCH逆対称)、および2853cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も存在することが分かった。
(Fourier transform infrared absorption spectrum)
In the carbon material obtained in Example 2, a peak attributed to C = O (stretching, 1800 to 1520 cm -1 ) or OH (stretching, 3700 to 3100 cm -1 ) derived from a carboxyl group or a carbonyl group is observed Thus, it was found that an oxygen-containing functional group was present in the carbon material. Furthermore, a characteristic peak is seen in the alkyl group derived from fatty acid near wave number 2955 cm −1 (CH 3 symmetrical stretching vibration), near 2924 cm −1 (vCH 2 antisymmetry), and near 2853 cm −1 (vCH 2 symmetry) And alkyl groups were also found to be present.

ここで、観測されたアルキル基は、原料であるショ糖脂肪酸エステル分子内のエステル結合が水熱条件下で切れて、脂肪酸が炭素材料に物理混合された結果生じている可能性も否定できない。そこで、本アルキル基が炭素材料内に物理的に混合された脂肪酸に由来するものではなく、共有結合によってアルキル基が炭素骨格内に組み込まれた結果生じていることを確かめるため、実施例2において工程3の操作を2回行った後、フーリエ変換赤外吸収測定を行い、本工程前後での赤外吸収スペクトルにおける脂肪酸由来アルキル基のピーク強度を比較した。脂肪酸は通常水にはほとんど溶けないが(溶解度:0.0003%、20℃)、加温したエタノールにはやや溶けやすい。アルキル基と炭素とが物理的に混合したものであった場合、2回洗浄後にはより多くのアルキル基が除去されることにより、上記で見られたアルキル基のピーク強度が減少するはずである。   Here, it can not be denied that the observed alkyl group may be generated as a result of physical mixing of the fatty acid to the carbon material as the ester bond in the sucrose fatty acid ester molecule as the raw material is broken under hydrothermal conditions. Therefore, in order to confirm that the present alkyl group is not derived from the fatty acid physically mixed in the carbon material, but is generated as a result of the alkyl group being incorporated into the carbon skeleton by covalent bond, in Example 2, After performing the operation of step 3 twice, Fourier transform infrared absorption measurement was performed, and peak intensities of fatty acid-derived alkyl groups in infrared absorption spectra before and after this step were compared. Fatty acids are usually hardly soluble in water (solubility: 0.0003%, 20 ° C.) but soluble in heated ethanol. If the alkyl group and the carbon are physically mixed, more alkyl groups should be removed after washing twice, which should reduce the peak strength of the alkyl group seen above .

工程3を2回行った後の、フーリエ変換赤外吸収スペクトルを図1(A)および(B)に示す(“実施例2(EtOH2回洗浄後“)と表示されたスペクトルである)。工程3を2回行った材料についても、波数2957cm−1付近(CH対称伸縮振動)、2924cm−1付近(vCH逆対称)、および2855cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られたことから、アルキル基と炭素とが物理的に混合したものではなく、炭素骨格内にアルキル基が共有結合で組み込まれていると考えられる。 The Fourier transform infrared absorption spectrum after performing step 3 twice is shown in FIGS. 1 (A) and (B) (a spectrum labeled “Example 2 (after washing twice with EtOH)”). Also for the material subjected to step 3 twice, fatty acid-derived alkyl at a wavenumber of about 2957 cm −1 (CH 3 symmetric stretching vibration), about 2924 cm −1 (vCH 2 antisymmetry), and about 2855 cm −1 (vCH 2 symmetry) Since a characteristic peak was observed in the group, it is considered that the alkyl group and carbon are not physically mixed, and the alkyl group is incorporated into the carbon skeleton by covalent bond.

(窒素吸着等温線)
実施例2で得られた炭素材料は、高相対圧付近において、実施例1よりも等温線の立ち上がりが大きく見られ、算出された全細孔容量は0.16cm/g(表2)であり、実施例1よりも大きかった。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 2, the rise of the isotherm is larger at around the high relative pressure than in Example 1, and the calculated total pore volume is 0.16 cm 3 / g (Table 2). Yes, greater than Example 1.

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例2で得られた炭素材料の走査型電子顕微鏡像を図7に示す。数〜数十nmの粒子が互いに連なっている様子が観察された。また本連結体は、厚さ数十〜200nm程度のシート状の形状をなしていた。
実施例2で得られた炭素材料の透過型電子顕微鏡像を図8に示す。図8は、シート形状の断面を表していると考えられ、本シート形状は数〜数十nmの粒子が互いに連なることにより形成されている様子が観察された。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 2 is shown in FIG. It was observed that particles of several to several tens of nm were connected to one another. In addition, the connected body was in the form of a sheet having a thickness of about several tens to about 200 nm.
A transmission electron microscope image of the carbon material obtained in Example 2 is shown in FIG. FIG. 8 is considered to represent a cross section of the sheet shape, and it is observed that the sheet shape is formed by connecting particles of several to several tens of nm in a row.

よって、本実施例から、糖の脂肪酸エステルを原料とした水熱合成により多孔質炭素が得られ、その材料は含酸素官能基およびアルキル基を有することが分かった。   Therefore, from this example, it was found that porous carbon was obtained by hydrothermal synthesis using a fatty acid ester of sugar as a raw material, and the material had an oxygen-containing functional group and an alkyl group.

[実施例3]
本実施例では、本実施例で得られた炭素材料の耐塩基性を調べるため、塩基による洗浄処理を行った。本塩基処理工程を含む合成を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C305712で表される、ショ糖ステアリン酸エステル(第一工業製薬株式会社 DKエステルSS,HLB19、モノエステル率;約100%)4gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常3層に分かれて析出するが、そのうち実施例2と同様に、二番目に比重の小さい中間層を取り出した。約40mLの脱イオン水を注いで、シェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで、約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体に、エタノール50mLを加え、60℃で、一晩以上、撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させた。
(塩基処理工程)
工程3で得られた炭素材料を、0.1Mの水酸化ナトリウム水溶液中で室温において撹拌した。撹拌後の炭素材料に約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除いた後、約40mLのEtOHを注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。沈殿を65℃で一晩以上乾燥させることにより、目的とする水酸化ナトリウム処理炭素材料を得た。
[Example 3]
In this example, in order to investigate the basic resistance of the carbon material obtained in this example, the base was subjected to washing treatment. The synthesis including this base treatment step is shown below.
(Step 1)
Sucrose stearic acid ester (Daiichi Kogyo Seiyaku Co., Ltd. DK ester SS, HLB19, monoester ratio; about 100%) represented by molecular formula C 30 H 57 O 12 as fatty acid ester of sugar 10 mL of deionized water Dissolved in water. After left to stand overnight, it was heated at 120 ° C. for 103 hours in a closed vessel.
(Step 2)
The resulting brown solid was collected. The intermediate layer having the second smallest specific gravity was taken out as in the case of Example 2 although the precipitation was usually divided into three layers. About 40 mL of deionized water was poured, shaken with a shaker, and centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. The supernatant solution was removed, and this operation was repeated twice more. The resulting precipitate was dried at 65 ° C. overnight or more.
(Step 3)
To the dried brown solid, 50 mL of ethanol was added, and the mixture was stirred and washed at 60 ° C. overnight. After washing, centrifugation was performed, and after removing the supernatant, 40 mL of ethanol was added and shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once more. The precipitate was dried at 65 ° C. overnight or more.
(Base treatment process)
The carbon material obtained in step 3 was stirred at room temperature in a 0.1 M aqueous solution of sodium hydroxide. About 40 mL of deionized water was poured onto the carbon material after stirring, the mixture was shaken with a shaker, and then centrifuged to precipitate a solid. After removing the supernatant solution, about 40 mL of EtOH was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The precipitate was dried at 65 ° C. overnight or more to obtain a target sodium hydroxide-treated carbon material.

ショ糖脂肪酸由来炭素材料のアルキル基は、エステル基を介して炭素骨格に共有結合していると考えられる。そのため、エステル結合の耐塩基性が低い場合アルキル基の数が減少し、フーリエ変換赤外吸収スペクトルのアルキル基のピーク強度が減少することが予想される。   The alkyl group of the sucrose fatty acid-derived carbon material is considered to be covalently bonded to the carbon skeleton via an ester group. Therefore, when the basic resistance of the ester bond is low, it is expected that the number of alkyl groups decreases and the peak intensity of the alkyl group in the Fourier transform infrared absorption spectrum decreases.

(フーリエ変換赤外吸収スペクトル)
実施例3で得られた炭素材料では、OH(伸縮、3700〜3100cm−1)の大きな吸収ピークに影響を受けるため、実施例1や2に比べると明確ではないものの、波数2967cm−1付近(CH対称伸縮振動)にやや吸収が見られる。2927cm−1付近(vCH逆対称)、および2850cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、炭素骨格内に組み込まれたアルキル基が保たれることが分かった。また、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、含酸素官能基も同時に保たれることが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Example 3 is affected by the large absorption peak of OH (stretching, 3700 to 3100 cm −1 ), so although it is not clear as compared with Examples 1 and 2, the wavenumber is around 2967 cm −1 ( Some absorption is seen in CH 3 symmetric stretching vibration). 2927Cm -1 vicinity (VCH 2 antisymmetric), and 2850 cm -1 vicinity (VCH 2 symmetry) the observed peaks characteristic of alkyl groups derived from fatty acids, that remain alkyl groups incorporated in the carbon backbone I understand. In addition, since a peak attributed to COO (stretching, 1800 to 1520 cm -1 ) or OH (stretching, 3700 to 3100 cm -1 ) derived from a carboxyl group or a carbonyl group is recognized, the oxygen-containing functional group is also simultaneously It turned out to be kept.

(窒素吸着等温線)
実施例3で得られた炭素材料は、高相対圧付近において、実施例2と類似した等温線の立ち上がりが確認され、算出された全細孔容量は0.17cm/g(表2)であった。よって、細孔容量が保たれていることが分かった。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 3, the rise of the isotherm similar to that in Example 2 is confirmed near high relative pressure, and the calculated total pore volume is 0.17 cm 3 / g (Table 2). there were. Thus, it was found that the pore volume was maintained.

(走査型電子顕微鏡像)
本実施例で得られた炭素材料の走査型電子顕微鏡像を図9に示す。数〜数十nmの粒子が互いに連なり、数〜数十μmの大きさの粒子が形成されている様子が観察された。
(Scanning electron microscope image)
The scanning electron microscope image of the carbon material obtained in this example is shown in FIG. It was observed that particles of several to several tens of nm were connected to one another to form particles of several to several tens of μm in size.

よって、本実施例から、0.1Mの水酸化ナトリウム処理を行っても、ショ糖脂肪酸エステル由来の炭素材料の含酸素官能基とアルキル基、及び細孔容量は保たれることが分かった。   Therefore, it was found from this example that even when 0.1 M sodium hydroxide treatment is performed, the oxygen-containing functional group and the alkyl group of the carbon material derived from sucrose fatty acid ester and the pore volume can be maintained.

[実施例4]
実施例1〜3において、ショ糖一分子につきアルキル基が一鎖連結したショ糖脂肪酸エステルを原料とした水熱合成により、含酸素官能基とアルキル基を有する多孔質炭素が得られることが分かった。
よって、本実施例では、用いるショ糖脂肪酸エステル原料の疎水鎖を、実施例1〜3で用いたショ糖脂肪酸エステルよりも増やして界面活性を増大させることにより、得られるショ糖脂肪酸エステル由来炭素材料の細孔容量の増大と配向性の付与を試みた。
実施例1〜3では糖一分子につきアルキル基が一鎖連結した分子を原料としたが、ここでは実施例1〜3とは異なり、ショ糖一分子につき、アルキル基が二鎖以上連結した分子を30%含むショ糖脂肪酸エステルを原料として用いた。本合成を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C336212で表され、HLBが15、モノエステル率が70%のもの(第一工業製薬株式会社 DKエステル F160)1gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で182時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常、上層と下層の2層に分かれて析出するが、そのうち比重の小さい上層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで約40mLのエタノールを注いで同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させることにより、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
Example 4
In Examples 1 to 3, it is found that a porous carbon having an oxygen-containing functional group and an alkyl group can be obtained by hydrothermal synthesis using sucrose fatty acid ester in which an alkyl group is linked to one chain per sucrose molecule as a raw material The
Therefore, in this example, the sucrose fatty acid ester-derived carbon obtained by increasing the hydrophobicity of the sucrose fatty acid ester raw material to be used compared to the sucrose fatty acid ester used in Examples 1 to 3 to increase the surface activity. An attempt was made to increase the pore volume of the material and to impart orientation.
In Examples 1 to 3, a molecule in which an alkyl group is linked to one chain per sugar molecule is used as a raw material, but here, unlike Examples 1 to 3, a molecule in which two or more alkyl groups are linked to one sucrose molecule is used. Sucrose fatty acid ester containing 30% was used as a raw material. The present synthesis is shown below.
(Step 1)
Dissolve 1 g of a fatty acid ester of sugar represented by the molecular formula C 33 H 62 O 12 and having an HLB of 15 and a monoester ratio of 70% (Daiichi Kogyo Seiyaku Co., Ltd. DK ester F160) in 10 mL deionized water The After standing overnight, it was heated at 120 ° C. for 182 hours in a closed vessel.
(Step 2)
The resulting brown solid was collected. Usually, the upper layer and the lower layer are separated and deposited, and the upper layer having a smaller specific gravity is taken out. After pouring about 40 mL of deionized water and shaking with a shaker, it was centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. The supernatant solution was removed, and this operation was repeated twice more. The resulting precipitate was dried at 65 ° C. overnight or more.
(Step 3)
To the dried brown solid was added 50 mL of ethanol, and the mixture was stirred and washed at 60 ° C. overnight. After washing, centrifugation was performed, and after removing the supernatant, 40 mL of ethanol was added and shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once more. The precipitate was dried at 65 ° C. overnight or more to obtain a target sucrose fatty acid ester-derived carbon material.

(フーリエ変換赤外吸収スペクトル)
実施例4で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、通常波数2963cm−1付近に見られるCH対称伸縮振動は明確には見られないものの、2922cm−1付近(vCH逆対称)、および2853cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も存在することが分かった。
(Fourier transform infrared absorption spectrum)
In the carbon material obtained in Example 4, a peak attributed to C = O (stretching, 1800 to 1520 cm −1 ) or OH (stretching, 3700 to 3100 cm −1 ) derived from a carboxyl group or a carbonyl group is observed Thus, it was found that an oxygen-containing functional group was present in the carbon material. Furthermore, although CH 3 symmetric stretching vibration usually found around wave number 2963 cm −1 is not clearly seen, fatty acid derived from around 2922 cm −1 (vCH 2 anti-symmetry) and 2853 cm −1 (vCH 2 symmetry) A characteristic peak was observed for the alkyl group, and it was found that an alkyl group was also present.

(窒素吸着等温線)
実施例4で得られた炭素材料は、高相対圧付近において、実施例1と同様にわずかではあるが等温線の立ち上がりが見られ、算出された全細孔容量は0.05cm/g(表2)であった。
(Nitrogen adsorption isotherm)
The carbon material obtained in Example 4 shows a slight rise in the isotherm as in Example 1 near high relative pressure, and the calculated total pore volume is 0.05 cm 3 / g ( It is Table 2).

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例4で得られた炭素材料の走査型電子顕微鏡像を図10に示す。本実施例で得られた炭素材料は、数〜数十nmの粒子が互いに連なっている様子が観察された。
実施例4で得られた炭素材料の透過型電子顕微鏡像を図11に示す。幹の太さが数十nm程度の共連続様の構造が形成されている様子が観察された。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 4 is shown in FIG. In the carbon material obtained in this example, it was observed that particles of several to several tens of nm were connected to one another.
A transmission electron microscope image of the carbon material obtained in Example 4 is shown in FIG. It was observed that a bicontinuous structure with a stem thickness of several tens of nm was formed.

よって、本実施例から、ショ糖一分子につき、アルキル基が二鎖以上連結した分子を30%含むショ糖脂肪酸エステルを原料とした水熱合成によっても多孔質炭素が得られ、その材料は含酸素官能基およびアルキル基を有することが分かった。   Therefore, according to this example, porous carbon can be obtained also by hydrothermal synthesis using sucrose fatty acid ester containing 30% of molecules in which two or more alkyl groups are linked per sucrose molecule as a raw material, and the material contains It was found to have oxygen functionality and alkyl groups.

[実施例5]
本実施例においては、実施例4と同じショ糖脂肪酸エステルを用い、工程2において比重の大きい下層を取り出した。本合成を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C336212で表され、HLBが15、モノエステル率が70%のもの(第一工業製薬株式会社 DKエステル F160)1gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で182時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常、上層と下層の2層に分かれて析出するが、そのうち実施例4とは異なり、比重の大きい下層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで、約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させ、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させることにより、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
[Example 5]
In the present example, the same sucrose fatty acid ester as in Example 4 was used, and in Step 2, the lower layer having a large specific gravity was taken out. The present synthesis is shown below.
(Step 1)
Dissolve 1 g of a fatty acid ester of sugar represented by the molecular formula C 33 H 62 O 12 and having an HLB of 15 and a monoester ratio of 70% (Daiichi Kogyo Seiyaku Co., Ltd. DK ester F160) in 10 mL deionized water The After standing overnight, it was heated at 120 ° C. for 182 hours in a closed vessel.
(Step 2)
The resulting brown solid was collected. Usually, two layers of the upper layer and the lower layer are separated and deposited, but unlike Example 4, the lower layer having a large specific gravity was taken out. After pouring about 40 mL of deionized water and shaking with a shaker, it was centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. The supernatant solution was removed, and this operation was repeated twice more. The obtained precipitate was dried at 65 ° C. overnight or more to obtain a target sucrose fatty acid ester-derived carbon material.
(Step 3)
To the dried brown solid was added 50 mL of ethanol, and the mixture was stirred and washed at 60 ° C. overnight. After washing, centrifugation was performed, and after removing the supernatant, 40 mL of ethanol was added and shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once more. The precipitate was dried at 65 ° C. overnight or more to obtain a target sucrose fatty acid ester-derived carbon material.

(フーリエ変換赤外吸収スペクトル)
実施例5で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、波数2972cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も存在することが分かった。
(Fourier transform infrared absorption spectrum)
In the carbon material obtained in Example 5, a peak attributed to C = O (stretching, 1800 to 1520 cm −1 ) or OH (stretching, 3700 to 3100 cm −1 ) derived from a carboxyl group or a carbonyl group is observed Thus, it was found that an oxygen-containing functional group was present in the carbon material. Furthermore, a characteristic peak is seen in the alkyl group derived from fatty acid at wave number 2972 cm -1 (CH 3 symmetric stretching vibration), 2925 cm -1 (vCH 2 antisymmetry) and 2854 cm 1 (vCH 2 symmetry) And alkyl groups were also found to be present.

(窒素吸着等温線)
実施例5で得られた炭素材料は、高相対圧付近において、等温線の大きな立ち上がりが見られ、算出された全細孔容量は0.72cm/g(表2)であり、これまでの実施例の中で最も大きな細孔容量を示した。
(Nitrogen adsorption isotherm)
The carbon material obtained in Example 5 shows a large rise of the isotherm near high relative pressure, and the calculated total pore volume is 0.72 cm 3 / g (Table 2). The largest pore volume was shown in the examples.

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例5で得られた炭素材料の走査型電子顕微鏡像を図12に示す。大きさ数十nm程度の粒子(一次粒子)が、緩やかではあるが一定の配向性を持って互いに連なり、数〜数十μmの大きさの粒子(二次粒子)が形成されている様子が観察された。配向の方向を図12中に矢印で示した。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 5 is shown in FIG. It appears that particles of several tens of nm in size (primary particles) are connected to one another with gentle but constant orientation, and particles (secondary particles) of several to several tens of μm in size are formed. It was observed. The direction of orientation is indicated by an arrow in FIG.

よって、本実施例から、糖の脂肪酸エステルを原料とした水熱合成により多孔質炭素が得られ、その材料は、含酸素官能基およびアルキル基を有すること、および緩やかな配向性を有することが分かった。   Therefore, from this example, porous carbon is obtained by hydrothermal synthesis using fatty acid ester of sugar as a raw material, and the material has an oxygen-containing functional group and an alkyl group, and has a moderate orientation. I understood.

なお、実施例5においては実施例1〜4とは異なり、工程3を省略することが可能である。上述のように、本発明で得られる多孔質炭素は工程1〜3の3つの工程によって合成されるが、そのうち工程3は物理混合されたアルキル基の除去を目的とし、工程2の後に得られる材料が物理混合されたアルキル基を含む場合にのみ必要とされる。実施例1〜4においては、工程3の後には、工程3を行う前に比べてフーリエ変換赤外吸収スペクトルにおいてアルキル基のピーク強度の減少が見られ、物理混合されて存在するアルキル基は工程3により除去されていることが分かった。さらに上述のように、工程3をもう一度繰り返しても、その前後ではフーリエ変換赤外吸収スペクトルのアルキルのピーク強度は変わらないことから、工程3の操作は一度で十分であることが言える。
実施例5においては、図1(A)(B)に示すように、工程3の前後ではフーリエ変換赤外吸収スペクトルで見られるアルキル基のピーク強度に大きな変化は見られなかった(工程3の前の炭素材料のフーリエ変換赤外吸収スペクトルを“実施例5(工程3省略)”と表記した)。よって工程2で得られる材料には物理混合されたアルキル基がほとんど存在しないと考えられるため、工程3は行わなくても良い。
In the fifth embodiment, unlike the first to fourth embodiments, the step 3 can be omitted. As described above, the porous carbon obtained in the present invention is synthesized by the three steps of steps 1 to 3, of which step 3 aims to remove physically mixed alkyl groups and is obtained after step 2. It is only required if the material contains physically mixed alkyl groups. In Examples 1 to 4, after step 3, a decrease in the peak intensity of the alkyl group is observed in the Fourier transform infrared absorption spectrum compared to before performing step 3, and the alkyl group present physically mixed is a step. It was found that 3 was removed. Furthermore, as described above, even if step 3 is repeated once, the peak intensity of the alkyl of the Fourier transform infrared absorption spectrum does not change before and after that, so it can be said that the operation of step 3 is sufficient once.
In Example 5, as shown in FIGS. 1A and 1B, no significant change was observed in the peak intensity of the alkyl group observed in the Fourier transform infrared absorption spectrum before and after step 3 (step 3 The Fourier transform infrared absorption spectrum of the previous carbon material is described as "Example 5 (omission of step 3)". Therefore, since it is considered that the physically obtained alkyl group is hardly present in the material obtained in step 2, step 3 may not be performed.

また実施例5では、走査型電子顕微鏡観察および窒素吸着測定の観察結果も、工程3の有無に関わらず大きく変わらなかった。工程3を省略して得た炭素材料の走査型電子顕微鏡観察では、工程3を行った得た炭素材料と同様に、大きさ数十nm程度の粒子(一次粒子)が、緩やかではあるが一定の配向性を持って互いに連なり、数〜数十μmの大きさの粒子(二次粒子)が形成されている様子が観察された。
さらに、窒素吸着高相対圧付近においても工程3を行って得た炭素材料と同様に、等温線の大きな立ち上がりが見られ、算出された全細孔容量は0.70cm/gであった。
さらに、本実施例では、工程1の水熱処理時間を実施例1〜3と同様の103時間としても、茶色の固体は得られるが、前記[0033]〜[0035]に記載の材料評価のうち、窒素吸着測定に必要な収量に達しなかった。ただし、この場合にも、フーリエ変換赤外吸収測定および走査型電子顕微鏡からは、実施例5とほぼ同様の結果が得られた。
実施例5において工程1を103時間とし、工程3を省略して得られた炭素材料の透過型電子顕微鏡像を図13に示す。大きさ数十nm程度の一次粒子が連結した構造が二次粒子内部に渡って均一に形成されている様子が観察された。
Further, in Example 5, the observation results of the scanning electron microscope observation and the nitrogen adsorption measurement also did not significantly change regardless of the presence or absence of the step 3. In scanning electron microscope observation of the carbon material obtained by omitting step 3, similar to the carbon material obtained in step 3, particles (primary particles) with a size of about several tens of nm are loose but constant It was observed that particles (secondary particles) having a size of several to several tens of μm were formed by being connected to one another with the orientation of
Furthermore, as in the case of the carbon material obtained by performing step 3 near the nitrogen adsorption high relative pressure, a large rise of the isotherm was observed, and the calculated total pore volume was 0.70 cm 3 / g.
Furthermore, in the present example, a brown solid is obtained even if the hydrothermal treatment time of step 1 is set to 103 hours as in Examples 1 to 3, but among the material evaluations described in the above [0033] to [0035] However, the yield required for nitrogen adsorption measurement was not reached. However, also in this case, almost the same results as in Example 5 were obtained from the Fourier transform infrared absorption measurement and the scanning electron microscope.
A transmission electron microscope image of a carbon material obtained by setting step 1 to 103 hours and omitting step 3 in Example 5 is shown in FIG. It was observed that a structure in which primary particles having a size of several tens of nm were connected was uniformly formed throughout the secondary particles.

[実施例6]
上記実施例1〜5のショ糖脂肪酸由来炭素材料の合成においては、工程2および工程3に蒸発乾燥工程を含む。ここで一般に多孔質材料の蒸発乾燥においては、多孔体からの溶媒の脱離・蒸発に伴い多孔体構造が収縮し細孔容量が減少すると言われる。一方、凍結乾燥と呼ばれる乾燥方法では、溶媒は一度凍結され、その後昇華することにより除去される。従って凍結乾燥法用いればショ糖脂肪酸由来炭素材料の乾燥工程における細孔体積の減少が抑制できることが予想される。
よって、本実施例では、これまで細孔容量が最も大きかった実施例5で得られた材料について、細孔容量をさらに増大するために、65℃での蒸発乾燥の代わりに凍結乾燥を行った。本合成を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C336212で表され、HLBが15、モノエステル率が70%のもの(第一工業製薬株式会社 DKエステル F160)1gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で182時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常、上層と下層の2層に分かれて析出するが、そのうち実施例5と同様に、比重の大きい下層を取り出した。約40mLの脱イオン水を注いで、シェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで、約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。
(凍結乾燥工程)
工程2において、エタノール洗浄後に、脱イオン水で残留するエタノールを置換した。その後凍結乾燥を行い、目的とするショ糖脂肪酸由来炭素材料を得た。
なお本実施例の工程1および2は実施例5と同様である。すなわち工程2の後に得られる材料中には物理混合しているアルキル基はほとんど存在しないため、工程3は省略できる。よって本実施例においては工程3を経ずに、凍結乾燥工程を行った。
[Example 6]
In the synthesis of the sucrose fatty acid-derived carbon material of Examples 1 to 5, the steps 2 and 3 include an evaporation drying step. Here, in general, in evaporation and drying of the porous material, it is said that the porous structure shrinks and the pore volume decreases with the detachment and evaporation of the solvent from the porous body. On the other hand, in a drying method called lyophilization, the solvent is frozen once and then removed by sublimation. Therefore, it is expected that reduction in pore volume in the drying process of sucrose fatty acid-derived carbon material can be suppressed by using the lyophilization method.
Therefore, in this example, the material obtained in Example 5 having the largest pore volume up to this point was subjected to lyophilization instead of evaporation drying at 65 ° C. to further increase the pore volume. . The present synthesis is shown below.
(Step 1)
Dissolve 1 g of a fatty acid ester of sugar represented by the molecular formula C 33 H 62 O 12 and having an HLB of 15 and a monoester ratio of 70% (Daiichi Kogyo Seiyaku Co., Ltd. DK ester F160) in 10 mL deionized water The After standing overnight, it was heated at 120 ° C. for 182 hours in a closed vessel.
(Step 2)
The resulting brown solid was collected. Usually, the upper layer and the lower layer are separated and deposited, but the lower layer having a large specific gravity was taken out as in Example 5. About 40 mL of deionized water was poured, shaken with a shaker, and centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. The supernatant solution was removed, and this operation was repeated twice more.
(Lyophilization process)
In step 2, after the ethanol wash, the remaining ethanol was replaced with deionized water. Thereafter, it was freeze-dried to obtain a target sucrose fatty acid-derived carbon material.
Steps 1 and 2 in this example are the same as in example 5. That is, since there is almost no physically mixed alkyl group in the material obtained after step 2, step 3 can be omitted. Therefore, the lyophilization process was performed without passing through the process 3 in the present example.

(フーリエ変換赤外吸収スペクトル)
実施例6で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、波数2959cm−1付近(CH対称伸縮振動)、2926cm−1付近(vCH逆対称)、および2859cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も存在することが分かった。
(Fourier transform infrared absorption spectrum)
In the carbon material obtained in Example 6, a peak attributed to C = O (stretching, 1800 to 1520 cm −1 ) or OH (stretching, 3700 to 3100 cm −1 ) derived from a carboxyl group or a carbonyl group is observed Thus, it was found that an oxygen-containing functional group was present in the carbon material. Furthermore, characteristic peaks are observed in alkyl groups derived from fatty acids near wavenumber 2959 cm −1 (CH 3 symmetrical stretching vibration), 2926 cm −1 (vCH 2 antisymmetry), and 2859 cm −1 (vCH 2 symmetrical) And alkyl groups were also found to be present.

(窒素吸着等温線)
実施例6で得られた炭素材料は、高相対圧付近において等温線の大きな立ち上がりが見られ、算出された全細孔容量は0.98cm/g(表2)であり、実施例5よりもさらに大きな細孔容量を示した。
(Nitrogen adsorption isotherm)
The carbon material obtained in Example 6 shows a large rise of the isotherm near high relative pressure, and the calculated total pore volume is 0.98 cm 3 / g (Table 2). Also showed a larger pore volume.

(走査型電子顕微鏡像)
実施例6で得られた炭素材料の走査型電子顕微鏡像を図14に示す。大きさ数十nm程度の粒子が、緩やかではあるが一定の配向性を持って互いに連なり、数〜数十μmの大きさの粒子が形成されている様子が観察された。配向の方向を図14中に矢印で示した。
(Scanning electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 6 is shown in FIG. It was observed that particles of about several tens of nm in size were connected to one another with gentle but constant orientation, and particles of several to several tens of μm in size were formed. The direction of orientation is indicated by an arrow in FIG.

よって、本実施例から、実施例5において、工程2において65℃で乾燥させる代わりに、凍結乾燥工程を行っても、多孔質炭素が得られ、その材料は含酸素官能基およびアルキル基を有すること、および緩やかな配向性を有することが分かった。   Therefore, according to this example, in Example 5, instead of drying at 65 ° C. in Step 2, a porous carbon can be obtained even if a freeze-drying step is performed, and the material has an oxygen-containing functional group and an alkyl group. And it was found to have a gentle orientation.

[比較例1]
分子内にアルキル基が組み込まれていない、すなわち両親媒性ではない、ショ糖そのものを原料とし、上記の実施例とほぼ同様の操作で比較合成試験を実施した。本合成を以下に示す。
(工程1)
実施例1で用いたショ糖ステアリン酸エステルの物質量と同等にあたる、ショ糖2.3 gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い沈殿物を回収し、約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらに2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除いた後、この操作をさらに2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
Comparative Example 1
A comparative synthesis test was carried out in the same manner as in the above example, using sucrose itself as a raw material in which the alkyl group is not incorporated in the molecule, that is, not amphiphilic. The present synthesis is shown below.
(Step 1)
In 10 mL of deionized water was dissolved 2.3 g of sucrose, which was equivalent to the amount of sucrose stearate used in Example 1. After left to stand overnight, it was heated at 120 ° C. for 103 hours in a closed vessel.
(Step 2)
The resulting brown precipitate was collected, poured about 40 mL of deionized water, shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. This operation was repeated twice more after the supernatant solution was removed. The resulting precipitate was dried at 65 ° C. overnight or more.

(フーリエ変換赤外吸収スペクトル)
比較例1で得られた炭素材料は、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められるものの、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかった。
なお上述のように実施例の多孔質材料は、工程1〜3の3つの工程によって合成されるが、この中の工程3は物理混合されたアルキル基の除去を目的とし、工程2の後に得られる材料が物理混合されたアルキル基を含む場合にのみ必要とされる。本比較例では、工程2の後に得られる材料のフーリエ変換赤外吸収スペクトルはアルキル基のピークをほとんど示さなかった。よって脂肪酸由来のアルキル基自体を有しないため、該アルキル基が物理混合していないことも自明であった。そこで、比較例1の合成においては、工程3は省略した。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Comparative Example 1 has a peak attributed to C = O (stretching, 1800 to 1520 cm −1 ) or OH (stretching, 3700 to 3100 cm −1 ) derived from a carboxyl group or a carbonyl group However, it is characteristic of fatty acid-derived alkyl groups, which are generated around normal wave number 2963 cm -1 (CH 3 symmetrical stretching vibration), 2925 cm -1 (vCH 2 antisymmetry) and 2854 cm -1 (vCH 2 symmetry) No peak was seen.
As described above, the porous material of the example is synthesized by the three steps of steps 1 to 3, and step 3 in this step is intended to remove physically mixed alkyl groups, and is obtained after step 2. It is only needed if the material to be incorporated contains a physically mixed alkyl group. In this comparative example, the Fourier transform infrared absorption spectrum of the material obtained after step 2 showed almost no alkyl group peak. Therefore, it was also obvious that the alkyl groups were not physically mixed because they do not have an alkyl group itself derived from a fatty acid. Thus, in the synthesis of Comparative Example 1, Step 3 was omitted.

(窒素吸着等温線)
比較例1で得られた炭素材料は、全相対圧範囲で立ち上がりを示さず、算出された細孔容量は0.01cm/g(表2)にとどまった。
(Nitrogen adsorption isotherm)
The carbon material obtained in Comparative Example 1 showed no rise in the entire relative pressure range, and the calculated pore volume remained at 0.01 cm 3 / g (Table 2).

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
比較例1で得られた炭素材料の走査型電子顕微鏡像を図15に示す。直径数μmおよび数百nmの2種類の大きさの球状粒子が観察されたが、どちらの粒子表面も平滑であり、実施例で見られたような大きさ数〜数十nm程度の粒子が互いに連なっている様子は観察されなかった。
比較例1で得られた炭素材料の透過型電子顕微鏡像を図16に示す。
電子顕微鏡像に多少の濃淡は見られたが、マイクロ粒子内部全体にわたって、実施例で見られたような共連続構造や微粒子連結体が形成されている様子は観察されなかった。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Comparative Example 1 is shown in FIG. Spherical particles of two sizes of several μm in diameter and several hundreds of nm were observed, but both particle surfaces are smooth, and particles of several to several tens of nm in size as seen in the example are It was not observed that they were in line with each other.
A transmission electron microscope image of the carbon material obtained in Comparative Example 1 is shown in FIG.
Although some contrast was seen in the electron microscopic image, no appearance of formation of a bicontinuous structure or a fine particle linked body as seen in the example was observed throughout the inside of the microparticles.

[比較例2]
どちらも両親媒性ではないショ糖と脂肪酸とを物理的に混合したものを原料とし、上記の実施例と同様の操作で比較合成試験を実施した。本合成を以下に示す。
(工程1)
実施例1で用いたショ糖ステアリン酸エステルの物質量と同等にあたる、ショ糖2.2gおよびステアリン酸1.9gに10mLの脱イオン水を加えた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い沈殿物を回収し、約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらに2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除いた後、この操作をさらに2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
Comparative Example 2
A comparative synthesis test was carried out in the same manner as in the above example, using a mixture of sucrose and fatty acid, which are not amphiphilic, as a raw material. The present synthesis is shown below.
(Step 1)
10 mL of deionized water was added to 2.2 g of sucrose and 1.9 g of stearic acid equivalent to the amount of sucrose stearate used in Example 1. After left to stand overnight, it was heated at 120 ° C. for 103 hours in a closed vessel.
(Step 2)
The resulting brown precipitate was collected, poured about 40 mL of deionized water, shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. This operation was repeated twice more after the supernatant solution was removed. The resulting precipitate was dried at 65 ° C. overnight or more.

(フーリエ変換赤外吸収スペクトル)
比較例2で得られた炭素材料は、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められるものの、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかった。なお、比較例1と同様に、本比較例においても、工程2の後に得られる材料のフーリエ変換赤外吸収スペクトルはアルキル基のピークをほとんど示さなかった。そこで本比較例の合成においても工程3は省略した。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Comparative Example 2 has a peak attributed to C = O (stretching, 1800 to 1520 cm −1 ) or OH (stretching, 3700 to 3100 cm −1 ) derived from a carboxyl group or a carbonyl group However, it is characteristic of fatty acid-derived alkyl groups, which are generated around normal wave number 2963 cm -1 (CH 3 symmetrical stretching vibration), 2925 cm -1 (vCH 2 antisymmetry) and 2854 cm -1 (vCH 2 symmetry) No peak was seen. In the same manner as Comparative Example 1, also in this Comparative Example, the Fourier transform infrared absorption spectrum of the material obtained after Step 2 hardly showed the peak of the alkyl group. Therefore, step 3 was omitted in the synthesis of this comparative example.

(窒素吸着等温線)
比較例2で得られた炭素材料も、比較例1と同様に、全相対圧範囲で立ち上がりを示さず、算出された細孔容量は0.01cm/g(表2)にとどまった。
(Nitrogen adsorption isotherm)
The carbon material obtained in Comparative Example 2 also showed no rise in the entire relative pressure range as in Comparative Example 1, and the calculated pore volume remained at 0.01 cm 3 / g (Table 2).

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
比較例2で得られた炭素材料の走査型電子顕微鏡像を図17に示す。比較例1と同様に、直径数μmおよび数百nmの2種類の大きさの球状粒子が観察されたが、どちらの粒子表面も平滑であり、実施例で見られたような数〜数十nmの微小粒子が並んでいる様子は観察されなかった。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Comparative Example 2 is shown in FIG. Similar to Comparative Example 1, spherical particles of two sizes of several μm in diameter and several hundreds of nm were observed, but both particle surfaces are smooth, and several to several tens of particles as seen in the examples. It was not observed that nm particles were lined up.

以上より、ショ糖そのものを原料とした場合およびショ糖そのものと脂肪酸の物理混合物を原料とした場合、どちらの場合においても、多孔質炭素は得られず、炭素材料は脂肪酸由来のアルキル基も有しないことが分かった。   From the above, when sucrose itself is used as a raw material and when physical mixture of sucrose itself and fatty acid is used as a raw material, porous carbon can not be obtained in either case, and the carbon material also has an alkyl group derived from fatty acid. It turned out not to do.

糖から水熱合成手法で得られる炭素骨格は、通常400〜500℃以上での不活性雰囲気下における焼成により炭素骨格の芳香族化が進行し、焼成温度の更なる上昇とともに、炭素材料は良好な電気伝導性を帯び電極材料などとしての用途が開ける。
そこで、実施例1〜6で得られたショ糖脂肪酸エステル由来多孔質カーボンの炭素骨格の芳香族性を高めるため、得られた多孔質カーボンを不活性雰囲気下で焼成した。
実施例1〜6の中で特に細孔容量の大きく、かつ塩基処理や凍結乾燥などの特別な処理を行わなかった、実施例2および5について本焼成処理を行い、それぞれ実施例7および8とした。以下に示す。
The carbonization of the carbon skeleton obtained from saccharides by a hydrothermal synthesis method is generally good in carbon materials as the carbonization of the carbon skeleton proceeds by calcination in an inert atmosphere at 400 ° C. to 500 ° C. or higher and the calcination temperature further increases. Can be used as an electrode material etc.
Therefore, in order to enhance the aromaticity of the carbon skeleton of the sucrose fatty acid ester-derived porous carbon obtained in Examples 1 to 6, the obtained porous carbon was fired in an inert atmosphere.
The baking treatment is carried out for Examples 2 and 5 which are particularly large in pore volume and not subjected to special treatments such as base treatment and lyophilization among Examples 1 to 6, and Examples 7 and 8 did. It is shown below.

[実施例7]
(工程1)
糖の脂肪酸エステルとして、分子式C305712で表される、ショ糖ステアリン酸エステル(第一工業製薬株式会社 DKエステルSS,HLB19、モノエステル率;約100%)4gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常3層に分かれて析出するが、そのうち実施例2と同様に、二番目に比重の小さい中間層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させた。
(窒素下焼成工程)
得られた材料を600mL/minの窒素フロー下において550℃で焼成し、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
[Example 7]
(Step 1)
Sucrose stearic acid ester (Daiichi Kogyo Seiyaku Co., Ltd. DK ester SS, HLB19, monoester ratio; about 100%) represented by molecular formula C 30 H 57 O 12 as fatty acid ester of sugar 10 mL of deionized water Dissolved in water. After left to stand overnight, it was heated at 120 ° C. for 103 hours in a closed vessel.
(Step 2)
The resulting brown solid was collected. The intermediate layer having the second smallest specific gravity was taken out as in the case of Example 2 although the precipitation was usually divided into three layers. After pouring about 40 mL of deionized water and shaking with a shaker, it was centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. The supernatant solution was removed, and this operation was repeated twice more. The resulting precipitate was dried at 65 ° C. overnight or more.
(Step 3)
To the dried brown solid was added 50 mL of ethanol, and the mixture was stirred and washed at 60 ° C. overnight. After washing, centrifugation was performed, and after removing the supernatant, 40 mL of ethanol was added and shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once more. The precipitate was dried at 65 ° C. overnight or more.
(Firing process under nitrogen)
The obtained material was calcined at 550 ° C. under a nitrogen flow of 600 mL / min to obtain a target sucrose fatty acid ester-derived carbon material.

(フーリエ変換赤外吸収スペクトル)
実施例7で得られた炭素材料は、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかったが、1650〜1450cm−1に、共役C=Cまたは、オレフィン系C=C−Oの伸縮のピークが見られた。また、886cm−1、および緩やかではあるが、805cm−1、766cm−1に、芳香族環の炭素―水素面外変角振動に帰属する吸収ピークが見られた。さらに、3700〜3100cm−1にOH基の伸縮運動に帰属する吸収ピークが見られ、得られる炭素材料はヒドロキシル基を有することが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Example 7 is usually generated near a wave number of 2963 cm −1 (CH 3 symmetric stretching vibration), near 2925 cm −1 (vCH 2 antisymmetry), and near 2854 cm −1 (vCH 2 symmetry). Although no peak characteristic of the alkyl group derived from fatty acid was observed, a peak of stretching of conjugated C 共 役 C or olefinic system CCC—O was observed at 1650 to 1450 cm −1 . Further, 886cm -1, and loose some a while, 805cm -1, the 766cm -1, the carbon of the aromatic ring - absorption peak attributable to hydrogen out-of-plane deformation vibration was observed. Furthermore, the absorption peak which belongs to the stretching movement of OH group is seen in 3700-3100 cm < -1 >, and it turned out that the obtained carbon material has a hydroxyl group.

ここで、上述のように実施例の多孔質材料は、工程1〜3の3つの工程によって合成されるが、この中の工程3は物理混合されたアルキル基の除去を目的とし、工程2の後に得られる材料が物理混合されたアルキル基を含む場合にのみ必要とされる。本実施例においては工程2でアルキル基が物理混合されていたとしても、550℃の焼成ではアルキル基は自身で熱分解するため、工程3を用いずとも本アルキル基は除去されると考えられる。よって本実施例においては、以下の測定を、工程3を経ずに焼成工程を行って得た炭素材料について行った。   Here, as described above, the porous material of the example is synthesized by the three steps of steps 1 to 3. Step 3 in this step is for the purpose of removing physically mixed alkyl groups. It is only needed if the material obtained later contains physically mixed alkyl groups. In this example, even if the alkyl group is physically mixed in step 2, the alkyl group is thermally decomposed by itself at a temperature of 550 ° C. Therefore, it is considered that this alkyl group is removed without using step 3. . Therefore, in the present example, the following measurement was performed on the carbon material obtained by performing the firing step without passing through the step 3.

(窒素吸着等温線)
実施例7で得られた炭素材料は、低相対圧側での立ち上がりと高相対圧側での立ち上がりが見られた。前者はマイクロ孔の存在、後者はメソ孔とマクロ孔の少なくともどちらか一方の存在を示す。窒素吸着等温線から算出された全細孔容量は0.62cm/g(表2)であった。
(Nitrogen adsorption isotherm)
The carbon material obtained in Example 7 was found to rise on the low relative pressure side and rise on the high relative pressure side. The former indicates the presence of micropores, and the latter indicates the presence of mesopores and / or macropores. The total pore volume calculated from the nitrogen adsorption isotherm was 0.62 cm 3 / g (Table 2).

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例7で得られた炭素材料の走査型電子顕微鏡像を図18に示す。数〜数十nmの粒子が互いに連なっている様子が観察された。また本連結体は厚さ数十〜200nm程度のシート状の形状をなしていた。
実施例7で得られた炭素材料の透過型電子顕微鏡像を図19に示す。該図はシート形状の断面を表していると考えられ、本シート形状は数〜数十nmの粒子が互いに連なることにより形成されている様子が観察された。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 7 is shown in FIG. It was observed that particles of several to several tens of nm were connected to one another. In addition, the connected body was in the form of a sheet having a thickness of about several tens to 200 nm.
A transmission electron microscope image of the carbon material obtained in Example 7 is shown in FIG. The figure is considered to represent a cross section of the sheet shape, and it is observed that the sheet shape is formed by connecting particles of several to several tens of nm in a row.

(導電性の測定)
実施例7で得られた炭素材料の密集した粒子群の両端を2本の端子で挟むようにして、デジタルマルチメーターを用いて抵抗値を測定することにより、以下のようにして導電性の有無を確認した。
予め、導電性を有する材料(例えば、S.Kubo et al.,Chem.Mater.2013,25,4781に記載の導電性多孔質炭素)では抵抗値が表示されるが、絶縁性の材料では抵抗値が表示されないことを確かめた上で、上記測定を行い、抵抗値の表示の有無を確認した。
実施例7で得られた炭素材料は、両端子間が0.5〜1mm程度の距離になるような条件で測定した場合、10〜20MΩ程度の抵抗値を示した。
(Measurement of conductivity)
The both ends of the dense particle group of the carbon material obtained in Example 7 are sandwiched between two terminals, and the resistance value is measured using a digital multimeter to confirm the presence or absence of conductivity as follows. did.
In advance, a resistance value is displayed for a conductive material (for example, conductive porous carbon described in S. Kubo et al., Chem. Mater. 2013, 25, 4781), but for an insulating material After confirming that no value is displayed, the above measurement was performed to confirm the presence or absence of the display of the resistance value.
The carbon material obtained in Example 7 exhibited a resistance value of about 10 to 20 MΩ when measured under the condition that the distance between both terminals is about 0.5 to 1 mm.

よって、糖の脂肪酸エステルを原料として多孔質炭素材料を不活性雰囲気下で焼成することにより、糖の脂肪酸エステル原料から、芳香族性の高い、導電性の多孔質炭素材料が得られ、その材料はヒドロキシル基を有することが分かった。   Therefore, by baking the porous carbon material in an inert atmosphere using fatty acid esters of sugar as a raw material, conductive carbon carbon materials having high aromaticity can be obtained from fatty acid ester raw materials of sugar, and the materials Were found to have a hydroxyl group.

[実施例8]
(工程1)
糖の脂肪酸エステルとして、分子式C336212で表され、HLBが15、モノエステル率が70%のもの(第一工業製薬株式会社 DKエステル F160)1gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で182時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常、上層と下層の2層に分かれて析出するが、そのうち実施例5と同様に、比重の大きい下層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで、約40mLのエタノールを注いで同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(窒素下焼成工程)
得られた材料を600mL/minの窒素フロー下において550℃で焼成し、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
ここで、本実施例の工程1,2は実施例5と同様である。すなわち工程3は省略しても良いため、本実施例では工程3を行わずに窒素下焼成を行った。
[Example 8]
(Step 1)
Dissolve 1 g of a fatty acid ester of sugar represented by the molecular formula C 33 H 62 O 12 and having an HLB of 15 and a monoester ratio of 70% (Daiichi Kogyo Seiyaku Co., Ltd. DK ester F160) in 10 mL deionized water The After standing overnight, it was heated at 120 ° C. for 182 hours in a closed vessel.
(Step 2)
The resulting brown solid was collected. Usually, the upper layer and the lower layer are separated and deposited, but the lower layer having a large specific gravity was taken out as in Example 5. After pouring about 40 mL of deionized water and shaking with a shaker, it was centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. The supernatant solution was removed, and this operation was repeated twice more. The resulting precipitate was dried at 65 ° C. overnight or more.
(Firing process under nitrogen)
The obtained material was calcined at 550 ° C. under a nitrogen flow of 600 mL / min to obtain a target sucrose fatty acid ester-derived carbon material.
Here, the processes 1 and 2 of the present embodiment are the same as those of the fifth embodiment. That is, since the step 3 may be omitted, in the present example, the firing was performed under nitrogen without the step 3.

(フーリエ変換赤外吸収スペクトル)
実施例8で得られた炭素材料は、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかったが、1650〜1450cm−1に、共役C=Cまたは、オレフィン系C=C−Oの伸縮のピークが見られた。また、882cm−1、807cm−1、758cm−1に、芳香族環の炭素―水素面外変角振動に帰属する吸収ピークが見られた。さらに、3700〜3100cm−1にOH基伸縮運動に帰属する吸収ピークが見られ、得られる炭素材料はヒドロキシル基を有することが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Example 8 is usually generated near a wave number of 2963 cm −1 (CH 3 symmetric stretching vibration), near 2925 cm −1 (vCH 2 antisymmetry), and near 2854 cm −1 (vCH 2 symmetry). Although no peak characteristic of the alkyl group derived from fatty acid was observed, a peak of stretching of conjugated C 共 役 C or olefinic system CCC—O was observed at 1650 to 1450 cm −1 . Further, 882cm -1, 807cm -1, the 758cm -1, the carbon of the aromatic ring - absorption peak attributable to hydrogen out-of-plane deformation vibration was observed. Furthermore, it was found that an absorption peak attributed to OH group stretching movement was observed at 3700 to 3100 cm −1 , and the resulting carbon material had a hydroxyl group.

(窒素吸着等温線)
実施例8で得られた炭素材料には、低相対圧側での立ち上がりと高相対圧側での大きな立ち上がりが見られた。前者はマイクロ孔の存在、後者はメソ孔とマクロ孔の少なくともどちらか一方の存在を示す。窒素吸着等温線から算出された全細孔容量は1.23cm/g(表2)であった。
(Nitrogen adsorption isotherm)
The carbon material obtained in Example 8 showed a rise on the low relative pressure side and a large rise on the high relative pressure side. The former indicates the presence of micropores, and the latter indicates the presence of mesopores and / or macropores. The total pore volume calculated from the nitrogen adsorption isotherm was 1.23 cm 3 / g (Table 2).

(走査型電子顕微鏡像)
実施例8で得られた炭素材料の走査型電子顕微鏡像を図20に示す。大きさ数十nm程度の粒子が互いに連なり、数〜数十μmの大きさの粒子が形成されている様子が観察された。
(導電性の測定)
実施例7と同様にして抵抗値を測定したところ、実施例8で得られた炭素材料は、両端子間が0.5〜1mm程度の距離になるような条件で測定した場合、5〜25MΩ程度の抵抗値を示した。
(Scanning electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 8 is shown in FIG. It was observed that particles of about several tens of nm in size were connected to each other, and particles of several to several tens of μm in size were formed.
(Measurement of conductivity)
When the resistance value was measured in the same manner as in Example 7, the carbon material obtained in Example 8 was 5 to 25 MΩ when measured under the condition that the distance between both terminals was about 0.5 to 1 mm. The degree of resistance is shown.

よって、糖の脂肪酸エステルを原料として多孔質炭素材料を不活性雰囲気下で焼成することにより、糖の脂肪酸エステル原料から、芳香族性の高い、導電性の多孔質炭素材料が得られ、その材料はヒドロキシル基を有することが分かった。   Therefore, by baking the porous carbon material in an inert atmosphere using fatty acid esters of sugar as a raw material, conductive carbon carbon materials having high aromaticity can be obtained from fatty acid ester raw materials of sugar, and the materials Were found to have a hydroxyl group.

[比較例3]
分子内にアルキル基が組み込まれていない、すなわち両親媒性ではない、ショ糖そのものを原料とし、上記の実施例とほぼ同様の操作で比較合成試験を実施した。特にショ糖そのものを原料とした水熱合成して得た炭素材料を窒素フロー下で焼成することにより、実施例7および8との比較を行った。本合成を以下に示す。
(工程1)
実施例1で用いたショ糖ステアリン酸エステルの物質量と同等にあたる、ショ糖2.3gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い沈殿物を回収し、約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらに2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除いた後、この操作をさらに2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(窒素下焼成工程)
得られた材料を600mL/minの窒素フロー下において、550℃で焼成することにより比較炭素材料を得た。
なお本比較例においては、窒素下焼成を行った実施例7および8と同様に、工程3を経ずに焼成工程を行った。
Comparative Example 3
A comparative synthesis test was carried out in the same manner as in the above example, using sucrose itself as a raw material in which the alkyl group is not incorporated in the molecule, that is, not amphiphilic. In particular, the carbon material obtained by hydrothermal synthesis using sucrose itself as a raw material was calcined under a nitrogen flow to compare with Examples 7 and 8. The present synthesis is shown below.
(Step 1)
In 10 mL of deionized water was dissolved 2.3 g of sucrose, equivalent to the amount of sucrose stearate used in Example 1. After left to stand overnight, it was heated at 120 ° C. for 103 hours in a closed vessel.
(Step 2)
The resulting brown precipitate was collected, poured about 40 mL of deionized water, shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and similarly shaken and centrifuged. This operation was repeated twice more after the supernatant solution was removed. The resulting precipitate was dried at 65 ° C. overnight or more.
(Firing process under nitrogen)
The comparison carbon material was obtained by baking the obtained material at 550 degreeC under nitrogen flow of 600 mL / min.
In the present comparative example, the firing step was performed without passing through step 3, as in the case of Examples 7 and 8 in which firing was performed under nitrogen.

(フーリエ変換赤外吸収スペクトル)
本比較例で得られた炭素材料は、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかった。1650〜1450cm−1に、共役C=Cまたはオレフィン系C=C−Oの伸縮のピークが、874cm−1、801cm−1、748cm−1に、芳香族環の炭素−水素面外変角振動に帰属する吸収ピークが見られたが、3700〜3100cm−1にはOH基伸縮運動に帰属する明確な吸収ピークは見られず、本比較炭素材料ではヒドロキシル基の多くが失われたことが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in this comparative example is usually generated near a wave number of 2963 cm −1 (CH 3 symmetric stretching vibration), near 2925 cm −1 (vCH 2 antisymmetry), and near 2854 cm −1 (vCH 2 symmetry). No peaks characteristic of alkyl groups derived from fatty acids were observed. The 1650~1450cm -1, a peak of expansion and contraction of the conjugate C = C or olefinic C = C-O is, 874cm -1, 801cm -1, the 748cm -1, the carbon of the aromatic ring - hydrogen out-of-plane deformation vibration However, no clear absorption peak attributable to OH group stretching movement was found at 3700 to 3100 cm -1, and it was found that many of the hydroxyl groups were lost in this comparative carbon material. The

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
比較例3で得られた炭素材料の走査型電子顕微鏡像を図21に示す。比較例1および2と同様に、直径数μmおよび数百nmの2種類の大きさの球状粒子が観察されたが、どちらの粒子表面も平滑であり、実施例で見られたような数〜数十nmの微小粒子が並んでいる様子は観察されなかった。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Comparative Example 3 is shown in FIG. Similar to Comparative Examples 1 and 2, spherical particles of two sizes of several μm in diameter and several hundreds of nm were observed, but both particle surfaces are smooth and the number as seen in the Examples ~ It was not observed that fine particles of several tens of nm were aligned.

上記実施例・比較例における製造条件及び多孔性の評価結果を下記の表1に記載する。
但し、多孔性の評価については、窒素吸着量が0.01cm/gの比較例1及び2(×)を基準とし、吸着量が大きいものから順に、◎→○→△とした。
The evaluation conditions of the production conditions and the porosity in the above examples and comparative examples are described in Table 1 below.
However, for evaluation of porosity, based on Comparative Examples 1 and 2 (x) having a nitrogen adsorption amount of 0.01 cm 3 / g, 、 → ○ → Δ was sequentially arranged in the descending order of adsorption amount.

Figure 2019119632
Figure 2019119632

上記実施例・比較例で得られた炭素材料の全細孔容量を下記の表2に記載する。
ただし、全細孔容量は相対圧0.991以上0.996以下の測定点における窒素吸着量から算出した。
The total pore volume of the carbon materials obtained in the above Examples and Comparative Examples is described in Table 2 below.
However, the total pore volume was calculated from the nitrogen adsorption amount at the measurement point of relative pressure 0.991 or more and 0.996 or less.

Figure 2019119632
Figure 2019119632

以上のとおり、本発明の、糖の脂肪酸エステルを原料とする水熱合成から得られる炭素材料は、含酸素官能基およびアルキル基を有した。一方、比較例1、2の、ショ糖そのもの及びショ糖と脂肪酸の物理混合物から得られる炭素材料は、含酸素官能基を有するものの、アルキル基を持たなかった。
また、本発明のアルキル基含有炭素材料は、比較例1、2の、糖そのもの及び糖と脂肪酸の物理混合物を原料として得られる炭素材料を上回る細孔容量を有した。
さらに、本発明の、糖の脂肪酸エステル原料から得られる炭素材料は、大きさ数〜数十nm程度の粒子が互いに連なって形成された、数〜数十μmの大きさの粒子からなった。さらに、上記の大きさ数〜数十nm程度の粒子が、緩やかではあるが一定の配向性を持って連結しているものや、連結体が厚さ数十〜200nm程度のシート状の形状をなしているものもあった。これは、比較例1、2の、糖そのものや糖と脂肪酸の混合物から得られる平滑な表面テクスチャを有する、直径数百nm〜数μmの球状粒子とは大きく異なった。
よって、本発明の糖の脂肪酸エステル由来の多孔質炭素は、炭素源自身が両親媒性であることを利用して製造されるといえる。すなわち原料分子の、糖の部位が親水部として、アルキル部位が疎水部として作用することにより、水熱合成中で炭素源自身の界面現象が誘発され、ミセルや液晶などの炭素ナノ構造が形成される。その結果得られる材料が多孔化すると考えられる。本発明の方法によれば、炭素材料は水熱合成後にすでに多孔化しているため、通常鋳型を用いた際に必要とされる熱分解除去工程を用いずとも、多孔質炭素材料が得られる。そのため含酸素官能基が保たれた多孔質炭素を得ることができる。
As mentioned above, the carbon material obtained from hydrothermal synthesis which used fatty acid ester of sugar of the present invention as a raw material had an oxygen-containing functional group and an alkyl group. On the other hand, the carbon materials obtained from the sucrose itself and the physical mixture of sucrose and fatty acid of Comparative Examples 1 and 2 did not have an alkyl group although they have an oxygen-containing functional group.
In addition, the alkyl group-containing carbon material of the present invention had a pore volume which exceeds that of the carbon materials obtained using the sugar itself and the physical mixture of sugar and fatty acid as the raw materials of Comparative Examples 1 and 2.
Furthermore, the carbon material obtained from the fatty acid ester raw material of sugar of the present invention is composed of particles of several to several tens of μm in size, and particles of several to several tens of nm in size are formed in a row. Furthermore, particles having a size of about several to several tens of nm are connected with moderate but constant orientation, or a sheet-like shape having a thickness of several tens to about 200 nm of a connected body. There was also one that was not. This is largely different from the spherical particles of several hundred nm to several μm in diameter having smooth surface texture obtained from sugar itself or a mixture of sugar and fatty acid in Comparative Examples 1 and 2.
Therefore, it can be said that the porous carbon derived from the fatty acid ester of the sugar of the present invention is produced utilizing the fact that the carbon source itself is amphiphilic. That is, when the sugar moiety of the raw material molecule acts as a hydrophilic moiety and the alkyl moiety acts as a hydrophobic moiety, an interfacial phenomenon of the carbon source itself is induced during hydrothermal synthesis, and carbon nanostructures such as micelles and liquid crystals are formed. Ru. It is believed that the resulting material is porous. According to the method of the present invention, since the carbon material is already made porous after hydrothermal synthesis, a porous carbon material can be obtained without using the thermal decomposition removal step which is usually required when using a template. Therefore, porous carbon in which the oxygen-containing functional group is maintained can be obtained.

一方で電極材等への応用には得られる糖の脂肪酸エステル由来の多孔質炭素の炭素骨格の芳香族性を高めなければならない。そこで、上記糖の脂肪酸エステル由来の多孔質炭素を不活性雰囲気で焼成したところ、通常官能基の損失が進む高温焼成後においても、本発明の糖の脂肪酸エステル由来の多孔質炭素は、含酸素官能基(ヒドロキシル基)を有していた。また、その細孔容量は0.62〜1.23cm/gであった。また炭素骨格の芳香族性も高まり、導電性も有した。
一方、比較例3の、糖そのものから得られる炭素材料は、不活性雰囲気で焼成した場合、炭素骨格の芳香族性は高まったが含酸素官能基の多くを失った。さらに、通常糖そのものから得られる炭素材料を実施例7および8と同様の550℃の不活性雰囲気で焼成した場合の細孔容量は、0.15cm/g以下である(非特許文献:L. Yu et al., Langmuir, 2012, 28, 12373参照)。
さらに、本発明の、糖の脂肪酸エステルを原料とする水熱合成物の焼成物からなる炭素材料は、数〜数十nm程度の粒子が互いに連なって形成された、数〜数十μmの大きさの粒子からなった。さらに、大きさ数〜数十nmの粒子が互いに連なり、厚さ数十〜200nm程度のシート状の形状をなしているものもあった。これは、比較例3の、糖そのものの水熱合成物を焼成して得られる、平滑な表面テクスチャを有する、直径数百nm〜数μmの球状粒子とは大きく異なった。
よって、本発明においては、糖の脂肪酸エステルを原料に用いることにより、不活性雰囲気中での焼成後も、細孔容量が大きく、炭素骨格の芳香族性と含酸素官能基を併せ持つ多孔質炭素が得られるといえる。
On the other hand, for the application to an electrode material etc., it is necessary to enhance the aromaticity of the carbon skeleton of the porous carbon derived from the fatty acid ester of sugar obtained. Therefore, when the porous carbon derived from the fatty acid ester of the above-mentioned sugar is calcined in an inert atmosphere, the porous carbon derived from the fatty acid ester of the sugar of the present invention It had a functional group (hydroxyl group). Moreover, the pore volume was 0.62-1.23 cm < 3 > / g. In addition, the aromaticity of the carbon skeleton was enhanced, and the conductivity was also exhibited.
On the other hand, in the carbon material of Comparative Example 3 obtained from the sugar itself, when it was fired in an inert atmosphere, the aromaticity of the carbon skeleton was enhanced, but most of the oxygen-containing functional groups were lost. Furthermore, the pore volume at the time of baking the carbon material obtained normally from the sugar itself in the same inert atmosphere at 550 ° C. as in Examples 7 and 8 is 0.15 cm 3 / g or less (Non-patent Literature: L Yu et al., Langmuir, 2012, 28, 12373).
Furthermore, the carbon material of the present invention, which is a calcined product of a hydrothermally synthesized product using fatty acid esters of sugar as a raw material, has a size of several to several tens of μm formed by particles of several to several tens of nm connected to one another. Made of particles. Furthermore, some particles having a size of several to several tens of nm are connected to one another to form a sheet-like shape having a thickness of several tens to about 200 nm. This is significantly different from the spherical particles having a smooth surface texture and having a diameter of several hundred nm to several μm, which are obtained by calcining a hydrothermal compound of sugar itself, which is Comparative Example 3.
Therefore, in the present invention, by using a fatty acid ester of sugar as a raw material, a porous carbon having a large pore volume and having both the aromaticity of a carbon skeleton and an oxygen-containing functional group even after firing in an inert atmosphere Can be obtained.

Claims (25)

糖の脂肪酸エステルを原料とする水熱反応生成物からなる多孔質炭素。   Porous carbon consisting of hydrothermal reaction products made from fatty acid esters of sugars. 炭素骨格に前記脂肪酸由来のアルキル基を含有することを特徴とする請求項1に記載の多孔質炭素。   The porous carbon according to claim 1, wherein the carbon skeleton contains an alkyl group derived from the fatty acid. 前記脂肪酸のアルキル基が、二重結合を含んでもよい炭素数1〜100のアルキル基であることを特徴とする請求項1又は2に記載の多孔質炭素。   The porous carbon according to claim 1 or 2, wherein the alkyl group of the fatty acid is an alkyl group having 1 to 100 carbon atoms which may contain a double bond. 糖の脂肪酸エステルを原料とする水熱反応生成物の焼成物からなる多孔質炭素。   Porous carbon consisting of a calcined product of a hydrothermal reaction product starting from a fatty acid ester of sugar. 炭素骨格にヒドロキシル基を含有することを特徴とする請求項4に記載の多孔質炭素。   The porous carbon according to claim 4, wherein the carbon skeleton contains a hydroxyl group. 前記糖が、窒素を含んでいてもよい、単糖、二糖又は多糖、或いはこれらの2種類以上の混合物である請求項1〜5のいずれか1項に記載の多孔質炭素。   The porous carbon according to any one of claims 1 to 5, wherein the sugar is a monosaccharide, a disaccharide or a polysaccharide which may contain nitrogen, or a mixture of two or more of them. 前記糖の脂肪酸エステルが、モノエステル、ジエステル又はポリエステル、或いはこれらの2種類以上の混合物である請求項1〜6のいずれか1項に記載の多孔質炭素。   The porous carbon according to any one of claims 1 to 6, wherein the fatty acid ester of the sugar is a monoester, a diester or a polyester, or a mixture of two or more thereof. 窒素吸着測定により算出される全細孔容量が、0.04〜5cm/gであることを特徴とする請求項1〜7のいずれか1項に記載の多孔質炭素。 The porous carbon according to any one of claims 1 to 7, wherein the total pore volume calculated by nitrogen adsorption measurement is 0.04 to 5 cm3 / g. 配向性のナノ構造を有することを特徴とする請求項1〜8のいずれか1項に記載の多孔質炭素。   The porous carbon according to any one of claims 1 to 8, which has an oriented nano structure. 請求項1〜9のいずれか1項に記載の多孔質炭素を主成分とする吸着剤。   The adsorbent which has porous carbon of any one of Claims 1-9 as a main component. 請求項1〜9のいずれか1項に記載の多孔質炭素を主成分とする多孔質担体。   A porous carrier comprising the porous carbon according to any one of claims 1 to 9 as a main component. 前記多孔質担体が、触媒担体、分離担体、クロマト担体、生体分子足場材、生体分子捕捉材、薬物包含材又は香料担体のいずれかである請求項11に記載の多孔質担体。   The porous carrier according to claim 11, wherein the porous carrier is any of a catalyst carrier, a separation carrier, a chromatography carrier, a biomolecular scaffold, a biomolecular capture material, a drug-containing material or a flavor carrier. 請求項1〜9のいずれか1項に記載の多孔質炭素を主成分とする電極材。   The electrode material which has porous carbon of any one of Claims 1-9 as a main component. 請求項13に記載の電極材を用いた電極を備えた二次電池。   The secondary battery provided with the electrode using the electrode material of Claim 13. 請求項13に記載の電極材を用いた電極を備えた電気化学キャパシタ。   An electrochemical capacitor comprising an electrode using the electrode material according to claim 13. 請求項13に記載の電極材を用いた電極を備えた燃料電池。   A fuel cell comprising an electrode using the electrode material according to claim 13. 請求項13に記載の電極材を用いた電極を備えたセンサー。   The sensor provided with the electrode using the electrode material of Claim 13. 請求項1〜9のいずれか1項に記載の多孔質炭素を主成分とする食品用添加剤。   The additive for foodstuffs which has porous carbon of any one of Claims 1-9 as a main component. 請求項1〜9のいずれか1項に記載の多孔質炭素を含有する食品。   The food containing porous carbon according to any one of claims 1 to 9. 請求項1〜9のいずれか1項に記載の多孔質炭素を主成分とする化粧品用添加剤。   The cosmetic additive based on porous carbon according to any one of claims 1 to 9. 糖の脂肪酸エステルを100〜350℃で水熱処理し、得られた固体を水及び有機溶媒で洗浄した後、乾燥させることを特徴とする多孔質炭素の製造方法。   A method for producing porous carbon comprising hydrothermally treating a fatty acid ester of a sugar at 100 to 350 ° C., washing the obtained solid with water and an organic solvent, and drying it. 前記脂肪酸のアルキル基が、二重結合を含んでもよい炭素数1〜100のアルキル基である請求項21に記載の多孔質炭素の製造方法。   The method for producing porous carbon according to claim 21, wherein the alkyl group of the fatty acid is an alkyl group having 1 to 100 carbon atoms which may contain a double bond. 前記糖が、窒素を含んでいてもよい、単糖、二糖又は多糖、或いはこれらの2種類以上の混合物である請求項21又は22に記載の多孔質炭素の製造方法。   The method for producing porous carbon according to claim 21 or 22, wherein the sugar is a monosaccharide, disaccharide or polysaccharide which may contain nitrogen, or a mixture of two or more thereof. 前記糖の脂肪酸エステルが、モノエステル、ジエステル又はポリエステル、或いはこれらの2種類以上の混合物である請求項21〜23のいずれか1項に記載の多孔質炭素の製造方法。   The method for producing porous carbon according to any one of claims 21 to 23, wherein the fatty acid ester of the sugar is a monoester, a diester or a polyester, or a mixture of two or more of them. 請求項21〜24のいずれか1項に記載の方法で多孔質炭素を製造した後、さらに焼成することを特徴とする多孔質炭素の製造方法。   A method for producing porous carbon, comprising producing the porous carbon by the method according to any one of claims 21 to 24, and further calcining.
JP2017253982A 2017-12-28 2017-12-28 Method for producing porous carbon Active JP6933370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017253982A JP6933370B2 (en) 2017-12-28 2017-12-28 Method for producing porous carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253982A JP6933370B2 (en) 2017-12-28 2017-12-28 Method for producing porous carbon

Publications (2)

Publication Number Publication Date
JP2019119632A true JP2019119632A (en) 2019-07-22
JP6933370B2 JP6933370B2 (en) 2021-09-08

Family

ID=67306050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253982A Active JP6933370B2 (en) 2017-12-28 2017-12-28 Method for producing porous carbon

Country Status (1)

Country Link
JP (1) JP6933370B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683541A (en) * 2019-11-27 2020-01-14 天津合众汇能科技有限公司 Method for preparing double electric layer capacitor activated carbon by template method
WO2022059594A1 (en) * 2020-09-17 2022-03-24 デンカ株式会社 Porous carbon material and production method therefor
WO2022085693A1 (en) * 2020-10-19 2022-04-28 日鉄ケミカル&マテリアル株式会社 Carbon material for polymer electrolyte fuel cell catalyst carriers, catalyst layer for polymer electrolyte fuel cells, and fuel cell
CN115477298A (en) * 2022-09-01 2022-12-16 广州大学 Hollow spherical superstructure carbon material and preparation method and application thereof
CN115722194A (en) * 2022-12-07 2023-03-03 江汉大学 Nitric acid modified lotus leaf carbon adsorption material and preparation method and application thereof
CN110683541B (en) * 2019-11-27 2024-06-07 天津合众汇能科技有限公司 Method for preparing double-electric-layer capacitor active carbon by template method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683541A (en) * 2019-11-27 2020-01-14 天津合众汇能科技有限公司 Method for preparing double electric layer capacitor activated carbon by template method
CN110683541B (en) * 2019-11-27 2024-06-07 天津合众汇能科技有限公司 Method for preparing double-electric-layer capacitor active carbon by template method
WO2022059594A1 (en) * 2020-09-17 2022-03-24 デンカ株式会社 Porous carbon material and production method therefor
WO2022085693A1 (en) * 2020-10-19 2022-04-28 日鉄ケミカル&マテリアル株式会社 Carbon material for polymer electrolyte fuel cell catalyst carriers, catalyst layer for polymer electrolyte fuel cells, and fuel cell
CN115477298A (en) * 2022-09-01 2022-12-16 广州大学 Hollow spherical superstructure carbon material and preparation method and application thereof
CN115477298B (en) * 2022-09-01 2023-10-24 广州大学 Hollow spherical super-structure carbon material and preparation method and application thereof
CN115722194A (en) * 2022-12-07 2023-03-03 江汉大学 Nitric acid modified lotus leaf carbon adsorption material and preparation method and application thereof
CN115722194B (en) * 2022-12-07 2024-05-07 江汉大学 Nitric acid modified lotus leaf charcoal adsorption material and preparation method and application thereof

Also Published As

Publication number Publication date
JP6933370B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP2019119632A (en) Porous carbon, and production method thereof
Petkovich et al. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating
Sue et al. Synthesis of hierarchical micro/mesoporous structures via solid–aqueous interface growth: zeolitic imidazolate framework-8 on siliceous mesocellular foams for enhanced pervaporation of water/ethanol mixtures
Liao et al. On controlling aerogel microstructure by freeze casting
Zhao et al. Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions
Gurikov et al. A novel approach to alginate aerogels: Carbon dioxide induced gelation
Guo et al. Synthesis and surface functional group modifications of ordered mesoporous carbons for resorcinol removal
Montes et al. Aerogels and their applications
CA2835154C (en) Mesoporous silica and organosilica materials and process for their preparation
CN108940141B (en) Preparation method of graphene composite aerogel
Walters et al. Chiral nematic cellulose nanocrystal/germania and carbon/germania composite aerogels as supercapacitor materials
CN105688285B (en) A kind of preparation method of grapheme material coating chitosan three-dimensional bracket
WO2021118459A1 (en) Porous composites, scaffolds, foams, methods of fabrication and uses thereof
CN101134586A (en) Method for preparing nano alumina hollow ball
CN105344334A (en) Preparation method for polyvinyl alcohol/silicon dioxide composite microspheres
Putz et al. Hierarchically organized and anisotropic porous carbon monoliths
Huang et al. High-performance fluorinated polyimide/pure silica zeolite nanocrystal hybrid films with a low dielectric constant
Anceschi et al. Preparation and characterization of microporous carbon spheres from high amylose pea maltodextrin
CN110564083A (en) graphite phase carbon nitride/polymer composite material, preparation method and energy storage material
Wang et al. The effect of CTAB on the citrate sol-gel process for the synthesis of sodium beta-alumina nano-powders
KR101011525B1 (en) Preparation method of porous hollow capsules
JP5388051B2 (en) Mesoporous carbon (MC-MCM-48) and method for producing the same
CN107161977B (en) Carbon nano-structured modification flaky sequential meso-porous carbon material of one kind and preparation method thereof
JP2005290032A (en) Method for producing hierarchical porous body containing meso pore having long range order
Li et al. Synthesis of composite eccentric double-shelled hollow spheres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210812

R150 Certificate of patent or registration of utility model

Ref document number: 6933370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150