JP2019115966A - Method for production of polishing agent, and the polishing agent - Google Patents

Method for production of polishing agent, and the polishing agent Download PDF

Info

Publication number
JP2019115966A
JP2019115966A JP2017252188A JP2017252188A JP2019115966A JP 2019115966 A JP2019115966 A JP 2019115966A JP 2017252188 A JP2017252188 A JP 2017252188A JP 2017252188 A JP2017252188 A JP 2017252188A JP 2019115966 A JP2019115966 A JP 2019115966A
Authority
JP
Japan
Prior art keywords
abrasive
polishing layer
polishing
layer
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017252188A
Other languages
Japanese (ja)
Inventor
賢治 下山
Kenji Shimoyama
賢治 下山
啓佑 笹島
Keisuke Sasajima
啓佑 笹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2017252188A priority Critical patent/JP2019115966A/en
Priority to CN201811589757.3A priority patent/CN109968187A/en
Publication of JP2019115966A publication Critical patent/JP2019115966A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

To provide a production method for a polishing agent whose homogeneity in a thickness direction is maintained even in a thick polishing layer and whose service life is improved while maintaining excellent polishing rate and flatness accuracy.SOLUTION: There is provided a production method for a polishing agent comprising a base material, and a polishing layer laminated at the surface side of the base material and including abrasive grains, a filler and a binder. The method includes: a preparation step of preparing a composition for the polishing layer including the abrasive grain, filler and binder; a coating step of coating the above composition on the base material surface; and a heating step of heating the composition after the coating step. In the preparation step, the total content of the abrasive grain and filler in the solid content of the composition is made to be 60 vol% or more but 85 vol% or less. Besides, the heating step includes:a predrying step of drying the composition under the condition of 30 min. or more at room temperature; a heat-dehydration step of heat-dehydrating the moisture in the composition after the predrying step; and a heat-hardening step of heat-hardening the composition.SELECTED DRAWING: Figure 3

Description

本発明は、研磨材の製造方法及び研磨材に関する。   The present invention relates to a method of manufacturing an abrasive and an abrasive.

近年、ハードディスク等の電子機器の精密化が進んでいる。このような電子機器の基板材料には、小型化や薄型化に対応できる剛性、耐衝撃性及び耐熱性を考慮し、ガラス、サファイア等が用いられる。このような基板の加工には一般に固定砥粒の研磨材が使用されている。   In recent years, refinement of electronic devices such as hard disks has progressed. Glass, sapphire, or the like is used as a substrate material of such an electronic device in consideration of rigidity, impact resistance, and heat resistance that can correspond to downsizing and thinning. Generally, fixed abrasives are used for processing such substrates.

この研磨材には、研磨レートと共に、傷の少ない平坦化精度が要求される。研磨レート及び平坦化精度に優れる研磨材としては、例えば砥粒と充填剤とを分散した研磨層を有する研磨材が提案されている(国際公開第2016/203914号公報)。この従来の研磨材は、砥粒及び充填剤により研磨層の硬度及び摩耗量を調整することで、優れた研磨レートと平坦化精度との両立を達成している。   This polishing material is required to have a polishing rate as well as a planarization accuracy with few scratches. As an abrasive which is excellent in polishing rate and planarization accuracy, for example, an abrasive having an abrasive layer in which abrasive grains and a filler are dispersed is proposed (International Publication No. 2016/203914). This conventional abrasive achieves both the excellent polishing rate and the planarization accuracy by adjusting the hardness and the amount of wear of the polishing layer with the abrasive grains and the filler.

また、研磨材には長寿命化が望まれている。上記従来の研磨材では、研磨層が摩耗するため、寿命は主に研磨層の厚さで決まる。このため研磨材の寿命を延ばすには、研磨層を厚くする方法が考えられる。上記従来の研磨材では、研磨層は例えば印刷法によって作製される。この作製工程で、印刷に用いるマスクをSUS製の厚いマスクとすることで、研磨層を厚くすることができる。   In addition, a long life is desired for the abrasive. In the above-mentioned conventional abrasives, the life is mainly determined by the thickness of the polishing layer because the polishing layer is worn. Therefore, in order to extend the life of the abrasive, it is conceivable to thicken the abrasive layer. In the above-mentioned conventional abrasives, the abrasive layer is produced, for example, by a printing method. By using a thick mask made of SUS in the manufacturing process, the polishing layer can be made thicker.

しかし、このようにして厚くした研磨層では、厚さ方向の均質性が低下し、研磨層の厚さ方向に磨耗し易い部分が生じ、所望の寿命が得られ難くなる。また、この厚さ方向の不均一性に起因して、例えば研磨層の中央部と端部とで磨耗速度が異なる等の面内不均一性も発生し易くなる。このため、研磨層の面内で磨耗し易い部分に凹部が生じ、ガラス基板等の被削体の平坦化精度が悪化する。この平坦化精度の悪化を抑止するためには頻繁にドレス作業を行う必要が生じる。このように研磨層を厚くすると、平坦化精度や研磨効率が低下し易くなるため、研磨層の厚さを1000μm以上とすることは困難である。   However, in the polishing layer thus thickened, the homogeneity in the thickness direction is reduced, and a portion that is easily worn away in the thickness direction of the polishing layer is formed, making it difficult to obtain a desired life. Further, due to the non-uniformity in the thickness direction, for example, in-plane non-uniformity such as different wear rates at the central portion and the end portion of the polishing layer is easily generated. For this reason, a recessed part arises in the part which is easy to wear in the surface of a grinding layer, and the planarization precision of to-be-cut objects, such as a glass substrate, deteriorates. In order to suppress the deterioration of the planarization accuracy, it is necessary to frequently perform a dressing operation. When the thickness of the polishing layer is increased as described above, the planarization accuracy and the polishing efficiency are easily reduced, and it is difficult to set the thickness of the polishing layer to 1000 μm or more.

国際公開第2016/203914号公報International Publication No. 2016/203914

本発明はこのような不都合に鑑みてなされたものであり、研磨層を厚くしても厚さ方向の均質性が保たれ、優れた研磨レート及び平坦化精度を維持しつつ、寿命を向上できる研磨材の製造方法及び研磨材の提供を目的とする。   The present invention has been made in view of such problems. Even if the polishing layer is thickened, the uniformity in the thickness direction can be maintained, and the life can be improved while maintaining an excellent polishing rate and planarization accuracy. An object of the present invention is to provide a method of producing an abrasive and an abrasive.

本発明者らが、研磨層を厚くした際に生じる研磨層の不均一性について鋭意検討した結果、この不均一性は、研磨層を印刷法により作製するときの加熱乾燥により、研磨層用組成物に含まれる砥粒や充填剤が厚さ方向に偏在するため発生することが判明した。そして、本発明者らは、この砥粒や充填剤の厚さ方向の偏在は、研磨層用組成物を常温で乾燥させる時間を長くすることで抑止できることを見出し、本発明を完成させた。   As a result of intensive studies on the nonuniformity of the polishing layer that occurs when the present inventors thickened the polishing layer, this nonuniformity is a composition for the polishing layer by heat drying when producing the polishing layer by a printing method. It was found that the abrasive grains and fillers contained in the substance are generated due to uneven distribution in the thickness direction. The present inventors have found that the uneven distribution of the abrasive grains and the filler in the thickness direction can be suppressed by prolonging the drying time of the polishing layer composition at normal temperature, and completed the present invention.

すなわち、上記課題を解決するためになされた発明は、基材と、この基材の表面側に積層され、砥粒、充填剤及びバインダーを含む研磨層とを備える研磨材の製造方法であって、砥粒、充填剤及びバインダーを含む研磨層用組成物を調製する調製工程と、上記研磨層用組成物を上記基材の表面に塗工する塗工工程と、上記塗工工程後の研磨層用組成物を加熱する加熱工程とを備え、上記調製工程で、研磨層用組成物の固形分中の砥粒及び充填剤の合計含有量を60体積%以上85体積%以下とし、上記加熱工程が、常温で30分以上の条件で研磨層用組成物を乾燥する予備乾燥工程と、上記予備乾燥工程後に、研磨層用組成物の水分を加熱脱水する加熱脱水工程と、上記加熱脱水工程後に、研磨層用組成物を加熱硬化する加熱硬化工程とを有する。   That is, the invention made in order to solve the above-mentioned subject is a manufacturing method of an abrasives provided with a substrate and an abrasive layer laminated on the surface side of this substrate and containing an abrasive, a filler, and a binder, Preparation step for preparing a polishing layer composition comprising abrasive grains, a filler and a binder, a coating step for coating the polishing layer composition on the surface of the substrate, and polishing after the coating step And a heating step of heating the layer composition, and in the preparation step, the total content of the abrasive grains and the filler in the solid content of the polishing layer composition is 60 volume% or more and 85 volume% or less, The step is a preliminary drying step of drying the polishing layer composition under conditions of normal temperature for 30 minutes or more, a heating dehydration step of heating and dehydrating the moisture of the polishing layer composition after the preliminary drying step, and the heating dehydration step And a heating and curing step of heating and curing the polishing layer composition. That.

当該研磨材の製造方法は、固形分中の砥粒及び充填剤の合計含有量が上記上限以下の研磨層用組成物を、加熱工程で最初に常温で上記下限時間以上の予備乾燥を行う予備乾燥工程を有する。この予備乾燥工程により砥粒や充填剤が研磨層の厚さ方向に偏在することが抑止できる。また、固形分中の砥粒及び充填剤の合計含有量を上記下限以上とすることで、研磨層が適度に摩耗する。この摩耗により目つぶれの発生した砥粒が目こぼれにより除去され、研磨層内から新たな砥粒が研磨層の表面に露出するので、優れた研磨レートが維持できる。従って、当該研磨材の製造方法を用いることで、研磨層を厚くしても厚さ方向の均質性が保たれ、優れた研磨レート及び平坦化精度を維持しつつ、寿命の向上した研磨材を製造できる。   The manufacturing method of the said abrasive | polishing material is a preliminary | backup which performs preliminary | backup drying more than the said minimum time at the normal temperature first in the heating process in the composition for polishing layers whose total content of the abrasive grain and filler in solid content is less than the said upper limit. It has a drying process. This preliminary drying step can prevent uneven distribution of the abrasive grains and the filler in the thickness direction of the polishing layer. In addition, by setting the total content of the abrasive grains and the filler in the solid content to the above-described lower limit or more, the polishing layer is appropriately worn. Since the abrasive grains which are clogged due to the wear are removed by eyedropping and new abrasive grains are exposed from the inside of the abrasive layer to the surface of the abrasive layer, an excellent polishing rate can be maintained. Therefore, even if the thickness of the polishing layer is increased, the uniformity in the thickness direction can be maintained by using the method for producing the polishing material, and the polishing material with improved life can be obtained while maintaining excellent polishing rate and planarization accuracy. It can be manufactured.

上記塗工工程で、研磨層の平均厚さを1000μm以上とするように上記研磨層用組成物の塗工量を調整するとよい。研磨層の平均厚さを上記下限以上とするように塗工量を調整することで、研磨材の寿命をさらに向上できる。また、当該研磨材の製造方法では、研磨層を厚くしても厚さ方向の均質性が保たれるので、優れた研磨レート及び平坦化精度を維持できる。   In the coating step, the coating amount of the composition for a polishing layer may be adjusted so that the average thickness of the polishing layer is 1000 μm or more. The life of the abrasive can be further improved by adjusting the coating amount so that the average thickness of the abrasive layer is the lower limit or more. Further, in the method of manufacturing the abrasive, the uniformity in the thickness direction can be maintained even if the thickness of the polishing layer is increased, so that excellent polishing rate and planarization accuracy can be maintained.

上記調製工程で、上記研磨層のテーバー摩耗試験による摩耗量を0.03g以上0.15g以下、研磨層の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量の最大値と最小値との差を0.080g以下とするように、砥粒及び充填剤の含有量を調整するとよい。研磨層の摩耗量を上記範囲内とすることで、研磨レート及び平坦化精度を向上できる。また、研磨層の厚さ方向500μm毎に測定した摩耗量の最大値と最小値との差を上記上限以下とすることで、厚さ方向の均質性がさらに向上するので、ドレス作業を頻繁に行わなくとも安定した研磨を行うことができる。   In the above preparation process, the wear amount by the Taber wear test of the polishing layer is 0.03 g or more and 0.15 g or less, and the wear amount between the maximum value and the minimum value by the Taber wear test measured every 500 μm in the thickness direction of the polishing layer It is good to adjust content of an abrasive grain and a filler so that a difference may be 0.080 g or less. By setting the wear amount of the polishing layer in the above range, the polishing rate and the planarization accuracy can be improved. In addition, by setting the difference between the maximum value and the minimum value of the wear amount measured every 500 μm in the thickness direction of the polishing layer to the upper limit or less, the uniformity in the thickness direction is further improved, so the dressing operation is frequently performed. Even if it does not do, stable polishing can be performed.

上記砥粒がダイヤモンド砥粒であるとよい。ダイヤモンド砥粒は他の砥粒に比較して硬質である。このため、上記砥粒をダイヤモンド砥粒とすることで、研磨力が向上し、研磨レートをさらに向上できる。   The abrasive grains may be diamond abrasive grains. Diamond abrasives are harder than other abrasives. For this reason, by making the said abrasive grain into a diamond abrasive grain, polishing power can be improved and the polishing rate can be further improved.

上記課題を解決するためになされた別の発明は、基材と、この基材の表面側に積層され、砥粒、充填剤及びバインダーを含む研磨層とを備える研磨材であって、上記研磨層における砥粒及び充填剤の合計含有量が85体積%以下であり、上記研磨層の平均厚さが1000μm以上であり、上記研磨層のテーバー摩耗試験による摩耗量が0.03g以上0.15g以下であり、研磨層の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量の最大値と最小値との差が0.080g以下である。   Another invention made in order to solve the above-mentioned subject is an abrasives provided with a substrate and an abrasive layer laminated on the surface side of this substrate and containing an abrasive, a filler and a binder, The total content of the abrasive grains and the filler in the layer is 85% by volume or less, the average thickness of the polishing layer is 1000 μm or more, and the wear amount in the Taber abrasion test of the polishing layer is 0.03 g to 0.15 g. The difference between the maximum value and the minimum value of the wear amount in the Taber abrasion test measured every 500 μm in the thickness direction of the polishing layer is 0.080 g or less.

当該研磨材は、上記研磨層における砥粒及び充填剤の合計含有量を上記下限以上とし、研磨層の摩耗量を上記範囲内とするので、研磨レート及び平坦化精度に優れる。また、当該研磨材は、上記研磨層における砥粒及び充填剤の合計含有量を上記上限以下とし、研磨層の厚さ方向500μm毎に測定した摩耗量の最大値と最小値との差を上記上限以下とするので、研磨層の均質性が高く、さらに研磨層の平均厚さが上記下限以上であるので、寿命が長い。   Since the said abrasives make the total content of the abrasive grain and filler in the said grinding | polishing layer more than the said lower limit and make the abrasion loss of a grinding | polishing layer into the said range, it is excellent in a grinding | polishing rate and planarization precision. Moreover, the said abrasives makes the total content of the abrasive grain and filler in the said polishing layer below the said upper limit, and the difference of the maximum value and minimum value of the abrasion loss measured every 500 micrometers of thickness directions of a polishing layer is said Since it is below the upper limit, the homogeneity of the polishing layer is high, and furthermore, since the average thickness of the polishing layer is above the lower limit, the life is long.

ここで、「常温」とは、特に冷やしたり熱したりしない温度を言い、5℃以上35℃以下の温度、好ましくは15℃以上30℃以下の温度を指す。また、「テーバー摩耗試験における摩耗量」は、試験片を用意し、テーバー摩耗試験機を用いて摩耗輪H−18、荷重4.9N(500gf)の条件で上記試験片を320回転し、320回転前後の試験片の質量差を測定した値を直径104mmの試験片の質量差に面積換算した値である。なお、「研磨層の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量」とは、研磨層を厚さ方向に表面から500μm、1000μm、1500μm、・・・と削り、その削った位置において上述のテーバー摩耗試験を行って測定した摩耗量を指す。   Here, "normal temperature" refers to a temperature that is not particularly cooled or heated, and refers to a temperature of 5 ° C to 35 ° C, preferably a temperature of 15 ° C to 30 ° C. For “Abrasion amount in Taber abrasion test”, prepare a test piece, and rotate the above-mentioned test piece for 320 turns under the condition of wear wheel H-18 and load 4.9 N (500 gf) using a Taber abrasion tester. It is the value which carried out area conversion of the value which measured the mass difference of the specimen before and behind rotation to the mass difference of the specimen of diameter 104 mm. In addition, "the amount of wear by the Taber abrasion test measured every 500 μm in the thickness direction of the polishing layer" means that the polishing layer is shaved 500 μm, 1000 μm, 1500 μm,. It indicates the amount of wear measured by performing the above-mentioned Taber abrasion test.

以上説明したように、本発明の研磨材の製造方法により製造される研磨材及び本発明の研磨材は、研磨層の厚さ方向の均質性が保たれるので、優れた研磨レート及び平坦化精度を維持しつつ、寿命を向上できる。   As described above, the abrasives produced by the method of producing an abrasive according to the present invention and the abrasives according to the present invention have excellent uniformity in the thickness direction of the polishing layer, and hence excellent polishing rate and flattening. The life can be improved while maintaining the accuracy.

本発明の実施形態に係る研磨材を示す模式的部分平面図である。It is a typical fragmentary plan view showing the abrasives concerning the embodiment of the present invention. 図1のA−A線での模式的部分断面図である。It is a typical fragmentary sectional view in the AA line of FIG. 本発明の実施形態に係る研磨材の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the abrasives which concern on embodiment of this invention. 図3の加熱工程を示すフロー図である。It is a flowchart which shows the heating process of FIG. 図2とは異なる実施形態に係る研磨材を示す模式的部分断面図である。FIG. 3 is a schematic partial cross-sectional view showing an abrasive according to an embodiment different from FIG. 2;

以下、本発明の一実施形態について適宜図面を参照しつつ詳説する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

[研磨材]
図1及び図2に示す研磨材1は、基材10と、この基材10の表面側に積層される研磨層20と、上記基材10の裏面側に積層される接着層30とを備える。当該研磨材1は、例えば基板加工のための固定砥粒研磨材として用いられる。
[Abrasive]
The abrasive 1 shown in FIGS. 1 and 2 includes a base 10, an abrasive layer 20 laminated on the front side of the base 10, and an adhesive layer 30 laminated on the back side of the base 10. . The abrasive 1 is used, for example, as a fixed abrasive for substrate processing.

<基材>
基材10は、研磨層20を支持するための板状又はシート状の部材である。
<Base material>
The substrate 10 is a plate-like or sheet-like member for supporting the polishing layer 20.

基材10の主成分としては、特に限定されないが、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、アラミド、アルミニウム、銅等が挙げられる。中でも研磨層20との接着性が良好なPET、及びアルミニウムが好ましい。また、基材10の表面に化学処理、コロナ処理、プライマー処理等の接着性を高める処理が行われてもよい。なお、「主成分」とは、最も含有量の多い成分を意味し、好ましくは含有量が50質量%以上、より好ましくは90質量%以上の成分をいう。   The main component of the substrate 10 is not particularly limited, but polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), polyimide (PI), polyethylene naphthalate (PEN), aramid, aluminum, copper and the like can be mentioned. Be Among them, PET and aluminum having good adhesion to the polishing layer 20 are preferable. In addition, the surface of the substrate 10 may be subjected to a treatment such as a chemical treatment, a corona treatment, a primer treatment, or the like to improve adhesion. In addition, a "main component" means the component with most content, Preferably the component is 50 mass% or more, More preferably, the component of 90 mass% or more is said.

また、基材10は可撓性又は延性を有するとよい。このように基材10が可撓性又は延性を有することで、当該研磨材1が被削体の表面形状に追従し、研磨面と被削体との接触面積が大きくなるため、研磨レートがさらに高まる。このような可撓性を有する基材10の材質としては、例えばPETやPI等を挙げることができる。また、延性を有する基材10の材質としては、アルミニウムや銅等を挙げることができる。   Also, the substrate 10 may have flexibility or ductility. As described above, when the base material 10 has flexibility or ductility, the abrasive material 1 follows the surface shape of the workpiece, and the contact area between the polishing surface and the workpiece becomes large, so that the polishing rate is reduced. It will increase further. As a material of the base material 10 which has such flexibility, PET, PI, etc. can be mentioned, for example. Moreover, as a material of the base material 10 which has ductility, aluminum, copper, etc. can be mentioned.

上記基材10の形状及び大きさとしては、特に限定されないが、例えば一辺が140mm以上160mm以下の正方形状や外形200mm以上2022mm以下及び内径100mm以上658mm以下の円環状とすることができる。また、平面上に並置した複数の基材10が単一の支持体により支持される構成であってもよい。   The shape and size of the substrate 10 are not particularly limited, but may be, for example, a square shape with one side of 140 mm or more and 160 mm or less or an annular shape with an outer diameter of 200 mm or more and 2022 mm or less and an inner diameter of 100 mm or more and 658 mm or less. In addition, the plurality of substrates 10 juxtaposed on a plane may be supported by a single support.

上記基材10の平均厚さとしては、特に限定されないが、例えば75μm以上3mm以下とできる。上記基材10の平均厚さが上記下限未満であると、当該研磨材1の強度や平坦性が不足するおそれがある。逆に、上記基材10の平均厚さが上記上限を超えると、当該研磨材1が不要に厚くなり取扱いが困難になるおそれがある。   The average thickness of the substrate 10 is not particularly limited, but can be, for example, 75 μm or more and 3 mm or less. If the average thickness of the substrate 10 is less than the lower limit, the strength and flatness of the abrasive material 1 may be insufficient. Conversely, when the average thickness of the base material 10 exceeds the upper limit, the abrasive 1 may be unnecessarily thick and handling may be difficult.

<研磨層>
研磨層20は、砥粒21、充填剤22及びバインダー23を含む。研磨層20は、単層で構成される。つまり、研磨層20は厚さ方向に複数の層が積層されたものではないので、層の境界が存在せず、研磨層20が層境界で不連続となることがない。従って、研磨層20の均一性が高められる。
<Abrasive layer>
The polishing layer 20 includes abrasive grains 21, a filler 22 and a binder 23. The polishing layer 20 is composed of a single layer. That is, since the polishing layer 20 is not a layer in which a plurality of layers are stacked in the thickness direction, the boundaries of the layers do not exist, and the polishing layer 20 does not become discontinuous at the layer boundaries. Accordingly, the uniformity of the polishing layer 20 is enhanced.

(砥粒)
砥粒21としては、ダイヤモンド砥粒、アルミナ砥粒、シリカ砥粒、セリア砥粒、炭化ケイ素砥粒等が挙げられる。中でも他の砥粒より硬質であるダイヤモンド砥粒が好ましい。上記砥粒21をダイヤモンド砥粒とすることで、研磨力が向上し、研磨レートをさらに向上できる。
(Abrasive)
Examples of the abrasive grains 21 include diamond abrasive grains, alumina abrasive grains, silica abrasive grains, ceria abrasive grains, silicon carbide abrasive grains and the like. Among them, diamond abrasives which are harder than other abrasives are preferable. By making the said abrasive grain 21 into a diamond abrasive grain, polishing power can be improved and a polishing rate can further be improved.

なお、ダイヤモンド砥粒のダイヤモンドとしては、単結晶でも多結晶でもよく、またNiコーティング等の処理がされたダイヤモンドであってもよい。中でも単結晶ダイヤモンド及び多結晶ダイヤモンドが好ましい。単結晶ダイヤモンドは、他のダイヤモンドより硬質であり研削力が高い。また、多結晶ダイヤモンドは多結晶を構成する微結晶単位で劈開し易く目つぶれが進行し難いので、長期間研磨を行っても研磨レートの低下が小さい。   In addition, as a diamond of a diamond abrasive grain, a single crystal or a polycrystal may be sufficient, and the diamond by which Ni coating etc. were processed may be sufficient. Among them, single crystal diamond and polycrystalline diamond are preferable. Single crystal diamond is harder and more abrasive than other diamonds. In addition, polycrystalline diamond is apt to be easily cleaved in a microcrystalline unit constituting a polycrystalline, and it is difficult for the eye to crush to progress, so that the reduction in polishing rate is small even if polishing is performed for a long time.

砥粒21の平均粒子径は、研磨レートと研磨後の被削体の表面粗さとの観点から適宜選択される。砥粒21の平均粒子径の下限としては、2μmが好ましく、10μmがより好ましく、15μmがさらに好ましい。一方、砥粒21の平均粒子径の上限としては、50μmが好ましく、45μmがより好ましく、30μmがさらに好ましい。砥粒21の平均粒子径が上記下限未満であると、当該研磨材1の研磨力が不足し、研磨レートが低下するおそれがある。逆に、砥粒21の平均粒子径が上記上限を超えると、研磨精度が低下するおそれがある。ここで、「平均粒子径」とは、レーザー回折法等により測定された体積基準の累積粒度分布曲線の50%値(50%粒子径、D50)をいう。   The average particle size of the abrasive grains 21 is appropriately selected from the viewpoint of the polishing rate and the surface roughness of the object after polishing. The lower limit of the average particle size of the abrasive grains 21 is preferably 2 μm, more preferably 10 μm, and still more preferably 15 μm. On the other hand, the upper limit of the average particle size of the abrasive grains 21 is preferably 50 μm, more preferably 45 μm, and still more preferably 30 μm. If the average particle diameter of the abrasive grains 21 is less than the above lower limit, the polishing force of the polishing material 1 may be insufficient, and the polishing rate may be reduced. Conversely, if the average particle size of the abrasive grains 21 exceeds the above upper limit, the polishing accuracy may be reduced. Here, the "average particle size" refers to the 50% value (50% particle size, D50) of the volume-based cumulative particle size distribution curve measured by a laser diffraction method or the like.

研磨層20における砥粒21の含有量の下限としては、3体積%が好ましく、4体積%がより好ましく、8体積%がさらに好ましい。一方、上記砥粒21の含有量の上限としては、55体積%が好ましく、45体積%がより好ましく、35体積%がさらに好ましい。上記砥粒21の含有量が上記下限未満であると、研磨層20の研磨力が不足するおそれがある。逆に、上記砥粒21の含有量が上記上限を超えると、研磨層20が砥粒21を保持できないおそれがある。   The lower limit of the content of the abrasive grains 21 in the polishing layer 20 is preferably 3% by volume, more preferably 4% by volume, and still more preferably 8% by volume. On the other hand, the upper limit of the content of the abrasive grains 21 is preferably 55% by volume, more preferably 45% by volume, and still more preferably 35% by volume. If the content of the abrasive grains 21 is less than the lower limit, the polishing power of the polishing layer 20 may be insufficient. Conversely, when the content of the abrasive grains 21 exceeds the upper limit, the abrasive layer 20 may not be able to hold the abrasive grains 21.

(充填剤)
充填剤22は、バインダー23の弾性率を向上させるので、研磨層20の摩耗を制御し易くできる。研磨層20の摩耗を制御することで、砥粒21の目つぶれと砥粒21の目こぼれを比較的近いタイミングで発生させることができる。これにより、目つぶれの発生した砥粒21が目こぼれにより除去され、研磨層20内から新たな砥粒21が研磨層20の表面に露出することで、研磨レートの低下を抑止できる。
(filler)
Since the filler 22 improves the elastic modulus of the binder 23, the wear of the polishing layer 20 can be easily controlled. By controlling the wear of the polishing layer 20, it is possible to generate clogging of the abrasive grains 21 and spilling of the abrasive grains 21 at relatively close timing. As a result, the abrasive grains 21 in which the clogging has occurred are removed by eyedropping, and new abrasive grains 21 are exposed from the inside of the polishing layer 20 to the surface of the polishing layer 20, whereby the reduction in the polishing rate can be suppressed.

充填剤22としては、例えばアルミナ、シリカ、酸化セリウム、酸化マグネシウム、ジルコニア、酸化チタン等の酸化物及びシリカ−アルミナ、シリカ−ジルコニア、シリカ−マグネシア等の複合酸化物を挙げることができる。これらは単独で又は必要に応じて2種以上を組み合わせて用いてもよい。中でも高い研磨力が得られるアルミナが好ましい。   Examples of the filler 22 include oxides such as alumina, silica, cerium oxide, magnesium oxide, zirconia, and titanium oxide, and composite oxides such as silica-alumina, silica-zirconia, and silica-magnesia. You may use these individually or in combination of 2 or more types as needed. Among them, alumina is preferable because high polishing power can be obtained.

充填剤22の平均粒子径は砥粒21の平均粒子径にも依存するが、充填剤22の平均粒子径の下限としては、0.01μmが好ましく、2μmがより好ましい。一方、充填剤22の平均粒子径の上限としては、20μmが好ましく、15μmがより好ましい。充填剤22の平均粒子径が上記下限未満であると、充填剤22によるバインダー23の弾性率向上効果が不十分となるおそれがある。一方、充填剤22の平均粒子径が上記上限を超えると、充填剤22が砥粒21の研磨力を阻害するおそれがある。   The average particle size of the filler 22 depends on the average particle size of the abrasive grains 21, but the lower limit of the average particle size of the filler 22 is preferably 0.01 μm, more preferably 2 μm. On the other hand, as an upper limit of the average particle diameter of filler 22, 20 micrometers is preferred and 15 micrometers is more preferred. If the average particle diameter of the filler 22 is less than the above lower limit, the effect of improving the modulus of elasticity of the binder 23 by the filler 22 may be insufficient. On the other hand, when the average particle diameter of the filler 22 exceeds the above upper limit, the filler 22 may inhibit the polishing force of the abrasive grains 21.

研磨層20における充填剤22の含有量は、砥粒21の含有量にも依存するが、充填剤22の含有量の下限としては、15体積%が好ましく、30体積%がより好ましい。一方、充填剤22の含有量の上限としては、75体積%が好ましく、60体積%がより好ましい。充填剤22の含有量が上記下限未満であると、充填剤22によるバインダー23の弾性率向上効果が不十分となるおそれがある。逆に、充填剤22の含有量が上記上限を超えると、充填剤22が砥粒21の研磨力を阻害するおそれがある。   Although the content of the filler 22 in the polishing layer 20 also depends on the content of the abrasive grains 21, the lower limit of the content of the filler 22 is preferably 15% by volume, and more preferably 30% by volume. On the other hand, the upper limit of the content of the filler 22 is preferably 75% by volume, and more preferably 60% by volume. If the content of the filler 22 is less than the above lower limit, the effect of improving the elastic modulus of the binder 23 by the filler 22 may be insufficient. Conversely, if the content of the filler 22 exceeds the above upper limit, the filler 22 may inhibit the polishing force of the abrasive grains 21.

研磨層20における砥粒21及び充填剤22の合計含有量の下限としては、60体積%であり、70体積%がより好ましく、77体積%がさらに好ましい。一方、上記合計含有量の上限としては、85体積%であり、80体積%がより好ましい。上記合計含有量が上記下限未満であると、バインダー23により強固に砥粒21及び充填剤22が固定され、研磨層20がほとんど摩耗しなくなる。このため、目つぶれの発生した砥粒21が目こぼれにより除去できず、研磨レートが低下し易くなるおそれがある。逆に、上記合計含有量が上記上限を超えると、砥粒21や充填剤22の研磨層20の厚さ方向の偏在を抑止することが困難となり、研磨層20が不均一となるおそれがある。   The lower limit of the total content of the abrasive grains 21 and the filler 22 in the polishing layer 20 is 60% by volume, more preferably 70% by volume, and still more preferably 77% by volume. On the other hand, the upper limit of the total content is 85% by volume, and 80% by volume is more preferable. The abrasive grain 21 and the filler 22 are firmly fixed by the binder as the said total content is less than the said minimum, and the abrasive layer 20 hardly wears away. For this reason, there is a possibility that the abrasive grains 21 in which the clogging has occurred can not be removed by the eye spill and the polishing rate is likely to be reduced. In contrast, when the total content exceeds the upper limit, it is difficult to suppress uneven distribution of the abrasive grains 21 and the filler 22 in the thickness direction of the polishing layer 20, and the polishing layer 20 may become uneven. .

(バインダー)
研磨層20のバインダー23の主成分としては、特に限定されないが、樹脂又は無機物が挙げられる。
(binder)
Although it does not specifically limit as a main component of the binder 23 of the grinding | polishing layer 20, A resin or an inorganic substance is mentioned.

上記樹脂としては、ポリウレタン、ポリフェノール、エポキシ、ポリエステル、セルロース、エチレン共重合体、ポリビニルアセタール、ポリアクリル、アクリルエステル、ポリビニルアルコール、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアミド等の樹脂を挙げることができる。中でも基材への良好な密着性が確保し易いポリアクリル、エポキシ、ポリエステル及びポリウレタンが好ましい。なお、上記樹脂は、少なくとも一部が架橋していてもよい。   Examples of the resin include resins such as polyurethane, polyphenol, epoxy, polyester, cellulose, ethylene copolymer, polyvinyl acetal, polyacrylic, acrylic ester, polyvinyl alcohol, polyvinyl chloride, polyvinyl acetate, and polyamide. Among them, polyacrylics, epoxys, polyesters and polyurethanes, which can easily ensure good adhesion to the substrate, are preferred. The resin may be at least partially crosslinked.

また、上記無機物としては、ケイ酸塩、リン酸塩、多価金属アルコキシド等を挙げることができる。中でも砥粒保持力が高いケイ酸塩が好ましい。このようなケイ酸塩としてはケイ酸ナトリウムやケイ酸カリウム等を挙げることができる。   Moreover, a silicate, a phosphate, a polyhydric-metal alkoxide etc. can be mentioned as said inorganic substance. Among them, silicates having high abrasive retention are preferred. Examples of such silicates include sodium silicate and potassium silicate.

バインダー23の主成分は、無機物であるとよい。このようにバインダー23の主成分を無機物とすることで、砥粒21の保持力を高め、砥粒21が目こぼれする前に脱粒することを抑止できる。このため、研削力がさらに高められる。   The main component of the binder 23 is preferably an inorganic substance. Thus, by making the main component of the binder 23 an inorganic substance, the retention of the abrasive grains 21 can be enhanced, and the abrasive grains 21 can be prevented from being disintegrated before being spilled out. For this reason, grinding power is further enhanced.

なお、バインダー23には、分散剤、カップリング剤、界面活性剤、潤滑剤、消泡剤、着色剤等の各種助剤及び添加剤などを目的に応じて適宜含有させてもよい。   The binder 23 may appropriately contain various assistants and additives such as a dispersant, a coupling agent, a surfactant, a lubricant, an antifoaming agent, and a colorant according to the purpose.

また、研磨層20は、その表面に溝24により区分された複数の凸状部25を有する。溝24は、研磨層20の表面に等間隔の格子状に配設されている。すなわち、上記複数の凸状部25の形状は、規則的に配列されたブロックパターン状である。また、凸状部25を区分する溝24の底面は、基材10の表面で構成される。   The polishing layer 20 also has a plurality of convex portions 25 divided by the grooves 24 on the surface thereof. The grooves 24 are disposed on the surface of the polishing layer 20 in the form of a lattice at equal intervals. That is, the shape of the plurality of convex portions 25 is a block pattern which is regularly arranged. Further, the bottom surface of the groove 24 that divides the convex portion 25 is formed on the surface of the base material 10.

溝24の平均幅の下限としては、0.3mmが好ましく、0.5mmがより好ましい。一方、溝24の平均幅の上限としては、10mmが好ましく、8mmがより好ましい。溝24の平均幅が上記下限未満であると、研磨により発生する研磨粉が溝24に詰まるおそれがある。逆に、溝24の平均幅が上記上限を超えると、研磨時に被削体が溝24に落ち込み易くなるため、被削体に傷が生じるおそれがある。   The lower limit of the average width of the grooves 24 is preferably 0.3 mm, more preferably 0.5 mm. On the other hand, the upper limit of the average width of the grooves 24 is preferably 10 mm, more preferably 8 mm. If the average width of the grooves 24 is less than the above lower limit, abrasive powder generated by polishing may be clogged in the grooves 24. On the other hand, if the average width of the grooves 24 exceeds the above upper limit, the workpiece tends to fall into the grooves 24 at the time of polishing, so that the workpiece may be damaged.

凸状部25の平均面積の下限としては、1mmが好ましく、2mmがより好ましい。一方、凸状部25の平均面積の上限としては、150mmが好ましく、130mmがより好ましい。凸状部25の平均面積が上記下限未満であると、凸状部25が基材10から剥離するおそれがある。逆に、凸状部25の平均面積が上記上限を超えると、研磨時に研磨層20の被削体への接触面積が大きくなるため、摩擦抵抗により研磨レートが低下するおそれがある。 As a lower limit of the average area of convex part 25, 1 mm 2 is preferable and 2 mm 2 is more preferable. On the other hand, as a maximum of the average area of convex part 25, 150 mm 2 is preferred and 130 mm 2 is more preferred. There is a possibility that convex part 25 exfoliates from substrate 10 as the average area of convex part 25 is less than the above-mentioned minimum. On the other hand, when the average area of the convex portions 25 exceeds the above upper limit, the contact area of the polishing layer 20 to the workpiece at the time of polishing becomes large, and the polishing rate may be reduced due to frictional resistance.

複数の凸状部25の研磨層20全体に対する面積占有率の下限としては、5%が好ましく、10%がより好ましい。一方、上記凸状部25の面積占有率の上限としては、60%が好ましく、55%がより好ましい。上記凸状部25の面積占有率が上記下限未満であると、研磨時に加える圧力が狭い凸状部25に集中し過ぎるため、凸状部25が基材10から剥離するおそれがある。逆に、上記凸状部25の面積占有率が上記上限を超えると、研磨時に研磨層20の被削体への接触面積が大きくなるため、摩擦抵抗により研磨レートが低下するおそれがある。なお、「研磨層全体の面積」は、研磨層が溝を有する場合、その溝の面積も含む概念である。   The lower limit of the area occupancy of the plurality of convex portions 25 with respect to the entire polishing layer 20 is preferably 5%, and more preferably 10%. On the other hand, as an upper limit of the area occupancy of the said convex-shaped part 25, 60% is preferable and 55% is more preferable. When the area occupancy rate of the convex portion 25 is less than the lower limit, the pressure applied at the time of polishing is concentrated on the narrow convex portion 25 too much, and the convex portion 25 may be peeled off from the base material 10. On the other hand, if the area occupancy rate of the convex portion 25 exceeds the upper limit, the contact area of the polishing layer 20 to the workpiece at the time of polishing becomes large, and the polishing rate may be reduced due to frictional resistance. In addition, "the area of the whole grinding | polishing layer" is a concept also including the area of the groove | channel, when a grinding | polishing layer has a groove | channel.

研磨層20の平均厚さ(凸状部25部分のみの平均厚さ)の下限としては、1000μmであり、1500μmがより好ましく、2000μmがさらに好ましい。一方、研磨層20の平均厚さの上限としては、4000μmが好ましく、3500μmがより好ましく、3200μmがさらに好ましい。研磨層20の平均厚さが上記下限未満であると、研磨層20の耐久性が不足し、当該研磨材1の寿命が短くなるおそれがある。逆に、研磨層20の平均厚さが上記上限を超えると、研磨時に発生するモーメントにより研磨層20と基材10との界面にかかる負荷により研磨層20が倒れ易くなるおそれや、当該研磨材1の製造コストが増大するおそれがある。   The lower limit of the average thickness of the polishing layer 20 (average thickness of only the convex portions 25) is 1000 μm, more preferably 1500 μm, and still more preferably 2000 μm. On the other hand, the upper limit of the average thickness of the polishing layer 20 is preferably 4000 μm, more preferably 3500 μm, and still more preferably 3200 μm. If the average thickness of the polishing layer 20 is less than the above lower limit, the durability of the polishing layer 20 may be insufficient, and the life of the polishing material 1 may be shortened. Conversely, when the average thickness of the polishing layer 20 exceeds the above upper limit, the load applied to the interface between the polishing layer 20 and the substrate 10 due to the moment generated at the time of polishing may cause the polishing layer 20 to fall easily, The manufacturing cost of 1 may increase.

研磨層20のテーバー摩耗試験による摩耗量の下限としては、0.03gであり、0.06gがより好ましい。一方、上記摩耗量の上限としては、0.15gであり、0.12gがより好ましい。上記摩耗量が上記下限未満であると、目つぶれの発生した砥粒21が目こぼれにより除去できず、研磨レートが低下し易くなるおそれがある。逆に、上記摩耗量が上記上限を超えると、研磨層20の摩耗が早くなり過ぎ、当該研磨材1の寿命が短くなるおそれがある。   The lower limit of the wear amount of the polishing layer 20 by the Taber abrasion test is 0.03 g, and more preferably 0.06 g. On the other hand, the upper limit of the amount of wear is 0.15 g, and more preferably 0.12 g. If the amount of wear is less than the above-mentioned lower limit, the abrasive grains 21 in which the clogging has occurred can not be removed by the eye spill, and there is a possibility that the polishing rate tends to be reduced. Conversely, if the amount of wear exceeds the upper limit, the wear of the polishing layer 20 may be too fast, and the life of the polishing material 1 may be shortened.

研磨層20の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量の最大値と最小値との差の上限としては、0.080gであり、0.060gがより好ましい。上記摩耗量差が上記上限を超えると、それは研磨層20に不均一な部分があることを意味し、研磨時に当該研磨材1の研磨層20の面内で磨耗し易い部分に凹部が生じ、被削体の平坦化精度が悪化するおそれがある。一方、上記摩耗量差の下限としては、特に限定されず、0gであってもよいが、上記摩耗量差は、通常0.001g以上となる。   The upper limit of the difference between the maximum value and the minimum value of the wear amount in the Taber wear test measured every 500 μm in the thickness direction of the polishing layer 20 is 0.080 g, and 0.060 g is more preferable. When the wear amount difference exceeds the above upper limit, it means that there is a nonuniform portion in the polishing layer 20, and a recess is formed in a portion which is easily worn in the surface of the polishing layer 20 of the polishing material 1 at the time of polishing, There is a possibility that the planarization accuracy of the workpiece may deteriorate. On the other hand, the lower limit of the wear amount difference is not particularly limited, and may be 0 g. However, the wear amount difference is usually 0.001 g or more.

<接着層>
接着層30は、当該研磨材1を支持し研磨装置に装着するための支持体に当該研磨材1を固定する層である。
<Adhesive layer>
The adhesive layer 30 is a layer for supporting the abrasive 1 and fixing the abrasive 1 to a support for mounting the abrasive 1 on a polishing apparatus.

この接着層30に用いられる接着剤としては、特に限定されないが、例えば反応型接着剤、瞬間接着剤、ホットメルト接着剤、貼り替え可能な接着剤である粘着剤等を挙げることができる。   The adhesive used for the adhesive layer 30 is not particularly limited, and examples thereof include reactive adhesives, instant adhesives, hot melt adhesives, and adhesives that can be replaced.

この接着層30に用いられる接着剤としては、粘着剤が好ましい。接着層30に用いられる接着剤として粘着剤を用いることで、支持体から当該研磨材1を剥がして貼り替えることができるため当該研磨材1及び支持体の再利用が容易になる。このような粘着剤としては、特に限定されないが、例えばアクリル系粘着剤、アクリル−ゴム系粘着剤、天然ゴム系粘着剤、ブチルゴム系等の合成ゴム系粘着剤、シリコーン系粘着剤、ポリウレタン系粘着剤等が挙げられる。   As an adhesive used for this adhesive layer 30, an adhesive is preferable. By using a pressure-sensitive adhesive as the adhesive used for the adhesive layer 30, the abrasive 1 can be peeled off and replaced from the support, and reuse of the abrasive 1 and the support becomes easy. Such an adhesive is not particularly limited. For example, acrylic adhesive, acrylic-rubber adhesive, natural rubber adhesive, synthetic rubber adhesive such as butyl rubber, silicone adhesive, polyurethane adhesive Agents and the like.

接着層30の平均厚さの下限としては、0.05mmが好ましく、0.1mmがより好ましい。一方、接着層30の平均厚さの上限としては、0.3mmが好ましく、0.2mmがより好ましい。接着層30の平均厚さが上記下限未満であると、接着力が不足し、当該研磨材1が支持体から剥離するおそれがある。逆に、接着層30の平均厚さが上記上限を超えると、例えば接着層30の厚みのため当該研磨材1を所望する形状に切る際に支障をきたすなど、作業性が低下するおそれがある。   As a lower limit of the average thickness of adhesion layer 30, 0.05 mm is preferred and 0.1 mm is more preferred. On the other hand, as an upper limit of the average thickness of adhesion layer 30, 0.3 mm is preferred and 0.2 mm is more preferred. If the average thickness of the adhesive layer 30 is less than the above lower limit, the adhesive strength may be insufficient, and the abrasive 1 may be peeled off from the support. Conversely, if the average thickness of the adhesive layer 30 exceeds the above upper limit, there is a possibility that the workability may be deteriorated, for example, when the abrasive material 1 is cut into a desired shape due to the thickness of the adhesive layer 30 .

<利点>
当該研磨材1は、研磨層20における砥粒21及び充填剤22の合計含有量を60体積%以上とし、研磨層20の摩耗量を0.03g以上0.15g以下とするので、研磨レート及び平坦化精度に優れる。また、当該研磨材1は、研磨層20における砥粒21及び充填剤22の合計含有量を85体積%以下とし、研磨層20の厚さ方向500μm毎に測定した摩耗量の最大値と最小値との差を0.080g以下とするので、研磨層20の均質性が高く、さらに研磨層20の平均厚さが1000μm以上であるので、寿命が長い。
<Advantage>
In the polishing material 1, the total content of the abrasive grains 21 and the filler 22 in the polishing layer 20 is 60 volume% or more, and the wear amount of the polishing layer 20 is 0.03 g or more and 0.15 g or less. Excellent in planarization accuracy. Moreover, the said abrasives 1 make the total content of the abrasive grain 21 and the filler 22 in the polishing layer 20 85 volume% or less, and the maximum value and minimum value of the abrasion loss measured every 500 micrometers of thickness directions of the polishing layer 20 Therefore, the uniformity of the polishing layer 20 is high and the average thickness of the polishing layer 20 is 1000 μm or more, so the life is long.

[研磨材の製造方法]
図3に示す研磨材の製造方法は、調製工程S1と、塗工工程S2と、加熱工程S3と、接着層貼付工程S4とを主に備える。当該研磨材の製造方法を用いることで、例えば図1及び図2に示す基材10と、この基材10の表面側に積層され、砥粒21、充填剤22及びバインダー23を含む研磨層20とを備える研磨材1を製造することができる。
[Method of producing abrasives]
The method for producing an abrasive shown in FIG. 3 mainly includes a preparation step S1, a coating step S2, a heating step S3, and an adhesive layer sticking step S4. By using the manufacturing method of the said abrasives, it is laminated on the surface side of this base material 10 shown, for example in Drawing 1 and Drawing 2, and this base material 10, and polish layer 20 which contains abrasive grain 21, filler 22, and binder 23. Abrasive material 1 can be manufactured.

<調整工程>
調整工程S1では、砥粒21、充填剤22及びバインダー23を含む研磨層用組成物を調製する。具体的には、砥粒21、充填剤22及びバインダー23の形成材料を含む研磨層用組成物を塗工液として準備する。また、この調整工程S1では、研磨層用組成物の固形分中の砥粒21及び充填剤22の合計含有量を60体積%以上85体積%以下とする。なお、固形分中の砥粒21及び充填剤22の含有量が、それぞれ製造後の研磨層20の砥粒21及び充填剤22の含有量となる。
<Adjustment process>
In adjustment process S1, the composition for abrasive layers containing the abrasive grain 21, the filler 22, and the binder 23 is prepared. Specifically, a composition for an abrasive layer containing materials for forming the abrasive grains 21, the filler 22, and the binder 23 is prepared as a coating liquid. In addition, in the adjustment step S1, the total content of the abrasive grains 21 and the filler 22 in the solid content of the composition for a polishing layer is set to 60% by volume or more and 85% by volume or less. The content of the abrasive grains 21 and the filler 22 in the solid content is the content of the abrasive grains 21 and the filler 22 of the polishing layer 20 after production.

また、当該研磨材の製造方法では、塗工液には希釈剤を添加しないことが好ましい。このように塗工液に希釈剤を添加しないことで、一定の粘度が確保できるので、研磨層20の塗工時に質量の大きい砥粒21及び充填剤22が下方に溜まり易くなることを抑止できる。従って、研磨層20の均一性が向上する。   Moreover, in the manufacturing method of the said abrasives, it is preferable not to add a diluent to a coating liquid. By thus not adding the diluent to the coating liquid, a constant viscosity can be ensured, and therefore, it is possible to prevent the abrasive particles 21 and the filler 22 having a large mass from being easily accumulated at the bottom when the polishing layer 20 is applied. . Therefore, the uniformity of the polishing layer 20 is improved.

また、研磨層20のテーバー摩耗試験による摩耗量及び研磨層20の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量の最大値と最小値との差は、主に塗工液中の砥粒21及び充填剤22の含有量を調整することで制御できる。従って、この調製工程S1で、上記摩耗量及び上記摩耗量差を所望の調整範囲内とするように、砥粒21及び充填剤22の含有量を調整するとよい。   In addition, the difference between the wear amount of the polishing layer 20 by the Taber wear test and the difference between the maximum value and the minimum value of the wear amount by the Taber wear test measured every 500 μm in the thickness direction of the polishing layer 20 Control can be performed by adjusting the content of the particles 21 and the filler 22. Therefore, in the preparation step S1, the contents of the abrasive grains 21 and the filler 22 may be adjusted so that the wear amount and the wear amount difference fall within the desired adjustment range.

調製工程S1での上記摩耗量の調整範囲の下限としては、0.03gが好ましく、0.06gがより好ましい。一方、上記摩耗量の調整範囲の上限としては、0.15gが好ましく、0.12gがより好ましい。研磨層20の摩耗量を上記範囲内とすることで、研磨レート及び平坦化精度を向上できる。   As a lower limit of the adjustment range of the said abrasion loss in preparation process S1, 0.03 g is preferable and 0.06 g is more preferable. On the other hand, as an upper limit of the adjustment range of the said abrasion loss, 0.15 g is preferable and 0.12 g is more preferable. By setting the wear amount of the polishing layer 20 within the above range, the polishing rate and the planarization accuracy can be improved.

調製工程S1での上記摩耗量差の調整範囲の上限としては、0.080gが好ましく、0.060gがより好ましい。研磨層20の厚さ方向500μm毎に測定した摩耗量の最大値と最小値との差を上記上限以下とすることで、厚さ方向の均質性がさらに向上するので、ドレス作業を頻繁に行わなくとも安定した研磨を行うことができる。一方、上記摩耗量差の調整範囲の下限としては、特に限定されず、0gであってもよいが、上記摩耗量差は、通常0.001g以上となる。   As an upper limit of the adjustment range of the said abrasion loss difference in preparation process S1, 0.080g is preferable and 0.060g is more preferable. By setting the difference between the maximum value and the minimum value of the wear amount measured every 500 μm in the thickness direction of the polishing layer 20 below the above upper limit, the uniformity in the thickness direction is further improved, so the dressing operation is performed frequently. Even if it does not, stable polishing can be performed. On the other hand, the lower limit of the adjustment range of the wear amount difference is not particularly limited, and may be 0 g, but the wear amount difference is usually 0.001 g or more.

<塗工工程>
塗工工程S2では、上記研磨層用組成物を基材10の表面に塗工する。具体的には、調製工程S1で準備した塗工液を用い、基材10の表面に印刷法により溝24で区分された複数の凸状部25から構成される研磨層20を形成する。この溝24を形成するために、溝24の形状に対応する形状を有するマスクを用意し、このマスクを介して上記塗工液を印刷する。この印刷方式としては、例えばスクリーン印刷、メタルマスク印刷等を用いることができる。
<Coating process>
In the coating step S2, the composition for a polishing layer is coated on the surface of the substrate 10. Specifically, using the coating liquid prepared in the preparation step S1, the polishing layer 20 constituted of a plurality of convex portions 25 divided by the grooves 24 by the printing method is formed on the surface of the base material 10. In order to form the groove 24, a mask having a shape corresponding to the shape of the groove 24 is prepared, and the coating liquid is printed through the mask. As this printing method, for example, screen printing, metal mask printing, etc. can be used.

上記印刷用のマスクとしては、SUS製のマスクが好ましい。SUS製のマスクはマスクを厚くできるので、平均厚さの大きい研磨層20を容易に作製することができる。   As the mask for printing, a mask made of SUS is preferable. Since the mask made of SUS can be thickened, the polishing layer 20 having a large average thickness can be easily manufactured.

研磨層20の厚さは、主に塗工量により調整することができる。従って、この塗工工程S2で、研磨層20の平均厚さを1000μm以上、より好ましくは1500μm以上、さらに好ましくは2000μm以上とするように上記研磨層用組成物の塗工量を調整するとよい。研磨層20の平均厚さを上記下限以上とするように塗工量を調整することで、研磨材1の寿命をさらに向上できる。また、当該研磨材の製造方法では、研磨層20を厚くしても厚さ方向の均質性が保たれるので、優れた研磨レート及び平坦化精度を維持できる。一方、塗工工程S2で調整される研磨層20の平均厚さの上限としては、特に限定されないが、製造コストの観点から、4000μmが好ましく、3500μmがより好ましく、3200μmがさらに好ましい。   The thickness of the polishing layer 20 can be mainly adjusted by the coating amount. Therefore, in the coating step S2, the coating amount of the composition for a polishing layer may be adjusted so that the average thickness of the polishing layer 20 is 1000 μm or more, more preferably 1500 μm or more, and still more preferably 2000 μm or more. By adjusting the coating amount so that the average thickness of the polishing layer 20 is equal to or more than the above lower limit, the life of the polishing material 1 can be further improved. Further, in the method of manufacturing the abrasive, even if the polishing layer 20 is thickened, the uniformity in the thickness direction is maintained, so that excellent polishing rate and planarization accuracy can be maintained. On the other hand, the upper limit of the average thickness of the polishing layer 20 adjusted in the coating step S2 is not particularly limited, but from the viewpoint of production cost, 4000 μm is preferable, 3500 μm is more preferable, and 3200 μm is more preferable.

<加熱工程>
加熱工程S3は、塗工工程S2後の研磨層用組成物を加熱する。加熱工程S3は、図4に示すように、予備乾燥工程S31と、加熱脱水工程S32と、加熱硬化工程S33とを有する。
<Heating process>
Heating process S3 heats the composition for abrasive layers after coating process S2. As shown in FIG. 4, the heating step S3 has a preliminary drying step S31, a heating and dewatering step S32, and a heating and curing step S33.

(予備乾燥工程)
予備乾燥工程S31は、常温で、つまり特に冷やしたり熱したりしない温度で研磨層用組成物を乾燥する。本発明者らは、この予備乾燥工程S31で、適切な時間の予備乾燥を行うことにより、研磨層用組成物中で砥粒21及び充填剤22の均一な分散が確保され、その後加熱を行っても研磨層20の均一性が確保できることを知得している。
(Pre-drying step)
In the preliminary drying step S31, the composition for the polishing layer is dried at normal temperature, that is, at a temperature that does not particularly cool or heat. By performing predrying for an appropriate time in the predrying step S31, the present inventors ensure uniform dispersion of the abrasive grains 21 and the filler 22 in the polishing layer composition, and then heating is performed. However, it is known that the uniformity of the polishing layer 20 can be ensured.

この予備乾燥工程S31の乾燥温度は、常温であれば特に限定されないが、予備乾燥工程S31の乾燥温度の下限としては、5℃であり、15℃がより好ましい。一方、予備乾燥工程S31の管押す温度の上限としては、35℃であり、30℃がより好ましい。予備乾燥工程S31の乾燥温度が上記下限未満であると、研磨層用組成物が十分に乾燥せず、研磨層20の均一性が低下するおそれがある。逆に、予備乾燥工程S31の乾燥温度が上記上限を超えると、熱による対流等により研磨層用組成物中で砥粒21及び充填剤22が偏在し易くなるため、研磨層20の均一性が低下するおそれがある。   The drying temperature of the preliminary drying step S31 is not particularly limited as long as it is normal temperature, but the lower limit of the drying temperature of the preliminary drying step S31 is 5 ° C., and 15 ° C. is more preferable. On the other hand, the upper limit of the tube pushing temperature in the preliminary drying step S31 is 35 ° C., and 30 ° C. is more preferable. If the drying temperature in the preliminary drying step S31 is less than the above lower limit, the composition for polishing layer may not be sufficiently dried, and the uniformity of the polishing layer 20 may be degraded. Conversely, if the drying temperature in the preliminary drying step S31 exceeds the above upper limit, the abrasive grains 21 and the filler 22 are likely to be unevenly distributed in the polishing layer composition due to heat convection, etc. It may decrease.

予備乾燥工程S31の乾燥時間の下限としては、30分であり、60分がより好ましく、90分がさらに好ましい。一方、予備乾燥工程S31の乾燥時間の上限としては、特に限定されないが、200分が好ましく、150分がより好ましい。予備乾燥工程S31の乾燥時間が上記下限未満であると、研磨層用組成物が十分に乾燥せず、研磨層20の均一性が低下するおそれがある。逆に、予備乾燥工程S31の乾燥時間が上記上限を超えると、製造効率が低下するおそれがある。   The lower limit of the drying time of the preliminary drying step S31 is 30 minutes, more preferably 60 minutes, and still more preferably 90 minutes. On the other hand, the upper limit of the drying time in the preliminary drying step S31 is not particularly limited, but 200 minutes is preferable, and 150 minutes is more preferable. If the drying time in the preliminary drying step S31 is less than the above lower limit, the composition for polishing layer may not be sufficiently dried, and the uniformity of the polishing layer 20 may be degraded. Conversely, if the drying time of the preliminary drying step S31 exceeds the above-mentioned upper limit, the production efficiency may be reduced.

(加熱脱水工程)
加熱脱水工程S32は、予備乾燥工程S31後に、研磨層用組成物の水分を加熱脱水する。この加熱脱水工程S32により研磨層用組成物から水分を除去することで、これに続く加熱硬化工程S33で研磨層20の均質性を維持しながら研磨層20を硬化させることができる。
(Heating dehydration process)
The heating and dewatering step S32 heats and dehydrates the moisture of the polishing layer composition after the preliminary drying step S31. By removing the moisture from the composition for polishing layer in the heat dehydration step S32, the polishing layer 20 can be cured while maintaining the homogeneity of the polishing layer 20 in the subsequent heating and curing step S33.

加熱脱水工程S32の加熱温度の下限としては、70℃が好ましく、75℃がより好ましい。一方、加熱脱水工程S32の加熱温度の上限としては、90℃が好ましく、85℃がより好ましい。加熱脱水工程S32の加熱温度が上記下限未満であると、研磨層用組成物からの脱水が不十分となり、研磨層20の均一性が低下するおそれがある。逆に、加熱脱水工程S32の加熱温度が上記上限を超えると、熱による対流等により研磨層用組成物中で砥粒21及び充填剤22が偏在し易くなるため、研磨層20の均一性が低下するおそれがある。   As a minimum of heating temperature of heat dehydration process S32, 70 ° C is preferred and 75 ° C is more preferred. On the other hand, as a maximum of heating temperature of heat dehydration process S32, 90 ° C is preferred and 85 ° C is more preferred. If the heating temperature in the heating and dewatering step S32 is less than the above lower limit, dehydration from the polishing layer composition may be insufficient, and the uniformity of the polishing layer 20 may be degraded. On the contrary, when the heating temperature of the heating and dewatering step S32 exceeds the above upper limit, the abrasive grains 21 and the filler 22 are easily unevenly distributed in the composition for polishing layer due to heat convection etc. It may decrease.

加熱脱水工程S32の加熱時間の下限としては、30分が好ましく、60分がより好ましい。加熱脱水工程S32の加熱時間が上記下限未満であると、研磨層用組成物からの脱水が不十分となり、研磨層20の均一性が低下するおそれがある。一方、加熱脱水工程S32の加熱時間の上限は特に限定されないが、製造効率の観点から、加熱脱水工程S32の加熱時間は、通常2時間以下とされる。   As a minimum of heating time of heat dehydration process S32, 30 minutes are preferred and 60 minutes are more preferred. If the heating time of the heating and dewatering step S32 is less than the above lower limit, dehydration from the polishing layer composition may be insufficient, and the uniformity of the polishing layer 20 may be degraded. On the other hand, the upper limit of the heating time of the heating and dewatering step S32 is not particularly limited, but from the viewpoint of production efficiency, the heating time of the heating and dewatering step S32 is usually 2 hours or less.

(加熱硬化工程)
加熱硬化工程S33は、加熱脱水工程S32後に、研磨層用組成物を加熱硬化する。この加熱硬化により研磨層20が形成される。
(Heating and curing process)
The heating and curing step S33 heats and cures the polishing layer composition after the heating and dewatering step S32. By this heat curing, the polishing layer 20 is formed.

加熱硬化工程S33の加熱温度の下限としては、120℃が好ましく、140℃がより好ましい。一方、加熱硬化工程S33の加熱温度の上限としては、300℃が好ましく、200℃がより好ましい。加熱硬化工程S33の加熱温度が上記下限未満であると、研磨層用組成物が十分に硬化せず、摩耗量が増大し、研磨材1の寿命が短くなるおそれがある。逆に、加熱硬化工程S33の加熱温度が上記上限を超えると、研磨層20が熱により変質するおそれがある。   As a minimum of heating temperature of heat hardening process S33, 120 ° C is preferred and 140 ° C is more preferred. On the other hand, as an upper limit of heating temperature of heat hardening process S33, 300 ° C is preferred and 200 ° C is more preferred. If the heating temperature in the heating and curing step S33 is less than the above lower limit, the composition for polishing layer may not be sufficiently cured, the amount of wear may be increased, and the life of the abrasive 1 may be shortened. Conversely, if the heating temperature of the heat curing step S33 exceeds the above upper limit, the polishing layer 20 may be degraded by heat.

加熱硬化工程S33の加熱時間の下限としては、2時間が好ましく、2.5時間がより好ましい。一方、加熱硬化工程S33の加熱時間の上限としては、4時間が好ましく、3.5時間がより好ましい。加熱硬化工程S33の加熱時間が上記下限未満であると、研磨層用組成物が十分に硬化せず、摩耗量が増大し、研磨材1の寿命が短くなるおそれがある。逆に、加熱硬化工程S33の加熱時間が上記上限を超えると、製造効率が低下するおそれがある。   As a minimum of heating time of heat hardening process S33, 2 hours are preferred and 2.5 hours are more preferred. On the other hand, as a maximum of heating time of heat hardening process S33, 4 hours are preferred and 3.5 hours are more preferred. If the heating time of the heating and curing step S33 is less than the above lower limit, the composition for polishing layer may not be sufficiently cured, the amount of wear may be increased, and the life of the abrasive 1 may be shortened. Conversely, if the heating time of the heating and curing step S33 exceeds the above-mentioned upper limit, the production efficiency may be reduced.

<接着層貼付工程>
接着層貼付工程S4では、基材10の裏面側に接着層30を積層する。具体的には、例えば予め形成されたテープ状の接着層30を基材10の裏面に貼り付ける。
<Adhesive layer sticking process>
In adhesion layer sticking process S4, adhesion layer 30 is laminated on the back side of substrate 10. Specifically, for example, a tape-shaped adhesive layer 30 formed in advance is attached to the back surface of the substrate 10.

<利点>
当該研磨材の製造方法は、固形分中の砥粒21及び充填剤22の合計含有量が85体積%以下の研磨層用組成物を、加熱工程S3で最初に常温で30分以上の条件で予備乾燥を行う予備乾燥工程S31を有する。この予備乾燥工程S31により砥粒21や充填剤22が研磨層20の厚さ方向に偏在することが抑止できる。また、固形分中の砥粒21及び充填剤22の合計含有量を65体積%以上とすることで、研磨層20が適度に摩耗する。この摩耗により目つぶれの発生した砥粒21が目こぼれにより除去され、研磨層20内から新たな砥粒21が研磨層20の表面に露出するので、優れた研磨レートが維持できる。従って、当該研磨材の製造方法を用いることで、研磨層20を厚くしても厚さ方向の均質性が保たれ、優れた研磨レート及び平坦化精度を維持しつつ、寿命の向上した研磨材を製造できる。
<Advantage>
The method for producing the abrasive material is a polishing layer composition having a total content of 85% by volume or less of the abrasive grains 21 and the filler 22 in the solid content, in the heating step S3 first under conditions of normal temperature for 30 minutes or more. It has preliminary drying step S31 which performs preliminary drying. This preliminary drying step S31 can prevent uneven distribution of the abrasive grains 21 and the filler 22 in the thickness direction of the polishing layer 20. Further, by setting the total content of the abrasive grains 21 and the filler 22 in the solid content to 65% by volume or more, the polishing layer 20 is appropriately worn. The abrasive grains 21 which are clogged due to the wear are removed by eyedropping, and new abrasive grains 21 are exposed from the inside of the polishing layer 20 to the surface of the polishing layer 20, so that an excellent polishing rate can be maintained. Therefore, even if the thickness of the polishing layer 20 is increased, the uniformity of the thickness direction is maintained by using the method for producing the abrasive, and the abrasive having the improved life while maintaining the excellent polishing rate and the planarization accuracy. Can be manufactured.

[その他の実施形態]
本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。
Other Embodiments
The present invention is not limited to the above embodiment, and can be implemented in various modifications and improvements in addition to the above embodiment.

上記実施形態では、溝を等間隔の格子状に構成したが、格子の間隔及び平面形状は上記実施形態には限定されない。また、上記実施形態において、溝の底面が基材の表面である構成としたが、溝の深さが研磨層の平均厚さよりも小さく、溝が基材の表面に達さなくともよい。   In the above embodiment, the grooves are formed in the form of a lattice at equal intervals, but the spacing and planar shape of the lattice are not limited to the above embodiment. In the above embodiment, although the bottom of the groove is the surface of the base, the depth of the groove may be smaller than the average thickness of the polishing layer, and the groove may not reach the surface of the base.

溝の平面形状は格子状でなくともよく、例えば四角形以外の多角形が繰り返される形状、円形状、平行な線を複数有する形状等であってもよいし、同心円状であってもよい。また、溝の平面形状は一方向のみに配設された縞状であってもよい。   The planar shape of the groove is not limited to a lattice, and may be, for example, a shape in which a polygon other than a quadrilateral is repeated, a circular shape, a shape having a plurality of parallel lines, or the like. Further, the planar shape of the groove may be a stripe shape provided in only one direction.

また、研磨層が溝を有さない構造であってもよい。   Further, the polishing layer may have a structure without grooves.

上記実施形態では、当該研磨材の製造方法を用いて、図1及び図2に示す研磨材を製造する場合を説明したが、当該研磨材の製造方法を用いて製造できる研磨材は、図1及び図2に示す研磨材には限定されず、例えば研磨層の平均厚さが1000μm未満の研磨材等を製造することもできる。   Although the case where the abrasives shown in FIG.1 and FIG.2 were manufactured using the manufacturing method of the said abrasives was demonstrated in the said embodiment, the abrasives which can be manufactured using the manufacturing method of the said abrasives are FIG. And it is not limited to the abrasives shown in FIG. 2, For example, the abrasives etc. whose average thickness of an abrasive layer is less than 1000 micrometers can also be manufactured.

上記実施形態では、研磨材が接着層を有する場合を説明したが、接着層は必須の構成要件ではなく、省略可能である。研磨材が接着層を有さない場合は、研磨材の製造方法の接着層貼付工程は省略される。   Although the above-mentioned embodiment explained the case where an abrasives has an adhesion layer, an adhesion layer is not an essential component and can be omitted. When the abrasive does not have the adhesive layer, the adhesive layer attaching step of the method of manufacturing the abrasive is omitted.

あるいは、図5に示すように当該研磨材2は裏面側の接着層30を介して積層される支持体40及びその支持体40の裏面側に積層される第2接着層31を備えてもよい。当該研磨材2が支持体40を備えることにより、当該研磨材2の取扱いが容易となる。   Alternatively, as shown in FIG. 5, the abrasive 2 may be provided with a support 40 laminated via the adhesive layer 30 on the back surface side and a second adhesive layer 31 laminated on the back surface side of the support 40. . When the abrasive 2 includes the support 40, the abrasive 2 can be easily handled.

上記支持体40の主成分としては、ポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン、ポリ塩化ビニル等の熱可塑性を有する樹脂やポリカーボネート、ポリアミド、ポリエチレンテレフタレート等のエンジニアリングプラスチックを挙げることができる。上記支持体40の主成分にこのような材質を用いることにより上記支持体40が可撓性を有し、当該研磨材2が被削体の表面形状に追従し、研磨面と被削体とが接触し易くなるため研磨レートがさらに向上する。   Examples of the main component of the support 40 include thermoplastic resins such as polypropylene, polyethylene, polytetrafluoroethylene and polyvinyl chloride, and engineering plastics such as polycarbonate, polyamide and polyethylene terephthalate. By using such a material as the main component of the support 40, the support 40 has flexibility, and the abrasive 2 follows the surface shape of the object to be cut, and the abrading surface and the object to be cut The polishing rate is further improved because the

上記支持体40の平均厚さとしては、例えば0.5mm以上3mm以下とすることができる。上記支持体40の平均厚さが上記下限未満であると、当該研磨材2の強度が不足するおそれがある。一方、上記支持体40の平均厚さが上記上限を超えると、上記支持体40を研磨装置に取り付け難くなるおそれや上記支持体40の可撓性が不足するおそれがある。   The average thickness of the support 40 can be, for example, 0.5 mm or more and 3 mm or less. If the average thickness of the support 40 is less than the lower limit, the strength of the abrasive 2 may be insufficient. On the other hand, when the average thickness of the support 40 exceeds the upper limit, the support 40 may not be easily attached to the polishing apparatus, and the flexibility of the support 40 may be insufficient.

上記第2接着層31は、接着層30と同様の接着剤を用いることができる。また、第2接着層31は、接着層30と同様の平均厚さとできる。   The same adhesive as the adhesive layer 30 can be used for the second adhesive layer 31. Further, the second adhesive layer 31 can have the same average thickness as the adhesive layer 30.

以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、当該発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples, but the present invention is not limited to the following examples.

[実施例1]
ダイヤモンド砥粒(ランズ社の「LS605FN」)を用意し、日機装株式会社の「MicrotracMT3300EXII」を用いて平均粒子径を計測した。このダイヤモンド砥粒の平均粒子径は7.5μmであった。なお、この砥粒のダイヤモンドの種類は55質量%ニッケルコーティングされた処理ダイヤモンドである。
Example 1
Diamond abrasive grains ("LS605FN" from Lands Co., Ltd.) were prepared, and the average particle size was measured using "Microtrac MT3300 EXII" from Nikkiso Co., Ltd. The average particle size of this diamond abrasive was 7.5 μm. In addition, the kind of diamond of this abrasive grain is a 55 mass% nickel-coated treated diamond.

上記ダイヤモンド砥粒、充填剤としてのアルミナ(Al、太平洋ランダム株式会社の「LA1200」、平均粒子径12μm)、及びバインダーとしてのケイ酸ナトリウム(富士化学株式会社の「3号ケイ酸ソーダ」)を混合し、固形分中のダイヤモンド砥粒の含有量が5体積%及び充填剤の含有量が72.7体積%となるよう調整し、塗工液を得た。 The above diamond abrasive grains, alumina as a filler (Al 2 O 3 , “LA 1200” from Pacific Random Co., Ltd., average particle diameter 12 μm), and sodium silicate as a binder (“No. 3 sodium silicate of Fuji Chemical Co., Ltd.” The mixture was adjusted so that the content of the diamond abrasive in the solid content was 5% by volume and the content of the filler was 72.7% by volume, to obtain a coating liquid.

基材として平均厚さ300μmのアルミニウム板を用意し、上記塗工液を用いてこの基材の表面に印刷により塗工した。印刷のパターンとして、格子状の溝を有する研磨層が形成されるように、この溝に対応するマスクを用いた。具体的な研磨層の形状としては、平面視で1辺3mmの正方形状の凸状部が規則的に配列されたブロックパターン状であり、複数の凸状部の研磨層全体に対する面積占有率を36%とした。なお、マスクはSUS製であり、研磨層の平均厚さが3000μmとなるように塗工量を調整した。   An aluminum plate having an average thickness of 300 μm was prepared as a substrate, and the coating solution was used to coat the surface of the substrate by printing. As a printing pattern, a mask corresponding to the grooves was used so that a polishing layer having lattice-like grooves was formed. A specific shape of the polishing layer is a block pattern in which square convex portions having a side of 3 mm are regularly arranged in a plan view, and the area occupancy rate of the plurality of convex portions to the entire polishing layer is It is 36%. The mask was made of SUS, and the coating amount was adjusted so that the average thickness of the polishing layer was 3000 μm.

塗工液は、室温(25℃)で120分の予備乾燥を行ったのち、80℃で1時間以上の加熱脱水、及び150℃で2時間以上4時間以下の加熱硬化を、この順で行った。   The coating liquid is subjected to preliminary drying for 120 minutes at room temperature (25 ° C.), followed by heat dehydration for 1 hour or more at 80 ° C., and heat curing for 2 hours to 4 hours at 150 ° C. in this order. The

また、基材を支持し研磨装置に固定する支持体として平均厚さ1mmの硬質塩化ビニル樹脂板を用い、上記基材の裏面と上記支持体の表面との間、及び上記支持体の裏面と後述する研磨機の定盤との間を、それぞれ平均厚さ130μmの粘着剤で貼り合わせた。上記粘着剤としては、両面テープ(積水化学株式会社の「#5605HGD」)を用いた。   In addition, a hard vinyl chloride resin plate having an average thickness of 1 mm is used as a support for supporting the substrate and fixing it to the polishing apparatus, between the back surface of the substrate and the front surface of the support, and the back surface of the support A pressure-sensitive adhesive having an average thickness of 130 μm was attached to a surface plate of a polishing machine described later. A double-sided tape ("# 5605 HGD" from Sekisui Chemical Co., Ltd.) was used as the pressure-sensitive adhesive.

このようにして実施例1の研磨材を得た。   Thus, the abrasive of Example 1 was obtained.

[実施例2]
充填剤として、実施例1と同様の平均粒子径12μmのアルミナに、平均粒子径3.7μmのアルミナ(デンカ株式会社の「DAM−03」)を、1:1の体積比で混合したものを用い、固形分中のダイヤモンド砥粒の含有量が5体積%及び2種類の充填剤の合計含有量が72.7体積%となるよう調整した塗工液を用いた以外は、実施例1と同様にして実施例2の研磨材を得た。
Example 2
What mixed the alumina ("DAM-03" of Denka Co., Ltd.) with an average particle diameter of 3.7 μm in a volume ratio of 1: 1 to the alumina having an average particle diameter of 12 μm as in Example 1 as a filler Example 1 and Example 1 except that a coating liquid was used which was adjusted so that the content of the diamond abrasive in the solid content was 5% by volume and the total content of the two kinds of fillers was 72.7% by volume. The abrasive of Example 2 was obtained in the same manner.

[実施例3]
塗工液の予備乾燥条件を室温(25℃)で60分とした以外は、実施例2と同様にして実施例3の研磨材を得た。
[Example 3]
An abrasive of Example 3 was obtained in the same manner as Example 2, except that the preliminary drying conditions of the coating liquid were changed to 60 minutes at room temperature (25 ° C.).

[実施例4]
固形分中のダイヤモンド砥粒の含有量が5体積%及び充填剤の含有量が71体積%となるよう調整し、塗工液を得た以外は、実施例1と同様にして実施例4の研磨材を得た。
Example 4
The content of the diamond abrasives in the solid content was adjusted to 5% by volume and the content of the filler was 71% by volume, and the coating liquid was obtained in the same manner as in Example 1 except that the coating liquid was obtained. An abrasive was obtained.

[比較例1]
塗工液の予備乾燥条件を室温(25℃)で15分とした以外は、実施例1と同様にして比較例1の研磨材を得た。
Comparative Example 1
An abrasive of Comparative Example 1 was obtained in the same manner as in Example 1 except that the preliminary drying conditions of the coating liquid were changed to 15 minutes at room temperature (25 ° C.).

[比較例2]
固形分中のダイヤモンド砥粒の含有量が15体積%及び充填剤の含有量が74.8体積%となるよう調整し、塗工液を得た以外は、実施例1と同様にして比較例2の研磨材を得た。
Comparative Example 2
A comparative example was prepared in the same manner as in Example 1 except that the content of the diamond abrasive in the solid content was adjusted to 15% by volume and the content of the filler was 74.8% by volume, and the coating liquid was obtained. 2 abrasives were obtained.

[比較例3]
固形分中のダイヤモンド砥粒の含有量が5体積%及び充填剤の含有量が50体積%となるよう調整し、塗工液を得た以外は、実施例1と同様にして比較例3の研磨材を得た。
Comparative Example 3
The content of the diamond abrasives in the solid content was adjusted to 5% by volume and the content of the filler was 50% by volume, and the coating liquid was obtained in the same manner as in Example 1 except that the coating liquid was obtained. An abrasive was obtained.

[参考例1]
研磨層の平均厚さが1000μmとなるように塗工量を調整した以外は、実施例1と同様にして、参考例1の研磨材を得た。
[Reference Example 1]
An abrasive of Reference Example 1 was obtained in the same manner as Example 1, except that the coating amount was adjusted so that the average thickness of the abrasive layer was 1,000 μm.

[研磨条件]
上記実施例1〜4、比較例1〜3及び参考例1で得られた研磨材を用いて、ガラス基板の研磨を行った。上記ガラス基板には、直径6.25cm、比重2.4の3枚のソーダライムガラスを用いた。上記研磨には、公知の両面研磨機を用いた。両面研磨機のキャリアは、厚さ0.4mmのエポキシガラスである。研磨は、研磨圧力を150g/cmとし、上定盤回転数60rpm、下定盤回転数90rpm及びSUNギア回転数10rpmの条件で、15分間の研磨を5回続けて行った。その際、クーラントとして、パレス化学株式会社の「LAP−P−32」を毎分120cc供給した。
[Polishing conditions]
The glass substrates were polished using the abrasives obtained in Examples 1 to 4 and Comparative Examples 1 to 3 and Reference Example 1. Three soda lime glasses having a diameter of 6.25 cm and a specific gravity of 2.4 were used as the glass substrate. A publicly known double-sided polisher was used for the above-mentioned polish. The carrier of the double-side polisher is epoxy glass with a thickness of 0.4 mm. The polishing was carried out 5 times of polishing for 15 minutes under the conditions of a polishing pressure of 150 g / cm 2 , an upper platen rotational speed 60 rpm, a lower platen rotational speed 90 rpm and a SUN gear rotational speed 10 rpm. At that time, 120 cc / min of “LAP-P-32” manufactured by Palace Chemical Co., Ltd. was supplied as a coolant.

[評価方法]
上記実施例1〜4、比較例1〜3及び参考例1の研磨材について、研磨層のテーバー摩耗試験による摩耗量、研磨層の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量の最大値と最小値との差、基板100μm研磨当たりの研磨層の摩耗速度、研磨後の研磨層の平坦度を測定した。なお、各測定は以下の方法により行った。
[Evaluation method]
With respect to the abrasives of Examples 1 to 4 and Comparative Examples 1 to 3 and Reference Example 1, the maximum amount of wear of the abrasive layer by the Taber abrasion test and the amount of abrasion by the Taber abrasion test measured every 500 μm in the thickness direction of the abrasive layer The difference between the value and the minimum value, the wear rate of the polishing layer per 100 μm of substrate polishing, and the flatness of the polishing layer after polishing were measured. Each measurement was performed by the following method.

<摩耗量>
研磨層のテーバー摩耗試験による摩耗量は、以下の測定方法により求めた。まず、各研磨材から、直径104mmの試験片を切り出した。この試験片をテーバー摩耗試験機(Taber Instrument社の「MODEL174」)を用いて、摩耗輪H−18、荷重4.9N(500gf)の条件で320回転して摩耗させた。摩耗前後の試験片の質量差[g]を測定し、摩耗量とした。結果を表1の「摩耗量」欄に示す。
<Abrasion amount>
The wear amount of the abrasive layer in the Taber abrasion test was determined by the following measurement method. First, a test piece with a diameter of 104 mm was cut out from each abrasive. Using a Taber abrasion tester ("MODEL 174" manufactured by Taber Instrument Co., Ltd.), the test piece was worn at 320 rotations under the conditions of wear wheel H-18 and a load of 4.9 N (500 gf). The mass difference [g] of the test piece before and after abrasion was measured, and it was set as the amount of abrasion. The results are shown in the "wear amount" column of Table 1.

<摩耗量差>
研磨層の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量の最大値と最小値との差は、以下の測定方法により求めた。上述の摩耗量を測定した試験片に対し、#80のサンドペーパーを用いて、研磨層を500μmずつ削り、上述のテーバー摩耗試験による摩耗量を測定した。具体的には、研磨層の平均厚さが3000μmである実施例1〜4、比較例1〜3では、平均厚さが2500μm、2000μm、1500μm、1000μm、500μmとなる位置、研磨層の平均厚さが1000μmである参考例1では平均厚さが500μmとなる位置について摩耗量を測定した。各研磨材について、この測定結果に、研磨層表面で測定した上述の摩耗量を加えた摩耗量のうちの最大値と最小値との差を、摩耗量差[g]として求めた。結果を表1の「摩耗量差」欄に示す。
<Abrasion amount difference>
The difference between the maximum value and the minimum value of the wear amount in the Taber wear test measured every 500 μm in the thickness direction of the polishing layer was determined by the following measurement method. With respect to the test piece for which the amount of abrasion was measured, the abrasive layer was cut by 500 μm each using a # 80 sandpaper, and the amount of abrasion was measured by the above-described Taber abrasion test. Specifically, in Examples 1 to 4 and Comparative Examples 1 to 3 in which the average thickness of the polishing layer is 3000 μm, the average thickness is 2500 μm, 2000 μm, 1500 μm, 1000 μm, 500 μm, and the average thickness of the polishing layer The amount of wear was measured at a position where the average thickness is 500 μm in Reference Example 1 in which the thickness is 1000 μm. For each abrasive, the difference between the maximum value and the minimum value among the wear amounts obtained by adding the above-described wear amount measured on the surface of the polishing layer to the measurement results was determined as the wear amount difference [g]. The results are shown in the "wear amount difference" column of Table 1.

<摩耗速度>
研磨層の摩耗速度として、基板を100μm研磨する際の研磨層の厚さの減少量を以下の手順で求めた。
<Wear rate>
As the wear rate of the polishing layer, the amount of decrease in thickness of the polishing layer when the substrate was polished by 100 μm was determined by the following procedure.

ガラス基板の研磨1回毎に、研磨前後の基板質量の変化[g]を測定し、この変化量をガラス基板の表面積[cm]、ガラス基板の比重[g/cm]を用いて、研磨前後でのガラス基板の研磨量[μm]を求めた。 Every time the glass substrate is polished, the change in substrate mass [g] before and after polishing is measured, and the amount of change is calculated using the surface area of the glass substrate [cm 2 ] and the specific gravity of the glass substrate [g / cm 3 ]. The polishing amount [μm] of the glass substrate before and after polishing was determined.

ガラス基板の研磨1回毎の研磨層の厚さの減少量[μm]は、超高速インラインプロファイル測定器(株式会社キーエンスの「LJ−V702」)を用い、研磨前後の研磨層の高さを測定することで求めた。   The amount of decrease in thickness [μm] of the thickness of the polishing layer for each polishing of the glass substrate is the height of the polishing layer before and after polishing using an ultra-high-speed inline profile measuring instrument (“LJ-V702” from Keyence Corporation) It asked by measuring.

研磨1回毎の研磨層の厚さの減少量をガラス基板の研磨量で除し、100倍することで基板を100μm研磨する際の研磨層の厚さの減少量を算出し、5回の研磨についての平均値を摩耗速度とした。   The reduction amount of the thickness of the polishing layer at the time of polishing the substrate by 100 μm is calculated by dividing the reduction amount of the thickness of the polishing layer for each polishing by the polishing amount of the glass substrate and calculating 100 times. The average value for polishing was taken as the wear rate.

この摩耗速度を、さらに研磨層の平均厚さが3000μmである実施例1〜4、比較例1〜3では、平均厚さが3000μm、2500μm、2000μm、1500μm、1000μm、500μmとなる位置において、上述の研磨条件で研磨を行って算出し、その平均値を摩耗速度とした。結果を表1の「摩耗速度」欄に示す。この摩耗速度は、数値が大きいほど、研磨層の寿命が短いことを意味する。なお、研磨層の平均厚さの調整は、摩耗量差の測定と同様に#80のサンドペーパーを用いて研磨層を削ることで行った。なお、研磨層の平均厚さが1000μmである参考例1については、測定を行っていない。   Furthermore, in Examples 1 to 4 and Comparative Examples 1 to 3 in which the average thickness of the polishing layer is 3000 μm, the wear rate is as described above at positions where the average thickness is 3000 μm, 2500 μm, 2000 μm, 1500 μm, 1000 μm, 500 μm Polishing was carried out under the following polishing conditions, and the average value was taken as the wear rate. The results are shown in the "wear rate" column of Table 1. The higher the wear rate, the shorter the life of the polishing layer. The average thickness of the polishing layer was adjusted by scraping the polishing layer using # 80 sandpaper as in the measurement of the difference in the amount of wear. In addition, about the reference example 1 whose average thickness of a grinding | polishing layer is 1000 micrometers, it has not measured.

<平坦度>
研磨後の研磨層の平坦度の測定には、研磨層の平均厚さが3000μmである実施例1〜4では平均厚さが1500μmとなるまで、つまり研磨層の厚さが中央値となるまで#80のサンドペーパーを用いて研磨層を削った後、上述の条件で研磨を行った研磨材について算出した。算出手順は以下による。
<Flatness>
In the measurement of the flatness of the polishing layer after polishing, in Examples 1 to 4 in which the average thickness of the polishing layer is 3000 μm, the average thickness is 1500 μm, that is, the thickness of the polishing layer is the central value. After the abrasive layer was scraped using # 80 sandpaper, it was calculated for the abrasive that was polished under the conditions described above. The calculation procedure is as follows.

マイグロナイト石定盤の下定盤側に直接ガラス基板を置き、左右の両端、及びダイヤルゲージの押針が3点に跨がって載るようにフラットネスゲージ(ケメットジャパン株式会社製)を置き、そのダイヤルゲージのゼロ点を合わせた。   Place a glass substrate directly on the lower surface plate side of Myglonite stone surface plate, and place a flatness gauge (made by Chemet Japan Co., Ltd.) so that the left and right ends and the needle of the dial gauge straddle three points. , Zeroed the dial gauge.

次に研磨後の下定盤側の研磨材上で、ゼロ点調整を行った際と同位置に来るようにガラス基板を置き、その上にフラットネスゲージを載せた。このときのフラットネスゲージの値を読み取り、「X方向の平坦度[μm]」とした。X方向の測定を行った際のガラス基板を90度回転させて、同様に測定を行い、このときのフラットネスゲージの値を「Y方向の平坦度[μm]」とした。このX方向の平坦度とY方向の平坦度との平均値を研磨層の平坦度[μm]とした。結果を表1の「平坦度」の欄に示す。なお、平坦度において、マイナスの数値は凹形状であることを意味し、プラスの数値は凸形状であることを意味する。また、研磨層の平均厚さが1000μmである参考例1については、測定を行っていない。   Next, a glass substrate was placed on the lower polishing plate side abrasive after polishing so as to be in the same position as when the zero point adjustment was performed, and a flatness gauge was placed thereon. The value of the flatness gauge at this time was read, and the "flatness in the X direction [μm]" was determined. The glass substrate at the time of measurement in the X direction was rotated by 90 degrees, and measurement was performed in the same manner. The value of the flatness gauge at this time was taken as "flatness in the Y direction [μm]". The average value of the flatness in the X direction and the flatness in the Y direction was taken as the flatness [μm] of the polishing layer. The results are shown in the "flatness" column of Table 1. In addition, in flatness, a negative numerical value means that it is concave shape, and a positive numerical value means that it is convex shape. Moreover, about the reference example 1 whose average thickness of a grinding | polishing layer is 1000 micrometers, it has not measured.

Figure 2019115966
Figure 2019115966

表1において、比較例3の「−」は、研磨レートが極端に低く、ほとんどガラス基板が研磨されなかったため、測定できなかったことを意味する。   In Table 1, "-" of Comparative Example 3 means that the polishing rate could not be measured because the polishing rate was extremely low and the glass substrate was hardly polished.

表1の結果から、実施例1〜4の研磨材を比較例1、2の研磨材と比べると、実施例1〜4の研磨材は、研磨層の厚さ方向500μm毎に測定した摩耗量の最大値と最小値との差が小さく、研磨後の研磨層の平坦度に優れるので、ガラス基板を研磨する際の平坦化精度に優れることが分かる。また、実施例1〜4の研磨材は、研磨層の摩耗速度が小さいので、寿命が長いことが分かる。さらに、実施例1〜4の研磨材を比較例3の研磨材と比べると、実施例1〜4の研磨材は、研磨レートに優れる。   From the results of Table 1, when the abrasives of Examples 1 to 4 are compared with the abrasives of Comparative Examples 1 and 2, the abrasives of Examples 1 to 4 are the wear amounts measured every 500 μm in the thickness direction of the abrasive layer Since the difference between the maximum value and the minimum value of is small and the flatness of the polishing layer after polishing is excellent, it can be seen that the planarization accuracy in polishing a glass substrate is excellent. Moreover, since the abrasive material of Examples 1-4 has a small abrasion rate of an abrasive layer, it turns out that lifetime is long. Furthermore, when the abrasives of Examples 1 to 4 are compared with the abrasive of Comparative Example 3, the abrasives of Examples 1 to 4 are excellent in the polishing rate.

これに対し、比較例1の研磨材は、常温での乾燥時間が短いため、研磨層の厚さ方向500μm毎に測定した摩耗量の最大値と最小値との差が大きく、研磨層が厚さ方向に不均一であることが分かる。これにより比較例1の研磨材は、摩耗速度及び平坦度が劣ると考えられる。   On the other hand, in the abrasive of Comparative Example 1, since the drying time at normal temperature is short, the difference between the maximum value and the minimum value of the wear amount measured every 500 μm in the thickness direction of the polishing layer is large, and the thickness of the polishing layer is large. It can be seen that it is uneven in the longitudinal direction. Thus, the abrasive of Comparative Example 1 is considered to be inferior in wear rate and flatness.

比較例2の研磨材は、砥粒及び充填剤の合計含有量が85体積%を超えるため、研磨層の摩耗量が大きく、また研磨層の厚さ方向500μm毎に測定した摩耗量の最大値と最小値との差も大きい。これにより比較例2の研磨材は、摩耗速度及び平坦度が劣ると考えられる。   In the abrasive of Comparative Example 2, the total content of the abrasive grains and the filler exceeds 85% by volume, so the amount of abrasion of the abrasive layer is large, and the maximum value of the amount of abrasion measured every 500 μm in the thickness direction of the abrasive layer The difference between the and the minimum value is also large. Thus, the abrasive of Comparative Example 2 is considered to be inferior in wear rate and flatness.

比較例3の研磨材は、砥粒及び充填剤の合計含有量が60体積%未満であるため、研磨層の摩耗量が小さい。これにより比較例3の研磨材は、目つぶれの発生した砥粒が目こぼれにより除去できず、研磨レートが低下したと考えられる。   In the abrasive of Comparative Example 3, the total content of the abrasive grains and the filler is less than 60% by volume, so the amount of abrasion of the abrasive layer is small. As a result, in the case of the abrasive of Comparative Example 3, it is considered that the abrasive grains in which the clogging has occurred can not be removed due to the eye drop and the polishing rate is lowered.

また、研磨層の平均厚さが3000μmの実施例1〜4の研磨材を、研磨層の平均厚さが1000μmの参考例1の研磨材と比べると、研磨層の厚さ方向500μm毎に測定した摩耗量の最大値と最小値との差が同等である。つまり、実施例1〜4の研磨材の研磨層は、研磨層の平均厚さが厚くとも、厚さ方向に比較的均一であることが分かる。   Also, when the abrasives of Examples 1 to 4 with an average thickness of the abrasive layer of 3000 μm are compared with the abrasives of Reference Example 1 with an average thickness of the abrasive layer of 1000 μm, they are measured every 500 μm in the thickness direction of the abrasive layer. The difference between the maximum value and the minimum value of the amount of wear is equal. That is, it can be seen that the polishing layers of the abrasives of Examples 1 to 4 are relatively uniform in the thickness direction even if the average thickness of the polishing layer is large.

以上から、研磨層用組成物の固形分中の砥粒及び充填剤の合計含有量を60体積%以上85体積%以下とし、常温で30分以上の条件で研磨層用組成物を乾燥する予備乾燥工程を有する製造方法により、研磨層を厚くしても厚さ方向の均質性が保たれ、優れた研磨レート及び平坦化精度を維持しつつ、寿命を向上できる研磨材が製造できることが分かる。   From the above, a preliminary preparation is performed in which the total content of the abrasive grains and the filler in the solid content of the composition for polishing layer is 60 volume% or more and 85 volume% or less, and the composition for polishing layer is dried under conditions of 30 minutes or more at normal temperature. By the manufacturing method having the drying step, it is understood that even when the polishing layer is thickened, the uniformity in the thickness direction can be maintained, and an abrasive that can improve the life can be manufactured while maintaining excellent polishing rate and planarization accuracy.

さらに実施例1〜4を詳細に見ると、実施例1〜3の研磨材は、実施例4の研磨材に比べて摩耗速度及び平坦化に優れる。このことから、研磨層のテーバー摩耗試験による摩耗量を0.03g以上0.15g以下、研磨層の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量の最大値と最小値との差を0.080g以下とするように、砥粒及び充填剤の含有量を調整することで、ガラス基板研磨の平坦化精度及び研磨材の寿命を向上できることが分かる。   Further, looking at Examples 1 to 4 in detail, the abrasives of Examples 1 to 3 are superior to the abrasive of Example 4 in wear rate and planarization. From this, the difference between the maximum value and the minimum value of the wear amount in the Taber abrasion test measured every 0.03 g to 0.15 g of the abrasion amount in the Taber abrasion test of the polishing layer every 500 μm in the thickness direction of the abrasive layer By adjusting content of an abrasive grain and a filler so that it may be 0.080 g or less, it turns out that the planarization precision of glass substrate grinding and the life of an abrasive can be improved.

本発明の研磨材の製造方法により製造される研磨材及び本発明の研磨材は、研磨層の厚さ方向の均質性が保たれるので、優れた研磨レート及び平坦化精度を維持しつつ、寿命を向上できる。従って、当該研磨材は、ガラスやサファイア等の基板の平面研磨に好適に用いられる。   The abrasives produced by the method of producing an abrasive according to the present invention and the abrasives according to the present invention maintain the homogeneity in the thickness direction of the abrasive layer, and therefore maintain excellent polishing rate and planarization accuracy. The life can be improved. Therefore, the said abrasives are used suitably for planar polishing of board | substrates, such as glass and sapphire.

1、2 研磨材
10 基材
20 研磨層
21 砥粒
22 充填剤
23 バインダー
24 溝
25 凸状部
30 接着層
31 第2接着層
40 支持体
1, 2 Abrasive material 10 Substrate 20 Abrasive layer 21 Abrasive particle 22 Filler 23 Binder 24 Groove 25 Convex part 30 Adhesive layer 31 Second adhesive layer 40 Support

Claims (5)

基材と、この基材の表面側に積層され、砥粒、充填剤及びバインダーを含む研磨層とを備える研磨材の製造方法であって、
砥粒、充填剤及びバインダーを含む研磨層用組成物を調製する調製工程と、
上記研磨層用組成物を上記基材の表面に塗工する塗工工程と、
上記塗工工程後の研磨層用組成物を加熱する加熱工程と
を備え、
上記調製工程で、研磨層用組成物の固形分中の砥粒及び充填剤の合計含有量を60体積%以上85体積%以下とし、
上記加熱工程が、
常温で30分以上の条件で研磨層用組成物を乾燥する予備乾燥工程と、
上記予備乾燥工程後に、研磨層用組成物の水分を加熱脱水する加熱脱水工程と、
上記加熱脱水工程後に、研磨層用組成物を加熱硬化する加熱硬化工程と
を有する研磨材の製造方法。
A method for producing an abrasive comprising: a substrate; and an abrasive layer laminated on the surface side of the substrate and containing an abrasive, a filler and a binder,
Preparing an abrasive layer composition comprising abrasive grains, a filler and a binder;
Applying the composition for polishing layer on the surface of the substrate;
And a heating step of heating the polishing layer composition after the coating step.
In the preparation step, the total content of the abrasive grains and the filler in the solid content of the composition for polishing layer is set to 60% by volume or more and 85% by volume or less.
The above heating process is
A preliminary drying step of drying the polishing layer composition at normal temperature for 30 minutes or more;
A heating and dewatering step of heating and dewatering the water of the polishing layer composition after the preliminary drying step;
And heating and curing the polishing layer composition after the heating and dewatering step.
上記塗工工程で、研磨層の平均厚さを1000μm以上とするように上記研磨層用組成物の塗工量を調整する請求項1に記載の研磨材の製造方法。   The manufacturing method of the abrasives of Claim 1 which adjusts the coating amount of the said composition for abrasive layers so that the average thickness of an abrasive layer may be 1000 micrometers or more at the said coating process. 上記調製工程で、上記研磨層のテーバー摩耗試験による摩耗量を0.03g以上0.15g以下、研磨層の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量の最大値と最小値との差を0.080g以下とするように、砥粒及び充填剤の含有量を調整する請求項2に記載の研磨材の製造方法。   In the above preparation process, the wear amount by the Taber wear test of the polishing layer is 0.03 g or more and 0.15 g or less, and the wear amount between the maximum value and the minimum value by the Taber wear test measured every 500 μm in the thickness direction of the polishing layer The method for producing an abrasive according to claim 2, wherein the contents of the abrasive grains and the filler are adjusted so that the difference is 0.080 g or less. 上記砥粒がダイヤモンド砥粒である請求項1、請求項2又は請求項3に記載の研磨材の製造方法。   The method for producing an abrasive according to claim 1, 2 or 3, wherein the abrasive is a diamond abrasive. 基材と、この基材の表面側に積層され、砥粒、充填剤及びバインダーを含む研磨層とを備える研磨材であって、
上記研磨層における砥粒及び充填剤の合計含有量が60体積%以上85体積%以下であり、
上記研磨層の平均厚さが1000μm以上であり、
上記研磨層のテーバー摩耗試験による摩耗量が0.03g以上0.15g以下であり、
研磨層の厚さ方向500μm毎に測定したテーバー摩耗試験による摩耗量の最大値と最小値との差が0.080g以下である研磨材。
An abrasive comprising: a substrate; and an abrasive layer laminated on the surface side of the substrate and containing abrasive grains, a filler and a binder,
The total content of the abrasive grains and the filler in the polishing layer is 60% by volume or more and 85% by volume or less,
The average thickness of the polishing layer is 1000 μm or more,
The wear amount by the Taber abrasion test of the polishing layer is 0.03 g or more and 0.15 g or less,
The abrasives whose difference of the maximum value and minimum value of the abrasion loss by the Taber abrasion test measured every 500 micrometers of thickness direction of abrading layer is 0.080 g or less.
JP2017252188A 2017-12-27 2017-12-27 Method for production of polishing agent, and the polishing agent Pending JP2019115966A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017252188A JP2019115966A (en) 2017-12-27 2017-12-27 Method for production of polishing agent, and the polishing agent
CN201811589757.3A CN109968187A (en) 2017-12-27 2018-12-25 Grind the manufacturing method and grinding material of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017252188A JP2019115966A (en) 2017-12-27 2017-12-27 Method for production of polishing agent, and the polishing agent

Publications (1)

Publication Number Publication Date
JP2019115966A true JP2019115966A (en) 2019-07-18

Family

ID=67076372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017252188A Pending JP2019115966A (en) 2017-12-27 2017-12-27 Method for production of polishing agent, and the polishing agent

Country Status (2)

Country Link
JP (1) JP2019115966A (en)
CN (1) CN109968187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095639A1 (en) * 2019-11-13 2021-05-20 バンドー化学株式会社 Polishing pad

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617374A (en) * 1992-06-26 1994-01-25 Fuji Spinning Co Ltd Production of base fabric for polishing
JP2005050893A (en) * 2003-07-30 2005-02-24 Mitsui Chemicals Inc Retainer ring and method for polishing substrate using the same
CN102015812B (en) * 2008-04-25 2013-03-20 东洋高分子股份有限公司 Polyurethane foam and polishing pad
CN107708930B (en) * 2015-06-19 2019-10-01 阪东化学株式会社 It grinds material and grinds the manufacturing method of material
KR102039587B1 (en) * 2016-01-06 2019-11-01 반도 카가쿠 가부시키가이샤 Abrasive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095639A1 (en) * 2019-11-13 2021-05-20 バンドー化学株式会社 Polishing pad

Also Published As

Publication number Publication date
CN109968187A (en) 2019-07-05

Similar Documents

Publication Publication Date Title
KR101944695B1 (en) Abrasive material and production method of abrasive material
KR102039587B1 (en) Abrasive
JP6085723B1 (en) Abrasive material and method for producing abrasive material
JP6836532B2 (en) Abrasive
JP2019115966A (en) Method for production of polishing agent, and the polishing agent
WO2019123921A1 (en) Abrasive member
TWI707746B (en) Abrasive material
TWI719210B (en) Abrasive material
JP6859035B2 (en) Abrasive
TW201620670A (en) Polishing pad and method for producing polishing pad
JP6937494B2 (en) Abrasive
JP3241813U (en) polishing pad
WO2019123922A1 (en) Polishing material and method for manufacturing polishing material
JP2023068452A (en) polishing pad
JP2022098876A (en) Polishing pad