JP2019116656A - Method for producing nickel powder - Google Patents

Method for producing nickel powder Download PDF

Info

Publication number
JP2019116656A
JP2019116656A JP2017250471A JP2017250471A JP2019116656A JP 2019116656 A JP2019116656 A JP 2019116656A JP 2017250471 A JP2017250471 A JP 2017250471A JP 2017250471 A JP2017250471 A JP 2017250471A JP 2019116656 A JP2019116656 A JP 2019116656A
Authority
JP
Japan
Prior art keywords
nickel
hydrogen gas
complex solution
nickel powder
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017250471A
Other languages
Japanese (ja)
Other versions
JP7185177B2 (en
Inventor
高石 和幸
Kazuyuki Takaishi
和幸 高石
佳智 尾崎
Keichi Ozaki
佳智 尾崎
伸一 平郡
Shinichi Hiragori
伸一 平郡
修 池田
Osamu Ikeda
修 池田
陽平 工藤
Yohei Kudo
陽平 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017250471A priority Critical patent/JP7185177B2/en
Publication of JP2019116656A publication Critical patent/JP2019116656A/en
Application granted granted Critical
Publication of JP7185177B2 publication Critical patent/JP7185177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

To provide a method for producing nickel powder where, when a hydrogen gas is blown into a nickel sulfate ammine complex water solution stored in a high temperature-high pressure container in a high temperature-high pressure state, nickel ions and the hydrogen gas in the water solution are efficiently reacted to stably obtain nickel powder with a uniform size.SOLUTION: Provided is a method for producing nickel powder characterized in that, in a method where a nickel sulfate ammine complex solution and a hydrogen gas are reacted in a high temperature-high pressure container, and nickel ions in the complex solution are reduced with the hydrogen gas to obtain the powder of nickel, where, after a two phase state of a liquid phase part-a vapor phase part with the complex solution as the liquid phase is formed in the high temperature-high pressure container, a hydrogen gas is blown into the vapor phase part, and is sprayed on the solution face of the nickel sulfate ammine complex solution, and the vapor phase composed of the hydrogen gas and the liquid phase composed of the complex solution are contacted at a boundary formed by the vapor phase and the liquid phase, thus the nickel ions in the nickel ammine complex are subjected to reduction treatment with the hydrogen gas to generate nickel powder.SELECTED DRAWING: None

Description

本発明は硫酸ニッケルアンミン錯体溶液中のニッケルイオンを水素ガスで還元してニッケル粉末を得る方法に関する。   The present invention relates to a method of reducing nickel ions in a nickel sulfate ammonium complex solution with hydrogen gas to obtain a nickel powder.

湿式製錬プロセスを用いてニッケルの粉末を工業的に製造する方法の一つとして、特許文献1に示すように、ニッケル酸化鉱石やスクラップや中間原料などのニッケルを含有する原料と硫酸溶液とを接触させて得られたニッケルを含有する硫酸酸性溶液を、中和処理や溶媒抽出などの方法に付して共存する不純物を除去し、次いで、その不純物を除去した硫酸酸性溶液にアンモニアを添加して含有するニッケルをアンミン錯体に錯形成させて硫酸ニッケルアンミン錯体溶液とし、次いで、その硫酸ニッケルアンミン錯体溶液に水素ガスを供給し、ニッケルイオンを還元してニッケル粉を製造する方法が知られている。
As one of the methods for industrially producing nickel powder using a hydrometallurgical process, as shown in Patent Document 1, a nickel oxide ore, a nickel-containing raw material such as scrap or an intermediate raw material, and a sulfuric acid solution are used. A sulfuric acid solution containing nickel obtained by contacting is subjected to a method such as neutralization treatment or solvent extraction to remove coexisting impurities, and then ammonia is added to the sulfuric acid solution from which the impurities have been removed. Complexing nickel into an ammine complex to form a nickel sulfate ammine complex solution, and then supplying hydrogen gas to the nickel sulfate ammine complex solution to reduce nickel ions to produce a nickel powder. There is.

上記水素ガスを用いてニッケルイオンを還元する方法では、その反応が高温高圧下でないと効率よく進まないため、オートクレーブなどの高温高圧容器を用いて行われることが一般である。
この高温高圧容器を用いて、高温高圧下で硫酸ニッケルアンミン錯体水溶液に水素ガスを吹込む場合、ニッケルイオンと水素ガスを効率よく反応させるために、ランスと呼ばれる吹込み管やシンターと呼ばれる微細な吹き出し穴を多数有する吹込み管を用いて水素ガスを吹き込む場合が多い。
In the above method of reducing nickel ions using hydrogen gas, it is generally carried out using a high temperature and high pressure vessel such as an autoclave because the reaction does not proceed efficiently unless it is under high temperature and high pressure.
When hydrogen gas is blown into the aqueous solution of nickel sulfate ammine complex under high temperature and pressure using this high temperature and high pressure vessel, a fine tube called a lance called a blowing tube or a sinter is used to efficiently react nickel ions and hydrogen gas. In many cases, hydrogen gas is blown in using a blow pipe having a large number of blow holes.

しかしながら、上述したような吹込み管を用いた場合、硫酸ニッケルアンミン錯体溶液中にニッケルが析出してスケーリングを生成することが多く、スケーリングが進行するとランスの閉塞が生じてしまう課題があった。このため定期的にスケーリングを除去したり、ランスを交換したりする手間と費用を要していた。
さらに、ランスを用いて硫酸ニッケルアンミン錯体水溶液中に水素ガスを吹き込む場合、ランスの吐出口付近など特定の場所での硫酸ニッケルアンミン錯体溶液内での水素ガス濃度が局部的に高くなり、その結果部分的に還元が進んで、粒径が不均一なニッケル粉が析出・成長することがあり、製品の均質化の点でも課題となっていた。
However, in the case of using the above-described blow pipe, nickel often precipitates in the nickel sulfate ammonium complex solution to generate scaling, and there is a problem that lance blockage occurs as scaling progresses. For this reason, it took the effort and expense of removing scaling regularly and replacing a lance.
Furthermore, when hydrogen gas is blown into the aqueous solution of nickel sulfate ammonium complex using a lance, the concentration of hydrogen gas in the solution of nickel ammonium sulfate complex at a specific location such as near the discharge port of the lance becomes locally high. Partial reduction proceeds and nickel powder with nonuniform particle size may precipitate and grow, which has been a problem in terms of product homogenization.

特開2015−140480号公報JP, 2015-140480, A

本発明は、高温高圧下で水素ガスを吹込んで還元処理してニッケルの粉末を得る方法において、高温高圧状態で高温高圧容器内に貯留されている硫酸ニッケルアンミン錯体水溶液に水素ガスを吹込む際に、水溶液中のニッケルイオンと吹き込む水素ガスを効率よく均質なニッケル粉が得られるように反応させて均一な大きさのニッケル粉を安定的に得られるニッケル粉の製造方法を提案するものである。   The present invention is a method of blowing hydrogen gas under high temperature and pressure and reducing treatment to obtain nickel powder, in which hydrogen gas is blown into a nickel sulfate ammonium complex solution stored in a high temperature and high pressure container under high temperature and pressure condition. In addition, the present invention proposes a method for producing nickel powder in which nickel ions in an aqueous solution and hydrogen gas blown are efficiently reacted to obtain homogeneous nickel powder and nickel powder of uniform size is stably obtained. .

上記の課題を解決するための本発明の第1の発明は、硫酸ニッケルアンミン錯体溶液と水素ガスを高温高圧容器内で反応させ、前記硫酸ニッケルアンミン錯体溶液中のニッケルイオンを水素ガスで還元してニッケルの粉末を得る方法において、前記高温高圧容器内に、前記硫酸ニッケルアンミン錯体溶液を液相とする液相部−気相部の2相状態を形成した後、前記水素ガスを前記気相部に吹き込み、攪拌状態にある前記硫酸ニッケルアンミン錯体溶液の液面に吹き付けて前記水素ガスが構成する気相と前記硫酸ニッケルアンミン錯体溶液が構成する液相を、前記気相と液相が形成する界面で接触させることで、前記硫酸ニッケルアンミン錯体溶液中のニッケルイオンを前記水素ガスにより還元処理してニッケル粉末を生成することを特徴とするニッケル粉の製造方法である。   A first invention of the present invention for solving the above-mentioned problems is a reaction between a nickel sulfate ammonium complex solution and hydrogen gas in a high temperature and high pressure vessel, and reduction of nickel ions in the nickel sulfate ammonium complex solution with hydrogen gas. In the method for obtaining nickel powder, after forming a two-phase state of liquid phase portion-gas phase portion using the nickel sulfate ammonium complex solution as a liquid phase in the high temperature and high pressure vessel, the hydrogen gas is formed into the gas phase The gas phase and the liquid phase form a gaseous phase constituted by the hydrogen gas and a liquid phase constituted by the nickel sulfate ammine complex solution by spraying the liquid surface of the nickel sulfate ammine complex solution in a stirring state. The nickel ion in the nickel sulfate ammonium complex solution is subjected to reduction treatment with the hydrogen gas to generate a nickel powder by making contact at the interface. A method for producing nickel powder.

本発明の第2の発明は、第1の発明における気相部の圧力が2.5MPa以上、3.5MPa以下の範囲を維持するように、水素ガスの供給量を調整することを特徴とするニッケル粉の製造方法である。   A second invention of the present invention is characterized in that the amount of hydrogen gas supplied is adjusted so that the pressure of the gas phase part in the first invention is maintained in the range of 2.5 MPa or more and 3.5 MPa or less. It is a manufacturing method of nickel powder.

本発明の第3の発明は、第1及び第2の発明における液相部及び気相部の温度が150℃以上、185℃以下の温度範囲を維持した状態で水素ガスを吹き込むことを特徴とするニッケル粉の製造方法である   A third invention of the present invention is characterized in that hydrogen gas is blown in while maintaining the temperature range of 150 ° C. or more and 185 ° C. or less in the liquid phase portion and the gas phase portion in the first and second inventions. Manufacturing method of nickel powder

また、本発明の第4の発明は、第1から第3の発明における硫酸ニッケルアンミン錯体溶液が、ニッケルとアンモニアをモル濃度で表した値における「Ni/NH」が1.9以上、2.1以下の組成であり、且つ、緩衝剤としての硫酸アンモニウムを100g/L以上、500g/L以下を含有することを特徴とするニッケル粉の製造方法である。 Further, according to a fourth invention of the present invention, in the nickel sulfate ammonium complex solution according to any of the first to third inventions, “Ni / NH 3 ” is 1.9 or more, 2 in a value representing nickel and ammonia in molar concentration. A method of producing a nickel powder having a composition of 1 or less and containing 100 g / L or more and 500 g / L or less of ammonium sulfate as a buffer.

また、本発明の第5の発明は、第1から第4の発明における硫酸ニッケルアンミン錯体溶液に、ニッケル粉を種晶として前記硫酸ニッケルアンミン錯体溶液中のニッケル重量に対して1〜100重量%となる量を添加して形成したスラリーを、前記硫酸ニッケルアンミン錯体溶液の代わりに用いることを特徴とするニッケル粉の製造方法である。   The fifth invention of the present invention is the nickel sulfate ammonium complex solution according to any of the first to fourth inventions, wherein nickel powder is used as a seed crystal in an amount of 1 to 100% by weight based on the weight of nickel in the nickel sulfate ammonium complex solution. It is a manufacturing method of nickel powder characterized by using the slurry formed by adding the amount which becomes, in place of the nickel sulfate ammonium complex solution.

本発明によれば、微細で大きさのそろったニッケル粉を安定して得ることができる。   According to the present invention, fine and uniform sized nickel powder can be stably obtained.

実施例1で得られたニッケル粉のSEM像(×100)である。It is a SEM image (x100) of the nickel powder obtained in Example 1. FIG. 比較例1で得られたニッケル粉のSEM像(×500)である。It is a SEM image (x 500) of the nickel powder obtained by the comparative example 1. FIG.

本発明は、硫酸ニッケルアンミン錯体溶液を水素ガスで還元してニッケル粉を得る方法において、水素ガスを反応容器の気相部に吹き込むことを用いたもので、より詳細には、水素ガスは攪拌されている錯体溶液表面に向かって吹き付けられ、錯体溶液の表面を接触面とする気液相界面から溶液の内部へ拡散する水素による還元反応によって、錯体溶液中のニッケルイオンが水素ガスの水素により還元処理されてニッケル粉を形成するものである。   The present invention is a method of reducing nickel ammine complex solution with hydrogen gas to obtain nickel powder, wherein hydrogen gas is blown into the gas phase of a reaction vessel, and more specifically, the hydrogen gas is stirred. The nickel ions in the complex solution are reduced by the hydrogen of hydrogen gas by the reduction reaction by hydrogen that is sprayed toward the surface of the complex solution being diffused and diffuses from the gas-liquid phase interface to the interior of the solution with the surface of the complex solution as the contact surface. It is reduced to form nickel powder.

ところで、水素のように溶液への溶解度が低いガスを吹き込む場合、溶液との接触を効率的に行うためには、一般的には液相に吹き込まれる方法が採られている。
しかし、高温高圧下の状態では液相への水素ガスの溶解度が常圧の場合よりも大きくなるため、溶液中に水素ガスを吹き込むと水素と溶液との反応が常圧下よりも進みやすく、その結果、水素ガスの吹き込みに使用される吹込み管の吐出口付近で局部的に水素ガス濃度が上昇し、その結果不均一なサイズのニッケル粉になりやすいことを見出した。
By the way, when blowing in the gas with low solubility to a solution like hydrogen, in order to contact with a solution efficiently, generally the method of blowing in a liquid phase is taken.
However, since the solubility of hydrogen gas in the liquid phase in the state under high temperature and pressure is larger than that in the normal pressure, the reaction between hydrogen and the solution is more likely to proceed than under normal pressure when hydrogen gas is blown into the solution. As a result, it has been found that the concentration of hydrogen gas locally increases near the discharge port of the blow pipe used for blowing hydrogen gas, and as a result, it tends to become nickel powder of nonuniform size.

そのため、本発明では高温高圧容器に液相部と気相部の2相を設け、液相部は貯留された錯体溶液が占有し、気相部には水素ガスが吹き込まれ、高温高圧容器内に貯留されて液相部を構成する錯体溶液(又はスラリー)の液相と水素ガスが構成する気相の気相/液相界面を通じて水素ガスを溶液内に拡散させることで、ガス濃度の均一化を図り、その結果均一なサイズのニッケル粉を安定して得ることができるようにするものである。   Therefore, in the present invention, the high temperature and high pressure vessel is provided with two phases, a liquid phase and a gas phase, and the liquid phase is occupied by the stored complex solution, and hydrogen gas is blown into the gas phase. The hydrogen gas is diffused into the solution through the liquid phase of the complex solution (or slurry) stored in the liquid phase and the liquid phase of the complex solution (or slurry) constituting the liquid phase and the hydrogen gas to diffuse the hydrogen gas into the solution. As a result, it is possible to stably obtain nickel powder of uniform size.

また、本発明のような液相と気相の界面を通じてガスを拡散させて反応させる方法では、気相内の水素ガスの分圧を一定に制御し、液相への水素ガスの溶け込みを一定に維持することが重要となる。
このためには、反応温度を水素ガスがニッケルアンミン錯体溶液中のニッケルイオンを還元するのに実用的に十分な反応速度が得られる150℃以上、185℃以下、好ましくは180℃以上、185℃以下の温度範囲に維持する。
150℃未満の温度では反応速度が著しく遅く、実用的ではない。一方、185℃を超える温度にしてもエネルギーが余計にかかる割には反応速度の向上は期待できず、設備面での負担が余計にかかり好ましくない。
In the method of the present invention in which gas is diffused through the interface between the liquid phase and the gas phase for reaction, the partial pressure of hydrogen gas in the gas phase is controlled to be constant, and the penetration of hydrogen gas into the liquid phase is constant. It is important to maintain
For this purpose, the reaction temperature is 150 ° C. or more and 185 ° C. or less, preferably 180 ° C. or more and 185 ° C. or less at which hydrogen gas can obtain a practically sufficient reaction rate for reducing nickel ions in the nickel ammine complex solution. Maintain in the following temperature range.
At temperatures below 150 ° C., the reaction rate is extremely slow and not practical. On the other hand, even if the temperature exceeds 185 ° C., an increase in energy can not be expected but an improvement in reaction rate can not be expected, and an additional burden on equipment is not preferable.

また、本発明では気相部に吹き込まれた水素が液相部の錯体溶液(又はスラリー)内に拡散することで均一に反応させることが特徴である。
このためには反応温度が上記の適した領域にあるだけでなく、容器内、すなわち気相部の内部圧力が2.5MPa以上、3.5MPa以下、好ましくは3.0MPa以上、3.5MPa以下を維持するように水素ガスの流量を調整して圧力を維持することが必要である。この圧力範囲を維持することで気相部の水素ガスが均一に液相部に拡散して均一に還元反応が進行し、その結果粒径がそろった均質なニッケル粉を得ることができる。
なお、水素ガスの供給を停止しても内部の圧力が変化しなくなった時点が、水素での還元が進まなくなった状態、すなわち反応が終了した状態となる。
Further, the present invention is characterized in that the hydrogen blown into the gas phase part is uniformly reacted by diffusing into the complex solution (or slurry) in the liquid phase part.
For this purpose, the reaction temperature is not only in the above-mentioned suitable region, but the internal pressure in the vessel, ie, the gas phase portion is 2.5 MPa or more and 3.5 MPa or less, preferably 3.0 MPa or more and 3.5 MPa or less It is necessary to maintain the pressure by adjusting the flow rate of hydrogen gas to maintain the By maintaining this pressure range, hydrogen gas in the gas phase uniformly diffuses into the liquid phase and the reduction reaction proceeds uniformly, and as a result, it is possible to obtain homogeneous nickel powder having the same particle size.
The point at which the internal pressure no longer changes even if the supply of hydrogen gas is stopped is the state in which the reduction with hydrogen does not proceed, that is, the state in which the reaction is completed.

また、硫酸ニッケルアンミン錯体溶液を含有するスラリーは、ニッケルとアンモニアをモル濃度で表した値の比「Ni/NH」が1.9となることが好ましい。1.9未満では一部のニッケルがアンミン錯体を形成せず、水酸化ニッケルの沈殿が生成されてしまう。1.9を超えるとアンモニアが過剰となり好ましくないので、上限は2.1程度に収めることが好ましい。 Moreover, as for the slurry containing the nickel sulfate ammonium complex solution, it is preferable that the ratio “Ni / NH 3 ” of the value of nickel and ammonia expressed in molar concentration is 1.9. Below 1.9, some nickel does not form an ammine complex, and a nickel hydroxide precipitate is formed. If the value exceeds 1.9, ammonia is excessive, which is not preferable, so the upper limit is preferably limited to about 2.1.

また、緩衝剤として用いる硫酸アンモニウム濃度は、100〜500g/Lであることが好ましい。500g/Lを超える量では溶解度を超えてしまい、結晶が析出してしまい、プロセスのメタルバランス上、100g/L未満を達成するのは困難である。   Moreover, it is preferable that the ammonium sulfate density | concentration used as a buffer is 100-500 g / L. If it exceeds 500 g / L, solubility will be exceeded, crystals will precipitate, and it is difficult to achieve less than 100 g / L in terms of the metal balance of the process.

さらに種晶としてニッケル粉を錯体溶液中のニッケル重量に対し、1重量%以上、100重量%以下の範囲の量を含有する組成とすることが好ましい。1重量%未満では、種晶量が不十分であり還元効率が低下し、100重量%を超える量を添加しても効果に影響はなく、過剰な添加となる。   Furthermore, it is preferable to set it as the composition containing the quantity of the range of 1 weight% or more and 100 weight% or less with respect to the nickel weight in a complex solution as a seed crystal. If the amount is less than 1% by weight, the amount of seed crystals is insufficient and the reduction efficiency is reduced, and the addition of an amount exceeding 100% by weight has no effect on the effect, resulting in an excessive addition.

以下、実施例により本発明を更に説明する。   Hereinafter, the present invention will be further described by way of examples.

内部容量が2.6Lのステンレス製の高温高圧容器に、硫酸ニッケルアンミン錯体溶液のスラリー1.0Lを装入した。使用したスラリーの組成は、Ni濃度が75g/Lの硫酸ニッケルアンミン錯体溶液と硫酸アンモニウム(硫安)が330g/Lであり、さらに種晶として別途製造したニッケル粉を75g/Lとなるように混合した。
なお、高温高圧容器には電磁誘導式の撹拌機を設けたものを使用し、容器内の攪拌羽を毎分400回転で攪拌した。
In a stainless steel high-temperature and high-pressure vessel with an internal volume of 2.6 L, 1.0 L of a slurry of a nickel sulfate ammonium complex solution was charged. The composition of the slurry used was a nickel sulfate complex solution having a Ni concentration of 75 g / L and ammonium sulfate (an ammonium sulfate) of 330 g / L, and a nickel powder separately prepared as a seed crystal was further mixed to 75 g / L. .
In addition, what provided the stirrer of an electromagnetic induction type was used for the high temperature / high pressure container, and the stirring blade in a container was stirred at 400 rotations / minute.

次いで上記スラリーを温度185℃に保ちつつ、高温高圧容器の内部とスラリーとの間の気相部に、水素ガスを0.1〜2.0L/分で吹き込みながら高温高圧容器の内部圧力を3.5MPaに維持した。
具体的には、水素ガスを最大2.0L/分の流量で高温高圧容器の天井部から吹き出すように吹込みながら、高温高圧容器の圧力が3.5MPaになるよう水素ガス吹込み量を上記の範囲で調整した。
なお、水素ガスを吹込み開始してから、高温高圧容器の圧力が3.5MPaに維持したまま水素ガスの供給が止まるまでの時間は31分で、この時間が反応時間に相当した。
Next, while maintaining the above slurry at a temperature of 185 ° C., the internal pressure of the high temperature / high pressure container is 3 while blowing hydrogen gas at 0.1 to 2.0 L / min into the gas phase part between the inside of the high temperature / high pressure container and the slurry. It was maintained at .5 MPa.
Specifically, while blowing hydrogen gas at a flow rate of up to 2.0 L / min from the ceiling of the high-temperature and high-pressure vessel, the hydrogen gas injection amount is adjusted so that the pressure of the high-temperature and high-pressure vessel becomes 3.5 MPa. Adjusted in the range of
The time until hydrogen gas supply was stopped while the pressure of the high-temperature and high-pressure vessel was maintained at 3.5 MPa after the start of blowing hydrogen gas was 31 minutes, which corresponds to the reaction time.

反応終了後、100℃以下の温度まで冷却し、次いで高温高圧容器を開け、容器内のスラリーを濾紙とヌッチェを用いて固形分と濾液とに固液分離した。得られた固形分、即ちニッケル粉は、水洗、真空乾燥を経た後に、その重量を秤量した。一方、濾液は、ICPを用いてその成分分析を行った。   After completion of the reaction, the mixture was cooled to a temperature of 100 ° C. or less, then the high-temperature and high-pressure vessel was opened, and the slurry in the vessel was solid-liquid separated into solid content and filtrate using filter paper and a Nutche. The obtained solid content, ie, nickel powder, was washed with water, vacuum dried, and then weighed. On the other hand, the filtrate was subjected to component analysis using ICP.

固形分と反応後の濾液のニッケル濃度から算定したニッケルイオンからニッケル粉への還元率は99.3%となった。
反応で得たニッケル粉の電子顕微鏡写真を図1に示す。図1を見て判るように、均一なニッケル粉が得られていた。
The reduction ratio of nickel ions to nickel powder calculated from the solid content and the nickel concentration of the filtrate after reaction was 99.3%.
The electron micrograph of the nickel powder obtained by reaction is shown in FIG. As can be seen in FIG. 1, uniform nickel powder was obtained.

種晶のニッケル粉を添加しなかった点以外は、実施例1と同様の条件で還元処理を行い、ニッケル粉を製造した。
その反応時間は、16分間で、得られたニッケル粉の還元率は、89.6%となった。
A reduction treatment was performed under the same conditions as in Example 1 except that the seed crystal nickel powder was not added, to produce a nickel powder.
The reaction time was 16 minutes, and the reduction rate of the obtained nickel powder was 89.6%.

(比較例1)
水素ガスを内径6φの吹込み管を用いて直接スラリー内の底部に吹き込んだ以外は、上記実施例1と同じ設備と条件によって硫酸ニッケルアンミン錯体溶液を還元してニッケル粉を得た。水素ガスが消費されなくなるまでの時間は30分だった。
(Comparative example 1)
The nickel sulfate ammonium complex solution was reduced under the same equipment and conditions as in Example 1 except that hydrogen gas was blown directly into the bottom of the slurry using a blow pipe with an inner diameter of 6φ to obtain a nickel powder. The time until hydrogen gas was not consumed was 30 minutes.

固形分と反応後の濾液のニッケル濃度から算定したニッケルイオンからニッケル粉への還元率は99.3%だった。
反応で得られたニッケル粉の電子顕微鏡写真を図2に示す。本発明に係るニッケル粉の図1に比べると、部分的に2次成長した大きさが不均一なニッケル粉となっていることが判る。
The reduction rate of nickel ions to nickel powder calculated from the solid content and the nickel concentration of the filtrate after reaction was 99.3%.
The electron micrograph of the nickel powder obtained by reaction is shown in FIG. Compared with FIG. 1 of the nickel powder according to the present invention, it can be seen that the partially secondarily grown nickel powder is nonuniform in size.

Claims (5)

硫酸ニッケルアンミン錯体溶液と水素ガスを高温高圧容器内で反応させ、前記硫酸ニッケルアンミン錯体溶液中のニッケルイオンを水素ガスで還元してニッケルの粉末を得る方法において、
前記高温高圧容器内に、前記硫酸ニッケルアンミン錯体溶液を液相とする液相部−気相部の2相状態を形成した後、
前記水素ガスを前記気相部に吹き込み、攪拌状態にある前記硫酸ニッケルアンミン錯体溶液の液面に吹き付けて前記水素ガスが構成する気相と前記硫酸ニッケルアンミン錯体溶液が構成する液相を、前記気相と液相が形成する界面で接触させることで、前記硫酸ニッケルアンミン錯体溶液中のニッケルイオンを前記水素ガスにより還元処理してニッケル粉末を生成することを特徴とするニッケル粉の製造方法。
In a method of reacting nickel sulfate ammonium complex solution and hydrogen gas in a high temperature and high pressure vessel, and reducing nickel ions in the nickel sulfate ammonium complex solution with hydrogen gas to obtain nickel powder,
After forming a two-phase state of a liquid phase portion and a gas phase portion in which the nickel sulfate ammonium complex solution is used as a liquid phase in the high temperature and high pressure container,
The hydrogen gas is blown into the gas phase part and sprayed onto the liquid surface of the nickel sulfate ammonium complex solution in a stirring state to form a gas phase composed of the hydrogen gas and a liquid phase composed of the nickel sulfate ammonium complex solution, A method for producing a nickel powder, wherein nickel ions in the nickel sulfate ammonium complex solution are reduced by the hydrogen gas to generate nickel powder by bringing the nickel ions in the nickel sulfate ammonium complex solution into contact with each other at the interface where a gas phase and a liquid phase form.
前記気相部の圧力が2.5MPa以上、3.5MPa以下の範囲を維持するように、水素ガスの供給量を調整することを特徴とする請求項1に記載のニッケル粉の製造方法。   The method for producing nickel powder according to claim 1, wherein the amount of hydrogen gas supplied is adjusted such that the pressure in the gas phase part is maintained in the range of 2.5 MPa or more and 3.5 MPa or less. 前記液相部及び気相部の温度が150℃以上、185℃以下の温度範囲を維持した状態で水素ガスを吹き込むことを特徴とする請求項1又は2に記載のニッケル粉の製造方法。   The method for producing nickel powder according to claim 1 or 2, wherein hydrogen gas is blown while maintaining the temperature range of 150 ° C to 185 ° C in the liquid phase portion and the gas phase portion. 前記硫酸ニッケルアンミン錯体溶液が、ニッケルとアンモニアをモル濃度で表した値における「Ni/NH」が1.9以上、2.1以下の組成であり、且つ、緩衝剤としての硫酸アンモニウムを100g/L以上、500g/L以下を含有することを特徴とする請求項1〜3にいずれか1項に記載のニッケル粉の製造方法。 The above-mentioned nickel ammonium sulfate complex solution has a composition in which “Ni / NH 3 ” in the value of the concentration of nickel and ammonia in molar concentration is at least 1.9 and at most 2.1, and 100 g of ammonium sulfate as a buffer The manufacturing method of the nickel powder of any one of Claims 1-3 containing L or more and 500 g / L or less. 前記硫酸ニッケルアンミン錯体溶液に、ニッケル粉を種晶として前記硫酸ニッケルアンミン錯体溶液中のニッケル重量に対して1〜100重量%となる量を添加して形成したスラリーを、前記硫酸ニッケルアンミン錯体溶液の代わりに用いることを特徴とする請求項1〜4のいずれか1項に記載のニッケル粉の製造方法。   The nickel sulfate ammonium complex solution is a slurry formed by adding an amount of 1 to 100% by weight based on the weight of nickel in the nickel sulfate ammonium complex solution using nickel powder as seed crystals to the nickel sulfate ammonium complex solution. The method for producing a nickel powder according to any one of claims 1 to 4, which is used in place of
JP2017250471A 2017-12-27 2017-12-27 Nickel powder manufacturing method Active JP7185177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250471A JP7185177B2 (en) 2017-12-27 2017-12-27 Nickel powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250471A JP7185177B2 (en) 2017-12-27 2017-12-27 Nickel powder manufacturing method

Publications (2)

Publication Number Publication Date
JP2019116656A true JP2019116656A (en) 2019-07-18
JP7185177B2 JP7185177B2 (en) 2022-12-07

Family

ID=67304064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250471A Active JP7185177B2 (en) 2017-12-27 2017-12-27 Nickel powder manufacturing method

Country Status (1)

Country Link
JP (1) JP7185177B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140480A (en) * 2014-01-30 2015-08-03 国立大学法人高知大学 Method for manufacturing nickel powder
US20170106450A1 (en) * 2015-10-15 2017-04-20 Sherritt International Corporation Hydrogen Reduction of Metal Sulphate Solutions for Decreased Silicon in Metal Powder
WO2017150717A1 (en) * 2016-03-04 2017-09-08 住友金属鉱山株式会社 Nickel powder production method
JP2017214605A (en) * 2016-05-30 2017-12-07 住友金属鉱山株式会社 Manufacturing method of nickel powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140480A (en) * 2014-01-30 2015-08-03 国立大学法人高知大学 Method for manufacturing nickel powder
US20170106450A1 (en) * 2015-10-15 2017-04-20 Sherritt International Corporation Hydrogen Reduction of Metal Sulphate Solutions for Decreased Silicon in Metal Powder
WO2017150717A1 (en) * 2016-03-04 2017-09-08 住友金属鉱山株式会社 Nickel powder production method
JP2017214605A (en) * 2016-05-30 2017-12-07 住友金属鉱山株式会社 Manufacturing method of nickel powder

Also Published As

Publication number Publication date
JP7185177B2 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
EP3321015A1 (en) Method for producing cobalt powder
AU2015220105B2 (en) Method for producing nickel powder
AU2015216321B2 (en) Production method for seed crystal used in production of hydrogen-reduced nickel powder
JP6442298B2 (en) Method for producing nickel powder
JP2015166488A (en) Method for producing nickel powder
AU2017226381B2 (en) Nickel powder production method
JP2009173983A (en) Method for producing sulfide containing nickel and cobalt
JP2019116656A (en) Method for producing nickel powder
JP6241617B2 (en) Method for producing cobalt powder
AU2017227207B2 (en) Nickel powder production method
EP3424625A1 (en) Nickel powder production method
JP2015166489A (en) Method for producing nickel powder
JP2018145510A (en) Nickel powder production method
JP2018154883A (en) Method for producing a nickel powder
JP2020015971A (en) Manufacturing method of nickel powder
JP2019044207A (en) Manufacturing method of nickel and cobalt sulfide
JP2018002533A (en) Multi-step method for producing nickel-manganese composite oxyhydroxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220826

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221108

R150 Certificate of patent or registration of utility model

Ref document number: 7185177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150