JP6933370B2 - Method for producing porous carbon - Google Patents

Method for producing porous carbon Download PDF

Info

Publication number
JP6933370B2
JP6933370B2 JP2017253982A JP2017253982A JP6933370B2 JP 6933370 B2 JP6933370 B2 JP 6933370B2 JP 2017253982 A JP2017253982 A JP 2017253982A JP 2017253982 A JP2017253982 A JP 2017253982A JP 6933370 B2 JP6933370 B2 JP 6933370B2
Authority
JP
Japan
Prior art keywords
carbon
fatty acid
porous carbon
sugar
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017253982A
Other languages
Japanese (ja)
Other versions
JP2019119632A (en
Inventor
史織 久保
史織 久保
井村 知弘
知弘 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017253982A priority Critical patent/JP6933370B2/en
Publication of JP2019119632A publication Critical patent/JP2019119632A/en
Application granted granted Critical
Publication of JP6933370B2 publication Critical patent/JP6933370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、多孔質炭素及びその製造方法に関する。 The present invention relates to porous carbon and a method for producing the same.

多孔質炭素は、その細孔を利用して、吸着剤、分離材、触媒担体、カラム担体、薬物包含材等として産業界で非常に重要な材料である。さらに近年では、細孔空間を電解質の効率移動空間として利用した二次電池やキャパシタ、センサーなどの炭素電極としての利用が幅広く実用化されており、分離材や電極材料としての利用においては、化学修飾により機能性を付与した多孔質炭素が好ましく用いられている。 Porous carbon is a very important material in the industry as an adsorbent, a separating material, a catalyst carrier, a column carrier, a drug containing material, and the like by utilizing its pores. Furthermore, in recent years, the use of the pore space as a carbon electrode for secondary batteries, capacitors, sensors, etc., which uses the pore space as an efficient moving space for electrolytes, has been widely put into practical use. Porous carbon that has been modified to impart functionality is preferably used.

多孔質炭素は種々の方法により製造されるが、その1つに、界面活性剤又はブロック共重合体などの両親媒性化合物を構造鋳型剤として用い、それらの存在下で炭素前駆体(炭素源)の炭素化を進行させる、いわゆる有機テンプレート法がある。
例えば、特許文献1には、モノマーおよび/またはプレポリマー中に、鋳型である界面活性剤のミセルを形成させた後、前記モノマーおよび/またはプレポリマーを重合硬化させて、ミセル含有有機ポリマーを形成し、さらにこの有機ポリマーを焼成して炭素化を行う方法が開示されている。また、特許文献2、非特許文献1、2等には、構造鋳型剤としてブロック共重合体を用い、炭素前駆体として、フェノールとホルムアルデヒド、またはレゾルシノールなどのフェノール系樹脂を用いていることが開示されている。
しかしながら、これらの方法では、原料の分子内に含酸素官能基が少ないこと、炭素化には、高温熱処理が必要であり、その際に官能基を失うこと、などが要因となり、得られる炭素材料中の含酸素官能基の量は限られる。そのため、分離担体や電極材料としての利用に重要な、化学修飾による炭素への機能性の付与は難しい。また、これらの方法で得られる炭素材料は、水相での用途は限られることが予想される。
Porous carbon is produced by various methods, one of which is to use an amphipathic compound such as a surfactant or a block copolymer as a structural template, and in the presence of them, a carbon precursor (carbon source). There is a so-called organic template method that promotes carbonization of).
For example, in Patent Document 1, after forming micelles of a surfactant as a template in a monomer and / or prepolymer, the monomer and / or prepolymer is polymerized and cured to form a micelle-containing organic polymer. Further, a method of calcining this organic polymer to carry out carbonization is disclosed. Further, Patent Document 2, Non-Patent Documents 1, 2 and the like disclose that a block copolymer is used as a structural template and a phenol-based resin such as phenol and formaldehyde or resorcinol is used as a carbon precursor. Has been done.
However, in these methods, the carbon material obtained is due to factors such as the fact that there are few oxygen-containing functional groups in the molecule of the raw material, high-temperature heat treatment is required for carbonization, and the functional groups are lost at that time. The amount of oxygen-containing functional groups in it is limited. Therefore, it is difficult to impart functionality to carbon by chemical modification, which is important for use as a separation carrier or electrode material. In addition, the carbon materials obtained by these methods are expected to have limited use in the aqueous phase.

一方、糖の水熱反応生成物からなる炭素材料の炭素骨格がフラン骨格を基本骨格として含むことは既に公知であり、糖やバイオマスを原料とした水熱合成によれば、含酸素官能基を豊富に有する炭素材料が得られる(非特許文献3、4)。また、キチン、キトサン、グルコースアミン等の窒素を含む糖を炭素源とした水熱合成によれば、窒素がドープされた炭素材料が得られることも公知になっている(非特許文献5)。
こうした糖の水熱合成に、ブロック共重合体などの両親媒性化合物を有機テンプレートとする合成手法を組み合わせることにより、多孔質炭素を得ることができる(非特許文献6)。しかしながら、現在発表されている、有機テンプレートを用いるプロセスでは、数百℃以上(例えば550℃)の不活性雰囲気下での加熱処理による構造鋳型剤の熱分解除去が必要であり、合成におけるエネルギーコストが余計にかかる。また、加熱処理時に、表面官能基の量が減少することを防ぐことができない。
On the other hand, it is already known that the carbon skeleton of a carbon material composed of a hydrothermal reaction product of sugar contains a furan skeleton as a basic skeleton, and according to hydrothermal synthesis using sugar or biomass as a raw material, an oxygen-containing functional group is used. An abundant carbon material can be obtained (Non-Patent Documents 3 and 4). It is also known that a nitrogen-doped carbon material can be obtained by hydrothermal synthesis using a sugar containing nitrogen such as chitin, chitosan, and glucose amine as a carbon source (Non-Patent Document 5).
Porous carbon can be obtained by combining hydrothermal synthesis of such sugars with a synthesis method using an amphipathic compound such as a block copolymer as an organic template (Non-Patent Document 6). However, the currently announced process using an organic template requires thermal decomposition removal of the structural template by heat treatment in an inert atmosphere of several hundred ° C. or higher (for example, 550 ° C.), and energy cost in synthesis. Is extra. In addition, it is not possible to prevent the amount of surface functional groups from decreasing during the heat treatment.

また、無機のテンプレート法として、シリカ多孔体などの無機多孔体を構造テンプレートとして用い、その細孔内に、糖類等の炭素前駆体(炭素源)を浸漬させた後、水熱処理し、最後に無機多孔体をフッ化水素酸などの強酸で溶解除去する方法がある(非特許文献7、8等)。該方法によれば、表面官能基を有し、かつ多孔性の炭素材料を得ることができる。
しかし、得られる多孔体の細孔構造は、シリカ多孔体の逆構造(レプリカ)であって、前記の界面活性剤や両親媒性ポリマー等の高次集合体の構造をそのまま反映したものではない。例えば、ヘキサゴナル構造と呼ばれる、ハニカム状のチャンネル構造を得ることは非常に困難と思われる。さらに、この方法では、シリカ多孔体そのものの合成が必要であるほか、強酸によるエッチングなどの工業的生産にはそぐわないステップを必要とするため、産業界での実用化の面で問題がある。
In addition, as an inorganic template method, an inorganic porous body such as a silica porous body is used as a structural template, and a carbon precursor (carbon source) such as a saccharide is immersed in the pores, followed by hydrothermal treatment, and finally. There is a method of dissolving and removing an inorganic porous body with a strong acid such as hydrofluoric acid (Non-Patent Documents 7, 8 and the like). According to this method, a carbon material having a surface functional group and having a porous property can be obtained.
However, the pore structure of the obtained porous body is an inverse structure (replica) of the silica porous body, and does not directly reflect the structure of a higher-order aggregate such as the above-mentioned surfactant or amphipathic polymer. .. For example, it seems very difficult to obtain a honeycomb-shaped channel structure called a hexagonal structure. Further, this method requires the synthesis of the silica porous body itself and also requires steps such as etching with a strong acid that are not suitable for industrial production, so that there is a problem in terms of practical use in the industrial world.

一方、特許文献4及び非特許文献9には、アルギン酸やペクチン、アミロース、キトサンなどの炭水化物を原料として、構造鋳型剤(テンプレート)を用いることなく、メソ孔を有する多孔質炭素を得ることが記載されている。これらの文献に記載の方法では、多糖を、水に溶解させ、加温することで、粘性の高いゲルを得、該ゲルを冷却することにより、多糖分子が水素結合により繋がれた多糖ゲルを得、その後さらに該多糖ゲルを乾燥させた後、有機酸存在下、数百℃で、真空または不活性雰囲気下焼成することにより、多孔質炭素を得ている。
しかしながら、この方法では、構造形成は、水による多糖ネットワークの膨潤と多糖分子間の水素結合に基づくため、構造形成における配向性の誘発は容易ではなく、よって、得られる炭素材料のナノ構造に、明確な配向性を持たせたり、配向の度合いや種類を制御したりすることは難しい。また、焼成により炭素ネットワークの芳香族化が進み、400℃付近以上の温度で焼成すると、含酸素官能基の多くが損失されてしまう。
On the other hand, Patent Document 4 and Non-Patent Document 9 describe that a porous carbon having mesopores can be obtained by using carbohydrates such as alginic acid, pectin, amylose, and chitosan as raw materials without using a structural template. Has been done. In the methods described in these documents, a polysaccharide is dissolved in water and heated to obtain a highly viscous gel, and the gel is cooled to obtain a polysaccharide gel in which polysaccharide molecules are linked by hydrogen bonds. After that, the polysaccharide gel is further dried and then fired in the presence of an organic acid at several hundred degrees Celsius in a vacuum or an inert atmosphere to obtain porous carbon.
However, in this method, since the structure formation is based on the swelling of the polysaccharide network by water and the hydrogen bond between the polysaccharide molecules, it is not easy to induce the orientation in the structure formation, and therefore, the nanostructure of the obtained carbon material is formed. It is difficult to have a clear orientation and to control the degree and type of orientation. In addition, the carbon network is aromaticized by firing, and when firing at a temperature of around 400 ° C. or higher, most of the oxygen-containing functional groups are lost.

特開2004−59904号公報Japanese Unexamined Patent Publication No. 2004-59904 特開2014−34475号公報Japanese Unexamined Patent Publication No. 2014-34475 特開2010−267542号公報Japanese Unexamined Patent Publication No. 2010-267542 国際公開第2009/037354号International Publication No. 2009/037354

Y.Meng,D.Gu,F.Zhang,Y.Shi,H.Yang,Z.Li,Z.Yu,B. Tu,D.Zhao,Angew.Chem.Int.Ed.2005,44,7053-7059.Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, Z. Yu, B. Tu, D. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053-7059. C.Liang,K.Hong,G.A.Guiochon,J.W.Mays,S.Dai,Angew.Chem.Int.Ed.2004,43,5785-5789.C. Liang, K. Hong, G. A. Guiochon, J.M. W. Mays, S. Dai, Angew. Chem. Int. Ed. 2004, 43, 5785-5789. M-M.Titirici,M.Antonietti,Chem.Soc.Rev.2010,39,103-116.M-M. Titirici, M. Antonietti, Chem. Soc. Rev. 2010, 39, 103-116. C.Falco,F.P.Caballero,F.Babonneau,C.Gervais,G.Laurent.M-M,Titirici.N.Baccile,Langmuir,2011,27,14460.C. Falco, F. P. Caballero, F. Babonneau, C.I. Gervais, G. Laurent. M-M, Titirici. N. Baccile, Langmuir, 2011, 27, 14460. R.J.White,M.Antonietti,M-M.Titirici,J.Mater.Chem. 2009,19,8645.R. J. White, M. Antonietti, M-M. Titirici, J. et al. Mater. Chem. 2009, 19, 8645. S.Kubo,R.J.White,N.Yoshizawa,M.Antonietti,M-M.Titirici,Chem.Mater.2011,23,4882-4885.S. Kubo, R. J. White, N. Yoshizawa, M. Antonietti, M-M. Titirici, Chem. Mater. 2011, 23, 4882-4885. M-M.Titirici,A.Thomas,M.Antonietti,J.Mater.Chem.2007,17,3412-3418.M-M. Titirici, A. Thomas, M. Antonietti, J.M. Mater. Chem. 2007, 17, 3412-3418. M-M.Titirici,A.Thomas,M.Antonietti,Adv.Funct.Mater.2007,17,1010-1018.M-M. Titirici, A. Thomas, M. Antonietti, Adv. Funct. Mater. 2007, 17, 1010-1018. Budarin et al.,Angew.Chem.Int.Ed.2006,45,3782-3786.Budarin et al. , Angew. Chem. Int. Ed. 2006, 45, 3782-3786.

前述のとおり、官能基を有する多孔質炭素を、簡便かつエネルギー消費の少ない手法で、安価な原料を用いて得ることが望まれている。また、炭素源の重合をより直接的にかつ精密に制御できる可能性を利用して、薄膜や単分子・二分子膜、各種基板との積層体を形成することが期待されている。 As described above, it is desired to obtain porous carbon having a functional group by a simple and low energy consumption method using an inexpensive raw material. Further, it is expected to form a laminate with a thin film, a monomolecular / bimolecular film, or various substrates by utilizing the possibility of controlling the polymerization of a carbon source more directly and precisely.

本発明は、こうした現状を鑑みてなされたものであって、安価な炭素前駆体(炭素源)を用いて、簡便かつエネルギー消費の少ない手法で、ヒドロキシル基、カルボニル基、カルボキシル基などの含酸素官能基やアルキル基などの官能基を有する多孔質炭素を提供することを目的とするものである。 The present invention has been made in view of this situation, and uses an inexpensive carbon precursor (carbon source), and is a simple and energy-consuming method that contains oxygen such as a hydroxyl group, a carbonyl group, and a carboxyl group. It is an object of the present invention to provide a porous carbon having a functional group such as a functional group or an alkyl group.

上記目的を達成すべく鋭意検討を重ねた結果、炭素前駆体(炭素源)として糖の脂肪酸エステルを用いることにより、構造鋳型剤(テンプレート)を用いることなく、簡便かつエネルギー消費の少ない手法で、ヒドロキシル基、カルボニル基、カルボキシル基などの含酸素官能基やアルキル基などの官能基を有する多孔質炭素を製造できるという知見を得た。 As a result of diligent studies to achieve the above objectives, by using a sugar fatty acid ester as a carbon precursor (carbon source), a simple and low energy consumption method is used without using a structural template. It was found that a porous carbon having an oxygen-containing functional group such as a hydroxyl group, a carbonyl group or a carboxyl group or a functional group such as an alkyl group can be produced.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]糖の脂肪酸エステルを原料とする水熱反応生成物からなる多孔質炭素。
[2]炭素骨格に前記脂肪酸由来のアルキル基を含有することを特徴とする[1]に記載の多孔質炭素。
[3]前記脂肪酸のアルキル基が、二重結合を含んでもよい炭素数1〜100のアルキル基であることを特徴とする[1]又は[2]に記載の多孔質炭素。
[4]糖の脂肪酸エステルを原料とする水熱反応生成物の焼成物からなる多孔質炭素。
[5]炭素骨格にヒドロキシル基を含有することを特徴とする[4]に記載の多孔質炭素。
[6]前記糖が、窒素を含んでいてもよい、単糖、二糖又は多糖、或いはこれらの2種類以上の混合物である[1]〜[5]のいずれかに記載の多孔質炭素。
[7]前記糖の脂肪酸エステルが、モノエステル、ジエステル又はポリエステル、或いはこれらの2種類以上の混合物である[1]〜[6]のいずれかに記載の多孔質炭素。
[8]窒素吸着測定により算出される全細孔容量が、0.04〜5cm/gであることを特徴とする[1]〜[7]のいずれかに記載の多孔質炭素。
[9]配向性のナノ構造を有することを特徴とする[1]〜[8]のいずれかに記載の多孔質炭素。
[10][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする吸着剤。
[11][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする多孔質担体。
[12]前記多孔質担体が、触媒担体、分離担体、クロマト担体、生体分子足場材、生体分子捕捉材、薬物包含材又は香料担体のいずれかである[11]に記載の多孔質担体。
[13][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする電極材。
[14][13]に記載の電極材を用いた電極を備えた二次電池。
[15][13]に記載の電極材を用いた電極を備えた電気化学キャパシタ。
[16][13]に記載の電極材を用いた電極を備えた燃料電池。
[17][13]に記載の電極材を用いた電極を備えたセンサー。
[18][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする食品用添加剤。
[19][1]〜[9]のいずれかに記載の多孔質炭素を含有する食品。
[20][1]〜[9]のいずれかに記載の多孔質炭素を主成分とする化粧品用添加剤。
[21]糖の脂肪酸エステルを100〜350℃で水熱処理し、得られた固体を水及び有機溶媒で洗浄した後、乾燥させることを特徴とする多孔質炭素の製造方法。
[22]前記脂肪酸のアルキル基が、二重結合を含んでもよい炭素数1〜100のアルキル基である[21]に記載の多孔質炭素の製造方法。
[23]前記糖が、窒素を含んでいてもよい、単糖、二糖又は多糖、或いはこれらの2種類以上の混合物である[21]又は[22]に記載の多孔質炭素の製造方法。
[24]前記糖の脂肪酸エステルが、モノエステル、ジエステル又はポリエステル、或いはこれらの2種類以上の混合物である[21]〜[23]のいずれかに記載の多孔質炭素の製造方法。
[25][21]〜[24]のいずれかに記載の方法で多孔質炭素を製造した後、さらに焼成することを特徴とする多孔質炭素の製造方法。
The present invention has been completed based on these findings, and the following inventions are provided according to the present invention.
[1] Porous carbon composed of a hydrothermal reaction product made from a fatty acid ester of sugar.
[2] The porous carbon according to [1], wherein the carbon skeleton contains an alkyl group derived from the fatty acid.
[3] The porous carbon according to [1] or [2], wherein the alkyl group of the fatty acid is an alkyl group having 1 to 100 carbon atoms which may contain a double bond.
[4] Porous carbon composed of a calcined product of a hydrothermal reaction product made from a fatty acid ester of sugar.
[5] The porous carbon according to [4], wherein the carbon skeleton contains a hydroxyl group.
[6] The porous carbon according to any one of [1] to [5], wherein the sugar is a monosaccharide, a disaccharide or a polysaccharide, which may contain nitrogen, or a mixture of two or more kinds thereof.
[7] The porous carbon according to any one of [1] to [6], wherein the fatty acid ester of the sugar is a monoester, a diester or polyester, or a mixture of two or more of these.
[8] The porous carbon according to any one of [1] to [7], wherein the total pore volume calculated by nitrogen adsorption measurement is 0.04 to 5 cm 3 / g.
[9] The porous carbon according to any one of [1] to [8], which has an oriented nanostructure.
[10] The adsorbent containing the porous carbon according to any one of [1] to [9] as a main component.
[11] The porous carrier containing the porous carbon according to any one of [1] to [9] as a main component.
[12] The porous carrier according to [11], wherein the porous carrier is any one of a catalyst carrier, a separation carrier, a chromatographic carrier, a biomolecule scaffolding material, a biomolecule trapping material, a drug containing material, and a fragrance carrier.
[13] The electrode material containing the porous carbon according to any one of [1] to [9] as a main component.
[14] A secondary battery provided with an electrode using the electrode material according to [13].
[15] An electrochemical capacitor provided with an electrode using the electrode material according to [13].
[16] A fuel cell provided with an electrode using the electrode material according to [13].
[17] A sensor including an electrode using the electrode material according to [13].
[18] The food additive containing the porous carbon according to any one of [1] to [9] as a main component.
[19] The food containing the porous carbon according to any one of [1] to [9].
[20] The cosmetic additive containing the porous carbon according to any one of [1] to [9] as a main component.
[21] A method for producing a porous carbon, which comprises hydrothermally treating a fatty acid ester of a sugar at 100 to 350 ° C., washing the obtained solid with water and an organic solvent, and then drying the solid.
[22] The method for producing porous carbon according to [21], wherein the alkyl group of the fatty acid is an alkyl group having 1 to 100 carbon atoms which may contain a double bond.
[23] The method for producing porous carbon according to [21] or [22], wherein the sugar is a monosaccharide, a disaccharide or a polysaccharide, which may contain nitrogen, or a mixture of two or more of these.
[24] The method for producing porous carbon according to any one of [21] to [23], wherein the fatty acid ester of the sugar is a monoester, a diester or polyester, or a mixture of two or more of these.
[25] A method for producing porous carbon, which comprises producing porous carbon by the method according to any one of [21] to [24] and then firing the porous carbon.

本発明によれば、安価な原料を用いて、ヒドロキシル基、カルボニル基、カルボキシル基などの含酸素官能基及びアルキル基等の原料由来の官能基を残したままの多孔質炭素を、簡便かつエネルギー消費の少ない手法で得ることができる。また、本発明によれば、不活性雰囲気下で焼成した後の多孔質炭素において、芳香族性が高まるばかりでなく、ヒドロキシル基等の含酸素官能基を有する多孔質炭素を得ることができる。さらに、本発明によれば、厚さ数十〜200nm程度のシート状炭素(炭素薄膜)を得ることができる。 According to the present invention, a porous carbon containing oxygen-containing functional groups such as a hydroxyl group, a carbonyl group and a carboxyl group and a functional group derived from a raw material such as an alkyl group can be easily and energy-generated by using an inexpensive raw material. It can be obtained by a method that consumes less. Further, according to the present invention, in the porous carbon after being fired in an inert atmosphere, not only the aromaticity is enhanced, but also the porous carbon having an oxygen-containing functional group such as a hydroxyl group can be obtained. Further, according to the present invention, a sheet-like carbon (carbon thin film) having a thickness of about several tens to 200 nm can be obtained.

実施例1〜6および比較例1、2で得られる材料のフーリエ変換赤外吸収スペクトルFourier transform infrared absorption spectra of the materials obtained in Examples 1 to 6 and Comparative Examples 1 and 2. 実施例7〜8および比較例3で得られる材料のフーリエ変換赤外吸収スペクトルFourier Transform Infrared Absorption Spectroscopy of Materials Obtained in Examples 7-8 and Comparative Example 3 実施例1〜8で得られる材料の窒素吸着等温線Nitrogen adsorption isotherm of the material obtained in Examples 1-8 比較例1および2で得られる材料の窒素吸着等温線Nitrogen adsorption isotherm of the materials obtained in Comparative Examples 1 and 2 実施例1で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 1 実施例1で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 1 実施例2で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 2 実施例2で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 2 実施例3で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 3 実施例4で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 4 実施例4で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 4 実施例5で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 5 実施例5で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 5 実施例6で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 6 比較例1で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Comparative Example 1 比較例1で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Comparative Example 1 比較例2で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Comparative Example 2 実施例7で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 7 実施例7で得られる材料の透過型電子顕微鏡像Transmission electron microscope image of the material obtained in Example 7 実施例8で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Example 8 比較例3で得られる材料の走査型電子顕微鏡像Scanning electron microscope image of the material obtained in Comparative Example 3

本発明の多孔質炭素は、原料として糖の脂肪酸エステルを用い、その水熱反応により得られるものであって、原料に糖の脂肪酸エステルを用いることにより、基本骨格である炭素骨格内に、該脂肪酸エステルに由来のアルキル基を含有すること、或いは、該水熱反応により得られた生成物の焼成物からなるものであることを特徴とするものである。
また、本発明の多孔質炭素の製造方法は、炭素前駆体(炭素源)として糖の脂肪酸エステルを用い、これを100〜350℃で水熱処理し、得られた固体を水及び有機溶媒で洗浄した後、乾燥させる、或いはさらに、焼成することを特徴とするものである。
The porous carbon of the present invention is obtained by using a fatty acid ester of sugar as a raw material and a hydrothermal reaction thereof. By using the fatty acid ester of sugar as a raw material, the porous carbon is contained in a carbon skeleton which is a basic skeleton. It is characterized by containing an alkyl group derived from a fatty acid ester or being composed of a calcined product of a product obtained by the hydrothermal reaction.
Further, in the method for producing porous carbon of the present invention, a fatty acid ester of sugar is used as a carbon precursor (carbon source), which is hydrothermally treated at 100 to 350 ° C., and the obtained solid is washed with water and an organic solvent. After that, it is dried or further fired.

本発明において、水熱反応の原料として用いる糖の脂肪酸エステルは、両親媒性分子であるため、従来のような鋳型を用いずとも、多孔質炭素を得ることができる。
また、本発明によれば、従来のような鋳型を除去するに必要な焼成工程を必要としないため、ヒドロキシル基、カルボニル基、カルボキシル基などの含酸素官能基および上記両親媒性分子由来のアルキル基などの官能基を有する多孔質炭素を得ることができる。
さらに、両親媒性分子であるショ糖脂肪酸エステルを原料とする本発明の手法によれば、厚さ数十〜200nm程度のシート状炭素(炭素薄膜)や、単分子・二分子膜および各種基板との積層体の形成が可能となる。
In the present invention, since the fatty acid ester of the sugar used as a raw material for the hydrothermal reaction is an amphipathic molecule, porous carbon can be obtained without using a conventional template.
Further, according to the present invention, since the firing step required for removing the template as in the conventional case is not required, an oxygen-containing functional group such as a hydroxyl group, a carbonyl group or a carboxyl group and an alkyl derived from the amphipathic molecule are used. A porous carbon having a functional group such as a group can be obtained.
Furthermore, according to the method of the present invention using sucrose fatty acid ester, which is an amphipathic molecule, as a raw material, a sheet-like carbon (carbon thin film) having a thickness of several tens to 200 nm, a single molecule / bimolecular film, and various substrates It is possible to form a laminated body with.

以下、本発明の多孔質炭素及びその製造方法についてさらに詳しく説明する。 Hereinafter, the porous carbon of the present invention and the method for producing the same will be described in more detail.

[糖の脂肪酸エステル]
本発明においては、水熱反応の炭素源として、糖の脂肪酸エステルを用いる。
糖としては、果糖、ブドウ糖などの単糖、ショ糖などの二糖、アルギン酸、ペクチン、アミロース等の多糖、又はキチン、キトサン、グルコースアミン等の窒素を含む糖のいずれでもよく、或いはこれらの2種類以上の混合物であっても良い。
また、脂肪酸エステルとしては、脂肪酸の結合数が、1のモノエステル、2のジエステル、又は3以上のポリエステル、或いはこれらの2種類以上の混合物が用いられる。
[Fatty acid ester of sugar]
In the present invention, a fatty acid ester of sugar is used as a carbon source for a hydrothermal reaction.
The sugar may be a monosaccharide such as fructose or glucose, a disaccharide such as sucrose, a polysaccharide such as alginic acid, pectin or amylose, or a sugar containing nitrogen such as chitin, chitosan or glucose amine, or two of these. It may be a mixture of more than one kind.
Further, as the fatty acid ester, a monoester having 1 or 2 diesters of fatty acids, a polyester having 3 or more bonds, or a mixture of two or more of these is used.

このように、本発明において用いられる糖の脂肪酸エステルは特に限定されないが、例えば、下記の式1〜3で表されるもの、或いはこれらの混合物等が挙げられる。ただし、式中、脂肪酸部位は、上記化学構造式とは異なる部位に導入されていても良い。言い換えれば、糖のどの部位のOH基がエステル化されてアルキル基が伸長しているかは問わない。 As described above, the fatty acid ester of the sugar used in the present invention is not particularly limited, and examples thereof include those represented by the following formulas 1 to 3 or mixtures thereof. However, in the formula, the fatty acid moiety may be introduced into a moiety different from the above chemical structural formula. In other words, it does not matter at which site of the sugar the OH group is esterified and the alkyl group is extended.

Figure 0006933370
Figure 0006933370

Figure 0006933370
Figure 0006933370

Figure 0006933370
Figure 0006933370

脂肪酸のアルキル基は、二重結合を含んでいてもよく、上記式中のnが、1〜100、好ましくは、1〜50、さらに好ましくは1〜20のものが用いられる。
本発明の糖の脂肪酸エステルは、アルキル鎖長の異なる糖の脂肪酸エステルを混合して用いてもよく、さらに、ジエステルおよびポリエステルにおいては、一つの糖の脂肪酸エステルの分子に2種類以上の異なるアルキル鎖長を含んでいてもよい。言い換えれば、ジエステルおよびポリエステルにおいては、糖の一分子内のOH基から、異なる鎖長のアルキル基が伸長していても良い。
また、本発明における糖の脂肪酸エステルは、合成品でもよく、或いは、入手可能な市販品でも良い。入手容易な市販品としては、具体的には、ショ糖ラウリン酸エステル、ショ糖ステアリン酸エステル、ショ糖ベヘニン酸エステル等が挙げられる。
The alkyl group of the fatty acid may contain a double bond, and n in the above formula is 1 to 100, preferably 1 to 50, and more preferably 1 to 20.
The fatty acid ester of the sugar of the present invention may be used as a mixture of fatty acid esters of sugars having different alkyl chain lengths, and further, in diesters and polyesters, two or more different alkyls are added to the fatty acid ester molecule of one sugar. It may include the chain length. In other words, in diesters and polyesters, alkyl groups having different chain lengths may be extended from the OH group in one molecule of the sugar.
Further, the fatty acid ester of the sugar in the present invention may be a synthetic product or a commercially available product. Specific examples of commercially available products that are easily available include sucrose lauric acid ester, sucrose stearic acid ester, and sucrose behenic acid ester.

[水熱合成]
本発明の多孔質炭素は、以下の1〜3の工程で合成される。
工程1:糖の脂肪酸エステルを水に溶解させ、溶液を密閉加熱する工程
工程2:得られる固体を回収し、室温で洗浄した後、乾燥させる工程
工程3:乾燥後の固体を加温下で溶媒洗浄した後、乾燥させる工程
ただし、用いる原料の種類によっては工程3を省略しても良い。
以下、順に説明する。
[Hydrothermal synthesis]
The porous carbon of the present invention is synthesized by the following steps 1 to 3.
Step 1: Dissolve the sugar fatty acid ester in water and heat the solution tightly. Step 2: Collect the obtained solid, wash it at room temperature, and then dry it. Step 3: Dry the solid under heating. Step of washing with a solvent and then drying However, step 3 may be omitted depending on the type of raw material used.
Hereinafter, they will be described in order.

(工程1)
前記工程1は、濃度1〜70重量パーセントの糖の脂肪酸エステルの水溶液(以下、「原料水溶液」ということもある)を、100〜350℃において密閉容器内で、1時間以上加熱することにより行われる。
水熱反応の原料である原料水溶液中に、従来用いられている、例えば、ポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオキシドトリブロック共重合体などの両親媒性ポリマーや、ドデシル硫酸ナトリウムなどの一般的な界面活性剤、ポリスチレン粒子などの有機コロイド又はシリカ粒子などの無機コロイドなどのテンプレート剤を加えて使用しても良い。また、従来のシリカ多孔体などの無機多孔質テンプレート剤を加えて使用しても良い。また、これらの従来のテンプレート剤を2種類以上混合して加えても良い。
また、前記原料水溶液中に、従来の、果糖、ブドウ糖などの単糖、ショ糖などの二糖、アルギン酸、ペクチン、アミロース等の多糖、又はキチン、キトサン、グルコースアミン等の窒素を含む糖、或いはこれらの2種類以上の混合物を加えても良い。
また、前記原料水溶液中に、窒素や硫黄をドープするための添加物を加えても良い。こうした添加剤として、システイン、アルブミン、オボアルブミン、チオフェンアルデヒドなどが挙げられる。
また、前記原料水溶液中に、pH調整剤を添加して合成しても良い。
さらに、前記原料水溶液中に、塩酸、硫酸、硝酸、ボロン酸などの無機酸またはトルエンスルホン酸などの有機酸等の酸、或いは、水酸化ナトリウム、水酸化アンモニウムなどの無機塩基等の塩基を加えても良い。
さらに、細孔膨潤剤として、例えば、ヘキサンやトリメチルベンゼン、シメンなどの有機系の添加物を加えても良い。
さらにまた、o/wエマルジョン、コロイド分散剤と組み合わせて用いてもよい。
(Step 1)
The step 1 is carried out by heating an aqueous solution of a fatty acid ester of sugar having a concentration of 1 to 70% by weight (hereinafter, also referred to as “raw material aqueous solution”) at 100 to 350 ° C. in a closed container for 1 hour or more. It is said.
Conventionally used amphipathic polymers such as polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer and general surfactants such as sodium dodecyl sulfate in the raw material aqueous solution which is the raw material of the hydrothermal reaction. A template agent such as an activator, an organic colloid such as polystyrene particles, or an inorganic colloid such as silica particles may be added and used. Further, an inorganic porous template agent such as a conventional silica porous body may be added and used. Further, two or more kinds of these conventional template agents may be mixed and added.
In addition, conventional monosaccharides such as fructose and glucose, disaccharides such as sucrose, polysaccharides such as alginic acid, pectin and amylose, or nitrogen-containing sugars such as chitin, chitosan and glucoseamine in the raw material aqueous solution, or A mixture of two or more of these may be added.
Further, an additive for doping nitrogen or sulfur may be added to the raw material aqueous solution. Examples of such additives include cysteine, albumin, ovalbumin, thiophenaldehyde and the like.
Further, a pH adjusting agent may be added to the aqueous solution of the raw material for synthesis.
Further, an acid such as an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid or boronic acid or an organic acid such as toluenesulfonic acid, or a base such as an inorganic base such as sodium hydroxide or ammonium hydroxide is added to the raw material aqueous solution. You may.
Further, as the pore swelling agent, for example, an organic additive such as hexane, trimethylbenzene, or cymene may be added.
Furthermore, it may be used in combination with an o / w emulsion or a colloidal dispersant.

(工程2、3)
本発明の多孔質炭素は、水熱合成反応で得られた固体を水及び有機溶媒で洗浄した後、乾燥させることにより得られる。有機溶媒としては、特に限定されないが、エタノール、アセトン、ジエチルエーテルなどが好ましく用いられる。
具体的には、水熱合成後に得られる茶色い固体を、十分な量の水および有機溶媒でそれぞれ室温以上の温度で洗浄した後、室温以上の温度で3時間以上乾燥させる。真空条件下において乾燥させても良い。本乾燥後の茶色い固体に有機溶媒を十分量加え、室温以上の温度で1時間以上、撹拌洗浄する。攪拌洗浄後の茶色い固体を室温以上の温度で3時間以上乾燥させることにより、目的とする糖の脂肪酸由来の多孔質炭素材料を得る。真空条件下において乾燥させても良い。また有機溶媒による攪拌洗浄およびその後の乾燥工程は、用いる糖の脂肪酸エステルの種類によっては省いても良い。
上記の1回目の乾燥の代わりに、凍結乾燥法による乾燥を行っても良い。すなわち、十分な量の水および有機溶媒で洗浄した後に、試料に含まれる有機溶媒を水で置換した後、凍結乾燥を行う。
また上記の2回目の乾燥後に塩基による洗浄を行っても良い。
(Steps 2 and 3)
The porous carbon of the present invention can be obtained by washing the solid obtained by the hydrothermal synthesis reaction with water and an organic solvent and then drying it. The organic solvent is not particularly limited, but ethanol, acetone, diethyl ether and the like are preferably used.
Specifically, the brown solid obtained after hydrothermal synthesis is washed with a sufficient amount of water and an organic solvent at a temperature of room temperature or higher, and then dried at a temperature of room temperature or higher for 3 hours or longer. It may be dried under vacuum conditions. A sufficient amount of an organic solvent is added to the brown solid after the main drying, and the mixture is stirred and washed at a temperature of room temperature or higher for 1 hour or longer. The brown solid after stirring and washing is dried at a temperature of room temperature or higher for 3 hours or longer to obtain a porous carbon material derived from the fatty acid of the target sugar. It may be dried under vacuum conditions. Further, the stirring washing with an organic solvent and the subsequent drying step may be omitted depending on the type of fatty acid ester of the sugar used.
Instead of the first drying described above, drying by the freeze-drying method may be performed. That is, after washing with a sufficient amount of water and an organic solvent, the organic solvent contained in the sample is replaced with water, and then freeze-drying is performed.
In addition, washing with a base may be performed after the second drying described above.

[水熱反応生成物]
本発明において、糖の脂肪酸エステルを原料とする水熱合成により得られた多孔質炭素は、炭素骨格内に糖由来の含酸素官能基および脂肪酸由来のアルキル基を有し、大きさ数〜数百μmの塊状の形状や、厚さ数nm〜数μm程度のシート状の形状をなす。塊状およびシート状形状はさらに、数〜数十nmの微粒子が互いに連結した構造もしくは、太さ数〜数十nmの共連続様の構造からなっている。さらに、本微粒子の連結形態に緩やかな配向性を持たせることができる。得られた粉体は窒素吸着による細孔評価では、0.04〜3cm/gの細孔容量を示す。
[Hydrothermal reaction product]
In the present invention, the porous carbon obtained by hydrothermal synthesis using a fatty acid ester of a sugar as a raw material has an oxygen-containing functional group derived from the sugar and an alkyl group derived from the fatty acid in the carbon skeleton, and has a size of several to several. It has a lump shape of 100 μm or a sheet shape with a thickness of several nm to several μm. The lump-like and sheet-like shapes further have a structure in which fine particles having a thickness of several to several tens of nm are connected to each other, or a co-continuous structure having a thickness of several to several tens of nm. Further, the connected form of the fine particles can be given a loose orientation. The obtained powder shows a pore volume of 0.04 to 3 cm 3 / g in the pore evaluation by nitrogen adsorption.

(不活性雰囲気下での焼成処理)
通常、糖から水熱合成手法で得られる炭素骨格は、400〜500℃以上での不活性雰囲気下における焼成により炭素骨格の芳香族化が進行し、焼成温度の更なる上昇とともに、炭素材料は良好な電気伝導性を帯び電極材料などとしての用途が開けることが知られている。
本発明においても、前記の乾燥後の多孔質炭素を、さらに不活性雰囲気下で焼成することにより、芳香族性を高めることができる。
具体的には、前記乾燥後の多孔質炭素を、50mL/min以上の不活性ガスフロー下において、200℃以上の温度で焼成する。不活性ガスとしては、窒素やアルゴン、ヘリウム等が用いられる。
(Baking process in an inert atmosphere)
Usually, the carbon skeleton obtained by the hydrothermal synthesis method from sugar is aromatized by firing in an inert atmosphere at 400 to 500 ° C. or higher, and the carbon material becomes more aromatized as the firing temperature rises further. It is known that it has good electrical conductivity and can be used as an electrode material.
Also in the present invention, the aromaticity can be enhanced by further firing the dried porous carbon in an inert atmosphere.
Specifically, the dried porous carbon is calcined at a temperature of 200 ° C. or higher under an inert gas flow of 50 mL / min or higher. As the inert gas, nitrogen, argon, helium or the like is used.

糖から得られた炭素材料を焼成した後の炭素材料は、焼成により炭素ネットワークの芳香族化が進み、通常400℃付近以上の温度で焼成すると、含酸素官能基の多くが損失されてしまう(特許文献4、非特許文献9参照)。
これに対し、本発明における、糖の脂肪酸エステルの水熱合成から得られた炭素材料を不活性雰囲気下で焼成して得られた多孔質炭素は、比較的高い芳香族性とともに、含酸素官能基(ヒドロキシル基)を含有することを特徴としている。
また、本発明における、この焼成後の多孔質炭素は、大きさ数〜数百μmの塊状の形状や、厚さ数nm〜数μm程度のシート状の形状をなし、塊状およびシート状の形状はさらに、数〜数十nmの微粒子が互いに連結した構造からなっている。
After calcining the carbon material obtained from sugar, the carbon network is aromatized by calcining, and when calcined at a temperature of about 400 ° C. or higher, most of the oxygen-containing functional groups are lost (usually, most of the oxygen-containing functional groups are lost (). See Patent Document 4 and Non-Patent Document 9).
On the other hand, in the present invention, the porous carbon obtained by firing the carbon material obtained from the hydrothermal synthesis of the fatty acid ester of sugar in an inert atmosphere has relatively high aromaticity and oxygen-containing functionality. It is characterized by containing a group (hydroxyl group).
Further, in the present invention, the porous carbon after firing has a lump shape having a size of several to several hundred μm or a sheet shape having a thickness of several nm to several μm, and has a lump shape and a sheet shape. Further, it has a structure in which fine particles having a diameter of several to several tens of nm are connected to each other.

さらに、本発明における、この焼成後の多孔質炭素は、窒素吸着による細孔評価では、0.2〜5cm/gの細孔容量を示す。通常、糖そのものから得られる炭素材料を同様に不活性雰囲気下で焼成した場合の細孔容量は、0.15cm−1以下である(L.Yu et al.,Langmuir,2012,28.12373参照)ことからみて、本発明においては、原料として糖の脂肪酸エステルを用いることにより、より細孔容量が大きいものが得られるといえる。 Further, in the present invention, the porous carbon after calcination shows a pore capacity of 0.2 to 5 cm 3 / g in the pore evaluation by nitrogen adsorption. Normally, when a carbon material obtained from sugar itself is calcined in the same inert atmosphere, the pore volume is 0.15 cm 3 g -1 or less (L. Yu et al., Langmuir, 2012, 28. From the viewpoint (see 12373), it can be said that in the present invention, by using a fatty acid ester of sugar as a raw material, a substance having a larger pore capacity can be obtained.

本発明の、糖の脂肪酸エステルを原料とする水熱反応生成物からなる多孔質炭素、或いは該水熱反応生成物の焼成物からなる多孔質炭素は、その小さな孔(細孔)を利用して、吸着剤、及び触媒担体、分離担体、クロマト担体、生体分子足場材、生体分子捕捉材、薬物包含材又は香料担体等の多孔質担体として用いることができるばかりでなく、細孔空間を電解質の効率移動空間として利用した二次電池やキャパシタ、燃料電池、センサーなどの炭素電極としての利用が可能である。
また、本発明の多孔質炭素は、糖の脂肪酸エステルを原料とするものであるため、環境負荷が少ないばかりでなく、生体分子足場材、生体分子捕捉材、薬物包含材等の医療用途に好ましく用いることができ、さらに、食品、食品用添加剤又は化粧品添加剤等にも用いることができる。
また、本発明の多孔質炭素は、ヒドロキシル基やカルボニル基、カルボキシル基などの含酸素官能基や糖の脂肪酸エステル由来のアルキル基などの官能基を有するため、これらの官能基を用いて、種々の機能性を付与した多孔質炭素を提供することができる。
The porous carbon made of a hydrothermal reaction product made from a sugar fatty acid ester of the present invention or the porous carbon made of a calcined product of the hydrothermal reaction product utilizes its small pores. Not only can it be used as an adsorbent and a porous carrier such as a catalyst carrier, a separation carrier, a chromato carrier, a biomolecular scaffolding material, a biomolecule trapping material, a drug containing material or a fragrance carrier, but also the pore space can be used as an electrolyte. It can be used as a carbon electrode for secondary batteries, capacitors, fuel cells, sensors, etc. used as an efficient moving space.
Further, since the porous carbon of the present invention is made from a fatty acid ester of sugar, it not only has a small environmental load, but is also preferable for medical applications such as biomolecule scaffolding materials, biomolecule trapping materials, and drug inclusion materials. It can be used, and can also be used for foods, food additives, cosmetic additives, and the like.
Further, since the porous carbon of the present invention has an oxygen-containing functional group such as a hydroxyl group, a carbonyl group and a carboxyl group, and an alkyl group derived from a fatty acid ester of a sugar, various functional groups can be used. It is possible to provide a porous carbon imparted with the same functionality.

以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれにより限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.

[評価方法]
以下に記載する実施例及び比較例で得られた炭素材料に含まれる官能基を、フーリエ変換赤外吸収分光法により確認した。
図1(A)(B)は、実施例1〜6及び比較例1、2で得られた炭素材料のフーリエ変換赤外吸収スペクトルであり、(B)は、脂肪酸由来のアルキル基の吸収ピークを詳細に解析するために、(A)のスペクトルの波数4000−2000cm−1の範囲を拡大したものである。
図2は、実施例7、8及び比較例3で得られた炭素材料のフーリエ変換赤外吸収スペクトルである。
[Evaluation method]
The functional groups contained in the carbon materials obtained in the examples and comparative examples described below were confirmed by Fourier transform infrared absorption spectroscopy.
1 (A) and 1 (B) are Fourier transform infrared absorption spectra of the carbon materials obtained in Examples 1 to 6 and Comparative Examples 1 and 2, and FIG. 1 (B) is an absorption peak of an alkyl group derived from a fatty acid. In order to analyze in detail, the range of the wave number 4000-2000 cm -1 of the spectrum of (A) is expanded.
FIG. 2 is a Fourier transform infrared absorption spectrum of the carbon material obtained in Examples 7 and 8 and Comparative Example 3.

また、実施例及び比較例で得られた炭素材料の全細孔容積を、窒素吸着法により測定した。
図3は、実施例1〜8で得られた炭素材料の窒素吸着等温線であり、図4は、比較例1,2で得られた炭素材料の窒素吸着等温線である。
In addition, the total pore volume of the carbon materials obtained in Examples and Comparative Examples was measured by the nitrogen adsorption method.
FIG. 3 is a nitrogen adsorption isotherm of the carbon material obtained in Examples 1 to 8, and FIG. 4 is a nitrogen adsorption isotherm of the carbon material obtained in Comparative Examples 1 and 2.

さらに、実施例及び比較例で得られた炭素材料について、走査型電子顕微鏡及び透過型電子顕微鏡による観察を行った。なお、透過型電子顕微鏡による観察は、得られた粒子を、より詳細に観察するためのものであり、得られた炭素材料を熱硬化性樹脂中に包埋し、該包埋材料をミクロトームで厚さ数十〜100nmに薄切して得た薄片試料を観察した。
図5〜図21は、実施例及比較例で得られた炭素材料の各観察像である。
Furthermore, the carbon materials obtained in Examples and Comparative Examples were observed with a scanning electron microscope and a transmission electron microscope. The observation with a transmission electron microscope is for observing the obtained particles in more detail. The obtained carbon material is embedded in a thermosetting resin, and the embedded material is embedded in a microtome. A flaky sample obtained by slicing to a thickness of several tens to 100 nm was observed.
5 to 21 are observation images of carbon materials obtained in Examples and Comparative Examples.

[実施例1]
(工程1)
糖の脂肪酸エステルとして、分子式C305712で表される、ショ糖ステアリン酸エステル(第一工業製薬株式会社 DKエステルSS,HLB19、モノエステル率;約100%)4gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常3層に分かれて析出するが、そのうち最も比重の小さい、最上層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させることにより、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
[Example 1]
(Step 1)
As a fatty acid ester of sugar, 10 mL of deionized 4 g of sucrose stearic acid ester (DK ester SS, HLB19, monoester ratio; about 100%) represented by the molecular formula C 30 H 57 O 12 Dissolved in water. After allowing to stand overnight, it was heated at 120 ° C. for 103 hours in a closed container.
(Step 2)
The obtained brown solid was recovered. Usually, it is divided into three layers and precipitated, but the uppermost layer having the smallest specific density was taken out. About 40 mL of deionized water was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated two more times. Then, about 40 mL of ethanol was poured, and the mixture was shaken and centrifuged in the same manner. The supernatant solution was removed and this operation was repeated two more times. The resulting precipitate was dried at 65 ° C. overnight or longer.
(Step 3)
50 mL of ethanol was added to the dried brown solid, and the mixture was stirred and washed at 60 ° C. overnight or longer. After washing, centrifugation was performed to remove the supernatant, 40 mL of ethanol was added, and the mixture was shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once again. The precipitate was dried at 65 ° C. overnight or more to obtain a carbon material derived from the desired sucrose fatty acid ester.

(フーリエ変換赤外吸収スペクトル)
実施例1で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、2955cm−1付近(CH対称伸縮振動)、2920cm−1付近(vCH逆対称)、および2851cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も有することが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Example 1, C = O (stretching, 1800~1520cm -1) derived from a carboxyl group and a carbonyl group or OH (stretching, 3700~3100cm -1) are observed peak attributed to From this, it was found that an oxygen-containing functional group is present in the carbon material. Furthermore, peaks characteristic of fatty acid-derived alkyl groups were observed near 2955 cm -1 (CH 3 symmetric stretching vibration), 2920 cm -1 (vCH 2 inverse symmetry), and 2851 cm -1 (vCH 2 symmetry). It was also found to have an alkyl group.

(窒素吸着等温線)
実施例1で得られた炭素材料は、高相対圧付近において、わずかではあるが等温線の立ち上がりが見られ、算出された全細孔容量は0.04cm/g(表2)であった。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 1, a slight rise of isotherms was observed in the vicinity of high relative pressure, and the calculated total pore volume was 0.04 cm 3 / g (Table 2). ..

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例1で得られた炭素材料の走査型電子顕微鏡像を図5に示す。数〜数十nmの粒子が互いに連なり、数〜数十μmの大きさの粒子が形成されている様子が観察された。
実施例1で得られた炭素材料の透過型電子顕微鏡像を図6に示す。幹の太さが数十nm程度の共連続様の構造が形成されている様子が観察された。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 1 is shown in FIG. It was observed that particles having a size of several to several tens of nm were connected to each other to form particles having a size of several to several tens of μm.
The transmission electron microscope image of the carbon material obtained in Example 1 is shown in FIG. It was observed that a co-continuous structure with a trunk thickness of several tens of nm was formed.

よって、本実施例から、糖の脂肪酸エステルを原料とした水熱合成により多孔質炭素が得られ、その材料は含酸素官能基およびアルキル基を有することが分かった。
なお、実施例1の工程2において、3層に分かれて析出する固体のうち、比重の最も大きい最下層を取り出し、それ以外の操作を実施例1と同様に行っても炭素材料が得られたが、その炭素材料では脂肪酸由来のアルキル基は有しなかった。
Therefore, from this example, it was found that porous carbon was obtained by hydrothermal synthesis using a fatty acid ester of sugar as a raw material, and that the material had an oxygen-containing functional group and an alkyl group.
In step 2 of Example 1, a carbon material was obtained by taking out the lowest layer having the highest specific gravity among the solids precipitated in three layers and performing other operations in the same manner as in Example 1. However, the carbon material did not have an alkyl group derived from fatty acid.

[実施例2]
本実施例では、実施例1と同じショ糖脂肪酸エステルを用い、工程2において比重の二番目に小さい中間層を取り出した。本実施例における工程を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C305712で表される、ショ糖ステアリン酸エステル(第一工業製薬株式会社 DKエステルSS,HLB19、モノエステル率;約100%)4gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常3層に分かれて析出するが、そのうち実施例1とは異なり、二番目に比重の小さい中間層を取り出した。約40mLの脱イオン水を注いで、シェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させることにより、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
[Example 2]
In this example, the same sucrose fatty acid ester as in Example 1 was used, and the intermediate layer having the second lowest specific density was taken out in step 2. The steps in this example are shown below.
(Step 1)
As a fatty acid ester of sugar, 10 mL of deionized 4 g of sucrose stearic acid ester (DK ester SS, HLB19, monoester ratio; about 100%) represented by the molecular formula C 30 H 57 O 12 Dissolved in water. After allowing to stand overnight, it was heated at 120 ° C. for 103 hours in a closed container.
(Step 2)
The obtained brown solid was recovered. Normally, the precipitate is divided into three layers, but unlike Example 1, the intermediate layer having the second lowest specific density was taken out. About 40 mL of deionized water was poured, shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated two more times. Then, about 40 mL of ethanol was poured, and the mixture was shaken and centrifuged in the same manner. The supernatant solution was removed and this operation was repeated two more times. The resulting precipitate was dried at 65 ° C. overnight or longer.
(Step 3)
50 mL of ethanol was added to the dried brown solid, and the mixture was stirred and washed at 60 ° C. overnight or longer. After washing, centrifugation was performed to remove the supernatant, 40 mL of ethanol was added, and the mixture was shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once again. The precipitate was dried at 65 ° C. overnight or more to obtain a carbon material derived from the desired sucrose fatty acid ester.

(フーリエ変換赤外吸収スペクトル)
実施例2で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、波数2955cm−1付近(CH対称伸縮振動)、2924cm−1付近(vCH逆対称)、および2853cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も存在することが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Example 2, C = O (stretching, 1800~1520cm -1) derived from a carboxyl group and a carbonyl group or OH (stretching, 3700~3100cm -1) are observed peak attributed to From this, it was found that an oxygen-containing functional group is present in the carbon material. Furthermore, peaks characteristic of fatty acid-derived alkyl groups are observed near 2955 cm -1 (CH 3 symmetric stretching vibration), 2924 cm -1 (vCH 2 inverse symmetry), and 2853 cm -1 (vCH 2 symmetry). , Alkyl groups were also found to be present.

ここで、観測されたアルキル基は、原料であるショ糖脂肪酸エステル分子内のエステル結合が水熱条件下で切れて、脂肪酸が炭素材料に物理混合された結果生じている可能性も否定できない。そこで、本アルキル基が炭素材料内に物理的に混合された脂肪酸に由来するものではなく、共有結合によってアルキル基が炭素骨格内に組み込まれた結果生じていることを確かめるため、実施例2において工程3の操作を2回行った後、フーリエ変換赤外吸収測定を行い、本工程前後での赤外吸収スペクトルにおける脂肪酸由来アルキル基のピーク強度を比較した。脂肪酸は通常水にはほとんど溶けないが(溶解度:0.0003%、20℃)、加温したエタノールにはやや溶けやすい。アルキル基と炭素とが物理的に混合したものであった場合、2回洗浄後にはより多くのアルキル基が除去されることにより、上記で見られたアルキル基のピーク強度が減少するはずである。 Here, it cannot be denied that the observed alkyl group may be generated as a result of the ester bond in the sucrose fatty acid ester molecule, which is the raw material, being broken under hydrothermal conditions and the fatty acid being physically mixed with the carbon material. Therefore, in order to confirm that the present alkyl group is not derived from the fatty acid physically mixed in the carbon material but is generated as a result of the alkyl group being incorporated into the carbon skeleton by a covalent bond, in Example 2. After performing the operation of step 3 twice, Fourier conversion infrared absorption measurement was performed, and the peak intensities of fatty acid-derived alkyl groups in the infrared absorption spectra before and after this step were compared. Fatty acids are usually almost insoluble in water (solubility: 0.0003%, 20 ° C), but slightly soluble in warmed ethanol. If the alkyl groups and carbon were physically mixed, the peak intensity of the alkyl groups seen above should be reduced by removing more alkyl groups after the second wash. ..

工程3を2回行った後の、フーリエ変換赤外吸収スペクトルを図1(A)および(B)に示す(“実施例2(EtOH2回洗浄後“)と表示されたスペクトルである)。工程3を2回行った材料についても、波数2957cm−1付近(CH対称伸縮振動)、2924cm−1付近(vCH逆対称)、および2855cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られたことから、アルキル基と炭素とが物理的に混合したものではなく、炭素骨格内にアルキル基が共有結合で組み込まれていると考えられる。 The Fourier transform infrared absorption spectrum after performing step 3 twice is shown in FIGS. 1 (A) and 1 (B) (the spectrum displayed as "Example 2 (after washing EtOH twice")). Alkyl derived from fatty acids around 2957 cm -1 (CH 3 symmetric expansion and contraction vibration), 2924 cm -1 (vCH 2 inverse symmetry), and 2855 cm -1 (vCH 2 symmetric) also for the material obtained by performing step 3 twice. Since a characteristic peak was observed in the group, it is considered that the alkyl group and carbon are not physically mixed, but the alkyl group is covalently incorporated in the carbon skeleton.

(窒素吸着等温線)
実施例2で得られた炭素材料は、高相対圧付近において、実施例1よりも等温線の立ち上がりが大きく見られ、算出された全細孔容量は0.16cm/g(表2)であり、実施例1よりも大きかった。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 2, the rise of the isotherm was larger in the vicinity of high relative pressure than in Example 1, and the calculated total pore volume was 0.16 cm 3 / g (Table 2). Yes, it was larger than Example 1.

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例2で得られた炭素材料の走査型電子顕微鏡像を図7に示す。数〜数十nmの粒子が互いに連なっている様子が観察された。また本連結体は、厚さ数十〜200nm程度のシート状の形状をなしていた。
実施例2で得られた炭素材料の透過型電子顕微鏡像を図8に示す。図8は、シート形状の断面を表していると考えられ、本シート形状は数〜数十nmの粒子が互いに連なることにより形成されている様子が観察された。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 2 is shown in FIG. It was observed that particles of several to several tens of nm were connected to each other. Further, the present connected body had a sheet-like shape having a thickness of about several tens to 200 nm.
The transmission electron microscope image of the carbon material obtained in Example 2 is shown in FIG. FIG. 8 is considered to represent a cross section of the sheet shape, and it was observed that the present sheet shape was formed by connecting particles having a diameter of several to several tens of nm.

よって、本実施例から、糖の脂肪酸エステルを原料とした水熱合成により多孔質炭素が得られ、その材料は含酸素官能基およびアルキル基を有することが分かった。 Therefore, from this example, it was found that porous carbon was obtained by hydrothermal synthesis using a fatty acid ester of sugar as a raw material, and that the material had an oxygen-containing functional group and an alkyl group.

[実施例3]
本実施例では、本実施例で得られた炭素材料の耐塩基性を調べるため、塩基による洗浄処理を行った。本塩基処理工程を含む合成を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C305712で表される、ショ糖ステアリン酸エステル(第一工業製薬株式会社 DKエステルSS,HLB19、モノエステル率;約100%)4gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常3層に分かれて析出するが、そのうち実施例2と同様に、二番目に比重の小さい中間層を取り出した。約40mLの脱イオン水を注いで、シェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで、約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体に、エタノール50mLを加え、60℃で、一晩以上、撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させた。
(塩基処理工程)
工程3で得られた炭素材料を、0.1Mの水酸化ナトリウム水溶液中で室温において撹拌した。撹拌後の炭素材料に約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除いた後、約40mLのEtOHを注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。沈殿を65℃で一晩以上乾燥させることにより、目的とする水酸化ナトリウム処理炭素材料を得た。
[Example 3]
In this example, in order to examine the basic resistance of the carbon material obtained in this example, a washing treatment with a base was performed. The synthesis including this base treatment step is shown below.
(Step 1)
As a fatty acid ester of sugar, 10 mL of deionized 4 g of sucrose stearic acid ester (DK ester SS, HLB19, monoester ratio; about 100%) represented by the molecular formula C 30 H 57 O 12 Dissolved in water. After allowing to stand overnight, it was heated at 120 ° C. for 103 hours in a closed container.
(Step 2)
The obtained brown solid was recovered. Usually, it is divided into three layers and precipitated, but as in Example 2, the intermediate layer having the second lowest specific density was taken out. About 40 mL of deionized water was poured, shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated two more times. Then, about 40 mL of ethanol was poured, and the mixture was shaken and centrifuged in the same manner. The supernatant solution was removed and this operation was repeated two more times. The resulting precipitate was dried at 65 ° C. overnight or longer.
(Step 3)
To the dried brown solid, 50 mL of ethanol was added, and the mixture was washed with stirring at 60 ° C. overnight or more. After washing, centrifugation was performed to remove the supernatant, 40 mL of ethanol was added, and the mixture was shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once again. The precipitate was dried at 65 ° C. overnight or longer.
(Base treatment process)
The carbon material obtained in step 3 was stirred at room temperature in a 0.1 M aqueous sodium hydroxide solution. About 40 mL of deionized water was poured into the stirred carbon material, shaken with a shaker, and then centrifuged to precipitate a solid. After removing the supernatant solution, about 40 mL of EtOH was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The precipitate was dried at 65 ° C. overnight or longer to obtain the desired sodium hydroxide-treated carbon material.

ショ糖脂肪酸由来炭素材料のアルキル基は、エステル基を介して炭素骨格に共有結合していると考えられる。そのため、エステル結合の耐塩基性が低い場合アルキル基の数が減少し、フーリエ変換赤外吸収スペクトルのアルキル基のピーク強度が減少することが予想される。 The alkyl group of the sucrose fatty acid-derived carbon material is considered to be covalently bonded to the carbon skeleton via an ester group. Therefore, when the basic resistance of the ester bond is low, it is expected that the number of alkyl groups will decrease and the peak intensity of the alkyl groups in the Fourier transform infrared absorption spectrum will decrease.

(フーリエ変換赤外吸収スペクトル)
実施例3で得られた炭素材料では、OH(伸縮、3700〜3100cm−1)の大きな吸収ピークに影響を受けるため、実施例1や2に比べると明確ではないものの、波数2967cm−1付近(CH対称伸縮振動)にやや吸収が見られる。2927cm−1付近(vCH逆対称)、および2850cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、炭素骨格内に組み込まれたアルキル基が保たれることが分かった。また、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、含酸素官能基も同時に保たれることが分かった。
(Fourier transform infrared absorption spectrum)
Since the carbon material obtained in Example 3 is affected by a large absorption peak of OH (expansion and contraction, 3700 to 3100 cm -1 ), it is not clear as compared with Examples 1 and 2, but the wave number is around 2967 cm -1 (around 2967 cm -1). Some absorption is seen in CH 3 symmetrical expansion and contraction vibration). 2927Cm -1 vicinity (VCH 2 antisymmetric), and 2850 cm -1 vicinity (VCH 2 symmetry) the observed peaks characteristic of alkyl groups derived from fatty acids, that remain alkyl groups incorporated in the carbon backbone I found out. Furthermore, C = O (stretching, 1800~1520cm -1) derived from a carboxyl group and a carbonyl group or OH (stretching, 3700~3100cm -1) from the observed peaks attributed to, oxygen-containing functional groups at the same time It turned out to be kept.

(窒素吸着等温線)
実施例3で得られた炭素材料は、高相対圧付近において、実施例2と類似した等温線の立ち上がりが確認され、算出された全細孔容量は0.17cm/g(表2)であった。よって、細孔容量が保たれていることが分かった。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 3, the rise of isotherms similar to that in Example 2 was confirmed in the vicinity of high relative pressure, and the calculated total pore volume was 0.17 cm 3 / g (Table 2). there were. Therefore, it was found that the pore capacity was maintained.

(走査型電子顕微鏡像)
本実施例で得られた炭素材料の走査型電子顕微鏡像を図9に示す。数〜数十nmの粒子が互いに連なり、数〜数十μmの大きさの粒子が形成されている様子が観察された。
(Scanning electron microscope image)
A scanning electron microscope image of the carbon material obtained in this example is shown in FIG. It was observed that particles having a size of several to several tens of nm were connected to each other to form particles having a size of several to several tens of μm.

よって、本実施例から、0.1Mの水酸化ナトリウム処理を行っても、ショ糖脂肪酸エステル由来の炭素材料の含酸素官能基とアルキル基、及び細孔容量は保たれることが分かった。 Therefore, from this example, it was found that the oxygen-containing functional groups and alkyl groups and the pore capacity of the carbon material derived from the sucrose fatty acid ester were maintained even after the treatment with 0.1 M sodium hydroxide.

[実施例4]
実施例1〜3において、ショ糖一分子につきアルキル基が一鎖連結したショ糖脂肪酸エステルを原料とした水熱合成により、含酸素官能基とアルキル基を有する多孔質炭素が得られることが分かった。
よって、本実施例では、用いるショ糖脂肪酸エステル原料の疎水鎖を、実施例1〜3で用いたショ糖脂肪酸エステルよりも増やして界面活性を増大させることにより、得られるショ糖脂肪酸エステル由来炭素材料の細孔容量の増大と配向性の付与を試みた。
実施例1〜3では糖一分子につきアルキル基が一鎖連結した分子を原料としたが、ここでは実施例1〜3とは異なり、ショ糖一分子につき、アルキル基が二鎖以上連結した分子を30%含むショ糖脂肪酸エステルを原料として用いた。本合成を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C336212で表され、HLBが15、モノエステル率が70%のもの(第一工業製薬株式会社 DKエステル F160)1gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で182時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常、上層と下層の2層に分かれて析出するが、そのうち比重の小さい上層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで約40mLのエタノールを注いで同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させることにより、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
[Example 4]
In Examples 1 to 3, it was found that a porous carbon having an oxygen-containing functional group and an alkyl group can be obtained by hydrothermal synthesis using a sucrose fatty acid ester in which one alkyl group is linked per molecule of sucrose as a raw material. rice field.
Therefore, in this example, the sucrose fatty acid ester-derived carbon obtained by increasing the hydrophobic chain of the sucrose fatty acid ester raw material used as compared with the sucrose fatty acid ester used in Examples 1 to 3 to increase the surface activity. Attempts were made to increase the pore capacity of the material and impart orientation.
In Examples 1 to 3, a molecule in which one alkyl group was linked to one sugar molecule was used as a raw material, but here, unlike Examples 1 to 3, a molecule in which two or more alkyl groups are linked to one sucrose molecule. A sucrose fatty acid ester containing 30% of the above was used as a raw material. This synthesis is shown below.
(Step 1)
As a fatty acid ester of sugar, 1 g of a fatty acid ester represented by the molecular formula C 33 H 62 O 12 having an HLB of 15 and a monoester ratio of 70% (Daiichi Kogyo Seiyaku Co., Ltd. DK ester F160) is dissolved in 10 mL of deionized water. rice field. After allowing to stand overnight, it was heated at 120 ° C. for 182 hours in a closed container.
(Step 2)
The obtained brown solid was recovered. Normally, the precipitate is divided into two layers, an upper layer and a lower layer, and the upper layer having a smaller specific density is taken out. About 40 mL of deionized water was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated two more times. Then, about 40 mL of ethanol was poured and shaken in the same manner for centrifugation. The supernatant solution was removed and this operation was repeated two more times. The resulting precipitate was dried at 65 ° C. overnight or longer.
(Step 3)
50 mL of ethanol was added to the dried brown solid, and the mixture was stirred and washed at 60 ° C. overnight or longer. After washing, centrifugation was performed to remove the supernatant, 40 mL of ethanol was added, and the mixture was shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once again. The precipitate was dried at 65 ° C. overnight or more to obtain a carbon material derived from the desired sucrose fatty acid ester.

(フーリエ変換赤外吸収スペクトル)
実施例4で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、通常波数2963cm−1付近に見られるCH対称伸縮振動は明確には見られないものの、2922cm−1付近(vCH逆対称)、および2853cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も存在することが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Example 4, C = O (stretching, 1800~1520cm -1) derived from a carboxyl group and a carbonyl group or OH (stretching, 3700~3100cm -1) are observed peak attributed to From this, it was found that an oxygen-containing functional group is present in the carbon material. Furthermore, although the CH 3 symmetric expansion and contraction vibration normally seen near the wave number 2963 cm -1 is not clearly seen, it is derived from fatty acids near 2922 cm -1 (vCH 2 inverse symmetry) and 2853 cm -1 (vCH 2 symmetry). A characteristic peak was observed in the alkyl group, and it was found that the alkyl group was also present.

(窒素吸着等温線)
実施例4で得られた炭素材料は、高相対圧付近において、実施例1と同様にわずかではあるが等温線の立ち上がりが見られ、算出された全細孔容量は0.05cm/g(表2)であった。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 4, a slight rise of isotherms was observed in the vicinity of high relative pressure as in Example 1, and the calculated total pore volume was 0.05 cm 3 / g (). It was Table 2).

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例4で得られた炭素材料の走査型電子顕微鏡像を図10に示す。本実施例で得られた炭素材料は、数〜数十nmの粒子が互いに連なっている様子が観察された。
実施例4で得られた炭素材料の透過型電子顕微鏡像を図11に示す。幹の太さが数十nm程度の共連続様の構造が形成されている様子が観察された。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 4 is shown in FIG. In the carbon material obtained in this example, it was observed that particles of several to several tens of nm were connected to each other.
The transmission electron microscope image of the carbon material obtained in Example 4 is shown in FIG. It was observed that a co-continuous structure with a trunk thickness of several tens of nm was formed.

よって、本実施例から、ショ糖一分子につき、アルキル基が二鎖以上連結した分子を30%含むショ糖脂肪酸エステルを原料とした水熱合成によっても多孔質炭素が得られ、その材料は含酸素官能基およびアルキル基を有することが分かった。 Therefore, from this example, porous carbon can also be obtained by hydrothermal synthesis using a sucrose fatty acid ester containing 30% of molecules in which two or more alkyl groups are linked per molecule of sucrose as a raw material, and the material contains. It was found to have an oxygen functional group and an alkyl group.

[実施例5]
本実施例においては、実施例4と同じショ糖脂肪酸エステルを用い、工程2において比重の大きい下層を取り出した。本合成を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C336212で表され、HLBが15、モノエステル率が70%のもの(第一工業製薬株式会社 DKエステル F160)1gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で182時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常、上層と下層の2層に分かれて析出するが、そのうち実施例4とは異なり、比重の大きい下層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで、約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させ、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させることにより、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
[Example 5]
In this example, the same sucrose fatty acid ester as in Example 4 was used, and the lower layer having a large specific density was taken out in step 2. This synthesis is shown below.
(Step 1)
As a fatty acid ester of sugar, 1 g of a fatty acid ester represented by the molecular formula C 33 H 62 O 12 having an HLB of 15 and a monoester ratio of 70% (Daiichi Kogyo Seiyaku Co., Ltd. DK ester F160) is dissolved in 10 mL of deionized water. rice field. After allowing to stand overnight, it was heated at 120 ° C. for 182 hours in a closed container.
(Step 2)
The obtained brown solid was recovered. Normally, the precipitation is divided into two layers, an upper layer and a lower layer, but unlike Example 4, the lower layer having a large specific density was taken out. About 40 mL of deionized water was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated two more times. Then, about 40 mL of ethanol was poured, and the mixture was shaken and centrifuged in the same manner. The supernatant solution was removed and this operation was repeated two more times. The obtained precipitate was dried at 65 ° C. overnight or more to obtain a carbon material derived from the desired sucrose fatty acid ester.
(Step 3)
50 mL of ethanol was added to the dried brown solid, and the mixture was stirred and washed at 60 ° C. overnight or longer. After washing, centrifugation was performed to remove the supernatant, 40 mL of ethanol was added, and the mixture was shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once again. The precipitate was dried at 65 ° C. overnight or more to obtain a carbon material derived from the desired sucrose fatty acid ester.

(フーリエ変換赤外吸収スペクトル)
実施例5で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、波数2972cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も存在することが分かった。
(Fourier transformation infrared absorption spectrum)
The carbon material obtained in Example 5, C = O (stretching, 1800~1520cm -1) derived from a carboxyl group and a carbonyl group or OH (stretching, 3700~3100cm -1) are observed peak attributed to From this, it was found that an oxygen-containing functional group is present in the carbon material. Furthermore, peaks characteristic of fatty acid-derived alkyl groups are observed near wavenumbers of 2972 cm -1 (CH 3 symmetric stretching vibration), 2925 cm -1 (vCH 2 inverse symmetry), and 2854 cm -1 (vCH 2 symmetry). , Alkyl groups were also found to be present.

(窒素吸着等温線)
実施例5で得られた炭素材料は、高相対圧付近において、等温線の大きな立ち上がりが見られ、算出された全細孔容量は0.72cm/g(表2)であり、これまでの実施例の中で最も大きな細孔容量を示した。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 5, a large rise of the isotherm was observed near the high relative pressure, and the calculated total pore volume was 0.72 cm 3 / g (Table 2). It showed the largest pore volume in the examples.

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例5で得られた炭素材料の走査型電子顕微鏡像を図12に示す。大きさ数十nm程度の粒子(一次粒子)が、緩やかではあるが一定の配向性を持って互いに連なり、数〜数十μmの大きさの粒子(二次粒子)が形成されている様子が観察された。配向の方向を図12中に矢印で示した。
(Scanning electron microscope image and transmission electron microscope image)
A scanning electron microscope image of the carbon material obtained in Example 5 is shown in FIG. Particles (primary particles) with a size of several tens of nm are connected to each other with a gentle but constant orientation, and particles (secondary particles) with a size of several to several tens of μm are formed. It was observed. The direction of orientation is indicated by an arrow in FIG.

よって、本実施例から、糖の脂肪酸エステルを原料とした水熱合成により多孔質炭素が得られ、その材料は、含酸素官能基およびアルキル基を有すること、および緩やかな配向性を有することが分かった。 Therefore, from this example, porous carbon can be obtained by hydrothermal synthesis using a fatty acid ester of sugar as a raw material, and the material has an oxygen-containing functional group and an alkyl group, and has a loose orientation. Do you get it.

なお、実施例5においては実施例1〜4とは異なり、工程3を省略することが可能である。上述のように、本発明で得られる多孔質炭素は工程1〜3の3つの工程によって合成されるが、そのうち工程3は物理混合されたアルキル基の除去を目的とし、工程2の後に得られる材料が物理混合されたアルキル基を含む場合にのみ必要とされる。実施例1〜4においては、工程3の後には、工程3を行う前に比べてフーリエ変換赤外吸収スペクトルにおいてアルキル基のピーク強度の減少が見られ、物理混合されて存在するアルキル基は工程3により除去されていることが分かった。さらに上述のように、工程3をもう一度繰り返しても、その前後ではフーリエ変換赤外吸収スペクトルのアルキルのピーク強度は変わらないことから、工程3の操作は一度で十分であることが言える。
実施例5においては、図1(A)(B)に示すように、工程3の前後ではフーリエ変換赤外吸収スペクトルで見られるアルキル基のピーク強度に大きな変化は見られなかった(工程3の前の炭素材料のフーリエ変換赤外吸収スペクトルを“実施例5(工程3省略)”と表記した)。よって工程2で得られる材料には物理混合されたアルキル基がほとんど存在しないと考えられるため、工程3は行わなくても良い。
In Example 5, unlike Examples 1 to 4, step 3 can be omitted. As described above, the porous carbon obtained in the present invention is synthesized by three steps of steps 1 to 3, of which step 3 is obtained after step 2 for the purpose of removing physically mixed alkyl groups. Only required if the material contains physically mixed alkyl groups. In Examples 1 to 4, after the step 3, the peak intensity of the alkyl group is reduced in the Fourier transform infrared absorption spectrum as compared with the case before the step 3, and the alkyl group existing as a physical mixture is the step. It was found that it was removed by 3. Further, as described above, even if step 3 is repeated once again, the peak intensity of alkyl in the Fourier transform infrared absorption spectrum does not change before and after that, so it can be said that the operation of step 3 is sufficient once.
In Example 5, as shown in FIGS. 1 (A) and 1 (B), no significant change was observed in the peak intensity of the alkyl group observed in the Fourier transform infrared absorption spectrum before and after the step 3 (step 3). The Fourier transform infrared absorption spectrum of the previous carbon material is described as "Example 5 (step 3 omitted)"). Therefore, it is considered that there are almost no physically mixed alkyl groups in the material obtained in step 2, and therefore step 3 does not have to be performed.

また実施例5では、走査型電子顕微鏡観察および窒素吸着測定の観察結果も、工程3の有無に関わらず大きく変わらなかった。工程3を省略して得た炭素材料の走査型電子顕微鏡観察では、工程3を行った得た炭素材料と同様に、大きさ数十nm程度の粒子(一次粒子)が、緩やかではあるが一定の配向性を持って互いに連なり、数〜数十μmの大きさの粒子(二次粒子)が形成されている様子が観察された。
さらに、窒素吸着高相対圧付近においても工程3を行って得た炭素材料と同様に、等温線の大きな立ち上がりが見られ、算出された全細孔容量は0.70cm/gであった。
さらに、本実施例では、工程1の水熱処理時間を実施例1〜3と同様の103時間としても、茶色の固体は得られるが、前記[0033]〜[0035]に記載の材料評価のうち、窒素吸着測定に必要な収量に達しなかった。ただし、この場合にも、フーリエ変換赤外吸収測定および走査型電子顕微鏡からは、実施例5とほぼ同様の結果が得られた。
実施例5において工程1を103時間とし、工程3を省略して得られた炭素材料の透過型電子顕微鏡像を図13に示す。大きさ数十nm程度の一次粒子が連結した構造が二次粒子内部に渡って均一に形成されている様子が観察された。
Further, in Example 5, the observation results of the scanning electron microscope observation and the nitrogen adsorption measurement did not change significantly regardless of the presence or absence of the step 3. In the scanning electron microscope observation of the carbon material obtained by omitting step 3, particles (primary particles) having a size of about several tens of nm are gentle but constant, as in the case of the carbon material obtained in step 3. It was observed that particles (secondary particles) having a size of several to several tens of μm were formed by being connected to each other with the orientation of.
Further, similar to the carbon material obtained in step 3, a large rise of the isotherm was observed in the vicinity of the high relative pressure of nitrogen adsorption, and the calculated total pore volume was 0.70 cm 3 / g.
Further, in this example, even if the hydrothermal treatment time of step 1 is set to 103 hours, which is the same as in Examples 1 to 3, a brown solid can be obtained, but among the material evaluations described in [0033] to [0035] above, , The yield required for nitrogen adsorption measurement was not reached. However, in this case as well, almost the same results as in Example 5 were obtained from the Fourier transform infrared absorption measurement and the scanning electron microscope.
FIG. 13 shows a transmission electron microscope image of the carbon material obtained by setting step 1 to 103 hours in Example 5 and omitting step 3. It was observed that a structure in which primary particles having a size of several tens of nm were connected was uniformly formed inside the secondary particles.

[実施例6]
上記実施例1〜5のショ糖脂肪酸由来炭素材料の合成においては、工程2および工程3に蒸発乾燥工程を含む。ここで一般に多孔質材料の蒸発乾燥においては、多孔体からの溶媒の脱離・蒸発に伴い多孔体構造が収縮し細孔容量が減少すると言われる。一方、凍結乾燥と呼ばれる乾燥方法では、溶媒は一度凍結され、その後昇華することにより除去される。従って凍結乾燥法用いればショ糖脂肪酸由来炭素材料の乾燥工程における細孔体積の減少が抑制できることが予想される。
よって、本実施例では、これまで細孔容量が最も大きかった実施例5で得られた材料について、細孔容量をさらに増大するために、65℃での蒸発乾燥の代わりに凍結乾燥を行った。本合成を以下に示す。
(工程1)
糖の脂肪酸エステルとして、分子式C336212で表され、HLBが15、モノエステル率が70%のもの(第一工業製薬株式会社 DKエステル F160)1gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で182時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常、上層と下層の2層に分かれて析出するが、そのうち実施例5と同様に、比重の大きい下層を取り出した。約40mLの脱イオン水を注いで、シェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで、約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。
(凍結乾燥工程)
工程2において、エタノール洗浄後に、脱イオン水で残留するエタノールを置換した。その後凍結乾燥を行い、目的とするショ糖脂肪酸由来炭素材料を得た。
なお本実施例の工程1および2は実施例5と同様である。すなわち工程2の後に得られる材料中には物理混合しているアルキル基はほとんど存在しないため、工程3は省略できる。よって本実施例においては工程3を経ずに、凍結乾燥工程を行った。
[Example 6]
In the synthesis of the sucrose fatty acid-derived carbon material of Examples 1 to 5, the steps 2 and 3 include an evaporation drying step. Here, it is generally said that in the evaporation and drying of a porous material, the porous body structure shrinks and the pore volume decreases as the solvent is desorbed and evaporated from the porous body. On the other hand, in a drying method called freeze-drying, the solvent is once frozen and then removed by sublimation. Therefore, if the freeze-drying method is used, it is expected that the decrease in pore volume in the drying step of the sucrose fatty acid-derived carbon material can be suppressed.
Therefore, in this example, the material obtained in Example 5, which had the largest pore capacity so far, was freeze-dried instead of evaporative drying at 65 ° C. in order to further increase the pore capacity. .. This synthesis is shown below.
(Step 1)
As a fatty acid ester of sugar, 1 g of a fatty acid ester represented by the molecular formula C 33 H 62 O 12 having an HLB of 15 and a monoester ratio of 70% (Daiichi Kogyo Seiyaku Co., Ltd. DK ester F160) is dissolved in 10 mL of deionized water. rice field. After allowing to stand overnight, it was heated at 120 ° C. for 182 hours in a closed container.
(Step 2)
The obtained brown solid was recovered. Normally, the precipitate is divided into two layers, an upper layer and a lower layer, and the lower layer having a large specific density is taken out as in Example 5. About 40 mL of deionized water was poured, shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated two more times. Then, about 40 mL of ethanol was poured, and the mixture was shaken and centrifuged in the same manner. The supernatant solution was removed and this operation was repeated two more times.
(Freeze-drying process)
In step 2, after washing with ethanol, the residual ethanol was replaced with deionized water. Then, freeze-drying was carried out to obtain a desired carbon material derived from sucrose fatty acid.
Steps 1 and 2 of this embodiment are the same as those of the fifth embodiment. That is, since there are almost no alkyl groups physically mixed in the material obtained after the step 2, the step 3 can be omitted. Therefore, in this example, the freeze-drying step was performed without going through step 3.

(フーリエ変換赤外吸収スペクトル)
実施例6で得られた炭素材料では、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められることから、炭素材料中に含酸素官能基が存在することが分かった。さらに、波数2959cm−1付近(CH対称伸縮振動)、2926cm−1付近(vCH逆対称)、および2859cm−1付近(vCH対称)に脂肪酸由来のアルキル基に特徴的なピークが見られ、アルキル基も存在することが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Example 6, C = O (stretching, 1800~1520cm -1) derived from a carboxyl group and a carbonyl group or OH (stretching, 3700~3100cm -1) are observed peak attributed to From this, it was found that an oxygen-containing functional group is present in the carbon material. Furthermore, peaks characteristic of fatty acid-derived alkyl groups are observed near 2959 cm -1 (CH 3 symmetric stretching vibration), 2926 cm -1 (vCH 2 inverse symmetry), and 2859 cm -1 (vCH 2 symmetry). , Alkyl groups were also found to be present.

(窒素吸着等温線)
実施例6で得られた炭素材料は、高相対圧付近において等温線の大きな立ち上がりが見られ、算出された全細孔容量は0.98cm/g(表2)であり、実施例5よりもさらに大きな細孔容量を示した。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 6, a large rise of the isotherm was observed near the high relative pressure, and the calculated total pore volume was 0.98 cm 3 / g (Table 2), which was compared with Example 5. Also showed a larger pore capacity.

(走査型電子顕微鏡像)
実施例6で得られた炭素材料の走査型電子顕微鏡像を図14に示す。大きさ数十nm程度の粒子が、緩やかではあるが一定の配向性を持って互いに連なり、数〜数十μmの大きさの粒子が形成されている様子が観察された。配向の方向を図14中に矢印で示した。
(Scanning electron microscope image)
A scanning electron microscope image of the carbon material obtained in Example 6 is shown in FIG. It was observed that particles having a size of several tens of nm were connected to each other with a gentle but constant orientation, and particles having a size of several to several tens of μm were formed. The direction of orientation is indicated by an arrow in FIG.

よって、本実施例から、実施例5において、工程2において65℃で乾燥させる代わりに、凍結乾燥工程を行っても、多孔質炭素が得られ、その材料は含酸素官能基およびアルキル基を有すること、および緩やかな配向性を有することが分かった。 Therefore, from this example to Example 5, porous carbon can be obtained even if a freeze-drying step is performed instead of drying at 65 ° C. in step 2, and the material has an oxygen-containing functional group and an alkyl group. It was found that it had a loose orientation.

[比較例1]
分子内にアルキル基が組み込まれていない、すなわち両親媒性ではない、ショ糖そのものを原料とし、上記の実施例とほぼ同様の操作で比較合成試験を実施した。本合成を以下に示す。
(工程1)
実施例1で用いたショ糖ステアリン酸エステルの物質量と同等にあたる、ショ糖2.3 gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い沈殿物を回収し、約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらに2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除いた後、この操作をさらに2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
[Comparative Example 1]
A comparative synthetic test was carried out using sucrose itself, which does not have an alkyl group incorporated in the molecule, that is, is not amphipathic, as a raw material, in almost the same manner as in the above example. This synthesis is shown below.
(Step 1)
2.3 g of sucrose, which is equivalent to the amount of substance of the sucrose stearic acid ester used in Example 1, was dissolved in 10 mL of deionized water. After allowing to stand overnight, it was heated at 120 ° C. for 103 hours in a closed container.
(Step 2)
The obtained brown precipitate was collected, and about 40 mL of deionized water was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and the mixture was shaken and centrifuged in the same manner. After removing the supernatant solution, this operation was repeated two more times. The resulting precipitate was dried at 65 ° C. overnight or longer.

(フーリエ変換赤外吸収スペクトル)
比較例1で得られた炭素材料は、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められるものの、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかった。
なお上述のように実施例の多孔質材料は、工程1〜3の3つの工程によって合成されるが、この中の工程3は物理混合されたアルキル基の除去を目的とし、工程2の後に得られる材料が物理混合されたアルキル基を含む場合にのみ必要とされる。本比較例では、工程2の後に得られる材料のフーリエ変換赤外吸収スペクトルはアルキル基のピークをほとんど示さなかった。よって脂肪酸由来のアルキル基自体を有しないため、該アルキル基が物理混合していないことも自明であった。そこで、比較例1の合成においては、工程3は省略した。
(Fourier transform infrared absorption spectrum)
Carbon material obtained in Comparative Example 1, C = O (stretching, 1800~1520cm -1) derived from a carboxyl group and a carbonyl group or OH (stretching, 3700~3100cm -1) are observed peak attributed to However, it is characteristic of fatty acid-derived alkyl groups generated around 2963 cm -1 (CH 3 symmetric expansion and contraction vibration), 2925 cm -1 (vCH 2 inverse symmetry), and 2854 cm -1 (vCH 2 symmetry). No peak was seen.
As described above, the porous material of the example is synthesized by three steps of steps 1 to 3, and step 3 in this step 3 is obtained after step 2 for the purpose of removing physically mixed alkyl groups. It is only needed if the material to be used contains a physically mixed alkyl group. In this comparative example, the Fourier transform infrared absorption spectrum of the material obtained after step 2 showed almost no peak of the alkyl group. Therefore, since it does not have an alkyl group derived from a fatty acid itself, it was obvious that the alkyl group was not physically mixed. Therefore, in the synthesis of Comparative Example 1, step 3 was omitted.

(窒素吸着等温線)
比較例1で得られた炭素材料は、全相対圧範囲で立ち上がりを示さず、算出された細孔容量は0.01cm/g(表2)にとどまった。
(Nitrogen adsorption isotherm)
The carbon material obtained in Comparative Example 1 did not show a rise in the entire relative pressure range, and the calculated pore volume remained at 0.01 cm 3 / g (Table 2).

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
比較例1で得られた炭素材料の走査型電子顕微鏡像を図15に示す。直径数μmおよび数百nmの2種類の大きさの球状粒子が観察されたが、どちらの粒子表面も平滑であり、実施例で見られたような大きさ数〜数十nm程度の粒子が互いに連なっている様子は観察されなかった。
比較例1で得られた炭素材料の透過型電子顕微鏡像を図16に示す。
電子顕微鏡像に多少の濃淡は見られたが、マイクロ粒子内部全体にわたって、実施例で見られたような共連続構造や微粒子連結体が形成されている様子は観察されなかった。
(Scanning electron microscope image and transmission electron microscope image)
A scanning electron microscope image of the carbon material obtained in Comparative Example 1 is shown in FIG. Spherical particles of two sizes, several μm in diameter and several hundred nm, were observed, but the surface of both particles was smooth, and particles having a size of several to several tens of nm as seen in the examples were observed. It was not observed that they were connected to each other.
The transmission electron microscope image of the carbon material obtained in Comparative Example 1 is shown in FIG.
Although some shades were observed in the electron microscope image, the appearance of the co-continuous structure and the fine particle conjugate as seen in the examples was not observed throughout the inside of the microparticles.

[比較例2]
どちらも両親媒性ではないショ糖と脂肪酸とを物理的に混合したものを原料とし、上記の実施例と同様の操作で比較合成試験を実施した。本合成を以下に示す。
(工程1)
実施例1で用いたショ糖ステアリン酸エステルの物質量と同等にあたる、ショ糖2.2gおよびステアリン酸1.9gに10mLの脱イオン水を加えた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い沈殿物を回収し、約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらに2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除いた後、この操作をさらに2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
[Comparative Example 2]
A comparative synthesis test was carried out in the same manner as in the above example, using a physically mixed sucrose and fatty acid, which are not amphipathic, as raw materials. This synthesis is shown below.
(Step 1)
10 mL of deionized water was added to 2.2 g of sucrose and 1.9 g of stearic acid, which are equivalent to the amount of substance of the sucrose stearic acid ester used in Example 1. After allowing to stand overnight, it was heated at 120 ° C. for 103 hours in a closed container.
(Step 2)
The obtained brown precipitate was collected, and about 40 mL of deionized water was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and the mixture was shaken and centrifuged in the same manner. After removing the supernatant solution, this operation was repeated two more times. The resulting precipitate was dried at 65 ° C. overnight or longer.

(フーリエ変換赤外吸収スペクトル)
比較例2で得られた炭素材料は、カルボキシル基やカルボニル基に由来するC=O(伸縮、1800〜1520cm−1)やOH(伸縮、3700〜3100cm−1)に帰属されるピークが認められるものの、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかった。なお、比較例1と同様に、本比較例においても、工程2の後に得られる材料のフーリエ変換赤外吸収スペクトルはアルキル基のピークをほとんど示さなかった。そこで本比較例の合成においても工程3は省略した。
(Fourier transform infrared absorption spectrum)
Carbon material obtained in Comparative Example 2, C = O (stretching, 1800~1520cm -1) derived from a carboxyl group and a carbonyl group or OH (stretching, 3700~3100cm -1) are observed peak attributed to However, it is characteristic of fatty acid-derived alkyl groups generated around 2963 cm -1 (CH 3 symmetric expansion and contraction vibration), 2925 cm -1 (vCH 2 inverse symmetry), and 2854 cm -1 (vCH 2 symmetry). No peak was seen. Similar to Comparative Example 1, in this Comparative Example as well, the Fourier transform infrared absorption spectrum of the material obtained after the step 2 showed almost no peak of the alkyl group. Therefore, step 3 was omitted in the synthesis of this comparative example.

(窒素吸着等温線)
比較例2で得られた炭素材料も、比較例1と同様に、全相対圧範囲で立ち上がりを示さず、算出された細孔容量は0.01cm/g(表2)にとどまった。
(Nitrogen adsorption isotherm)
Similarly to Comparative Example 1, the carbon material obtained in Comparative Example 2 did not show a rise in the entire relative pressure range, and the calculated pore volume remained at 0.01 cm 3 / g (Table 2).

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
比較例2で得られた炭素材料の走査型電子顕微鏡像を図17に示す。比較例1と同様に、直径数μmおよび数百nmの2種類の大きさの球状粒子が観察されたが、どちらの粒子表面も平滑であり、実施例で見られたような数〜数十nmの微小粒子が並んでいる様子は観察されなかった。
(Scanning electron microscope image and transmission electron microscope image)
A scanning electron microscope image of the carbon material obtained in Comparative Example 2 is shown in FIG. Similar to Comparative Example 1, spherical particles having two sizes of several μm and several hundred nm were observed, but the surface of both particles was smooth, and the number to several tens as seen in the examples. No appearance of fine particles of nm lined up was observed.

以上より、ショ糖そのものを原料とした場合およびショ糖そのものと脂肪酸の物理混合物を原料とした場合、どちらの場合においても、多孔質炭素は得られず、炭素材料は脂肪酸由来のアルキル基も有しないことが分かった。 From the above, in either case, when sucrose itself is used as a raw material or when a physical mixture of sucrose itself and fatty acid is used as a raw material, porous carbon cannot be obtained, and the carbon material also has an alkyl group derived from fatty acid. I found that I wouldn't.

糖から水熱合成手法で得られる炭素骨格は、通常400〜500℃以上での不活性雰囲気下における焼成により炭素骨格の芳香族化が進行し、焼成温度の更なる上昇とともに、炭素材料は良好な電気伝導性を帯び電極材料などとしての用途が開ける。
そこで、実施例1〜6で得られたショ糖脂肪酸エステル由来多孔質カーボンの炭素骨格の芳香族性を高めるため、得られた多孔質カーボンを不活性雰囲気下で焼成した。
実施例1〜6の中で特に細孔容量の大きく、かつ塩基処理や凍結乾燥などの特別な処理を行わなかった、実施例2および5について本焼成処理を行い、それぞれ実施例7および8とした。以下に示す。
The carbon skeleton obtained from sugar by the hydrothermal synthesis method is usually aromatized by firing in an inert atmosphere at 400 to 500 ° C. or higher, and the carbon material is good as the firing temperature further rises. It has excellent electrical conductivity and can be used as an electrode material.
Therefore, in order to enhance the aromaticity of the carbon skeleton of the sucrose fatty acid ester-derived porous carbon obtained in Examples 1 to 6, the obtained porous carbon was fired in an inert atmosphere.
In Examples 1 to 6, the main firing treatment was performed on Examples 2 and 5, which had a particularly large pore volume and did not undergo special treatment such as base treatment or freeze-drying, and were described in Examples 7 and 8, respectively. bottom. It is shown below.

[実施例7]
(工程1)
糖の脂肪酸エステルとして、分子式C305712で表される、ショ糖ステアリン酸エステル(第一工業製薬株式会社 DKエステルSS,HLB19、モノエステル率;約100%)4gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常3層に分かれて析出するが、そのうち実施例2と同様に、二番目に比重の小さい中間層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(工程3)
乾燥後の茶色い固体にエタノール50mLを加え、60℃で一晩以上撹拌洗浄した。洗浄後、遠心分離を行い、上澄みを取り除いた後、エタノールを40mL加え、室温で振とうさせた。遠心分離を行った後、上澄みを取り除いた。本操作をもう一度繰り返した。沈殿を65℃で一晩以上乾燥させた。
(窒素下焼成工程)
得られた材料を600mL/minの窒素フロー下において550℃で焼成し、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
[Example 7]
(Step 1)
As a fatty acid ester of sugar, 10 mL of deionized 4 g of sucrose stearic acid ester (DK ester SS, HLB19, monoester ratio; about 100%) represented by the molecular formula C 30 H 57 O 12 Dissolved in water. After allowing to stand overnight, it was heated at 120 ° C. for 103 hours in a closed container.
(Step 2)
The obtained brown solid was recovered. Usually, it is divided into three layers and precipitated, but as in Example 2, the intermediate layer having the second lowest specific density was taken out. About 40 mL of deionized water was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated two more times. Then, about 40 mL of ethanol was poured, and the mixture was shaken and centrifuged in the same manner. The supernatant solution was removed and this operation was repeated two more times. The resulting precipitate was dried at 65 ° C. overnight or longer.
(Step 3)
50 mL of ethanol was added to the dried brown solid, and the mixture was stirred and washed at 60 ° C. overnight or longer. After washing, centrifugation was performed to remove the supernatant, 40 mL of ethanol was added, and the mixture was shaken at room temperature. After centrifugation, the supernatant was removed. This operation was repeated once again. The precipitate was dried at 65 ° C. overnight or longer.
(Baking process under nitrogen)
The obtained material was calcined at 550 ° C. under a nitrogen flow of 600 mL / min to obtain a carbon material derived from the desired sucrose fatty acid ester.

(フーリエ変換赤外吸収スペクトル)
実施例7で得られた炭素材料は、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかったが、1650〜1450cm−1に、共役C=Cまたは、オレフィン系C=C−Oの伸縮のピークが見られた。また、886cm−1、および緩やかではあるが、805cm−1、766cm−1に、芳香族環の炭素―水素面外変角振動に帰属する吸収ピークが見られた。さらに、3700〜3100cm−1にOH基の伸縮運動に帰属する吸収ピークが見られ、得られる炭素材料はヒドロキシル基を有することが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Example 7 is usually produced in the vicinity of wavenumber 2963 cm -1 (CH 3 symmetric stretching vibration), 2925 cm -1 (vCH 2 inverse symmetry), and 2854 cm -1 (vCH 2 symmetry). No characteristic peak was observed in the fatty acid-derived alkyl group, but a peak of expansion and contraction of conjugated C = C or olefin-based C = CO was observed at 1650 to 1450 cm -1. Absorption peaks attributable to carbon-hydrocarbon out-of-plane angular oscillations of the aromatic ring were observed at 886 cm -1 and, albeit moderately, 805 cm -1 and 766 cm -1. Furthermore, an absorption peak attributed to the expansion and contraction movement of the OH group was observed at 3700 to 3100 cm- 1, and it was found that the obtained carbon material had a hydroxyl group.

ここで、上述のように実施例の多孔質材料は、工程1〜3の3つの工程によって合成されるが、この中の工程3は物理混合されたアルキル基の除去を目的とし、工程2の後に得られる材料が物理混合されたアルキル基を含む場合にのみ必要とされる。本実施例においては工程2でアルキル基が物理混合されていたとしても、550℃の焼成ではアルキル基は自身で熱分解するため、工程3を用いずとも本アルキル基は除去されると考えられる。よって本実施例においては、以下の測定を、工程3を経ずに焼成工程を行って得た炭素材料について行った。 Here, as described above, the porous material of the example is synthesized by the three steps of steps 1 to 3, and the step 3 in this step 3 aims at removing the physically mixed alkyl group, and is the step 2. It is only needed if the material obtained later contains a physically mixed alkyl group. In this embodiment, even if the alkyl groups are physically mixed in step 2, the alkyl groups are thermally decomposed by themselves when fired at 550 ° C., so it is considered that the alkyl groups are removed without using step 3. .. Therefore, in this example, the following measurements were performed on the carbon material obtained by performing the firing step without going through step 3.

(窒素吸着等温線)
実施例7で得られた炭素材料は、低相対圧側での立ち上がりと高相対圧側での立ち上がりが見られた。前者はマイクロ孔の存在、後者はメソ孔とマクロ孔の少なくともどちらか一方の存在を示す。窒素吸着等温線から算出された全細孔容量は0.62cm/g(表2)であった。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 7, a rise on the low relative pressure side and a rise on the high relative pressure side were observed. The former indicates the presence of micropores, and the latter indicates the presence of at least one of mesopores and macropores. The total pore volume calculated from the nitrogen adsorption isotherm was 0.62 cm 3 / g (Table 2).

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
実施例7で得られた炭素材料の走査型電子顕微鏡像を図18に示す。数〜数十nmの粒子が互いに連なっている様子が観察された。また本連結体は厚さ数十〜200nm程度のシート状の形状をなしていた。
実施例7で得られた炭素材料の透過型電子顕微鏡像を図19に示す。該図はシート形状の断面を表していると考えられ、本シート形状は数〜数十nmの粒子が互いに連なることにより形成されている様子が観察された。
(Scanning electron microscope image and transmission electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 7 is shown in FIG. It was observed that particles of several to several tens of nm were connected to each other. Further, this connected body had a sheet-like shape having a thickness of about several tens to 200 nm.
The transmission electron microscope image of the carbon material obtained in Example 7 is shown in FIG. The figure is considered to represent a cross section of the sheet shape, and it was observed that the sheet shape was formed by connecting particles having several to several tens of nm to each other.

(導電性の測定)
実施例7で得られた炭素材料の密集した粒子群の両端を2本の端子で挟むようにして、デジタルマルチメーターを用いて抵抗値を測定することにより、以下のようにして導電性の有無を確認した。
予め、導電性を有する材料(例えば、S.Kubo et al.,Chem.Mater.2013,25,4781に記載の導電性多孔質炭素)では抵抗値が表示されるが、絶縁性の材料では抵抗値が表示されないことを確かめた上で、上記測定を行い、抵抗値の表示の有無を確認した。
実施例7で得られた炭素材料は、両端子間が0.5〜1mm程度の距離になるような条件で測定した場合、10〜20MΩ程度の抵抗値を示した。
(Measurement of conductivity)
By sandwiching both ends of the dense particle group of carbon material obtained in Example 7 between two terminals and measuring the resistance value using a digital multimeter, the presence or absence of conductivity is confirmed as follows. bottom.
In advance, the resistance value is displayed for the conductive material (for example, the conductive porous carbon described in S. Kubo et al., Chem. Mater. 2013, 25, 4781), but the resistance value is displayed for the insulating material. After confirming that the value was not displayed, the above measurement was performed to confirm whether or not the resistance value was displayed.
The carbon material obtained in Example 7 showed a resistance value of about 10 to 20 MΩ when measured under the condition that the distance between both terminals was about 0.5 to 1 mm.

よって、糖の脂肪酸エステルを原料として多孔質炭素材料を不活性雰囲気下で焼成することにより、糖の脂肪酸エステル原料から、芳香族性の高い、導電性の多孔質炭素材料が得られ、その材料はヒドロキシル基を有することが分かった。 Therefore, by firing the porous carbon material using the fatty acid ester of sugar as a raw material in an inert atmosphere, a highly aromatic and conductive porous carbon material can be obtained from the fatty acid ester raw material of sugar, and the material thereof. Was found to have a hydroxyl group.

[実施例8]
(工程1)
糖の脂肪酸エステルとして、分子式C336212で表され、HLBが15、モノエステル率が70%のもの(第一工業製薬株式会社 DKエステル F160)1gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で182時間加熱した。
(工程2)
得られた茶色い固体を回収した。通常、上層と下層の2層に分かれて析出するが、そのうち実施例5と同様に、比重の大きい下層を取り出した。約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらにあと2回繰り返した。次いで、約40mLのエタノールを注いで同様に振とう、遠心分離を行った。上澄み溶液を取り除き、本操作をさらにあと2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(窒素下焼成工程)
得られた材料を600mL/minの窒素フロー下において550℃で焼成し、目的とするショ糖脂肪酸エステル由来の炭素材料を得た。
ここで、本実施例の工程1,2は実施例5と同様である。すなわち工程3は省略しても良いため、本実施例では工程3を行わずに窒素下焼成を行った。
[Example 8]
(Step 1)
As a fatty acid ester of sugar, 1 g of a fatty acid ester represented by the molecular formula C 33 H 62 O 12 having an HLB of 15 and a monoester ratio of 70% (Daiichi Kogyo Seiyaku Co., Ltd. DK ester F160) is dissolved in 10 mL of deionized water. rice field. After allowing to stand overnight, it was heated at 120 ° C. for 182 hours in a closed container.
(Step 2)
The obtained brown solid was recovered. Normally, the precipitate is divided into two layers, an upper layer and a lower layer, and the lower layer having a large specific density is taken out as in Example 5. About 40 mL of deionized water was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated two more times. Then, about 40 mL of ethanol was poured and shaken in the same manner for centrifugation. The supernatant solution was removed and this operation was repeated two more times. The resulting precipitate was dried at 65 ° C. overnight or longer.
(Baking process under nitrogen)
The obtained material was calcined at 550 ° C. under a nitrogen flow of 600 mL / min to obtain a carbon material derived from the desired sucrose fatty acid ester.
Here, steps 1 and 2 of this embodiment are the same as those of the fifth embodiment. That is, since step 3 may be omitted, in this embodiment, firing under nitrogen was performed without performing step 3.

(フーリエ変換赤外吸収スペクトル)
実施例8で得られた炭素材料は、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかったが、1650〜1450cm−1に、共役C=Cまたは、オレフィン系C=C−Oの伸縮のピークが見られた。また、882cm−1、807cm−1、758cm−1に、芳香族環の炭素―水素面外変角振動に帰属する吸収ピークが見られた。さらに、3700〜3100cm−1にOH基伸縮運動に帰属する吸収ピークが見られ、得られる炭素材料はヒドロキシル基を有することが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in Example 8 is usually produced in the vicinity of wavenumber 2963 cm -1 (CH 3 symmetric stretching vibration), 2925 cm -1 (vCH 2 inverse symmetry), and 2854 cm -1 (vCH 2 symmetry). No characteristic peak was observed in the fatty acid-derived alkyl group, but a peak of expansion and contraction of conjugated C = C or olefin-based C = CO was observed at 1650 to 1450 cm -1. Further, 882cm -1, 807cm -1, the 758cm -1, the carbon of the aromatic ring - absorption peak attributable to hydrogen out-of-plane deformation vibration was observed. Furthermore, an absorption peak attributed to the OH group expansion and contraction movement was observed at 3700 to 3100 cm- 1, indicating that the obtained carbon material has a hydroxyl group.

(窒素吸着等温線)
実施例8で得られた炭素材料には、低相対圧側での立ち上がりと高相対圧側での大きな立ち上がりが見られた。前者はマイクロ孔の存在、後者はメソ孔とマクロ孔の少なくともどちらか一方の存在を示す。窒素吸着等温線から算出された全細孔容量は1.23cm/g(表2)であった。
(Nitrogen adsorption isotherm)
In the carbon material obtained in Example 8, a rise on the low relative pressure side and a large rise on the high relative pressure side were observed. The former indicates the presence of micropores, and the latter indicates the presence of at least one of mesopores and macropores. The total pore volume calculated from the nitrogen adsorption isotherm was 1.23 cm 3 / g (Table 2).

(走査型電子顕微鏡像)
実施例8で得られた炭素材料の走査型電子顕微鏡像を図20に示す。大きさ数十nm程度の粒子が互いに連なり、数〜数十μmの大きさの粒子が形成されている様子が観察された。
(導電性の測定)
実施例7と同様にして抵抗値を測定したところ、実施例8で得られた炭素材料は、両端子間が0.5〜1mm程度の距離になるような条件で測定した場合、5〜25MΩ程度の抵抗値を示した。
(Scanning electron microscope image)
The scanning electron microscope image of the carbon material obtained in Example 8 is shown in FIG. It was observed that particles having a size of several tens of nm were connected to each other to form particles having a size of several to several tens of μm.
(Measurement of conductivity)
When the resistance value was measured in the same manner as in Example 7, the carbon material obtained in Example 8 was 5 to 25 MΩ when measured under the condition that the distance between both terminals was about 0.5 to 1 mm. The resistance value of the degree was shown.

よって、糖の脂肪酸エステルを原料として多孔質炭素材料を不活性雰囲気下で焼成することにより、糖の脂肪酸エステル原料から、芳香族性の高い、導電性の多孔質炭素材料が得られ、その材料はヒドロキシル基を有することが分かった。 Therefore, by firing the porous carbon material using the fatty acid ester of sugar as a raw material in an inert atmosphere, a highly aromatic and conductive porous carbon material can be obtained from the fatty acid ester raw material of sugar, and the material thereof. Was found to have a hydroxyl group.

[比較例3]
分子内にアルキル基が組み込まれていない、すなわち両親媒性ではない、ショ糖そのものを原料とし、上記の実施例とほぼ同様の操作で比較合成試験を実施した。特にショ糖そのものを原料とした水熱合成して得た炭素材料を窒素フロー下で焼成することにより、実施例7および8との比較を行った。本合成を以下に示す。
(工程1)
実施例1で用いたショ糖ステアリン酸エステルの物質量と同等にあたる、ショ糖2.3gを10mLの脱イオン水に溶解させた。一晩静置させた後、密閉容器内で、120℃で103時間加熱した。
(工程2)
得られた茶色い沈殿物を回収し、約40mLの脱イオン水を注いでシェーカーで振とうした後、遠心分離し固体を沈殿させた。上澄み溶液を取り除き、再び同量の脱イオン水を注ぎ、同様の操作をさらに2回繰り返した。次いで約40mLのエタノールを注いで、同様に振とう、遠心分離を行った。上澄み溶液を取り除いた後、この操作をさらに2回繰り返した。得られた沈殿を65℃で一晩以上乾燥させた。
(窒素下焼成工程)
得られた材料を600mL/minの窒素フロー下において、550℃で焼成することにより比較炭素材料を得た。
なお本比較例においては、窒素下焼成を行った実施例7および8と同様に、工程3を経ずに焼成工程を行った。
[Comparative Example 3]
A comparative synthetic test was carried out using sucrose itself, which does not have an alkyl group incorporated in the molecule, that is, is not amphipathic, as a raw material, in almost the same manner as in the above example. In particular, a carbon material obtained by hydrothermal synthesis using sucrose itself as a raw material was calcined under a nitrogen flow to make a comparison with Examples 7 and 8. This synthesis is shown below.
(Step 1)
2.3 g of sucrose, which is equivalent to the amount of substance of the sucrose stearic acid ester used in Example 1, was dissolved in 10 mL of deionized water. After allowing to stand overnight, it was heated at 120 ° C. for 103 hours in a closed container.
(Step 2)
The obtained brown precipitate was collected, and about 40 mL of deionized water was poured and shaken with a shaker, and then centrifuged to precipitate a solid. The supernatant solution was removed, the same amount of deionized water was poured again, and the same operation was repeated twice more. Then, about 40 mL of ethanol was poured, and the mixture was shaken and centrifuged in the same manner. After removing the supernatant solution, this operation was repeated two more times. The resulting precipitate was dried at 65 ° C. overnight or longer.
(Baking process under nitrogen)
The obtained material was calcined at 550 ° C. under a nitrogen flow of 600 mL / min to obtain a comparative carbon material.
In this comparative example, the firing step was performed without going through step 3, as in Examples 7 and 8 in which firing under nitrogen was performed.

(フーリエ変換赤外吸収スペクトル)
本比較例で得られた炭素材料は、通常波数2963cm−1付近(CH対称伸縮振動)、2925cm−1付近(vCH逆対称)、および2854cm−1付近(vCH対称)に生成する、脂肪酸由来のアルキル基に特徴的なピークは見られなかった。1650〜1450cm−1に、共役C=Cまたはオレフィン系C=C−Oの伸縮のピークが、874cm−1、801cm−1、748cm−1に、芳香族環の炭素−水素面外変角振動に帰属する吸収ピークが見られたが、3700〜3100cm−1にはOH基伸縮運動に帰属する明確な吸収ピークは見られず、本比較炭素材料ではヒドロキシル基の多くが失われたことが分かった。
(Fourier transform infrared absorption spectrum)
The carbon material obtained in this comparative example is usually generated in the vicinity of wave number 2963 cm -1 (CH 3 symmetric stretching vibration), 2925 cm -1 (vCH 2 inverse symmetry), and 2854 cm -1 (vCH 2 symmetry). No characteristic peak was observed in the alkyl group derived from the fatty acid. From 1650 to 1450 cm -1 , the expansion and contraction peaks of conjugated C = C or olefinic C = C-O are 874 cm -1 , 801 cm -1 , 748 cm -1 , and the carbon-hydrogen out-of-plane eccentric vibration of the aromatic ring. However, no clear absorption peak attributed to the OH group stretching motion was observed at 3700 to 3100 cm -1 , indicating that most of the hydroxyl groups were lost in this comparative carbon material. rice field.

(走査型電子顕微鏡像及び透過型電子顕微鏡像)
比較例3で得られた炭素材料の走査型電子顕微鏡像を図21に示す。比較例1および2と同様に、直径数μmおよび数百nmの2種類の大きさの球状粒子が観察されたが、どちらの粒子表面も平滑であり、実施例で見られたような数〜数十nmの微小粒子が並んでいる様子は観察されなかった。
(Scanning electron microscope image and transmission electron microscope image)
A scanning electron microscope image of the carbon material obtained in Comparative Example 3 is shown in FIG. Similar to Comparative Examples 1 and 2, spherical particles having two sizes of several μm and several hundred nm were observed, but the surface of both particles was smooth, and the number as seen in Examples ~. It was not observed that fine particles of several tens of nm were lined up.

上記実施例・比較例における製造条件及び多孔性の評価結果を下記の表1に記載する。
但し、多孔性の評価については、窒素吸着量が0.01cm/gの比較例1及び2(×)を基準とし、吸着量が大きいものから順に、◎→○→△とした。
The production conditions and the evaluation results of porosity in the above Examples and Comparative Examples are shown in Table 1 below.
However, the evaluation of porosity was based on Comparative Examples 1 and 2 (x) having a nitrogen adsorption amount of 0.01 cm 3 / g, and ⊚ → ○ → Δ were set in order from the one with the largest adsorption amount.

Figure 0006933370
Figure 0006933370

上記実施例・比較例で得られた炭素材料の全細孔容量を下記の表2に記載する。
ただし、全細孔容量は相対圧0.991以上0.996以下の測定点における窒素吸着量から算出した。
The total pore volumes of the carbon materials obtained in the above Examples and Comparative Examples are shown in Table 2 below.
However, the total pore volume was calculated from the amount of nitrogen adsorbed at the measurement points where the relative pressure was 0.991 or more and 0.996 or less.

Figure 0006933370
Figure 0006933370

以上のとおり、本発明の、糖の脂肪酸エステルを原料とする水熱合成から得られる炭素材料は、含酸素官能基およびアルキル基を有した。一方、比較例1、2の、ショ糖そのもの及びショ糖と脂肪酸の物理混合物から得られる炭素材料は、含酸素官能基を有するものの、アルキル基を持たなかった。
また、本発明のアルキル基含有炭素材料は、比較例1、2の、糖そのもの及び糖と脂肪酸の物理混合物を原料として得られる炭素材料を上回る細孔容量を有した。
さらに、本発明の、糖の脂肪酸エステル原料から得られる炭素材料は、大きさ数〜数十nm程度の粒子が互いに連なって形成された、数〜数十μmの大きさの粒子からなった。さらに、上記の大きさ数〜数十nm程度の粒子が、緩やかではあるが一定の配向性を持って連結しているものや、連結体が厚さ数十〜200nm程度のシート状の形状をなしているものもあった。これは、比較例1、2の、糖そのものや糖と脂肪酸の混合物から得られる平滑な表面テクスチャを有する、直径数百nm〜数μmの球状粒子とは大きく異なった。
よって、本発明の糖の脂肪酸エステル由来の多孔質炭素は、炭素源自身が両親媒性であることを利用して製造されるといえる。すなわち原料分子の、糖の部位が親水部として、アルキル部位が疎水部として作用することにより、水熱合成中で炭素源自身の界面現象が誘発され、ミセルや液晶などの炭素ナノ構造が形成される。その結果得られる材料が多孔化すると考えられる。本発明の方法によれば、炭素材料は水熱合成後にすでに多孔化しているため、通常鋳型を用いた際に必要とされる熱分解除去工程を用いずとも、多孔質炭素材料が得られる。そのため含酸素官能基が保たれた多孔質炭素を得ることができる。
As described above, the carbon material obtained from the hydrothermal synthesis using the fatty acid ester of the sugar as a raw material of the present invention had an oxygen-containing functional group and an alkyl group. On the other hand, the carbon materials obtained from the sucrose itself and the physical mixture of sucrose and fatty acid in Comparative Examples 1 and 2 had an oxygen-containing functional group but no alkyl group.
Further, the alkyl group-containing carbon material of the present invention had a pore capacity larger than that of the carbon material obtained by using the sugar itself and the physical mixture of sugar and fatty acid as raw materials in Comparative Examples 1 and 2.
Further, the carbon material obtained from the fatty acid ester raw material of the sugar of the present invention was composed of particles having a size of several to several tens of μm formed by connecting particles having a size of several to several tens of nm. Further, the above-mentioned particles having a size of several tens to several tens of nm are connected with a gentle but constant orientation, or the connected body has a sheet-like shape having a thickness of several tens to 200 nm. Some were doing it. This was significantly different from Comparative Examples 1 and 2, which had a smooth surface texture obtained from the sugar itself or a mixture of sugar and fatty acid, and had a diameter of several hundred nm to several μm.
Therefore, it can be said that the porous carbon derived from the fatty acid ester of the sugar of the present invention is produced by utilizing the fact that the carbon source itself is amphipathic. That is, the sugar moiety of the raw material molecule acts as a hydrophilic moiety and the alkyl moiety acts as a hydrophobic portion, which induces an interfacial phenomenon of the carbon source itself during hydrothermal synthesis, and forms carbon nanostructures such as micelles and liquid crystals. NS. It is considered that the resulting material becomes porous. According to the method of the present invention, since the carbon material is already porous after hydrothermal synthesis, the porous carbon material can be obtained without using the thermal decomposition removal step usually required when using a mold. Therefore, it is possible to obtain a porous carbon in which an oxygen-containing functional group is maintained.

一方で電極材等への応用には得られる糖の脂肪酸エステル由来の多孔質炭素の炭素骨格の芳香族性を高めなければならない。そこで、上記糖の脂肪酸エステル由来の多孔質炭素を不活性雰囲気で焼成したところ、通常官能基の損失が進む高温焼成後においても、本発明の糖の脂肪酸エステル由来の多孔質炭素は、含酸素官能基(ヒドロキシル基)を有していた。また、その細孔容量は0.62〜1.23cm/gであった。また炭素骨格の芳香族性も高まり、導電性も有した。
一方、比較例3の、糖そのものから得られる炭素材料は、不活性雰囲気で焼成した場合、炭素骨格の芳香族性は高まったが含酸素官能基の多くを失った。さらに、通常糖そのものから得られる炭素材料を実施例7および8と同様の550℃の不活性雰囲気で焼成した場合の細孔容量は、0.15cm/g以下である(非特許文献:L. Yu et al., Langmuir, 2012, 28, 12373参照)。
さらに、本発明の、糖の脂肪酸エステルを原料とする水熱合成物の焼成物からなる炭素材料は、数〜数十nm程度の粒子が互いに連なって形成された、数〜数十μmの大きさの粒子からなった。さらに、大きさ数〜数十nmの粒子が互いに連なり、厚さ数十〜200nm程度のシート状の形状をなしているものもあった。これは、比較例3の、糖そのものの水熱合成物を焼成して得られる、平滑な表面テクスチャを有する、直径数百nm〜数μmの球状粒子とは大きく異なった。
よって、本発明においては、糖の脂肪酸エステルを原料に用いることにより、不活性雰囲気中での焼成後も、細孔容量が大きく、炭素骨格の芳香族性と含酸素官能基を併せ持つ多孔質炭素が得られるといえる。
On the other hand, for application to electrode materials and the like, it is necessary to enhance the aromaticity of the carbon skeleton of the porous carbon derived from the fatty acid ester of the obtained sugar. Therefore, when the porous carbon derived from the fatty acid ester of the sugar is fired in an inert atmosphere, the porous carbon derived from the fatty acid ester of the sugar of the present invention contains oxygen even after high-temperature firing in which the loss of functional groups usually progresses. It had a functional group (hydroxyl group). The pore volume was 0.62 to 1.23 cm 3 / g. In addition, the aromaticity of the carbon skeleton was enhanced, and it also had conductivity.
On the other hand, when the carbon material obtained from the sugar itself in Comparative Example 3 was calcined in an inert atmosphere, the aromaticity of the carbon skeleton was enhanced, but most of the oxygen-containing functional groups were lost. Further, when the carbon material usually obtained from the sugar itself is calcined in the same inert atmosphere as in Examples 7 and 8 at 550 ° C., the pore volume is 0.15 cm 3 / g or less (Non-Patent Document: L). See Yu et al., Langmuir, 2012, 28, 12373).
Further, the carbon material of the present invention made of a calcined product of a hydrothermal synthesis made from a fatty acid ester of sugar has a size of several to several tens of μm in which particles having a size of several to several tens of nm are formed in a row. It consisted of particles of fatty acid. Further, some particles having a size of several tens to several tens of nm are connected to each other and have a sheet-like shape having a thickness of several tens to 200 nm. This was significantly different from the spherical particles of Comparative Example 3 having a smooth surface texture obtained by calcining a hydrothermal synthesis of sugar itself and having a diameter of several hundred nm to several μm.
Therefore, in the present invention, by using a fatty acid ester of sugar as a raw material, a porous carbon having a large pore capacity and having both aromaticity of a carbon skeleton and an oxygen-containing functional group even after firing in an inert atmosphere. Can be said to be obtained.

Claims (9)

糖の脂肪酸エステルを原料とする水熱反応により多孔質炭素を生成する、多孔質炭素の製造方法 A method for producing porous carbon, which produces porous carbon by a hydrothermal reaction using a sugar fatty acid ester as a raw material. 前記脂肪酸のアルキル基が、二重結合を含んでもよい炭素数1〜100のアルキル基である、請求項1に記載の多孔質炭素の製造方法 The method for producing porous carbon according to claim 1, wherein the alkyl group of the fatty acid is an alkyl group having 1 to 100 carbon atoms which may contain a double bond. 前記糖が、窒素を含んでいてもよい、単糖、二糖又は多糖、或いはこれらの2種類以上の混合物である、請求項1又は2に記載の多孔質炭素の製造方法 The method for producing porous carbon according to claim 1 or 2 , wherein the sugar is a monosaccharide, a disaccharide or a polysaccharide, which may contain nitrogen, or a mixture of two or more kinds thereof. 前記糖の脂肪酸エステルが、モノエステル、ジエステル又はポリエステル、或いはこれらの2種類以上の混合物である、請求項1〜のいずれか1項に記載の多孔質炭素の製造方法 The method for producing a porous carbon according to any one of claims 1 to 3 , wherein the fatty acid ester of the sugar is a monoester, a diester or a polyester, or a mixture of two or more kinds thereof. 前記水熱反応を、100〜350℃で行う、請求項1〜4のいずれか1項に記載の多孔質炭素の製造方法。The method for producing porous carbon according to any one of claims 1 to 4, wherein the hydrothermal reaction is carried out at 100 to 350 ° C. 前記水熱反応で得られた固体を水及び有機溶媒で洗浄した後、乾燥させる、請求項1〜5のいずれか1項に記載の多孔質炭素の製造方法。The method for producing porous carbon according to any one of claims 1 to 5, wherein the solid obtained by the hydrothermal reaction is washed with water and an organic solvent and then dried. 前記乾燥後の固体を加温下で溶媒洗浄した後、乾燥させる、請求項6に記載の多孔質炭素の製造方法。The method for producing porous carbon according to claim 6, wherein the dried solid is washed with a solvent under heating and then dried. 請求項1〜7のいずれか1項に記載の方法で多孔質炭素を製造した後、さらに焼成する多孔質炭素の製造方法。 A method for producing porous carbon, which is obtained by producing porous carbon by the method according to any one of claims 1 to 7, and then further firing the porous carbon. 前記多孔質炭素が配向性のナノ構造を有する請求項1〜8のいずれか1項に記載の多孔質炭素の製造方法 The method for producing porous carbon according to any one of claims 1 to 8 , wherein the porous carbon has an oriented nanostructure.
JP2017253982A 2017-12-28 2017-12-28 Method for producing porous carbon Active JP6933370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017253982A JP6933370B2 (en) 2017-12-28 2017-12-28 Method for producing porous carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253982A JP6933370B2 (en) 2017-12-28 2017-12-28 Method for producing porous carbon

Publications (2)

Publication Number Publication Date
JP2019119632A JP2019119632A (en) 2019-07-22
JP6933370B2 true JP6933370B2 (en) 2021-09-08

Family

ID=67306050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253982A Active JP6933370B2 (en) 2017-12-28 2017-12-28 Method for producing porous carbon

Country Status (1)

Country Link
JP (1) JP6933370B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683541B (en) * 2019-11-27 2024-06-07 天津合众汇能科技有限公司 Method for preparing double-electric-layer capacitor active carbon by template method
CN115916693A (en) * 2020-09-17 2023-04-04 电化株式会社 Porous carbon material and method for producing same
JP2022066847A (en) * 2020-10-19 2022-05-02 日鉄ケミカル&マテリアル株式会社 Carbon material for solid polymer electrolyte fuel cell catalyst carrier, catalyst layer for polymer electrolyte fuel cell, and fuel cell
CN115477298B (en) * 2022-09-01 2023-10-24 广州大学 Hollow spherical super-structure carbon material and preparation method and application thereof
CN115722194B (en) * 2022-12-07 2024-05-07 江汉大学 Nitric acid modified lotus leaf charcoal adsorption material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2019119632A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
JP6933370B2 (en) Method for producing porous carbon
Meng et al. Green synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors
Gorgolis et al. Graphene aerogels: a review
Ma et al. Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors
Liao et al. On controlling aerogel microstructure by freeze casting
Jiang et al. Hierarchically porous graphene/ZIF-8 hybrid aerogel: preparation, CO2 uptake capacity, and mechanical property
Deka et al. Transforming waste polystyrene foam into N-doped porous carbon for capacitive energy storage and deionization applications
Jiang et al. Band gap engineering in fluorescent conjugated microporous polymers
Chen et al. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures
Dai et al. Reactive template and confined self-activation strategy: three-dimensional interconnected hierarchically porous N/O-doped carbon foam for enhanced supercapacitors
Prasad et al. Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview
Waribam et al. Waste biomass valorization through production of xylose-based porous carbon microspheres for supercapacitor applications
Inada et al. Structural analysis and capacitive properties of carbon spheres prepared by hydrothermal carbonization
Sue et al. Synthesis of hierarchical micro/mesoporous structures via solid–aqueous interface growth: zeolitic imidazolate framework-8 on siliceous mesocellular foams for enhanced pervaporation of water/ethanol mixtures
Sun et al. Nitrogen-doped porous carbons derived from polypyrrole-based aerogels for gas uptake and supercapacitors
CN108940141B (en) Preparation method of graphene composite aerogel
CN103265017B (en) The preparation method of a kind of flexible self-supporting paper-like graphene film and composite membrane thereof
WO2013132259A1 (en) Graphene and graphene oxide aerogels/xerogels for co2 capture
EP3325143A1 (en) Magnetic hydrophobic porous graphene sponge for environmental and biological/medical applications
CN105688285B (en) A kind of preparation method of grapheme material coating chitosan three-dimensional bracket
Kong et al. All-cellulose-based freestanding porous carbon nanocomposites and their versatile applications
Suresh et al. Directional-freezing-enabled MXene orientation toward anisotropic PVDF/MXene aerogels: orientation-dependent properties of hybrid aerogels
Karakehya Effects of one-step and two-step KOH activation method on the properties and supercapacitor performance of highly porous activated carbons prepared from Lycopodium clavatum spores
Huang et al. High-performance fluorinated polyimide/pure silica zeolite nanocrystal hybrid films with a low dielectric constant
Kraiwattanawong A review on the development of a porous carbon-based as modeling materials for electric double layer capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210812

R150 Certificate of patent or registration of utility model

Ref document number: 6933370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250