JP2019117397A - Substrate processing method - Google Patents

Substrate processing method Download PDF

Info

Publication number
JP2019117397A
JP2019117397A JP2019042635A JP2019042635A JP2019117397A JP 2019117397 A JP2019117397 A JP 2019117397A JP 2019042635 A JP2019042635 A JP 2019042635A JP 2019042635 A JP2019042635 A JP 2019042635A JP 2019117397 A JP2019117397 A JP 2019117397A
Authority
JP
Japan
Prior art keywords
substrate
reinforcing member
optical waveguide
strain
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019042635A
Other languages
Japanese (ja)
Inventor
哲兵 柳川
Teppei YANAGAWA
哲兵 柳川
哲也 君嶋
Tetsuya Kimishima
哲也 君嶋
藤野 哲也
Tetsuya Fujino
哲也 藤野
市川 潤一郎
Junichiro Ichikawa
潤一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2019042635A priority Critical patent/JP2019117397A/en
Publication of JP2019117397A publication Critical patent/JP2019117397A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

To effectively prevent cracking in a substrate on which a function element is formed when processing is performed for thinning the substrate.SOLUTION: A substrate processing method for thinning a substrate 200 that is anisotropic with respect to linear expansion coefficient includes the steps of: bonding the substrate 200 to a reinforcement member 204 that is isotropic with respect to the linear expansion coefficient; processing the substrate 200 bonded to the reinforcement member 204 for thinning the substrate 200; and peeling the substrate 200 off the reinforcement member 204. The bonding step includes heating a thermally fusible material interposed between the reinforcement member 204 and the substrate 200 to a temperature of 100°C or more and 200°C or less to fuse and then cool it for solidification, thereby bonding the reinforcement member 204 and the substrate 200.SELECTED DRAWING: Figure 2

Description

本発明は、補強部材を用いて基板を加工する方法、及び補強部材により補強された基板より成る機能素子に関し、例えば光導波路素子が形成されたニオブ酸リチウム結晶基板を補強部材を用いて薄く加工する方法、及び補強部材により補強された当該基板より成る光導波路素子に関する。なお、本明細書において「機能素子」とは、電気的及び又は光学的な何らかの機能を発揮するよう基板上に形成された任意の種類の素子をいうものとし、例えば、光導波路素子、電気回路素子等を含むものとする。   The present invention relates to a method of processing a substrate using a reinforcing member, and a functional element comprising a substrate reinforced by the reinforcing member, for example, a lithium niobate crystal substrate on which an optical waveguide element is formed is thinly processed using a reinforcing member. And an optical waveguide device comprising the substrate reinforced by the reinforcing member. In the present specification, the term "functional element" refers to any type of element formed on a substrate so as to exert some electrical and / or optical function. For example, an optical waveguide element, an electric circuit An element etc. shall be included.

光通信や光計測の分野においては、電気光学効果を有する基板上に光導波路を形成して成る光導波路素子を用いた光変調器等の光制御デバイスが、多く用いられている。   In the fields of optical communication and light measurement, many light control devices such as light modulators using an optical waveguide element in which an optical waveguide is formed on a substrate having an electro-optical effect are used.

光導波路素子では、更に、基板表面に形成された光導波路に近接して当該光導波路に電界を印加するための電極が設けられ、光導波路の屈折率を印加電界により制御することで光変調等の光制御機能が実現される。   In the optical waveguide device, an electrode for applying an electric field to the optical waveguide is further provided in proximity to the optical waveguide formed on the substrate surface, and light modulation etc. is performed by controlling the refractive index of the optical waveguide by the applied electric field. The light control function of

このような光導波路素子の基板として、例えば強誘電体結晶であるニオブ酸リチウム(LiNbO)(「LN」とも称する)が広く用いられている。光導波路素子の基板としてLNを用いる場合、光制御に要する駆動電圧を低減したり、高周波信号による駆動に必要な電気特性を向上させるため、基板の誘電損失を低減させる必要がある。 As a substrate of such an optical waveguide device, for example, lithium niobate (LiNbO 3 ) (also referred to as “LN”) which is a ferroelectric crystal is widely used. When LN is used as the substrate of the optical waveguide device, it is necessary to reduce the dielectric loss of the substrate in order to reduce the driving voltage required for light control or to improve the electrical characteristics required for driving by a high frequency signal.

光導波路素子の駆動電圧低減や電気特性向上のための技術として、ZカットLN基板の場合には光導波路の近傍を加工してリッジ構造とすることや、XカットLN基板の場合には基板厚を10μm以下に薄く加工することが知られている。   As a technique for reducing the drive voltage of the optical waveguide device and improving the electrical characteristics, in the case of a Z-cut LN substrate, processing in the vicinity of the optical waveguide to form a ridge structure or in the case of an X-cut LN substrate the substrate thickness It is known to process it thinly to 10 μm or less.

LN基板の薄板化加工は、例えば、図4に示す手順で行われる。まず、図4(a)に示すように、LN基板400のオモテ面(図示上側の面)に光導波路を形成する。この光導波路の形成は、Ti熱拡散法等の公知の手法で行うことができる。次に、LN基板400のオモテ面(光導波路が形成された面)を、例えば樹脂404により、金属で構成された研磨治具406に張り付ける(図4(b))。続いて、適切な研磨剤を用いて、LN基板400の厚さが所望の厚さになるまで、当該LN基板400の裏面を研磨する(図4(c))。   The thinning process of the LN substrate is performed, for example, in the procedure shown in FIG. First, as shown in FIG. 4A, an optical waveguide is formed on the front surface (upper surface in the drawing) of the LN substrate 400. The formation of the optical waveguide can be performed by a known method such as a Ti thermal diffusion method. Next, the front surface of the LN substrate 400 (the surface on which the optical waveguide is formed) is attached, for example, with a resin 404, to a polishing jig 406 made of metal (FIG. 4B). Subsequently, the back surface of the LN substrate 400 is polished using a suitable polishing agent until the thickness of the LN substrate 400 becomes a desired thickness (FIG. 4C).

ところが、このようなLN基板を薄く加工する工程を含む製造工程においては、当該加工の際にLN基板にクラックを生じさせやすく、これが光導波路素子の製造歩留りを低下させる一つの要因となり得る。一般に、薄板化加工の際には、上述のようにLN基板の表面(オモテ面)を金属等から成る研磨治具に貼り合わせて固定して、当該LN基板の裏面を研磨加工する。ここで、治具とLN基板との貼り合わせには、一般に高温で融解する樹脂等を用いることが多く、常温に戻して樹脂を硬化させる際に、温度変動に伴う治具の熱膨張・収縮とLN基板の熱膨張・収縮との差によってLN基板に応力が発生し、その後の工程において当該LN基板にクラックを生じさせやすくなる。   However, in the manufacturing process including such a process of processing the LN substrate thinly, the LN substrate is easily cracked during the processing, which can be one factor to reduce the manufacturing yield of the optical waveguide device. Generally, in the thinning process, as described above, the front surface (front side) of the LN substrate is bonded and fixed to a polishing jig made of metal or the like, and the rear surface of the LN substrate is polished. Here, in general, a resin or the like that melts at a high temperature is often used to bond the jig and the LN substrate, and when the resin is cured by returning to normal temperature, thermal expansion / contraction of the jig accompanying temperature fluctuation The difference between the thermal expansion and contraction of the LN substrate generates a stress in the LN substrate, which makes it easy to cause the LN substrate to crack in the subsequent steps.

LN基板に生ずる当該応力は、原理的には治具の線膨張係数とLN基板の線膨張係数とを一致させることで防止し得るが、LN基板は結晶軸に平行な方向と垂直な方向とで互いに異なる線膨張係数を有する(異方性を有する)ことから、現実的には線膨張係数を一致させることは困難である。   The stress generated in the LN substrate can be prevented in principle by matching the linear expansion coefficient of the jig with the linear expansion coefficient of the LN substrate, but the LN substrate is in the direction perpendicular to the direction parallel to the crystal axis. In fact, it is difficult to match the linear expansion coefficients because they have linear expansion coefficients different from each other (have anisotropy).

従来、デバイスにおける基板クラックの発生を防止する技術として、タンタル酸リチウム等の異方性結晶からなる圧電基板を、異方性を有さず且つ当該圧電基板と線膨張係数が近いサファイア等の部材から成る支持層に貼り合わせ、且つ貼り合わせ後の全体厚さに対する支持層厚さを所定の比率以下とすることが知られている(特許文献1)。   Conventionally, as a technique for preventing the generation of substrate cracks in a device, a piezoelectric substrate made of anisotropic crystal such as lithium tantalate is a member such as sapphire which does not have anisotropy and has a linear expansion coefficient close to that of the piezoelectric substrate. It is known that the support layer is bonded to a support layer comprising the support layer, and the support layer thickness to the entire thickness after bonding is a predetermined ratio or less (Patent Document 1).

しかしながら、上記従来の技術は、圧電デバイスへの適用を意図するものであり、圧電デバイスに比べて10倍以上の大きなチップサイズを要する光導波路素子においては、応力の発生を上記構成によって十分に低減することはそもそも困難である。一般に、光導波路素子を製造する際には、さらに大きい円形基板内に複数の光導波路素子を形成しておき、当該円形基板の裏面を研磨することで基板の薄型化が行われる(バッチ処理)。したがって、上記従来の技術を当該バッチ処理用の円形基板の薄型化工程の際に適用しても、当該基板に発生する応力を防止することは、極めて困難である。   However, the above-mentioned prior art is intended to be applied to a piezoelectric device, and in an optical waveguide element requiring a chip size 10 times or more larger than that of the piezoelectric device, the generation of stress is sufficiently reduced by the above configuration. It is difficult to do in the first place. Generally, when manufacturing an optical waveguide device, a plurality of optical waveguide devices are formed in a larger circular substrate, and the substrate is thinned by polishing the back surface of the circular substrate (batch processing) . Therefore, even if the above-mentioned prior art is applied in the process of thinning a circular substrate for batch processing, it is extremely difficult to prevent the stress generated in the substrate.

さらに言えば、光導波路素子の構成の観点から見ても、上記従来の技術は、数十μm(50〜70μm)の厚さの異方性結晶基板を前提として、支持層の厚さを異方性結晶基板の厚さの半分以下にするものであり、10μm前後の厚さまで加工することが求められる光導波路素子においては、当該構成によって実用に耐え得る機械強度を確保することは困難である。   Furthermore, even from the viewpoint of the configuration of the optical waveguide device, the above-described conventional techniques differ in the thickness of the support layer on the premise of an anisotropic crystal substrate having a thickness of several tens of μm (50 to 70 μm). In an optical waveguide device which is required to be processed to a thickness of about 10 μm or less, which is less than half the thickness of the anisotropic crystal substrate, it is difficult to secure mechanical strength that can withstand practical use by the configuration. .

WO2014/010696A1WO2014 / 010696A1

上記背景より、光導波路素子等の機能素子が形成される基板において、当該基板についてその厚さを薄くする等の加工を行う際に、当該基板にクラックが発生するのを効果的に防止し得る加工方法の実現が求められている。   From the above background, in a substrate on which a functional element such as an optical waveguide element is formed, when processing such as reducing the thickness of the substrate, it is possible to effectively prevent the occurrence of cracks in the substrate. The realization of the processing method is required.

本発明の一の態様は、一の表面に機能素子が形成される基板を加工する方法であって、当該基板のいずれかの表面を、補強部材を介して機械的構造物に張り合わせる工程を有し、前記補強部材を構成する素材は、前記加工を行うための任意の工程において生じ得る前記基板の温度変動の範囲内において、当該温度変動により前記基板と前記補強部材との境界面に応力が生ずることで発生する当該基板の表面における歪が、圧縮歪又は予め定めた所定の歪量以下の引張歪となるように選択される。
本発明の他の態様によると、前記基板は、線膨張係数が異方性を有する材料で構成されており、前記補強部材を構成する前記素材は、等方性の線膨張係数を有するものである。
本発明の他の態様によると、前記基板はニオブ酸リチウムから成り、前記所定の歪量は、110ppmである。
本発明の他の態様によると、前記基板の表面に発生する歪の種類は、前記基板の線膨張係数と前記補強部材を構成する素材の線膨張係数との差により特定される。
本発明の他の態様によると、前記加工は、前記基板の厚さを薄くするための加工である。
本発明の他の態様は、基板に形成される機能素子であって、前記基板の一の面に貼り合わされた補強部材を備え、前記補強部材の素材は、当該機能素子の動作温度範囲内の温度変動において、当該温度変動により前記基板と前記補強部材との境界面に応力が生ずることで発生する前記基板の表面における歪が、圧縮歪又は予め定めた所定の歪量以下の引張歪となるように選択される。
本発明の他の態様は、ニオブ酸リチウム基板の表面に形成された光導波路により構成される光導波路素子であって、前記基板の一の面に貼り合わされた補強部材を備え、前記補強部材の素材は、当該光導波路素子の動作温度範囲内の温度変動において、当該温度変動により前記基板と前記補強部材との境界面に応力が生ずることで発生する前記基板の表面における歪が、圧縮歪又は予め定めた所定の歪量以下の引張歪となるように選択される。
One aspect of the present invention is a method of processing a substrate having a functional element formed on one surface, and bonding any surface of the substrate to a mechanical structure through a reinforcing member. The material constituting the reinforcing member is stressed at the interface between the substrate and the reinforcing member due to the temperature fluctuation within the range of the temperature fluctuation of the substrate which may occur in any step for performing the processing. The strain on the surface of the substrate, which is generated by the occurrence of the stress, is selected to be a compressive strain or a tensile strain equal to or less than a predetermined strain amount.
According to another aspect of the present invention, the substrate is made of a material having an anisotropy of linear expansion coefficient, and the material constituting the reinforcing member has an isotropic linear expansion coefficient. is there.
According to another aspect of the present invention, the substrate comprises lithium niobate, and the predetermined amount of strain is 110 ppm.
According to another aspect of the present invention, the type of strain generated on the surface of the substrate is specified by the difference between the linear expansion coefficient of the substrate and the linear expansion coefficient of the material constituting the reinforcing member.
According to another aspect of the present invention, the processing is processing for reducing the thickness of the substrate.
Another aspect of the present invention is a functional element formed on a substrate, comprising a reinforcing member bonded to one surface of the substrate, wherein the material of the reinforcing member is within the operating temperature range of the functional element. In the temperature fluctuation, the strain on the surface of the substrate, which is generated when a stress is generated at the interface between the substrate and the reinforcing member due to the temperature fluctuation, becomes a compressive strain or a tensile strain smaller than a predetermined strain amount. To be chosen.
Another aspect of the present invention is an optical waveguide device constituted by an optical waveguide formed on the surface of a lithium niobate substrate, comprising: a reinforcing member bonded to one surface of the substrate; The material is a strain on the surface of the substrate, which is generated when a stress is generated at the interface between the substrate and the reinforcing member due to the temperature variation in the temperature variation within the operating temperature range of the optical waveguide device. The tensile strain is selected so as to be equal to or less than a predetermined strain amount.

本発明の一実施形態に係る、光導波路素子の製造工程の概略を示すフロー図である。It is a flowchart which shows the outline of the manufacturing process of an optical waveguide element based on one Embodiment of this invention. 図1に示す製造工程における、研磨治具に張り付けたLN基板の状態を示す図である。It is a figure which shows the state of LN board | substrate stuck on the grinding jig in the manufacturing process shown in FIG. LN結晶の結晶軸に対し平行及び垂直な方向におけるLN基板と補強部材との間の線膨張係数差の符号が異なる場合にLN基板に生じ得る歪を、模式的に示した図である。FIG. 7 schematically shows distortion that may occur in the LN substrate when the signs of the linear expansion coefficient difference between the LN substrate and the reinforcing member are different in the directions parallel and perpendicular to the crystal axis of the LN crystal. 従来の、LN基板の薄板化加工の手順を説明するための図である。It is a figure for demonstrating the procedure of the conventional thinning process of LN board | substrate. LN基板に生じた引張歪によりクラックが発生する様子を模式的に示した図である。It is the figure which showed typically a mode that a crack generate | occur | produces by the tensile strain produced in LN board | substrate.

以下、図面を参照しつつ、本発明の実施の形態を説明する。本実施形態は、基板を10μm程度の厚さまで薄板化加工することにより作成される光導波路素子の製造方法に関するものである 図1は、本発明の一実施形態に係る光導波路素子の製造工程の概略を示すフロー図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present embodiment relates to a method of manufacturing an optical waveguide device manufactured by thinning a substrate to a thickness of about 10 μm. FIG. 1 is a manufacturing process of an optical waveguide device according to an embodiment of the present invention. It is a flow figure showing an outline.

まず、LN基板の表面に光導波路が形成される(S100)。LN基板は、例えばXカットのLN基板であり、基板表面への光導波路の形成は、Ti拡散法等の公知の任意の方法により行うことができる。また、この工程においては、光導波路内を伝搬する光波を制御するための電極を更に形成するものとしてもよい。   First, an optical waveguide is formed on the surface of the LN substrate (S100). The LN substrate is, for example, an X-cut LN substrate, and the formation of the optical waveguide on the substrate surface can be performed by any known method such as a Ti diffusion method. Further, in this step, an electrode for controlling a light wave propagating in the optical waveguide may be further formed.

次に、補強部材を介してLN基板を研磨治具に張り付ける(S102)。図2は、研磨治具に張り付けたLN基板の状態を示す図であり、図2(a)はその上面図、図2(b)はその側面図である。LN基板200のオモテ面(光導波路が形成された側の面(図2(b)におけるLN基板200の図示下側の面))が、補強部材204を介して、例えば金属から成る研磨治具206に張り付けられている。   Next, the LN substrate is attached to the polishing jig via the reinforcing member (S102). FIG. 2 is a view showing the state of the LN substrate attached to the polishing jig, FIG. 2 (a) is a top view thereof, and FIG. 2 (b) is a side view thereof. The front surface of the LN substrate 200 (the surface on which the optical waveguide is formed (the surface on the lower side of the LN substrate 200 in FIG. 2B)) is, for example, a polishing jig made of metal via the reinforcing member 204 It is attached to 206.

この貼り付けは、高温で融解する樹脂等を用いることで行うことができる。例えば、LN基板200と補強部材204との間に当該樹脂を挟んだ後、LN基板200、補強部材204、及び研磨治具206の全体を100〜200℃の温度まで加熱して樹脂を融解した後、常温まで冷却して樹脂を硬化させることで、LN基板200と補強部材204とを張り合わせるものとすることができる。なお、補強部材204と研磨治具206との間は、上記樹脂か、又は上記温度に耐え得る適切な接着用樹脂を用いて貼り合わせることができる。   This attachment can be performed by using a resin or the like that melts at a high temperature. For example, after the resin is sandwiched between the LN substrate 200 and the reinforcing member 204, the entire LN substrate 200, the reinforcing member 204, and the polishing jig 206 are heated to a temperature of 100 to 200 ° C. to melt the resin. Thereafter, the LN substrate 200 and the reinforcing member 204 can be bonded to each other by cooling to room temperature and curing the resin. The reinforcing member 204 and the polishing jig 206 can be bonded to each other using the above-described resin or an appropriate bonding resin that can withstand the above-described temperature.

続いて、LN基板200が所望の厚さ(例えば、約10μm)となるまで当該LN基板200の裏面を研磨して薄板化加工した後(S104)、LN基板200を補強部材204から剥離し(S106)、当該薄板化加工されたLN基板200をダイシングして(S108)、光導波路素子の製造工程が終了する。   Subsequently, the back surface of the LN substrate 200 is polished and thinned until the LN substrate 200 has a desired thickness (for example, about 10 μm) (S 104), and then the LN substrate 200 is peeled off from the reinforcing member 204 ( S106) The LN substrate 200 subjected to the thinning process is diced (S108), and the manufacturing process of the optical waveguide device is completed.

なお、図1は、光導波路素子の製造工程の概略を示したものであり、各工程における検査や、LN基板に対する他の部材の張り合わせ等、製造に関連して行われるその他の工程の適用を排除するものではない。   FIG. 1 shows an outline of the manufacturing process of the optical waveguide device, and the application of other processes performed in relation to manufacturing, such as inspection in each process, lamination of other members to the LN substrate, etc. It is not something to exclude.

図1に示す製造工程においては、ステップS104の研磨工程(薄板化工程)においてLN基板200にクラックが発生するのを防止すべく、ステップS102において用いる補強部材204の素材選択が重要となる。LN基板200に生ずる応力の大きさ並びに当該応力に起因してLN基板200の表面に発生する歪の種類及び大きさは、補強部材204の線膨張係数に依存するためである。   In the manufacturing process shown in FIG. 1, the material selection of the reinforcing member 204 used in step S102 is important in order to prevent the occurrence of a crack in the LN substrate 200 in the polishing process (thinning process) in step S104. The magnitude of the stress generated in LN substrate 200 and the type and magnitude of the strain generated on the surface of LN substrate 200 due to the stress depend on the linear expansion coefficient of reinforcing member 204.

本願発明の発明者は、種々の素材を用いて補強部材204を構成し、補強部材204の素材が持つ物理的特性と、LN基板200におけるクラック発生との因果関係を明らかにし、(1)LN基板は、熱膨張/収縮に伴って補強部材との間に発生する圧縮方向の応力に対してはクラックを生じ難く、伸長方向(引張方向)の応力に対してクラックを生じやすい、(2)LN基板に対し引張方向に応力が加わる場合には、その最大応力を、当該応力に起因するLN基板の歪み量が110ppm以下となる値に留めることで、クラックの発生を効果的に防止できる、との知見を得た。   The inventor of the present invention configures the reinforcing member 204 using various materials, and reveals the causal relationship between the physical characteristics of the material of the reinforcing member 204 and the occurrence of a crack in the LN substrate 200, (1) LN The substrate is unlikely to crack with respect to the stress in the compression direction generated with the reinforcing member due to thermal expansion / contraction, and tends to cause cracking with respect to the stress in the extension direction (tensile direction), (2) When stress is applied to the LN substrate in the tensile direction, the generation of cracks can be effectively prevented by limiting the maximum stress to a value such that the amount of strain of the LN substrate resulting from the stress is 110 ppm or less. The findings of the

図5は、LN基板に生じた引張歪によりクラックが発生する様子を模式的に示した図である。図示のように、LN基板500の結晶軸に対し、(例えば垂直な方向に発生する)圧縮歪(矢印508、510)に対してはクラックは発生しにくいが、(例えば平行な方向に発生する)引張歪(矢印504、506)に対してはクラックが発生しやすく、例えば当該引張歪に起因して発生した僅かな割れが成長することで、符号512a〜dで示すような、様々な形状の様々な方向に走るクラックが発生し得る。   FIG. 5 is a view schematically showing how a crack is generated due to a tensile strain generated in the LN substrate. As shown, cracks are less likely to occur with respect to compressive strain (eg, generated in a perpendicular direction) with respect to the crystal axis of LN substrate 500 (eg, generated in a parallel direction). ) Cracks are likely to be generated for tensile strain (arrows 504 and 506), and various shapes as shown by reference numerals 512a to d, for example, due to the growth of a slight crack caused due to the tensile strain Cracks can run in various directions.

なお、上記歪み量は、応力発生方向に沿ってLN基板上において測った長さに対する、当該応力発生によって生じる当該長さの変化量の比、で定義される。   The amount of strain is defined by the ratio of the amount of change in the length caused by the occurrence of the stress to the length measured on the LN substrate along the direction of the occurrence of stress.

本発明は、上記知見に基づくものであり、補強部材204の素材選択にあたって、従来のように“その素材の線膨張係数がLN基板の線膨張係数に近いほど良い”という選択基準を用いるのではなく、加工時の温度変動に対して発生するLN基板200の上記歪み量を基準とする。   The present invention is based on the above findings, and in selecting the material of the reinforcing member 204, as in the prior art, using the selection criterion that “the linear expansion coefficient of the material is closer to the linear expansion coefficient of the LN substrate” is used. Instead, the above distortion amount of the LN substrate 200 generated with respect to the temperature fluctuation during processing is used as a reference.

すなわち、補強部材204を、「加工工程で発生する温度変動に対し、LN基板の基板面内の一の方向に生じる歪が、圧縮歪又は110ppm以下の引張歪となる素材」で構成されるものとする。そして、温度変動に対して発生するLN基板200の歪の種類は、LN基板200と補強部材204の素材との間の線膨張係数(又は線膨張率)の差で推定することができる。   That is, the reinforcing member 204 is configured by "a material which causes a compressive strain or a tensile strain of 110 ppm or less, a strain generated in one direction in the substrate surface of the LN substrate against a temperature fluctuation generated in a processing step". I assume. The type of strain of the LN substrate 200 generated with respect to temperature change can be estimated by the difference in linear expansion coefficient (or coefficient of linear expansion) between the LN substrate 200 and the material of the reinforcing member 204.

下表は、本願の出願時点において市販されている、補強部材204についての選択対象となり得る種々の素材a〜dの、線膨張係数を示した表である。参考のため、下表には、LN結晶の線膨張係数も示している。

Figure 2019117397
The following table is a table showing coefficients of linear expansion of various materials a to d that can be selected for the reinforcing member 204, which are commercially available at the time of filing of the present application. For reference, the following table also shows the linear expansion coefficient of LN crystal.
Figure 2019117397

表1より、素材a又は素材cを補強部材204として使用した場合には、LN基板200には引張歪のみが生じ、素材b又は素材dを補強部材204として使用した場合には、LN基板200には、結晶軸に平行な方向に圧縮歪を生じ、結晶軸に垂直な方向に引張歪を生ずることが判る。図3は、補強部材204として素材b又は素材dを用いた場合の、LN基板200に生ずる歪を模式的に示した図である。上述したように、LN基板200には、結晶軸に対し平行な方向に圧縮歪(矢印300、302)が生じ、結晶軸に対し垂直な方向には引張歪(矢印304、306)が生じる。   From Table 1, when the material a or c is used as the reinforcing member 204, only tensile strain occurs in the LN substrate 200, and when the material b or d is used as the reinforcing member 204, the LN substrate 200 is used. It can be seen that compressive strain occurs in the direction parallel to the crystal axis and tensile strain occurs in the direction perpendicular to the crystal axis. FIG. 3 is a view schematically showing a strain generated in the LN substrate 200 when the material b or d is used as the reinforcing member 204. As shown in FIG. As described above, in the LN substrate 200, compressive strain (arrows 300 and 302) occurs in the direction parallel to the crystal axis, and tensile strain (arrows 304 and 306) occurs in the direction perpendicular to the crystal axis.

本願の発明者が行った実験によれば、LN基板200、補強部材204、及び研磨治具206を100〜200℃の温度まで加熱して張り合わせ用樹脂を融解した後、常温まで冷却して当該樹脂を硬化させる場合、補強部材204として素材a〜cを用いた場合にはLN基板200にクラックを生じ、補強部材204として素材dを用いた場合にはLN基板200にクラックは発生せず、クラックの発生が効果的に防止された。表1に示した線膨張係数差と温度変化幅とを乗算して得られる値は、上述した引張歪の許容量110ppmとは異なるものとなる。これは、上記加熱した基板を常温まで冷却する過程における補強部材204へのLN基板200の固定と当該固定に起因するLN基板200に応力の発生とが、当該冷却過程の途中の温度において開始することによるものと考えられる。   According to experiments conducted by the inventor of the present application, the LN substrate 200, the reinforcing member 204, and the polishing jig 206 are heated to a temperature of 100 to 200 ° C. to melt the resin for bonding, and then cooled to room temperature. When the resin is cured, cracks occur in the LN substrate 200 when the materials a to c are used as the reinforcing member 204, and no cracks occur in the LN substrate 200 when the material d is used as the reinforcing member 204. The occurrence of cracks was effectively prevented. The value obtained by multiplying the linear expansion coefficient difference and the temperature change width shown in Table 1 is different from the above-described allowable 110 ppm of tensile strain. This is because fixation of the LN substrate 200 to the reinforcing member 204 in the process of cooling the heated substrate to normal temperature and generation of stress in the LN substrate 200 due to the fixation start at a temperature in the middle of the cooling process. It is thought that it depends on the matter.

以上、説明したように、本実施形態に係る光導波路素子の製造方法では、LN基板の研磨を行う際に、LN基板を、補強部材を介して、他の機械的構造物である研磨治具に張り付けるものとし、且つ、製造工程における温度変動に起因して発生するLN基板の歪が、圧縮歪又は110ppm以下の引張歪となるように、上記補強部材の素材が選択される。これにより、本実施形態に係る製造方法においては、LN基板のクラックの発生を効果的に防止することができる。   As described above, in the method of manufacturing an optical waveguide device according to the present embodiment, when the LN substrate is polished, the LN substrate is a polishing jig that is another mechanical structure via the reinforcing member. The material of the reinforcing member is selected such that the strain of the LN substrate generated due to temperature fluctuation in the manufacturing process is compressive strain or tensile strain of 110 ppm or less. Thereby, in the manufacturing method according to the present embodiment, the occurrence of cracks in the LN substrate can be effectively prevented.

尚、上述した実施形態ではLN基板を用いた光導波路素子について記載したが、これに限らず、任意の機能素子を構成する任意の基板について任意の加工を行う際にも、当該基板を他の機械的構造物(例えば、当該加工に適した治具)に張り合わせる際には、補強部材204に相当する補強部材を介して当該基板を当該機械的構造物に張り合わせることで、工程中の温度変動に伴う当該基板の表面でのクラック発生を有効に防止することができる。この場合、当該補強部材の素材は、工程中の温度変動によって当該基板と当該補強部材との境界面に生ずる応力に起因して当該基板に生ずる歪みが、圧縮歪又は所定の歪量以下の引張歪となるように選択される。   In the embodiment described above, the optical waveguide device using the LN substrate is described. However, the present invention is not limited to this, and the substrate may be another substrate when any processing is performed on any substrate constituting any functional device. When bonding to a mechanical structure (for example, a jig suitable for the processing), the substrate is bonded to the mechanical structure via a reinforcing member corresponding to the reinforcing member 204 in the process. Cracks on the surface of the substrate due to temperature fluctuations can be effectively prevented. In this case, in the material of the reinforcing member, the strain generated in the substrate due to the stress generated at the interface between the substrate and the reinforcing member due to the temperature fluctuation during the process is a compressive strain or a tensile force of a predetermined strain or less. It is selected to be distortion.

また、上述した実施形態では、光導波路が形成されたLN基板の厚さを薄く加工するため、光導波路が形成されていない基板表面を、補強部材を介して研磨治具に貼り付ける構成としたが、これに限らず、光導波路等の機能素子が形成されていない基板や、当該機能素子上に保護膜を設ける等により当該機能素子を損なうことなく行うことのできる加工の場合には、当該基板のいずれか任意の表面(例えば、当該加工に適したいずれかの表面)を、補強部材を介して他の機械的構造物に貼り合わせるものとすることができる。   Further, in the embodiment described above, in order to process thin the thickness of the LN substrate on which the optical waveguide is formed, the substrate surface on which the optical waveguide is not formed is attached to the polishing jig through the reinforcing member. However, the present invention is not limited to this, in the case of a substrate on which a functional element such as an optical waveguide is not formed, or in the case of processing that can be performed without damaging the functional element by providing a protective film on the functional element. Any arbitrary surface of the substrate (for example, any surface suitable for the processing) may be bonded to another mechanical structure via a reinforcing member.

また、本実施形態では、LN基板200を薄板化加工する際に補強部材204を用いるものとしたが、これに限らず、LN基板に形成された光導波路素子の一の面に補強部材を貼り合わせて当該光導波路素子の機械強度を向上するものとし、当該補強部材の素材を、当該光導波路素子の動作温度範囲内の温度変動において、当該温度変動により前記基板と前記補強部材との境界面に応力が生ずることで発生する前記基板の表面における歪が、圧縮歪又は予め定めた所定の歪量(例えば、上述した110ppm)以下の引張歪となるように選択されるものとすることができる。   Further, in the present embodiment, the reinforcing member 204 is used when thinning the LN substrate 200. However, the present invention is not limited to this. A reinforcing member is attached to one surface of the optical waveguide device formed on the LN substrate. In addition, the mechanical strength of the optical waveguide device is to be improved, and the material of the reinforcing member is used as the interface between the substrate and the reinforcing member due to the temperature fluctuation in the temperature fluctuation within the operating temperature range of the optical waveguide device. Strain on the surface of the substrate generated by the generation of stress may be selected to be compressive strain or tensile strain less than a predetermined strain (for example, 110 ppm mentioned above) .

同様に、光導波路素子に限らず、基板に形成される機能素子の当該基板の一の面に補強部材を貼り合わせて当該機能素子の機械強度を向上するものとし、当該補強部材の素材を、当該機能素子の動作温度範囲内の温度変動において、当該温度変動により基板と補強部材との境界面に応力が生ずることで発生する基板の表面における歪が、圧縮歪又は予め定めた所定の歪量以下の引張歪となるように選択されるものとすることができる。   Similarly, not only the optical waveguide element but also a reinforcing member is bonded to one surface of the substrate of the functional device formed on the substrate to improve the mechanical strength of the functional device, and the material of the reinforcing member is In the temperature fluctuation within the operating temperature range of the functional element, the strain on the surface of the substrate generated by the stress generated at the boundary surface between the substrate and the reinforcing member due to the temperature fluctuation is a compressive strain or a predetermined predetermined strain amount It may be selected to have the following tensile strain.

200、400、500・・・LN基板、204・・・補強部材、206、406・・・研磨治具、404・・・樹脂。   200, 400, 500 ... LN substrate, 204 ... reinforcement member, 206, 406 ... polishing jig, 404 ... resin.

Claims (3)

線膨張係数について異方性を有する基板を薄板化するための基板加工方法であって、
前記基板を、線膨張係数に関し等方性を有する補強部材に貼り合わせる工程と、
前記補強部材に張り合わされた前記基板を加工して当該基板の厚さを薄くする工程と、
前記補強部材から前記基板を剥離する工程と、
を含み、
前記貼り合わせる工程では、前記補強部材と前記基板との間に介在させた熱溶融性材料を、100℃以上200℃以下の温度まで加熱して溶融させたのち冷却し固化させることにより、前記補強部材と前記基板とを貼り合わせる、
基板加工方法。
A substrate processing method for thinning a substrate having anisotropy with respect to a linear expansion coefficient,
Bonding the substrate to a reinforcing member having isotropy with respect to a linear expansion coefficient;
Processing the substrate bonded to the reinforcing member to reduce the thickness of the substrate;
Peeling the substrate from the reinforcing member;
Including
In the bonding step, the heat fusible material interposed between the reinforcing member and the substrate is heated and melted to a temperature of 100 ° C. or more and 200 ° C. or less, cooled and solidified by cooling. Bonding the member and the substrate,
Substrate processing method.
前記補強部材は、SUS系材料で構成される、
請求項1に記載の基板加工方法。
The reinforcing member is made of a SUS-based material,
The substrate processing method according to claim 1.
前記基板は、ニオブ酸リチウムから成る、
請求項1または2に記載の基板加工方法。
The substrate comprises lithium niobate
The substrate processing method according to claim 1.
JP2019042635A 2019-03-08 2019-03-08 Substrate processing method Pending JP2019117397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019042635A JP2019117397A (en) 2019-03-08 2019-03-08 Substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019042635A JP2019117397A (en) 2019-03-08 2019-03-08 Substrate processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015038323A Division JP2016161654A (en) 2015-02-27 2015-02-27 Substrate processing method using reinforcement member, and function element formed of substrate reinforced by reinforcement member

Publications (1)

Publication Number Publication Date
JP2019117397A true JP2019117397A (en) 2019-07-18

Family

ID=67304420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019042635A Pending JP2019117397A (en) 2019-03-08 2019-03-08 Substrate processing method

Country Status (1)

Country Link
JP (1) JP2019117397A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300257A (en) * 1995-05-09 1996-11-19 Sumitomo Metal Mining Co Ltd Wafer sticking device and wafer sticking method therewith
JP2003177263A (en) * 2001-10-03 2003-06-27 Ngk Insulators Ltd Method of manufacturing optical waveguide and optical waveguide element
JP2005179654A (en) * 2003-11-27 2005-07-07 Jsr Corp Hot-melt adhesive composition
US20080144997A1 (en) * 2006-12-14 2008-06-19 Jds Uniphase Corporation Small Optical Package Having Multiple Optically Aligned Soldered Elements Therein
JP2013190723A (en) * 2012-03-15 2013-09-26 Ricoh Co Ltd Electro-optical element, method of manufacturing the same, and electro-optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300257A (en) * 1995-05-09 1996-11-19 Sumitomo Metal Mining Co Ltd Wafer sticking device and wafer sticking method therewith
JP2003177263A (en) * 2001-10-03 2003-06-27 Ngk Insulators Ltd Method of manufacturing optical waveguide and optical waveguide element
JP2005179654A (en) * 2003-11-27 2005-07-07 Jsr Corp Hot-melt adhesive composition
US20080144997A1 (en) * 2006-12-14 2008-06-19 Jds Uniphase Corporation Small Optical Package Having Multiple Optically Aligned Soldered Elements Therein
JP2013190723A (en) * 2012-03-15 2013-09-26 Ricoh Co Ltd Electro-optical element, method of manufacturing the same, and electro-optical device

Similar Documents

Publication Publication Date Title
JPWO2005045908A1 (en) Substrate bonding method, bonded substrate and direct bonding substrate
US8270776B2 (en) Optical waveguide device
JP2003215519A (en) Optical waveguide device, and traveling wave form optical modulator
JPH1155070A (en) Surface acoustic wave element and its producing method
US9298025B2 (en) Electrode structure for an optical waveguide substrate
JP4803546B2 (en) Wavelength conversion waveguide device and manufacturing method thereof
JP2022043057A (en) Hybrid structure
JP2019117397A (en) Substrate processing method
JP2004170931A (en) Optical modulator
JP2016161654A (en) Substrate processing method using reinforcement member, and function element formed of substrate reinforced by reinforcement member
JP5262186B2 (en) Optical waveguide device
JP5254855B2 (en) Traveling wave type optical modulator
JP2004295089A (en) Compound substrate and method for manufacturing the same
JP2010085789A (en) Optical waveguide element
JP4733094B2 (en) Optical element
JP6660113B2 (en) Composite substrate and method of manufacturing the same
JP2004341147A (en) Optical waveguide device and traveling waveform optical modulator
JP5720716B2 (en) Optical waveguide device
JP2009086336A (en) Optical waveguide type device
CN214896087U (en) Optical waveguide device
JP2000121868A (en) Connection body of optical waveguide substrate and optical fiber fixing member
CN111883644B (en) Heterogeneous piezoelectric thin film structure and preparation method thereof
JP2007079465A (en) Optical control element and its manufacturing method
JP2017098644A (en) Piezoelectric composite substrate and manufacturing method thereof
WO2011024781A1 (en) Wavelength conversion element and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721