JP2019115191A - 検出装置及び検出方法 - Google Patents

検出装置及び検出方法 Download PDF

Info

Publication number
JP2019115191A
JP2019115191A JP2017247748A JP2017247748A JP2019115191A JP 2019115191 A JP2019115191 A JP 2019115191A JP 2017247748 A JP2017247748 A JP 2017247748A JP 2017247748 A JP2017247748 A JP 2017247748A JP 2019115191 A JP2019115191 A JP 2019115191A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
light
controller
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017247748A
Other languages
English (en)
Other versions
JP7042609B2 (ja
Inventor
孝明 川井
Takaaki Kawai
孝明 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solar Frontier KK
Original Assignee
Solar Frontier KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Frontier KK filed Critical Solar Frontier KK
Priority to JP2017247748A priority Critical patent/JP7042609B2/ja
Publication of JP2019115191A publication Critical patent/JP2019115191A/ja
Application granted granted Critical
Publication of JP7042609B2 publication Critical patent/JP7042609B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】センサ無し、かつ、非破壊で、太陽電池モジュールの酸化を検出する。【解決手段】検出装置は、太陽電池モジュール20に紫外線を照射する光源11と、太陽電池モジュール20を撮像する撮像素子12と、光源11及び撮像素子12に接続されるコントローラ14と、を備える。太陽電池モジュール20は、紫外線により発光又は呈色が発生する部材を含む。コントローラ14は、光源11から紫外線を照射させ、撮像素子12を用いて部材の発光又は呈色を第1の画像データとして取得する。【選択図】図1

Description

本発明は、太陽電池モジュール内への酸素侵入を検出する検出装置及び検出方法に関する。
太陽電池モジュールの出力(光電変換効率)は、例えば、太陽電池セル(光電変換素子)の酸化により低下する。一方、太陽電池モジュールは、出荷から10年、20年、又は、それ以上といったスパンで使用されるため、このような長期間にわたり太陽電池モジュール内への酸素侵入を防ぐことは、太陽電池モジュールに用いられている部材の劣化等を考えると、非常に難しい。
また、太陽電池モジュールは、屋外で使用されることが多いため、物理的衝撃を受けて、損傷する場合がある。この場合、その損傷箇所から酸素が侵入するため、太陽電池モジュールの酸化が問題となる。
このような実情から、太陽電池モジュール内への酸素侵入の有無を検出し、酸素侵入が発生している場合には、酸素侵入箇所を特定し、必要に応じて、太陽電池モジュールの補修又は交換を行うことが重要となる。また、酸素侵入箇所からの酸素侵入距離が把握できれば、酸素侵入距離と太陽電池セルとの位置関係から、太陽電池モジュールのその後の劣化予測が可能となる。即ち、管理者は、この劣化予測に基づき、太陽電池モジュールの交換時期を決定できる。また、この劣化予測は、出荷前の太陽電池モジュールの加速試験にも応用可能と考えられる。
従来、太陽電池モジュール内への酸素侵入を検出する技術としては、破壊分析による手法、センサを組み込む手法など、が知られている。破壊分析による手法は、太陽電池モジュールを分解し、酸素侵入を化学分析により検出する手法である。また、センサを組み込む手法は、励起光を用いて酸素センサの発光又は呈色を観察することにより、太陽電池モジュール内への酸素侵入を検出する手法である。
特開2016−122768号公報
破壊分析による手法は、多大なコストと時間を要するばかりでなく、対象となった太陽電池モジュールを引き続き使用できないという問題がある。また、センサを組み込む手法は、例えば、特許文献1に開示されるように、太陽電池モジュール内に酸素センサを配置しなければならない。この場合、太陽電池モジュールの製造コストが増大すると共に、太陽電池モジュールの薄型化にも不利となる。また、センサを組み込む手法の大きな問題は、酸素センサを有しない既存の太陽電池モジュールには適用できないという点である。
本発明の実施形態は、センサ無し、かつ、非破壊で、太陽電池モジュール内への酸素侵入を検出可能な技術を提案する。
本発明の実施形態に係わる検出装置は、太陽電池モジュールに紫外線を照射する第1の光源と、前記太陽電池モジュールを撮像する撮像素子と、前記第1の光源及び前記撮像素子に接続されるコントローラと、を備え、前記太陽電池モジュールは、前記紫外線により発光又は呈色が発生する部材を含み、前記コントローラは、前記第1の光源から前記紫外線を照射させ、前記撮像素子を用いて前記発光又は前記呈色を第1の画像データとして取得する。
本発明の実施形態によれば、センサ無し、かつ、非破壊で、太陽電池モジュール内への酸素侵入を検出できる。
検出装置の第1の例を示す図。 検出装置の第2の例を示す図。 検出装置の第3の例を示す図。 検出装置の第4の例を示す図。 検出装置の第4の例を示す図。 太陽電池モジュールの第1の例を示す平面図。 図5のVI−VI線に沿う断面図。 太陽電池モジュールの第2の例を示す平面図。 図7のVIII−VIII線に沿う断面図。 太陽電池セルの構造例を示す断面図。 太陽電池モジュールの第3の例を示す平面図。 図10のXI−XI線に沿う断面図。 コントローラ又はプロセッサの構成例を示す図。 第1の管理テーブルの例を示す図。 第2の管理テーブルの例を示す図。 酸素侵入を検出する処理の第1の例を示すフローチャート。 酸素侵入を検出する処理の第2の例を示すフローチャート。 太陽電池モジュールの検査の第1の例を示すフローチャート。 太陽電池モジュールの検査の第2の例を示すフローチャート。 太陽電池モジュールの検査の第3の例を示すフローチャート。 第2の画像データ(基準画像)の例を示す図。 第1の画像データの例を示す図。 第1の画像データの例を示す図。 第1の画像データの例を示す図。 第1の画像データの例を示す図。 太陽電池モジュールを複数の撮像エリアに分割した状態を示す図。
以下、図面を参照しながら実施形態を説明する。
実施形態では、その説明を分かり易くするため、本発明の主要部以外の構造又は要素については、簡略化又は省略して説明する。また、図面において、同じ要素には、同じ符号を付すことにする。尚、図面において、各要素の厚さ、形状などは、模式的に示したもので、実際の厚さや形状などを示すものではない。
<検出装置>
太陽電池モジュール内への酸素侵入を検出する検出装置の例を説明する。
・ 第1の例
図1は、検出装置の第1の例を示す。
検出装置は、少なくとも、光源11と、撮像素子12と、コントローラ14と、を備える。光源11は、例えば、キセノンランプ、水銀ランプ、重水素ランプ、紫外線LEDランプなどであり、太陽電池モジュール20に励起光Eとしての紫外線を照射する。撮像素子12は、例えば、CMOSイメージセンサ、CCDイメージセンサなどであり、太陽電池モジュール20を撮像する。
コントローラ14は、光源11及び撮像素子12に接続される。コントローラ14は、撮像指示を受けると、光源11を用いて励起光Eを照射すると共に、撮像素子12を用いて太陽電池モジュール20の発光(又は呈色)Fを第1の画像データとして取得する。ここで、本明細書において、発光とは、励起光Eとしての紫外線を受けたときに可視光を発生することを意味する。発光は、蛍光及び燐光を含む。また、呈色とは、励起光Eとしての紫外線を受けたときに色彩が発生することを意味する。
また、コントローラ14は、第1の画像データをメモリ15内に記憶させる。さらに、コントローラ14は、第1の画像データに基づき、太陽電池モジュール20内への酸素侵入を検出する処理(酸素侵入箇所、酸素侵入距離、酸素侵入速度などを求める処理)を行う機能を備えてもよい。この場合、コントローラ14は、処理結果を出力する機能、例えば、処理結果をプリントアウトしたり、画面表示したり、又は、音声出力したりする機能を備えるのが望ましい。
尚、太陽電池モジュール20内への酸素侵入を検出する処理の詳細については、後述する。
太陽電池モジュール20の信頼性は、高い光電変換効率を長期間にわたり保持することにより確保される。しかし、大気中に含まれる酸素が太陽電池モジュール20内に侵入すると、太陽電池セル(光電変換素子)が酸化し、光電変換効率が低下する。従って、太陽電池モジュール20内への酸素侵入を検出し、必要に応じて、太陽電池モジュール20の補修又は交換を行うことが重要となる。
一方、太陽光に含まれる紫外線も、太陽電池モジュールを劣化させ、光電変換効率を低下させる。そこで、例えば、紫外線を吸収する添加物(紫外線吸収剤)が太陽電池セルを封止する封止材内に添加されるのが一般的である。また、近年では、紫外線を吸収するだけでなく、さらに、紫外線を可視光に変換可能な封止材が実用化されている。この場合、太陽電池セルに入射される可視光が増加するため、紫外線による太陽電池モジュールの劣化を防止しつつ、光電変換効率が向上できる。
本例の検出装置は、例えば、このような紫外線を可視光に変換する機能を有する封止材などのように、紫外線により発光(又は呈色)を発生する部材を備える太陽電池モジュールにおいて、この発光(又は呈色)を利用することにより太陽電池モジュール内への酸素侵入をも検出してしまおうという技術である。即ち、紫外線による発光(又は呈色)は、酸素がクエンチャー(quencher)となる消光(quenching)又は部材の酸化(oxidation)により抑制又は消失すると考えられる。
ここで、消光とは、励起光を受け取って発光(又は呈色)する発光(又は呈色)分子に対して、それとは別の発光(又は呈色)分子、若しくは、非発光(又は非呈色)分子(これらはクエンチャーと呼ばれる)が作用することにより、その発光(又は呈色)が抑制又は消失する現象のことである。
従って、上述のように、励起光Eとしての紫外線を照射する光源11と、紫外線による発光(又は呈色)Fを撮像する撮像素子12と、この発光(又は呈色)Fを第1の画像データとして取得するコントローラ14と、を備える検出装置を用いて、太陽電池モジュール20の発光(又は呈色)Fを検出することにより、センサ無し、かつ、非破壊で、太陽電池モジュール20内への酸素侵入を検出できる。
ところで、本例の検出装置は、太陽電池モジュール20を設置部(架台など)から取り外し、かつ、検出装置の固定台21に設置した後に、太陽電池モジュール20内への酸素侵入を検出する例である。太陽電池モジュール20は、上述のように、励起光Eとしての紫外線により発光(又は呈色)Fが発生し、かつ、酸素侵入により発光(又は呈色)Fの消光が発生する部材(例えば、封止材)を含む。
また、本例の検出装置は、出荷前の太陽電池モジュール20の加速試験に応用可能である。即ち、太陽電池モジュール20を所定の環境条件(温度、酸素濃度など)に晒した後、本例の検出装置を用いて太陽電池モジュール20内への酸素侵入を検出すれば、出荷前において太陽電池モジュール20の品質を検証できる。
光源11は、例えば、300nm以上、450nm以下の波長を有する紫外線を照射するのが望ましい。なぜなら、このような波長を有する紫外線は、長波長紫外線(UVA)と呼ばれ、太陽電池モジュール20のカバーガラス(ガラス基板)を透過して、太陽電池モジュール20内に侵入するからである。即ち、太陽電池モジュール20は、長波長紫外線を可視光に変換する部材(例えば、封止材)を含んでいる場合が多い。
従って、このような波長の紫外線を用いて太陽電池モジュール20の発光(又は呈色)F又はその消光を検出すれば、センサ無し、かつ、非破壊で、太陽電池モジュール20内への酸素侵入を検出できることになる。
また、光源11は、励起光Eの波長及び強度のうちの少なくとも1つを変更可能でもよい。即ち、光源11は、コントローラ14の制御の下、第1の画像データを得るために最適な励起光Eの波長(励起波長)及び強度を選択可能でもよい。これについては、後述する。
さらに、光源11は、励起光Eとしての紫外線の他に、可視光を照射可能でもよい。即ち、光源11は、コントローラ14の制御の下、紫外線と可視光とを選択的に照射可能でもよい。この場合、光源11内の紫外線を照射可能な部分は、第1の光源と称し、光源11内の可視光を照射可能な部分は、第2の光源と称することができる。
また、光源11が励起光Eとしての紫外線を照射可能な場合に、可視光を照射可能な別の光源をさらに追加してもよい。この場合、光源11は、第1の光源と称し、別の光源は、第2の光源と称することができる。可視光は、例えば、コントローラ14が太陽電池モジュール20の第2の画像データ(基準画像)を取得するために使用される。これについても、後述する。
尚、光源11は定常光を用いているが、シャッターボタンを押すと瞬間的に発光するフラッシュライトのような照明装置であってもよい。また、光源11の数は、1つに限定されることはない。例えば、光源11の数は、2以上でもよい。
撮像装置13は、撮像素子12を含む。撮像装置13は、撮像素子12の取り扱いを容易化するために、例えば、撮像素子12を筐体で取り囲んだ構造を有する。撮像装置13は、さらに励起光Eを照射する光源を含んでもよい。この場合、撮像装置13とは別に設けられた光源11を省略できる。
制御装置16は、コントローラ14及びメモリ15を含む。コントローラ14は、例えば、CPU、MPUなどである。メモリ15は、例えば、HDD、NANDフラッシュメモリなどの不揮発性メモリである。メモリ15は、メモリカードのようなリムーバブル装置でもよい。また、制御装置16は、パソコンなどの汎用装置でもよいし、本例の検出装置に専ら使用される専用装置でもよい。
入力信号Sは、太陽電池モジュール20の設置期間ΔT、撮像指示、光源(紫外線又は可視光)の選択など、を含む。設置期間ΔTの入力に関しては、これに代えて、太陽電池モジュール20のシリアル番号を入力してもよい。これについては、後述する。
分光器17は、太陽電池モジュール20及び撮像素子12間に配置される。コントローラ14は、分光器17により得られるスペクトル波長に基づき、太陽電池モジュール20内への酸素侵入に加えて、熱劣化や光劣化などの劣化現象も検出する。但し、分光器17は、省略可能である。これについても、後述する。
以上、説明したように、第1の例に係わる検出装置によれば、センサ無し、かつ、非破壊で、太陽電池モジュール20内への酸素侵入を検出できる。
・ 第2の例
図2は、検出装置の第2の例を示す。
検出装置10は、少なくとも、太陽電池モジュール20に励起光Eとしての紫外線を照射する光源11と、太陽電池モジュール20の発光(又は呈色)Fを撮像する撮像素子12と、光源11及び撮像素子12に接続されるコントローラ14と、を備える。また、検出装置10は、メモリ15を含んでもよい。
光源11、撮像素子12、コントローラ14、及び、メモリ15の構造、機能などは、第1の例で説明した通りである。これらについては、既に、第1の例で説明したので、ここでの説明を省略する。
本例の検出装置10は、太陽電池モジュール20を設置部(架台など)から取り外すことなく、太陽電池モジュール20内への酸素侵入を検出できる例である。即ち、検出装置10は、光源11、撮像素子12、コントローラ14、及び、メモリ15を収容可能な筐体10’をさらに備える。筐体10’は、検出装置10の取り扱いを容易化する。
太陽電池モジュール20のランニングコストは、保守及び管理費用を抑えることにより低くできる。しかし、太陽電池モジュール20内への酸素侵入を検出するに当たり、太陽電池モジュール20を、設置部(架台など)から取り外し、かつ、検出装置に設置し、その後、再び設置部に取り付けなければならないとすると、作業が複雑となり、多大な作業時間を要することになる。
これに対し、本例のように、光源11、撮像素子12、コントローラ14、及び、メモリ15が筐体10’内に収容可能でれば、例えば、コンパクトカメラのように、検出装置10のポータブル化が可能となる。従って、太陽電池モジュール20の検査は、太陽電池モジュール20を設置部に取り付けた状態で行えるため、保守及び管理費用を抑えることができる。
・ 第3の例
図3は、検出装置の第3の例を示す。
第3の例は、第2の例の変形例である。
検出装置10は、第2の例と同様に、少なくとも、太陽電池モジュール20に励起光Eとしての紫外線を照射する光源11と、太陽電池モジュール20の発光(又は呈色)Fを撮像する撮像素子12と、光源11及び撮像素子12に接続されるコントローラ14と、を備える。また、検出装置10は、メモリ15を含んでもよい。
本例の検出装置10は、第2の例と同様に、光源11、撮像素子12、コントローラ14、及び、メモリ15を収容可能な筐体10’をさらに備える。従って、本例によれば、検出装置10のポータブル化が可能となり、太陽電池モジュール20の保守及び管理費用を抑えることができる。
さらに、本例の検出装置10は、筐体10’が太陽電池モジュール20に結合可能である。即ち、筐体10’は、太陽電池モジュール20のパネル面を覆う。ここで、パネル面とは、太陽光を取り込む側の太陽電池モジュール20の表面、例えば、カバーガラスの表面のことである。
この場合、昼間であるか、又は、夜間であるか、を問わず、太陽電池モジュール20の検査(酸素侵入の検出)が高精度に行える。例えば、昼間において太陽電池モジュール20の検査を行うとき、太陽光に含まれる紫外線が太陽電池モジュール20内に入り込むと、高精度の検査が不可能となる。これに対し、本例によれば、筐体10’が太陽光に含まれる紫外線を遮断するため、昼間においても高精度の検査が可能となる。
・ 第4の例
図4A及び図4Bは、検出装置の第4の例を示す。
第4の例は、上述の第1、第2、及び、第3の例の変形例である。
第1、第2、及び、第3の例では、図1乃至図3に示すように、検出装置10又は制御装置16内のコントローラ14は、太陽電池モジュール20の発光(又は呈色)Fを第1の画像データとして取得する。また、コントローラ14は、第1の画像データに基づき、太陽電池モジュール20内への酸素侵入を検出する処理を行うことも可能である。
これに対し、本例では、検出装置10又は制御装置16内のコントローラ14は、太陽電池モジュール20の発光(又は呈色)Fを第1の画像データとして取得するまでを行う。そして、太陽電池モジュール20内への酸素侵入を検出する処理は、検出装置10又は制御装置16とは別に設けられた処理装置30により実行される。
処理装置30は、例えば、パソコンなどのホスト装置である。処理装置30は、プロセッサ31を備えるため、第1の画像データに基づき、太陽電池モジュール20内への酸素侵入を検出する処理(酸素侵入箇所、酸素侵入距離、酸素侵入速度などを求める処理)を行うことが可能である。
第1の画像データは、例えば、図4Aに示すように、リムーバブル装置としてのメモリ15により、検出装置10又は制御装置16から処理装置30に転送される。また、第1の画像データは、例えば、図4Bに示すように、インターネット40により、検出装置10又は制御装置16から処理装置30に転送されてもよい。インターネット40を用いた第1の画像データの転送は、有線で行ってもよいし、又は、無線で行ってもよい。
第4の例によれば、第1の画像データの取得は、検出装置10又は制御装置16により行われ、かつ、太陽電池モジュール20の検査(酸素侵入の検出)は、処理装置30により行われる。これは、検出装置10又は制御装置16内のコントローラ14の機能が簡略化されることを意味する。即ち、コントローラ14の開発費用が抑えられるため、検出装置10又は制御装置16の低コスト化が実現できる。
<太陽電池モジュール>
太陽電池モジュールの例を説明する。
・ 第1の例
図5及び図6は、太陽電池モジュールの第1の例を示す。
太陽電池モジュールは、フレーム22と、フレーム22に取り付けられる太陽電池パネル23と、を備える。
フレーム22は、例えば、アルミニウム、アルミニウム合金などの材料を備える。また、フレーム22は、フレーム22を架台に固定するための固定部221と、太陽電池パネル23を取り付けるための取付部222と、を有する。取付部222は、凹部を有し、太陽電池パネル23は、取付部222の凹部に嵌合される。
太陽電池パネル23は、例えば、シリコン基板内に光電変換素子が形成されるシリコン系太陽電池パネルである。この場合、複数のシリコン基板231は、マトリックス状に配置され、かつ、封止材232により封止される。
封止材232は、例えば、複数のシリコン基板231を挟み込む2枚の封止シートである。封止材232は、例えば、EVA(Ethylene Vinyl Acetate)、PVB(Poly Vinyl Butyral)、シリコーン樹脂など、の材料を備える。また、封止材232は、励起光Eとしての紫外線により発光(又は呈色)Fが発生する粒子を含む。また、封止材232は、酸素などのクエンチャーにより発光(又は呈色)Fの消光が発生する性質を有する。さらに、封止材232は、太陽光に含まれる紫外線を吸収する添加物(紫外線吸収剤)、酸素を吸収する添加物(酸素吸収剤)、光安定剤など、を含んでもよい。
封止材232により封止された複数のシリコン基板231は、カバーガラス233とバックシート234との間に配置される。カバーガラス233は、例えば、白板強化ガラス、透明な樹脂板などである。バックシート234は、例えば、PET(Poly Ethylene Terephthalate)、金属箔(例えば、アルミニウム箔)などである。封止材232は、加圧及び加熱により、複数のシリコン基板231を封止すると共に、カバーガラス233及びバックシート234を互いに接着する。
尚、太陽電池モジュールは、上述の要素の他に、シール材を含んでもよい。シール材は、太陽電池パネル23の端部において、フレーム22及び太陽電池パネル23間の隙間を封止し、そこからの酸素侵入を抑制する。
このような太陽電池モジュールでは、例えば、シール材の劣化によりフレーム22と太陽電池パネル23との間に隙間が発生し、酸素がその隙間から太陽電池モジュールの内部に侵入する場合がある。また、太陽電池パネル23の表面にクラック、ピンホールなどの損傷箇所が発生し、酸素がその損傷箇所から太陽電池モジュールの内部に侵入する場合がある。さらに、アルミニウム層を含まないバックシート234を用いた場合、酸素がバックシート234を透過して太陽電池モジュール内へ侵入することもある。
例えば、図6に示すように、空気中の酸素(O)は、フレーム22と太陽電池パネル23との間に隙間から太陽電池モジュールの内部に侵入する(経路P)。そして、酸素が複数のシリコン基板231まで達すると、シリコン基板231の酸化が発生し、シリコン基板231内の光電変換素子の光電変換効率が低下する。
従って、図1、図2、図3、図4A、又は、図4Bの検出装置を用いて、図5及び図6の太陽電池モジュール内への酸素侵入、具体的には、酸素侵入箇所、酸素侵入距離、酸素侵入速度など、を検出すれば、酸素による影響を予測することが可能となり、酸素がシリコン基板231に達する前に、太陽電池モジュールの補修又は交換を行うことができる。
・ 第2の例
図7及び図8は、太陽電池モジュールの第2の例を示す。
太陽電池モジュールは、フレーム22と、フレーム22に取り付けられる太陽電池パネル23と、を備える。
本例の太陽電池モジュールは、第1の例と比べると、太陽電池パネル23の構造が異なり、その他の要素は、第1の例と同じである。従って、以下では、太陽電池パネル23の構造を説明し、その他の要素の説明を省略する。
太陽電池パネル23は、光電変換素子235が化合物半導体を備える化合物系太陽電池パネルである。化合物系太陽電池パネルは、シリコン系太陽電池パネルに比べて、薄膜化及び低コスト化が可能であるという特徴を有する。
光電変換素子235は、例えば、I族元素と、III族元素と、VI族元素(カルコゲン元素)としてセレン(Se)及び硫黄(S)と、を含むカルコパイライト構造の混晶化合物を備える。I族元素は、銅(Cu)、銀(Ag)、金(Au)などから選択可能である。III族元素は、インジウム(In)、ガリウム(Ga)、アルミニウム(Al)などから選択可能である。また、VI族元素は、セレン及び硫黄の他に、テルル(Te)などを含んでもよい。
光電変換素子235は、封止材232により封止される。封止材232により封止された光電変換素子235は、カバーガラス233とバックシート234との間に配置される。但し、光電変換素子235は、カバーバラス233上に形成されてもよい。封止材232、カバーガラス233、及び、バックシート234は、第1の例と同じであるため、ここでの説明を省略する。
尚、第1の例と同様に、太陽電池モジュールは、上述の要素の他に、シール材を含んでもよい。シール材は、太陽電池パネル23の端部において、フレーム22及び太陽電池パネル23間の隙間を封止し、そこからの酸素侵入を抑制する。
このような太陽電池モジュールでも、第1の例と同様に、例えば、シール材の劣化によりフレーム22と太陽電池パネル23との間に隙間が発生し、酸素がその隙間から太陽電池モジュールの内部に侵入する場合がある。また、太陽電池パネル23の表面にクラック、ピンホールなどの損傷箇所が発生し、酸素がその損傷箇所から太陽電池モジュールの内部に侵入する場合がある。さらに、アルミニウム層を含まないバックシート234を用いた場合、酸素がバックシート234を透過して太陽電池モジュール内へ侵入することもある。
従って、図1、図2、図3、図4A、又は、図4Bの検出装置を用いて、図7及び図8の太陽電池モジュール内への酸素侵入を検出すれば、酸素による影響を予測することが可能となり、酸素が光電変換素子235に達する前に、太陽電池モジュールの補修又は交換を行うことができる。
図9は、太陽電池セルの構造例を示す。
本例の太陽電池セルは、図7及び図8の太陽電池モジュールの光電変換素子235に対応する。即ち、本例の太陽電池セルは、化合物半導体を備える光電変換素子235であり、かつ、図8の光電変換素子235の構造例である。
光電変換素子235は、いわゆる集積型構造を有する。即ち、光電変換素子235は、直列接続される複数の素子部235−1,235−2,…235−kを備える。但し、kは、2以上の自然数である。
基板51は、複数の素子部235−1,235−2,…235−kに共通である。基板51は、ガラス基板、樹脂基板、金属基板などから選択可能である。基板51は、ナトリウム、カリウムなどのアルカリ金属を含んでもよい。また、基板51は、柔軟性のあるフレキシブル基板、例えば、ステンレス鋼(SUS)、アルミニウム、及び、酸化アルミニウムの積層構造を有するフレキシブル基板でもよい。また、基板51は、図8のカバーガラス233でもよい。
複数の第1の電極層52−1,52−2,…52−k,52−(k+1)は、基板51上に並んで配置される。複数の第1の電極層52−1,52−2,…52−k,52−(k+1)は、例えば、モリブデン(Mo)、チタン(Ti)、クロム(Cr)などの金属層を形成した後、その金属層をパターニングすることにより形成可能である(第1のパターニング)。
各素子部235−1,235−2,…235−kは、光電変換層53及びバッファ層54を有する。光電変換層53は、例えば、Cu(Inx, Ga1-x)(Sey, S1-y)2である。但し、0≦x≦1、0<y<1である。また、光電変換層53の厚さは、1.0μm〜3.0μmに設定される。
バッファ層54は、例えば、n型又はi(intrinsic)型高抵抗導電層である。ここで言う「高抵抗」とは、第2の電極層55の抵抗値よりも高い抵抗値を有するという意味である。バッファ層54は、亜鉛(Zn)、カドミウム(Cd)、インジウム(In)を含む化合物から選択可能である。バッファ層54の厚さは、10nm〜100nmに設定される。
バッファ層54は、光電変換効率などの特性を向上させる効果を有するが、これを省略することも可能である。バッファ層54が省略される場合、第2の電極層55は、光電変換層53上に配置される。
光電変換層53及びバッファ層54は、例えば、光電変換層53及びバッファ層54を形成した後、これらをパターニングすることにより形成可能である(第2のパターニング)。
第2の電極層55は、例えば、n型導電層である。第2の電極層55は、例えば、禁制帯幅が広く、抵抗値が十分に低い材料を備えるのが望ましい。また、第2の電極層55は、太陽光などの光の通り道となるため、光電変換層53が吸収可能な波長の光を透過する性質を持つのが望ましい。この意味から、第2の電極層55は、透明電極層又は窓層と呼ばれる。
第2の電極層55は、例えば、III族元素(B、Al、Ga、又は、In)がドーパントとして添加された酸化金属を備える。第2の電極層15の厚さは、0.5μm〜2.5μmに設定される。
各素子部235−1,235−2,…235−kにおいて、第2の電極層55は、複数の第1の電極層52−1,52−2,…52−kのうちの1つに接続される。例えば、素子部235−1の第2の電極層15は、その隣に位置する素子部235−2の第1の電極層52−2に接続される。残りの素子部235−2,…235−kについても同様である。その結果、複数の素子部235−1,235−2,…235−kは、互いに直列接続される。
各素子部235−1,235−2,…235−kの第2の電極層55は、例えば、第2の電極層55を形成した後、これをパターニングすることにより形成可能である(第3のパターニング)。
第1の電極層52−1は、例えば、プラス電極56に接続され、第1の電極層52−(k+1)は、例えば、マイナス電極57に接続される。
以上の太陽電池セルによれば、複数の素子部235−1,235−2,…235−kを1つのユニットとした場合、複数のユニットをプラス電極56とマイナス電極57との間に並列接続できる。しかも、これら複数のユニットは、1つの基板51上に形成可能である。従って、このような太陽電池セルを使用した太陽電池パネルは、部分的に日陰となっても、発電量の低下が限定的である。即ち、安定的に発電する太陽電池パネルが実現される。
また、上述の太陽電池セルは、3回のパターニング(例えば、レーザパターニングやニードルを使用したメカニカルパターニング)により形成可能である。太陽電池セルの製造工程において、パターニングの回数は、太陽電池モジュールの製造コストに比例する。即ち、3回のパターニングにより太陽電池セルを製造できることは、太陽電池モジュールの製造コストの低下を実現できることを意味する。
・ 第3の例
図10及び図11は、太陽電池モジュールの第3の例を示す。
太陽電池モジュールは、フレーム22と、フレーム22に取り付けられる太陽電池パネル23と、を備える。
フレーム22は、例えば、アルミニウム、アルミニウム合金などの材料を備える。また、フレーム22は、太陽電池パネル23を取り付けるための取付部222を有する。取付部222は、凹部を有し、太陽電池パネル23は、取付部222の凹部に嵌合される。太陽電池パネル23は、第2の例と同様に、光電変換素子235が化合物半導体を備える化合物系太陽電池パネルである。
光電変換素子235は、封止材232により封止される。封止材232により封止された光電変換素子235は、2枚のカバーガラス233a,233b間に配置される。シール材234は、太陽電池パネル23の端部において、2枚のカバーガラス233a,233bに挟み込まれる。
このような太陽電池モジュールでも、第1の例と同様に、例えば、シール材234の劣化によりフレーム22と太陽電池パネル23との間に隙間が発生し、酸素がその隙間から太陽電池モジュールの内部に侵入する場合がある。また、太陽電池パネル23の表面にクラック、ピンホールなどの損傷箇所が発生し、酸素がその損傷箇所から太陽電池モジュールの内部に侵入する場合がある。
従って、図1、図2、図3、図4A、又は、図4Bの検出装置を用いて、図10及び図11の太陽電池モジュール内への酸素侵入を検出すれば、酸素による影響を予測することが可能となり、酸素が光電変換素子235に達する前に、太陽電池モジュールの補修又は交換を行うこともできる。
以上、太陽電池モジュールのいくつかの例を説明したが、太陽電池モジュールは、これらに限定されることはない。例えば、太陽電池モジュールは、柔軟性のあるフレキシブルモジュールでもよいし、シリコン系太陽電池セルは、多結晶構造でも、又は、単結晶構造でもよいし、化合物系太陽電池セルは、無機化合物を使用しても、又は、有機化合物を使用してもよい。即ち、太陽電池モジュールは、少なくとも、励起光Eとしての紫外線により発光(又は呈色)Fが発生し、かつ、酸素侵入により発光(又は呈色)の消光が発生する部材を含んでいればよい。
<酸素侵入を検出する処理>
次に、太陽電池モジュール内への酸素侵入を検出する処理の例を説明する。
太陽電池モジュール内への酸素侵入を検出する処理とは、太陽電池モジュール、具体的には、封止材の発光(又は呈色)、又は、その消光を示す第1の画像データに基づき、酸素侵入箇所、酸素侵入距離、及び、酸素侵入速度の少なくとも1つを求める処理のことである。
図12は、コントローラ又はプロセッサの構成例を示す。
コントローラ14は、図1、図2、又は、図3のコントローラ14であり、プロセッサ31は、図4A又は図4Bのプロセッサ31である。酸素侵入を検出する処理は、コントローラ14又はプロセッサ31により実行される。
コントローラ14又はプロセッサ31は、入出力部60と、紫外線強度設定部61と、紫外線波長設定部62と、撮像指示部63と、処理部64と、メモリ部65と、これらを接続するバス66と、を備える。
入出力部60は、太陽電池モジュールの設置期間ΔT、撮像指示、光源(紫外線又は可視光)の選択など、の入力信号Sを受ける。設置期間ΔTに関しては、これに代えて、太陽電池モジュールのシリアル番号でもよい。コントローラ14又はプロセッサ31がシリアル番号により設置期間ΔTを取得する場合、予め、シリアル番号及び設置期間ΔTの関係を示す第1の管理テーブルが、入出力部60を経由して、メモリ部65に記憶されるのが望ましい。
尚、メモリ部65は、例えば、SRAM(static random access memory)、DRAM(dynamic random access memory)、MRAM(magnetic random access memory)など、の高速メモリである。
ここで、第1の管理テーブルの例を説明する。
第1の管理テーブルは、例えば、図13Aに示すように、シリアル番号、設置日、検査日、設置期間ΔT、及び、酸素侵入の関係を示すLUT(look up table)である。これらのデータは、太陽電池モジュールの検査(酸素侵入の検出)前に書き込まれる。設置期間ΔTは、設置日及び検査日から自動的に計算されてもよい。また、酸素侵入は、初期状態として、全て「無」に設定されるのが望ましい。
酸素侵入が「有」である太陽電池モジュールに関しては、第2の管理テーブルが作成される。第2の管理テーブルは、コントローラ14又はプロセッサ31により作成することが可能である。第2の管理テーブルは、例えば、図13Bに示すように、シリアル番号、酸素侵入箇所、酸素侵入距離Δd、酸素侵入速度S、寿命予測日(交換日)の関係を示すLUTである。酸素侵入箇所は、画像として保存されてもよい。酸素侵入速度Sは、設置期間ΔT及び酸素侵入距離Δdから自動的に計算されてもよい。寿命予測日も、設置日、酸素侵入箇所、酸素侵入速度Sなど、のデータから自動的に計算されてもよい。
入出力部60の説明に戻る。
入出力部60は、第1及び第2の画像データを受ける。第1の画像データは、紫外線による太陽電池モジュールの発光(又は呈色)、又は、その消光を示し、第2の画像データは、可視光による太陽電池モジュールの画像を示す。第2の画像データは、例えば、コントローラ14又はプロセッサ31が太陽電池モジュールの輪郭を把握するための基準画像として使用される。
第1及び第2の画像データは、例えば、メモリ部65に一時的に記憶される。但し、第1及び第2の画像データは、メモリ部65に記憶される前に、メモリ部65以外のメモリ、例えば、図1、図2、図3、図4A、及び、図4Bのメモリ15に記憶されるのが望ましい。
紫外線強度設定部61は、太陽電池モジュールの発光(又は呈色)の強度が所定値以上となるように、励起光としての紫外線の強度を設定する。
発光(又は呈色)を発生する封止材として、例えば、太陽光に含まれる紫外線(主にUVA)を可視光に変換し、太陽電池セルに入射される可視光を増加させることを目的に機能を有するものを、太陽電池モジュール内に設けることがある。しかし、太陽光に含まれる紫外線の強度(60W/m2程度)では、コントローラ14又はプロセッサ31が封止材の発光(又は呈色)を第1の画像データとして明確に取得するのに不十分な場合がある。
そこで、光源(例えば、キセノンランプ、水銀ランプ、重水素ランプ、紫外線LEDランプなど)が紫外線の強度を変更可能である場合、コントローラ14又はプロセッサ31は、紫外線強度設定部61により、太陽電池モジュール毎に、最適な紫外線の強度(500〜2000W/m2)を選択できるのが望ましい。
紫外線波長設定部62は、太陽電池モジュールの発光(又は呈色)の強度が最も大きくなる励起波長を決定し、励起光としての紫外線の波長をその励起波長に設定する。
太陽電池モジュールの発光(又は呈色)の強度は、励起波長に依存して変化する。従って、コントローラ14又はプロセッサ31は、励起波長と封止材の発光(又は呈色)の強度との関係を示す励起スペクトルに基づき、発光(又は呈色)の強度が最も大きくなる励起波長を決定し、かつ、その励起波長の紫外線により第1の画像データを取得すれば、太陽電池モジュール内への酸素侵入を高精度に検出できる。
そこで、光源(例えば、キセノンランプ、水銀ランプ、重水素ランプ、紫外線LEDランプなど)が紫外線の波長を変更可能である場合、コントローラ14又はプロセッサ31は、紫外線波長設定部62により、太陽電池モジュール毎に、最適な紫外線の波長を選択できるのが望ましい。
尚、光源に関しては、例えば、励起光光源、増幅光光源を含む複数の光源を設け、これら複数の光源の各々について、紫外線の強度及び波長を設定可能にしてもよい。
ここで、励起光光源とは、第1の強度及び第1の波長を有する紫外線(励起光)を、太陽電池モジュールのパネル面に対して第1の角度で照射する光源のことである。また、増幅光光源とは、第2の強度及び第2の波長を有する紫外線(増幅光)を、太陽電池モジュールのパネル面に対して第2の角度で照射する光源のことである。但し、第1の強度、第1の波長、及び、第1の角度の少なくとも1つは、第2の強度、第2の波長、及び、第2の角度の少なくとも1つと異なる。
増幅光は、励起光による発光又は呈色の強度が十分でない場合に、補助的に使用される。例えば、増幅光を照射した後に励起光を照射することにより、励起光を照射した後に増幅光を照射することにより、又は、増幅光と励起光を同時に照射することにより、太陽電池モジュールの発光又は呈色の強度は、励起光のみによる発光又は呈色の強度よりも大きくなる。
撮像指示部63は、撮像指示に基づき、光源及び撮像素子に対して、太陽電池モジュールの撮像を指示する。撮像指示は、例えば、入力信号Sとして、入出力部60を経由して撮像指示部63に入力される。
処理部64は、第1及び第2の画像データに基づき、太陽電池モジュール内への酸素侵入を検出する処理、即ち、酸素侵入箇所、酸素侵入距離Δd、及び、酸素侵入速度Sの少なくとも1つを求める処理を実行する。
尚、紫外線強度設定部61、紫外線波長設定部62、撮像指示部63、及び、処理部64の機能は、ハードウェアにより実現してもよいし、ソフトウェアにより実現してもよいし、又は、それらの組み合わせにより実現してもよい。これらの機能が、ハードウェアにより実現されるか、ソフトウェアにより実現されるか、又は、それらの組み合わせにより実現されるかは、コントローラ14又はプロセッサ31が使用される環境、又は、コントローラ14又はプロセッサ31に課される設計制約など、に依存する。
次に、太陽電池モジュール内への酸素侵入を検出する処理の例を説明する。以下の処理は、図12のコントローラ14又はプロセッサ31により実行される。
図14は、酸素侵入を検出する処理の第1の例を示す。
まず、コントローラ14又はプロセッサ31は、撮像指示を受けると、励起光としての紫外線を太陽電池モジュールに照射する(ステップST11〜ST12a)。
次に、コントローラ14又はプロセッサ31は、太陽電池モジュールの発光(又は呈色)を撮像し、その発光(又は呈色)を撮像データとして取得する(ステップST13)。
この後、コントローラ14又はプロセッサ31は、撮像データの発光又は呈色の強度が酸素侵入を検出するのに十分であるか否かを判断する(ステップST14)。撮像データの発光又は呈色の強度が酸素侵入を検出するのに十分でない場合、コントローラ14又はプロセッサ31は、増幅光としての紫外線を太陽電池モジュールに照射する(ステップST12b)。続けて、コントローラ14又はプロセッサ31は、励起光としての紫外線を太陽電池モジュールに照射する(ステップST12a)。
次に、コントローラ14又はプロセッサ31は、再び、太陽電池モジュールの発光(又は呈色)を撮像し、その発光(又は呈色)を撮像データとして取得する(ステップST13)。
この後、コントローラ14又はプロセッサ31は、再び、撮像データの発光又は呈色の強度が酸素侵入を検出するのに十分であるか否かを判断する(ステップST14)。撮像データの発光又は呈色の強度が酸素侵入を検出するのに十分である場合、コントローラ14又はプロセッサ31は、その撮像データを第1の画像データとして取得する(ステップST15)。
その結果、コントローラ14又はプロセッサ31は、第1の画像データに基づき、太陽電池モジュール内への酸素侵入を検出する処理を実行可能となる。
図15は、酸素侵入を検出する処理の第2の例を示す。
第2の例は、第1の例と比べると、第1及び第2の画像データに基づき、太陽電池モジュール内への酸素侵入を検出する処理を行う点が異なる。
まず、コントローラ14又はプロセッサ31は、撮像指示を受けると、可視光を太陽電池モジュールに照射し、かつ、基準画像としての第2の画像データを取得する(ステップST21〜ST24)。
次に、コントローラ14又はプロセッサ31は、励起光としての紫外線を太陽電池モジュールに照射し、かつ、太陽電池モジュールの発光(又は呈色)を撮像データとして取得する(ステップST25a〜ST26)。
この後、コントローラ14又はプロセッサ31は、撮像データの発光又は呈色の強度が酸素侵入を検出するのに十分であるか否かを判断する(ステップST27)。撮像データの発光又は呈色の強度が酸素侵入を検出するのに十分でない場合、コントローラ14又はプロセッサ31は、増幅光としての紫外線を太陽電池モジュールに照射する(ステップST25b)。続けて、コントローラ14又はプロセッサ31は、励起光としての紫外線を太陽電池モジュールに照射する(ステップST25a)。
次に、コントローラ14又はプロセッサ31は、再び、太陽電池モジュールの発光(又は呈色)を撮像し、その発光(又は呈色)を撮像データとして取得する(ステップST26)。
この後、コントローラ14又はプロセッサ31は、再び、撮像データの発光又は呈色の強度が酸素侵入を検出するのに十分であるか否かを判断する(ステップST27)。撮像データの発光又は呈色の強度が酸素侵入を検出するのに十分である場合、コントローラ14又はプロセッサ31は、その撮像データを第1の画像データとして取得する(ステップST28)。
そして、コントローラ14又はプロセッサ31は、第1及び第2の画像データを比較することにより、太陽電池モジュールを検査する(ステップST29)。また、コントローラ14又はプロセッサ31は、太陽電池モジュールの検査結果を出力又は記録する(ステップST30)。
図16は、太陽電池モジュールの検査の第1の例を示す。
第1の例は、主として、酸素侵入距離Δdを求めることを目的とする。本例のフローチャートは、図15のステップST29のサブルーチンに相当する。
まず、コントローラ14又はプロセッサ31は、第1及び第2の画像データに基づき、酸素侵入距離Δdを求める(ステップST31)。
例えば、図18に示すように、第2の画像データG_refは、太陽電池モジュールのカバーガラス(又は封止材)の輪郭(端部)R、及び、太陽電池セル(光電変換素子)の輪郭(端部)Cを示す。また、図19に示すように、第1の画像データG_aは、発光/呈色領域Aを示す。従って、コントローラ14又はプロセッサ31は、両者を比較することにより、消光領域Xを特定できる。消光領域Xは、酸素侵入箇所に相当する。
また、コントローラ14又はプロセッサ31は、酸素侵入箇所としての消光領域Xと共に、酸素侵入距離Δdを特定できる。例えば、図20に示すように、第1の画像データG_bにおいて、酸素侵入距離Δdは、カバーガラス(又は封止材)の輪郭(端部)Rから発光/呈色領域Aの端部までの距離(消光領域Xの幅)として求めることができる。
ここで、酸素侵入距離Δdが0である場合、コントローラ14又はプロセッサ31は、酸素侵入“無”と判断した後、図15のステップST30を実行する。一方、酸素侵入距離Δdが0でない場合、コントローラ14又はプロセッサ31は、酸素侵入“有”と判断した後、酸素侵入箇所としての消光領域Xが太陽電池セルまで達しているか否かを判断する(ステップST34〜ST37)。
例えば、図21に示すように、第1の画像データG_cにおいて、カバーガラス(又は封止材)の輪郭(端部)Rから太陽電池セル(光電変換素子)の輪郭(端部)Cまでの距離をDと仮定した場合、コントローラ14又はプロセッサ31は、酸素侵入距離ΔdがDよりも小さければ、酸素が太陽電池セルまで達していないと判断する(ステップST35→ST36)。
また、コントローラ14又はプロセッサ31は、酸素侵入距離ΔdがDに等しいか又はそれよりも大きければ、酸素が太陽電池セルまで達していると判断する(ステップST35→ST37)。
この後、コントローラ14又はプロセッサ31は、図15のステップST30を実行する。
図17Aは、太陽電池モジュールの検査の第2の例を示す。
第2の例は、主として、酸素侵入速度Sを求めることを目的とする。本例のフローチャートも、図15のステップST29のサブルーチンに相当する。
まず、コントローラ14又はプロセッサ31は、太陽電池モジュールの設置期間(又は試験時間)ΔTの入力があるか否かを確認する(ステップST41)。
設置期間(又は試験時間)ΔTの入力がない場合、コントローラ14又はプロセッサ31は、設置期間ΔTの入力を催促する(ステップST42)。また、設置期間ΔTの入力がある場合、コントローラ14又はプロセッサ31は、設置期間ΔTと図16の処理で求めたΔdとに基づき、酸素侵入速度S(=Δd/ΔT)を求める(ステップST43)。
この後、コントローラ14又はプロセッサ31は、図15のステップST30を実行する。
図17Bは、太陽電池モジュールの検査の第3の例を示す。
第3の例は、第2の例の変形例である。第3の例では、コントローラ14又はプロセッサ31は、太陽電池モジュールのシリアル番号に基づき、設置期間(又は試験時間)ΔTを求める。
まず、コントローラ14又はプロセッサ31は、太陽電池モジュールのシリアル番号の入力があるか否かを確認する(ステップST51)。
シリアル番号の入力がない場合、コントローラ14又はプロセッサ31は、シリアル番号の入力を催促する(ステップST52)。また、シリアル番号の入力がある場合、コントローラ14又はプロセッサ31は、例えば、図13AのLUTに基づき、シリアル番号から設置期間(又は試験時間)ΔTを求める(ステップST53)。
次に、コントローラ14又はプロセッサ31は、設置期間ΔTと図16の処理で求めたΔdとに基づき、酸素侵入速度S(=Δd/ΔT)を求める(ステップST54)。
この後、コントローラ14又はプロセッサ31は、図15のステップST30を実行する。
尚、上述の第1乃至第3の例は、空気中の酸素(O)がフレーム及び太陽電池パネル間の隙間から侵入することを想定するが、コントローラ14又はプロセッサ31は、太陽電池パネルの表面のクラック、ピンホールなどの損傷箇所に起因する酸素侵入も検出可能である。
例えば、図22に示すように、第1画像データG_dにおいて、発光/呈色領域A内に部分的に発光(又は呈色)していない消光領域X1,X2がある場合、コントローラ14又はプロセッサ31は、その消光領域X1,X2を、太陽電池パネルのクラック、ピンポールなどに起因する酸素侵入箇所と判断できる。
以上の太陽電池モジュール内への酸素侵入を検出する処理によれば、管理者は、太陽電池モジュール内への酸素侵入の有無を検出できると共に、酸素侵入が進行している場合には、酸素侵入箇所を特定し、必要に応じて、太陽電池モジュールの補修又は交換を行うことができる。また、管理者は、酸素侵入距離Δdと太陽電池セルまでの距離Dとに基づき、太陽電池モジュールのその後の劣化予測を行える。即ち、管理者は、この劣化予測に基づき、太陽電池モジュールの交換時期を決定できる。また、この劣化予測は、出荷前の太陽電池モジュールの加速試験にも応用可能である。
<その他>
太陽電池モジュールの検査は、太陽電池モジュールのパネル面を複数の撮像エリアに分割して行ってもよい。例えば、図23に示すように、太陽電池モジュール20は、9つの撮像エリアI1〜I9に分割される。この場合、太陽電池モジュール20の検査は、撮像エリア毎に実行される。このような処理は、特に、大きなサイズの太陽電池モジュールに効果的である。
太陽電池モジュールの検査において、コントローラ又はプロセッサは、第1の画像データの色分解を行ってもよい。これは、励起光(紫外線)による封止材の発光(又は呈色)が封止材の熱劣化や光劣化などによって変化することを考慮したものである。
例えば、第1の画像データから、赤(R)要素、緑(G)要素、及び、青(B)要素をそれぞれ取り出し、各要素の強度を比較することで発光(又は呈色)源となる封止材の状態を推測できる。即ち、封止材の熱劣化又は光劣化が進むと、励起光(紫外線)による封止材の発光(又は呈色)は、赤要素の強度が緑要素及び青要素の強度よりも大きくなり、結果として、白色の発光(又は呈色)として観測される。
従って、コントローラ又はプロセッサは、発光(又は呈色)の消光に基づき、太陽電池モジュール内への酸素侵入を検出できると共に、第1の画像データの色分解を行うことにより封止材の熱劣化又は光劣化も検出可能となる。
また、励起光による封止材の発光(又は呈色)の強度は、酸素侵入の程度に依存して変化する。例えば、クエンチャーとしての酸素侵入が進むに従い、発光(又は呈色)の強度は、次第に小さくなり、最終的には、零となる。即ち、封止材の発光(又は呈色)は、消失する。このようなことから、コントローラ又はプロセッサは、発光(又は呈色)の色又は強度の数値化又はグラフ化を行ってもよい。
この場合、コントローラ又はプロセッサは、第1の画像データから、太陽電池モジュール内への酸素侵入の程度(例えば、0〜100)を詳細に検出できる。但し、酸素侵入の程度に関し、100は、酸素侵入が全くない部分(正常部分)の発光(又は呈色)の強度を数値化したものであり、0は、酸素侵入により完全に消光した部分の発光(又は呈色)の強度を数値化したものである。
太陽電池モジュールの検査において、コントローラ又はプロセッサは、分光器を用いて、封止材の発光(又は呈色)のスペクトル波長を取得してもよい。これは、励起光(紫外線)による封止材の発光(又は呈色)のスペクトル波長が封止材の熱劣化や光劣化などによって変化することを考慮したものである。
例えば、封止材の熱劣化又は光劣化が進むと、励起光(紫外線)による封止材の発光(又は呈色)のスペクトル波長は、封止材の熱劣化又は光劣化が発生していない場合のスペクトル波長と異なることになる。
従って、コントローラ又はプロセッサは、発光(又は呈色)のスペクトル波長から封止材の熱劣化又は光劣化を検出可能となる。
また、コントローラ又はプロセッサは、発光(又は呈色)のスペクトル波長に基づき、励起波長、即ち、励起光(紫外線)の波長と、封止材の発光(又は呈色)の強度との関係を示す励起スペクトルを取得可能となる。従って、光源が励起波長を変更可能である場合、コントローラ又はプロセッサは、第1の画像データを得るために最適な励起波長を決定できる。
<むすび>
以上、説明したように、本発明の実施形態によれば、センサ無し、かつ、非破壊で、太陽電池モジュール内への酸素侵入を検出できる。
即ち、酸素センサを有しない既存の太陽電池モジュールに対しても、本実施例を適用可能である。また、酸素センサが不要であるため、酸素センサの経年劣化による検出感度の低下を考慮する必要がない。一方、封止材の劣化に対しては、色分解やスペクトル波長に基づき劣化の原因を検証し、かつ、励起光としての紫外線の波長や強度を変更することで、発光(又は呈色)の強度、即ち、検出感度を十分に確保できる。
また、太陽電池モジュール内への酸素侵入の検出は、第1の画像データに基づき行われるため、コントローラ又はプロセッサは、酸素侵入箇所、酸素侵入距離、及び、酸素侵入速度のうちの少なくとも1つを容易に求めることができる。しかも、例えば、1つの太陽電池モジュールに複数の撮像エリアを設定することで、太陽電池モジュールのサイズに関係なく、小サイズから大サイズの全ての太陽電池モジュール内への酸素侵入を検出できる。
本発明のいくつかの実施形態を説明したが、これら実施形態は、一例として提示したものであり、本発明の範囲を限定することを意図しない。これら実施形態は、上述以外の様々な形態で実施することが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換、変更など、を行える。これら実施形態及びその変形は、本発明の範囲及び要旨に含まれると共に、特許請求の範囲に記載された発明及びその均等物についても、本発明の範囲及び要旨に含まれる。
10: 検出装置、 10’: 筐体、 11: 光源、 12: 撮像素子、 13: 撮像装置、 14:コントローラ、 15: メモリ、 16: 制御装置、 17: 分光器、 20: 太陽電池モジュール、 21: 固定台、 22: フレーム、 23: 太陽電池パネル、 30: 処理装置、 31: プロセッサ、 40: インターネット、 51: 基板、 52−1,52−2,…52−k,52−(k+1): 第1の電極層、 53: 光電変換層、 54: バッファ層、 55: 第2の電極層、 60: 入出力部、 61: 紫外線強度設定部、 62: 紫外線波長設定部、 63: 撮像指示部、 64: 処理部、 65: メモリ部。

Claims (12)

  1. 太陽電池モジュールに紫外線を照射する第1の光源と、
    前記太陽電池モジュールを撮像する撮像素子と、
    前記第1の光源及び前記撮像素子に接続されるコントローラと、を備え、
    前記太陽電池モジュールは、前記紫外線により発光又は呈色が発生する部材を含み、
    前記コントローラは、前記第1の光源から前記紫外線を照射させ、前記撮像素子を用いて前記発光又は前記呈色を第1の画像データとして取得する、
    検出装置。
  2. 前記コントローラは、
    前記第1の画像データに基づき、前記発光又は前記呈色の消光を検出し、
    前記消光が発生した消光領域を特定する、
    請求項1に記載の検出装置。
  3. 前記コントローラは、
    前記消光領域に基づき、前記太陽電池モジュール内へ酸素が侵入していると判断する、
    請求項2に記載の検出装置。
  4. 前記コントローラは、
    前記第1の画像データの色分解を行うことにより前記消光が酸素侵入に起因するか否かを判断する、
    請求項2に記載の検出装置。
  5. 前記太陽電池モジュール及び前記撮像素子間に分光器をさらに備え、
    前記コントローラは、
    前記分光器により得られるスペクトル波長に基づき前記消光が酸素侵入に起因するか否かを判断する、
    請求項2に記載の検出装置。
  6. 前記太陽電池モジュールに可視光を照射する第2の光源をさらに備え、
    前記コントローラは、
    前記第2の光源から前記可視光を照射させ、
    前記撮像素子を用いて前記可視光による前記太陽電池モジュールの第2の画像データを取得し、
    前記第1及び第2の画像データを比較することにより前記消光領域を特定し、
    前記消光領域に基づき、酸素侵入箇所、酸素侵入距離、及び、酸素侵入速度の少なくとも1つを求める、
    請求項2に記載の検出装置。
  7. 前記第1の光源は、前記紫外線の波長を変更可能であり、
    前記コントローラは、
    前記紫外線の波長を変更することにより前記発光又は前記呈色の強度が最も大きくなる励起波長を決定し、
    前記励起波長を持つ前記紫外線により前記第1の画像データを取得する、
    請求項1乃至6のいずれか1項に記載の検出装置。
  8. 前記第1の光源は、前記紫外線の強度を変更可能であり、
    前記コントローラは、
    前記発光又は前記呈色の強度が所定値以上となるように前記紫外線の強度を設定する、
    請求項1乃至7のいずれか1項に記載の検出装置。
  9. 前記第1の光源、前記撮像素子、及び、前記コントローラを収容可能な筐体をさらに備える、
    請求項1乃至8のいずれか1項に記載の検出装置。
  10. 前記部材は、太陽電池セルを封止し、前記紫外線を吸収する添加物及び酸素を吸収する添加物を含む封止材である、
    請求項1乃至9のいずれか1項に記載の検出装置。
  11. 前記紫外線は、300nm以上、450nm以下の波長を有する、
    請求項1乃至10のいずれか1項に記載の検出装置。
  12. 紫外線により発光又は呈色が発生する部材を含む太陽電池モジュールに紫外線を照射し、
    前記紫外線による前記部材の前記発光又は前記呈色を第1の画像データとして取得し、
    前記第1の画像データに基づき、前記発光又は前記呈色の消光を検出し、
    前記消光が発生した消光領域に基づき、前記太陽電池モジュール内への酸素侵入を検出する、
    検出方法。
JP2017247748A 2017-12-25 2017-12-25 検出装置及び検出方法 Active JP7042609B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017247748A JP7042609B2 (ja) 2017-12-25 2017-12-25 検出装置及び検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017247748A JP7042609B2 (ja) 2017-12-25 2017-12-25 検出装置及び検出方法

Publications (2)

Publication Number Publication Date
JP2019115191A true JP2019115191A (ja) 2019-07-11
JP7042609B2 JP7042609B2 (ja) 2022-03-28

Family

ID=67222880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017247748A Active JP7042609B2 (ja) 2017-12-25 2017-12-25 検出装置及び検出方法

Country Status (1)

Country Link
JP (1) JP7042609B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224432A (ja) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency 太陽電池のフォトルミネセンスによる欠陥検査装置及び方法
US20120248335A1 (en) * 2011-04-04 2012-10-04 Samsung Electro-Mechanics Co., Ltd. Method and apparatus for inspecting solar cell
JP2013123037A (ja) * 2011-12-06 2013-06-20 Nitto Denko Corp 太陽光捕集効率を向上させるためのソーラーモジュールシステムのための封入物としての波長変換材料
JP2014034609A (ja) * 2012-08-08 2014-02-24 National Institute Of Advanced Industrial & Technology 波長変換デバイス及びその製造方法
JP2016522906A (ja) * 2013-03-26 2016-08-04 日東電工株式会社 複数の光安定有機発色団を有する波長変換フィルム
WO2017056369A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP2017112695A (ja) * 2015-12-15 2017-06-22 東京電力ホールディングス株式会社 太陽光パネルの破損判断方法
JP2017219458A (ja) * 2016-06-09 2017-12-14 株式会社アイテス 太陽電池検査装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224432A (ja) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency 太陽電池のフォトルミネセンスによる欠陥検査装置及び方法
US20120248335A1 (en) * 2011-04-04 2012-10-04 Samsung Electro-Mechanics Co., Ltd. Method and apparatus for inspecting solar cell
JP2013123037A (ja) * 2011-12-06 2013-06-20 Nitto Denko Corp 太陽光捕集効率を向上させるためのソーラーモジュールシステムのための封入物としての波長変換材料
JP2014034609A (ja) * 2012-08-08 2014-02-24 National Institute Of Advanced Industrial & Technology 波長変換デバイス及びその製造方法
JP2016522906A (ja) * 2013-03-26 2016-08-04 日東電工株式会社 複数の光安定有機発色団を有する波長変換フィルム
WO2017056369A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP2017112695A (ja) * 2015-12-15 2017-06-22 東京電力ホールディングス株式会社 太陽光パネルの破損判断方法
JP2017219458A (ja) * 2016-06-09 2017-12-14 株式会社アイテス 太陽電池検査装置

Also Published As

Publication number Publication date
JP7042609B2 (ja) 2022-03-28

Similar Documents

Publication Publication Date Title
Köntges et al. Ultraviolet fluorescence as assessment tool for photovoltaic modules
Snaith et al. Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards
US7601941B2 (en) Method and apparatus for evaluating solar cell and use thereof
TWI538232B (zh) 太陽電池的檢查方法以及檢查裝置
EP2704208B1 (en) Method for evaluating solar cell module, and method for manufacturing solar cell module
Doll et al. Photoluminescence for defect detection on full-sized photovoltaic modules
US20100266196A1 (en) Photovoltaic devices inspection apparatus and method of determining defects in photovoltaic devices
Gallagher et al. Quantum dot solar concentrator: Device optimisation using spectroscopic techniques
EP3767825B1 (en) Inspection system for concentrating photovoltaic apparatus and inspection method for light receiving part
JP2011138969A (ja) 薄膜太陽電池モジュールの検査方法及び薄膜太陽電池モジュールの製造方法
JP4583722B2 (ja) ピンホール検出方法及びメンブレインエレクトロードアッセンブリの生産方法
Morlier et al. Ultraviolet fluorescence of ethylene-vinyl acetate in photovoltaic modules as estimation tool for yellowing and power loss
JP7042609B2 (ja) 検出装置及び検出方法
Freire et al. Degradation analysis of an operating PV module on a Farm Sanctuary
Hara Raman spectroscopic analysis of encapsulants in aged photovoltaic modules
CN104359914A (zh) 太阳能电池缺陷检测设备及检测方法
CN104580843A (zh) 快速获取硅片光致发光影像的Si-CCD照相机及方法
Wu et al. Durability evaluation of PV modules using image processing tools
CN201440127U (zh) 太阳能电池及组件缺陷检测装置
JP2011023412A (ja) 光電変換パネル用端子箱の異物検出装置及び異物検出方法
Zhang et al. The PV System Doctor–Comprehensive diagnosis of PV system installations
Terrados et al. Comparison of outdoor and indoor PL and EL images in Si solar cells and panels for defect detection and classification
CN110070814B (zh) Oled显示面板及其光衰减检测方法、显示装置
JP3141553U (ja) 太陽電池の検査装置
Doll et al. Towards true contactless outdoor luminescence of silicon photovoltaic modules with inhomogeneous small area excitation source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7042609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150