JP2019113414A - Secondary battery degradation degree measuring device - Google Patents

Secondary battery degradation degree measuring device Download PDF

Info

Publication number
JP2019113414A
JP2019113414A JP2017246924A JP2017246924A JP2019113414A JP 2019113414 A JP2019113414 A JP 2019113414A JP 2017246924 A JP2017246924 A JP 2017246924A JP 2017246924 A JP2017246924 A JP 2017246924A JP 2019113414 A JP2019113414 A JP 2019113414A
Authority
JP
Japan
Prior art keywords
unit
voltage
battery
specific
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017246924A
Other languages
Japanese (ja)
Inventor
明洋 田力
Akihiro Tariki
明洋 田力
英司 遠藤
Eiji Endo
英司 遠藤
雅大 井上
Masahiro Inoue
雅大 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2017246924A priority Critical patent/JP2019113414A/en
Publication of JP2019113414A publication Critical patent/JP2019113414A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

To provide a secondary battery degradation degree measuring device for estimating the degradation index of a secondary battery unit composed of a plurality of unit cells.SOLUTION: Provided is a secondary battery degradation degree measuring device for measuring the degradation degree of a secondary battery part (20) composed by connecting a plurality of unit cells (4n), comprising: a voltage sensor (7) for measuring the voltage of each of the plurality of unit cells; a discharge completion detection part (19) for detecting that there exists a unit cell, among the plurality of unit cells, that has reached a prescribed discharge completion voltage; a unit cell specification part (14) for specifying a specific unit cell (4c), among the plurality of unit cells, whose voltage is highest when the discharge completion voltage is reached; a degradation index estimation part (16) for estimating the degradation index of the specific unit cell specified by the unit cell specification part; a residual capacity calculation part (17) for computing a residual capacity at discharge completion time of the specific unit cell specified by the unit cell specification part; and a battery capacity calculation part (15) for calculating the degradation index of the secondary battery unit on the basis of the degradation index of the specific unit cell estimated by the degradation index estimation part and the residual capacity of the specific unit cell computed by the residual capacity calculation part.SELECTED DRAWING: Figure 4

Description

本発明は二次電池の劣化度合測定装置に係り、特に複数の単電池で構成される二次電池ユニットの劣化指標を推定する技術に関する。   The present invention relates to an apparatus for measuring the degree of deterioration of a secondary battery, and more particularly to a technique for estimating a deterioration index of a secondary battery unit constituted by a plurality of single cells.

二次電池の劣化度合いを表す劣化指標として、新品時の満充電容量に対する現状の満充電容量の比率であるSOH(State Of Health)が広く知られている。
この劣化指標SOHは、例えば二次電池を電池残容量0の状態から満充電まで充電して、実際の満充電容量を測定して新品時の満充電容量で割ることで得ることができる。しかしながら、劣化指標を推定するために電池残容量0の状態から満充電まで充電しなければならず、推定に要する時間が大幅に長くなるといった問題点がある。
SOH (State Of Health), which is the ratio of the current full charge capacity to the full charge capacity at the time of a new product, is widely known as a deterioration index representing the degree of deterioration of the secondary battery.
This deterioration index SOH can be obtained, for example, by charging the secondary battery from the state of battery remaining capacity 0 to full charge, measuring the actual full charge capacity and dividing by the full charge capacity at the time of new product. However, in order to estimate the deterioration index, it is necessary to charge from the state of the remaining battery capacity 0 to the full charge, and there is a problem that the time required for the estimation becomes significantly long.

そこで、推定に要する時間を抑えて二次電池の劣化指標を推定する方法が各種提案されている。例えば所定の電池電圧Vの範囲内で微分曲線V-dQ/dVに現れる特徴点の電圧値、詳しくはピーク形状の頂点部分である極大点の電圧値から、二次電池の劣化指標である容量低下率を求めている(特許文献1)。   Therefore, various methods have been proposed to estimate the deterioration indicator of the secondary battery by suppressing the time required for the estimation. For example, from the voltage value of the feature point appearing on the differential curve V-dQ / dV within the predetermined battery voltage V range, specifically, the voltage value of the maximum point which is the peak portion of the peak shape, The reduction rate is determined (Patent Document 1).

特開2013−19709号公報JP, 2013-19709, A

しかしながら、上記特許文献1に開示される技術では、二次電池(以下、単電池という)を複数備えて構成される二次電池ユニットの電圧を測定しているため、単電池ごとの電池容量のばらつきが考慮されていない。即ち、複数の単電池を有する二次電池ユニット全体の劣化後の満充電容量は、複数の単電池のうちいずれか1つが電池残容量0の状態から充電を開始し、複数の単電池のうちいずれか1つが満充電となるまで充電させたときの充電量となるので、特定の単電池によって規定される満充電容量と異なることがある。したがって、二次電池ユニットのSOHを精度よく推定することが困難であった。   However, in the technology disclosed in Patent Document 1 described above, the voltage of a secondary battery unit configured by including a plurality of secondary batteries (hereinafter referred to as single cells) is measured. Variations are not taken into account. That is, the full charge capacity after deterioration of the entire secondary battery unit having a plurality of single cells starts charging when any one of the plurality of single cells has a remaining battery capacity of 0, and among the plurality of single cells Since the charge amount when any one is charged to the full charge is obtained, it may be different from the full charge capacity defined by a specific cell. Therefore, it has been difficult to accurately estimate the SOH of the secondary battery unit.

本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、複数の単電池で構成される二次電池ユニットの劣化指標を精度よく推定することができる二次電池の劣化度合測定装置を提供することにある。   This invention is made in view of such a subject, The place made as the objective is the secondary battery which can estimate the degradation index of the secondary battery unit comprised with several cells accurately. It is providing a degradation degree measuring apparatus.

上記の目的を達成するため、本発明の二次電池の劣化度合測定装置は、複数の単電池を接続して構成された二次電池ユニットの劣化度合を測定する二次電池の劣化度合測定装置であって、前記複数の単電池それぞれの電圧を測定する電圧センサと、前記電圧センサによって測定された複数の単電池のうち、所定の放電完了電圧に達した単電池が存在することを検出する放電完了検出部と、前記放電完了検出部により複数の単電池のうち前記放電完了電圧に達したときに一番電圧が高い特定単電池を特定する単電池特定部と、前記単電池特定部により特定した前記特定単電池の劣化指標を推定する劣化指標推定部と、前記単電池特定部により特定した前記特定単電池の放電完了時の残容量を演算する残容量算出部と、前記劣化指標推定部によって推定された特定単電池の劣化指標と前記残容量算出部により演算した前記特定単電池の残容量とに基づいて二次電池ユニットの劣化指標を算出する電池容量算出部と、を備えることを特徴とする。   In order to achieve the above object, the apparatus for measuring the degree of deterioration of a secondary battery according to the present invention is a apparatus for measuring the degree of deterioration of a secondary battery that measures the degree of deterioration of a secondary battery unit configured by connecting a plurality of single cells. And detecting, among the plurality of single cells measured by the voltage sensor, the presence of a single cell which has reached a predetermined discharge completion voltage, among the plurality of single cells measured by the voltage sensor. A discharge completion detection unit, a cell identification unit that identifies a specific cell with the highest voltage when the discharge completion voltage is reached among the plurality of cells by the discharge completion detection unit, and the cell identification unit A deterioration index estimation unit that estimates a deterioration index of the specified single battery, a remaining capacity calculation unit that calculates a remaining capacity at the time of discharge completion of the specified single battery specified by the cell specification unit, and the deterioration index estimation Depending on the department A battery capacity calculating unit that calculates a deterioration indicator of the secondary battery unit based on the estimated deterioration indicator of the specific battery and the remaining capacity of the specific battery calculated by the remaining capacity calculating unit; I assume.

これにより、複数の単電池のうち、放電完了電圧に達した単電池が存在するときに一番電圧が高い特定単電池を特定し、劣化指標推定部によって推定される特定単電池の劣化指標と残容量算出部によって演算される特定単電池の放電完了時の残容量とに基づいて二次電池ユニットの劣化指標を算出することで、二次電池ユニットの放電完了時点である単電池が存在することを放電完了検出部が検出したときから、特定単電池が満充電になるまでの実質的な充放電可能な範囲、即ち劣化指標を複数の単電池のばらつきを考慮して推定することが可能とされる。   Thereby, when there is a single battery that has reached the discharge completion voltage among the plurality of single batteries, the specific single battery with the highest voltage is identified, and the deterioration indicator of the specific single battery estimated by the deterioration indicator estimation unit By calculating the deterioration index of the secondary battery unit based on the remaining capacity at the time of discharge completion of the specific cell calculated by the remaining capacity calculation unit, there is a single cell at the discharge completion time of the secondary battery unit It is possible to estimate the substantial chargeable / dischargeable range from when the discharge completion detection unit detects that the specific cell is fully charged, that is, the deterioration index in consideration of the variations of the plurality of single cells It is assumed.

また、好ましくは、前記複数の単電池それぞれの入出力電流を測定する電流センサを有し、前記劣化指標推定部は、前記電圧センサ及び前記電流センサによって検出される前記二次電池ユニットを充電した際の前記特定単電池の電圧及び入出力電流の変化に基づいて当該特定単電池の劣化指標を推定し、前記残容量算出部は、前記劣化指標推定部により推定した前記特定単電池の劣化指標と、前記二次電池ユニットのいずれかの単電池が前記放電完了電圧に達したときの前記特定単電池の開回路電圧とに基づいて、前記いずれかの単電池が前記放電完了電圧に達したときの前記特定単電池の残容量を演算するとよい。   In addition, preferably, a current sensor that measures an input / output current of each of the plurality of unit cells is provided, and the deterioration index estimation unit charges the secondary battery unit detected by the voltage sensor and the current sensor. The degradation index of the specific single battery is estimated based on the change of the voltage and the input / output current of the specific single battery, and the remaining capacity calculation unit determines the degradation index of the specific single battery estimated by the degradation index estimation unit. And any one of the cells reached the discharge completion voltage based on the open circuit voltage of the specific cell when any of the cells of the secondary battery unit reached the discharge completion voltage It is preferable to calculate the remaining capacity of the specific unit cell at that time.

これにより、二次電池ユニットを充電した際の特定単電池の電圧及び入出力電流の変化に基づいて推定された特定単電池の劣化指標と二次電池ユニットのいずれかの単電池が放電完了電圧に達したときの特定単電池の開回路電圧とに基づいて特定単電池の残容量を演算することで、二次電池ユニットの劣化指標を正確に推定することができる。
また、好ましくは、前記電池容量算出部は、前記劣化指標推定部により推定した前記特定単電池の劣化指標に基づいて前記特定単電池の現在の満充電容量を演算し、当該満充電容量から前記残容量算出部により演算した前記特定単電池の残容量を減算した値に基づいて、前記二次電池ユニットの劣化指標を推定するとよい。
Thus, the deterioration indicator of the specific battery and the discharge completion voltage of any battery of the secondary battery unit estimated based on the change in the voltage and the input / output current of the specific battery when charging the secondary battery unit The deterioration index of the secondary battery unit can be accurately estimated by calculating the remaining capacity of the specific single battery based on the open circuit voltage of the specific single battery at the time of reaching.
Preferably, the battery capacity calculation unit calculates the current full charge capacity of the specific cell based on the deterioration index of the specific cell estimated by the deterioration index estimation unit, and the battery capacity calculation unit calculates the current full charge capacity of the specific cell. It is preferable to estimate the deterioration index of the secondary battery unit based on the value obtained by subtracting the remaining capacity of the specific single battery calculated by the remaining capacity calculating unit.

これにより、劣化指標推定部により推定した特定単電池の劣化指標に基づく特定単電池の現在の満充電容量から、二次電池ユニットのいずれかの単電池が放電完了電圧に達したときの特定単電池の残容量を減算した値に基づいて、実際に二次電池ユニットが充放電可能な容量を演算することで、二次電池ユニットの劣化指標を正確に推定することができる。   Thereby, from the current full charge capacity of the specific cell based on the deterioration index of the specific cell estimated by the deterioration index estimation unit, the specific unit when any cell of the secondary battery unit reaches the discharge completion voltage The deterioration index of the secondary battery unit can be accurately estimated by actually calculating the chargeable / dischargeable capacity of the secondary battery unit based on the value obtained by subtracting the remaining capacity of the battery.

また、好ましくは、前記劣化指標推定部は、前記特定単電池の電圧Vと、前記特定単電池の電池容量Qの変化量dQに対する前記特定単電池の電圧Vの変化量dVの割合であるdV/dQとの関係を示す微分曲線V-dV/dQにおける特徴点の電圧Vに基づいて、前記特定単電池の劣化指標を推定するとよい。
これにより、特定単電池の劣化指標を、電圧及び入出力電流の変化に基づいて早期に推定することが可能となる。
In addition, preferably, the deterioration index estimation unit is a ratio dV of a voltage V of the specific cell and a variation dV of the voltage V of the specific cell to a variation dQ of the battery capacity Q of the specific cell. It is preferable to estimate the deterioration index of the specific single battery based on the voltage V of the feature point in the differential curve V-dV / dQ indicating the relationship with / dQ.
This makes it possible to estimate the deterioration index of the specific cell early based on the changes in voltage and input / output current.

また、好ましくは、前記劣化指標推定部は、前記特定単電池の電圧Vと、前記特定単電池の電圧Vの変化量dVに対する前記特定単電池の電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V-dQ/dVにおける特徴点の電圧Vに基づいて、前記特定単電池の劣化指標を推定するとよい。
これにより、特定単電池の劣化指標を、電圧及び入出力電流の変化に基づいて早期に推定することが可能となる。
Preferably, the deterioration index estimation unit is a ratio dQ of the voltage V of the specific cell and the change dQ of the battery capacity Q of the specific cell to the change dV of the voltage V of the specific cell. It is preferable to estimate the deterioration index of the specific cell based on the voltage V of the feature point in the differential curve V-dQ / dV indicating the relationship with / dV.
This makes it possible to estimate the deterioration index of the specific cell early based on the changes in voltage and input / output current.

本発明の二次電池の劣化度合測定装置によれば、複数の単電池のうち、放電完了電圧に達した単電池が存在するときに一番電圧が高い特定単電池を特定し、劣化指標推定部によって推定される特定単電池の劣化指標と残容量算出部によって演算される特定単電池の放電完了時の残容量とに基づいて二次電池ユニットの劣化指標を算出したので、二次電池ユニットの放電完了時点である単電池が存在することを放電完了検出部が検出したときから、特定単電池が満充電になるまでの実質的な充放電可能な範囲、即ち劣化指標を複数の単電池のばらつきを考慮して推定することができる。   According to the apparatus for measuring the degree of deterioration of a secondary battery of the present invention, a specific unit cell with the highest voltage is identified among the plurality of unit cells when there is a unit cell that has reached the discharge completion voltage, and deterioration index estimation is performed. Since the deterioration index of the secondary battery unit was calculated based on the deterioration index of the specific single battery estimated by the storage unit and the remaining capacity at the time of discharge completion of the specific single battery calculated by the remaining capacity calculation unit, the secondary battery unit From the time when the discharge completion detection unit detects that there is a single battery at the discharge completion time until the specific single battery becomes fully charged, that is, the substantially chargeable / dischargeable range, that is, the deterioration indicator for a plurality of single batteries Can be estimated in consideration of the variation of

これにより、複数の単電池で構成される二次電池ユニットの劣化指標を精度よく推定することができる。   This makes it possible to accurately estimate the deterioration index of the secondary battery unit configured of a plurality of single cells.

本実施形態の二次電池システムを示す概略構成図である。It is a schematic block diagram which shows the secondary battery system of this embodiment. 放電完了時における単電池ぞれぞれのSOCの値を示す棒グラフである。It is a bar graph which shows the value of SOC of each single battery at the time of completion of discharge. 微分曲線V−dV/dQの一例を示す特性図である。It is a characteristic view which shows an example of differential curve V-dV / dQ. メインコントローラが実行する、本発明に係る電池パックの劣化指標推定制御手順が示されたフローチャートである。It is the flowchart in which degradation index presumption control procedure of the battery pack concerning the present invention which a main controller performs is shown. 充電完了時における単電池ぞれぞれのSOCの値を示す棒グラフである。It is a bar graph which shows the value of SOC of each single battery at the time of completion of charge.

以下、本発明を具体化した二次電池システムの一実施形態を説明する。
図1は本実施形態の二次電池システムを示す概略構成図である。
本実施形態の二次電池システム1は電気自動車に搭載されており、走行用動力源である走行モータに電力を供給している。全体として二次電池システム1は、その全体を統合制御するメインコントローラ2、及び電池パック20(二次電池ユニット)から構成されている。電池パック20は、メインコントローラ2に並列に接続された複数の二次電池モジュール3から構成されている。
Hereinafter, an embodiment of a secondary battery system embodying the present invention will be described.
FIG. 1 is a schematic configuration view showing a secondary battery system of the present embodiment.
The secondary battery system 1 of the present embodiment is mounted on an electric vehicle, and supplies power to a traveling motor which is a traveling power source. As a whole, the secondary battery system 1 is composed of a main controller 2 that integrally controls the whole and a battery pack 20 (secondary battery unit). The battery pack 20 is composed of a plurality of secondary battery modules 3 connected in parallel to the main controller 2.

二次電池モジュール3は、組電池4(二次電池ユニット)、サブコントローラ5及び充放電制御部6から構成されている。
組電池4は、所期の電池容量及び出力電圧を達成するために複数の単電池4nを並列及び直列に組み合わせて構成されている。本実施形態の組電池4は、その正極電極板にLiMn2O4及びLiMO2(Mは、Co,Ni,Al,Mn,Feの内、少なくとも1つを含む遷移金属元素)が含まれている。
The secondary battery module 3 is configured of a battery pack 4 (secondary battery unit), a sub controller 5 and a charge / discharge control unit 6.
The battery assembly 4 is configured by combining a plurality of unit cells 4 n in parallel and in series in order to achieve a desired battery capacity and output voltage. The battery pack 4 of the present embodiment includes, in its positive electrode plate, LiMn 2 O 4 and LiMO 2 (M is a transition metal element containing at least one of Co, Ni, Al, Mn, and Fe).

組電池4には電圧センサ7、電流センサ8及び温度センサ9が接続されている。電圧センサ7により組電池4を構成する単電池4nそれぞれの電池電圧Vが検出され、電流センサ8により単電池4nそれぞれの入出力電流Iが検出され、温度センサ9により単電池4nそれぞれの温度Tが検出され、それらの検出情報はサブコントローラ5に入力される。
サブコントローラ5は、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等から構成されている。サブコントローラ5は充放電制御部6を駆動して組電池4の充放電を制御する機能を奏し、充放電制御の際には、組電池4の劣化指標に応じて最大許容電流や最大許容電圧を調整する。なお、本実施形態においては、組電池4の劣化指標として、新品時の満充電容量に対する現状の満充電容量の比率であるSOH(State Of Health)を使用する。
A voltage sensor 7, a current sensor 8 and a temperature sensor 9 are connected to the battery assembly 4. The voltage sensor 7 detects the battery voltage V of each of the unit cells 4n constituting the battery pack 4, the current sensor 8 detects the input / output current I of each unit cell 4n, and the temperature sensor 9 detects the temperature T of each unit cell 4n. Are detected, and their detection information is input to the sub controller 5.
The sub controller 5 includes an input / output device (not shown), a storage device (ROM, RAM, etc.) provided for storing control programs, control maps, etc., a central processing unit (CPU), a timer counter, etc. The sub controller 5 functions to drive the charge and discharge control unit 6 to control charge and discharge of the assembled battery 4, and in charge and discharge control, the maximum allowable current and the maximum allowable voltage according to the deterioration index of the assembled battery 4. Adjust the In the present embodiment, SOH (State Of Health), which is the ratio of the current full charge capacity to the full charge capacity at the time of a new product, is used as the deterioration index of the battery pack 4.

充放電指令部11は、後述するSOH推定部16により推定されたSOH等に基づき、各二次電池モジュール3のサブコントローラ5に入出力部12を介して充放電制御の指令を出力する。例えば所定値未満のSOHが推定された二次電池モジュール3に対しては、充放電時の最大許容電流や最大許容電圧を制限する指令を出力する。この指令に基づくサブコントローラ5による充放電制御により、劣化の進行した組電池4の保護が図られる。   The charge / discharge command unit 11 outputs a charge / discharge control command to the sub-controller 5 of each secondary battery module 3 via the input / output unit 12 based on SOH or the like estimated by the SOH estimation unit 16 described later. For example, to the secondary battery module 3 for which the SOH less than the predetermined value is estimated, a command for limiting the maximum allowable current and the maximum allowable voltage at the time of charge and discharge is output. The charge and discharge control by the sub controller 5 based on the command protects the battery pack 4 in which the deterioration has progressed.

また充放電指令部11は、組電池4内の単電池4nのうちいずれかの単電池4nで寿命限界を下回るSOHが推定された場合等には、運転席に設けられた表示部18に車両点検を促すメッセージを表示する。これにより販社等で車両点検が実施されて、必要に応じて組電池4が交換される。
一方、メインコントローラ2はサブコントローラ5と同様に、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等から構成されている。
In addition, when SOH below the life limit is estimated for any of the unit cells 4n of the unit cells 4n in the assembled battery 4, the charge / discharge command unit 11 displays the vehicle in the display unit 18 provided in the driver's seat. Display a message prompting an inspection. As a result, vehicle inspection is carried out at a sales company or the like, and the battery assembly 4 is replaced as necessary.
On the other hand, like the sub controller 5, the main controller 2 is an input / output device (not shown), a storage device (ROM, RAM etc.) provided for storage of control programs, control maps etc., central processing unit (CPU), timer counter etc. It consists of

メインコントローラ2は、入出力部12、データ保存部13、電池容量算出部15、SOH推定部16(劣化指標推定部)、及びSOC算出部(残容量算出部)17から構成されている。
データ保存部13は、入出力部12を介して各二次電池モジュール3のサブコントローラ5から入力された実測データを記憶する。またデータ保存部13には、予め微分曲線V−dV/dQ上の特定の特徴点と組電池4のSOHとの相関関係を示すデータ(以下、基準データと称する)が温度域毎に記憶されている。
The main controller 2 includes an input / output unit 12, a data storage unit 13, a battery capacity calculation unit 15, an SOH estimation unit 16 (deterioration index estimation unit), and an SOC calculation unit (remaining capacity calculation unit) 17.
The data storage unit 13 stores measured data input from the sub-controller 5 of each secondary battery module 3 via the input / output unit 12. In addition, data (hereinafter referred to as reference data) indicating the correlation between a specific feature point on the differential curve V-dV / dQ and the SOH of the assembled battery 4 is stored in the data storage unit 13 in advance for each temperature range. ing.

基準データの作成処理は、以下の通りである。
まず、本実施形態の単電池4nと同一規格の単電池4nの劣化試験を実施し、未使用の単電池4nの充放電を繰り返して寿命限界まで段階的に劣化させる。劣化過程の各SOHにおいて、異なる複数の温度域の下で単電池4nを充放電させる。
そして、単電池4nの充電時または放電時に所定時間毎に単電池4nの電池容量Qを逐次算出すると共に、これに同期して電池電圧Vを取得する。このように、充放電により得られた電池電圧V及び電池容量Qに基づき微分値dV/dQを算出し、電池電圧Vと微分値dV/dQとの関係を示す微分曲線V−dV/dQを算出した上で、微分曲線V−dV/dQ上に出現した特定の特徴点の位置(V,dV/dQ)を求める。特徴点は、例えば電池電圧Vの所定の範囲で微分曲線V−dV/dQに現れた2つのピークの中点にすればよい。結果として特定の特徴点と組電池4のSOHとの相関関係が温度域毎に定められ、各二次電池モジュール3の共通の基準データとして予めデータ保存部13に記憶される。
The process of creating reference data is as follows.
First, the deterioration test of the unit cell 4n of the same standard as the unit cell 4n of the present embodiment is performed, and charge and discharge of the unit cell 4n not in use are repeated to deteriorate stepwise to the life limit. In each SOH in the degradation process, the unit cell 4n is charged and discharged under a plurality of different temperature ranges.
Then, the battery capacity Q of the single battery 4n is sequentially calculated at predetermined time intervals when charging or discharging the single battery 4n, and the battery voltage V is acquired in synchronization with this. Thus, the differential value dV / dQ is calculated based on the battery voltage V and the battery capacity Q obtained by charge and discharge, and the differential curve V-dV / dQ indicating the relationship between the battery voltage V and the differential value dV / dQ is obtained. After calculation, the position (V, dV / dQ) of the specific feature point appearing on the differential curve V-dV / dQ is determined. The feature point may be, for example, a middle point of two peaks appearing in the differential curve V-dV / dQ in a predetermined range of the battery voltage V. As a result, the correlation between a specific feature point and the SOH of the assembled battery 4 is determined for each temperature range, and is stored in the data storage unit 13 in advance as common reference data of each secondary battery module 3.

SOC算出部17は、すべての単電池4nそれぞれのSOC(State Of Charge)および残容量を電圧センサ7及び電流センサ8によって算出される電圧及び電流に基づいて算出可能である。また、SOC算出部17は、算出した各単電池4nのSOCを単電池特定部14に出力している。
SOH推定部16は、微分曲線算出部10、単電池特定部14、及び放電完了検出部19から構成されている。
The SOC calculating unit 17 can calculate the state of charge (SOC) and the remaining capacity of each of the unit cells 4 n based on the voltage and current calculated by the voltage sensor 7 and the current sensor 8. Further, the SOC calculating unit 17 outputs the calculated SOC of each unit cell 4 n to the unit cell specifying unit 14.
The SOH estimation unit 16 is configured of a differential curve calculation unit 10, a cell identification unit 14, and a discharge completion detection unit 19.

単電池特定部14は、すべての単電池4nの中からSOHを推定する特定単電池4cを特定する。
図2を参照すると、放電完了時における単電池4nぞれぞれのSOCの値を示す棒グラフが示されている。ここで、図中4i、4ii、4m、4cは、すべての単電池4nの一部であり、互いに直列に接続されている。特に、単電池4mは、すべての単電池4nが一斉に放電するとき、最初に所定の放電完了電圧に達した単電池(以下、最少単電池4m(単電池)という)のことを示す。このとき、放電完了検出部19は、最少単電池4mが存在することを検出する。また、このときの最少単電池4mのSOCを充電率Cbとする。単電池特定部14は、放電完了検出部19によって放電完了電圧に達した最少単電池4mが存在することを検出するとき、すべての単電池4nの中で一番電圧が高い単電池(以下、特定単電池4cという)を特定する。また更に、このときの特定単電池4cの電圧をOCV(Open Circuit Voltage)、OCVを基に算出される特定単電池4cのSOCを充電率C1とする。
The unit cell identification unit 14 identifies a specific unit cell 4c that estimates SOH from among all the unit cells 4n.
Referring to FIG. 2, there is shown a bar graph indicating the SOC value of each of the unit cells 4n at the time of completion of discharge. Here, in the figure, 4i, 4ii, 4m, 4c are a part of all the unit cells 4n, and are connected in series with each other. In particular, the unit cell 4m indicates a unit cell (hereinafter, referred to as a minimum unit cell 4m (unit cell)) which first reaches a predetermined discharge completion voltage when all the unit cells 4n discharge simultaneously. At this time, the discharge completion detection unit 19 detects that the minimum unit cell 4m is present. Further, the SOC of the minimum battery cell 4m at this time is taken as the charging rate Cb. When the cell identification unit 14 detects that the minimum cell 4m that has reached the discharge completion voltage is present by the discharge completion detection unit 19, the cell with the highest voltage among all the cells 4n (hereinafter referred to as Identify the specific cell 4c). Furthermore, the voltage of the specific unit cell 4c at this time is OCV (Open Circuit Voltage), and the SOC of the specific unit cell 4c calculated based on the OCV is a charging rate C1.

微分曲線算出部10は、特定単電池4cの充電時または放電時に所定時間毎に特定単電池4cの電池容量Qを逐次算出すると共に、これに同期して電池電圧Vを取得し、特定単電池4cの電池容量Qの変化量dQに対する電池電圧Vの変化量dVの割合である微分値dV/dQを算出する。そして、得られた微分値dV/dQと電池電圧Vとの関係を示す曲線として微分曲線V−dV/dQを算出する。   The differential curve calculation unit 10 sequentially calculates the battery capacity Q of the specific single battery 4c at predetermined time intervals when charging or discharging the specific single battery 4c, and acquires the battery voltage V in synchronization with this, to obtain the specific single battery A differential value dV / dQ, which is a ratio of the change amount dV of the battery voltage V to the change amount dQ of the battery capacity Q of 4c, is calculated. Then, the differential curve V-dV / dQ is calculated as a curve indicating the relationship between the obtained differential value dV / dQ and the battery voltage V.

図3は微分曲線V−dV/dQの一例を示す特性図である。図3では、微分値dV/dQを縦軸とし、電池電圧Vを横軸として微分曲線V−dV/dQが表されている。特定単電池4cの充電または放電に伴って、特定単電池4cの充電率(SOC)と共に電池電圧Vが増加または低下し、それに応じて微分値dV/dQが変化することにより、例えば微分曲線V−dV/dQ上には変曲点P1、P2が現れる。   FIG. 3 is a characteristic diagram showing an example of the differential curve V-dV / dQ. In FIG. 3, the derivative value dV / dQ is taken as a vertical axis, and the battery voltage V is taken as a horizontal axis. A differential curve V-dV / dQ is shown. The battery voltage V increases or decreases together with the charging rate (SOC) of the specific cell 4c with the charging or discharging of the specific cell 4c, and the differential value dV / dQ changes accordingly, for example, the differential curve V Inflection points P1 and P2 appear on -dV / dQ.

微分曲線算出部10は、算出した微分曲線V−dV/dQをSOH推定部16に出力する。またこのとき、サブコントローラ5は、温度センサ9により検出された温度T(以下、これらを実測データと称する)をSOH推定部16に出力する。
SOH推定部16は、微分曲線算出部10から出力された微分曲線V−dV/dQ、基準データ、及び実測データを用いて特定単電池4cのSOHを推定する。例えば、基準データのうち、実測データに一致または近似するデータと、微分曲線算出部10から出力された微分曲線V−dV/dQ上に現れる変曲点P1、P2とを照らし合わせ、一致または近似する基準データからSOHを推定する。なお、SOHの推定方法は、他の方法であってもよい。例えば、微分曲線算出部10において、特定単電池4cの電池電圧Vの変化量dVに対する特定単電池4cの電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V-dQ/dVを算出し、この微分曲線V-dQ/dVから特徴点を特定して、特定単電池4cのSOHを推定してもよい。この場合、例えば電池電圧Vの所定の範囲において、微分曲線V-dQ/dVの傾きが最大となる点を特徴点としたり、1つのピークを所定のdQ/dVで横切る2つの点の中点を特徴点としたりすればよい。
The differential curve calculation unit 10 outputs the calculated differential curve V-dV / dQ to the SOH estimation unit 16. At this time, the sub-controller 5 outputs the temperature T (hereinafter, these will be referred to as actual measurement data) detected by the temperature sensor 9 to the SOH estimation unit 16.
The SOH estimating unit 16 estimates the SOH of the specific single battery 4c using the differential curve V-dV / dQ output from the differential curve calculating unit 10, the reference data, and the actual measurement data. For example, in the reference data, data matching or approximating actual data, and inflection points P1 and P2 appearing on the differential curve V-dV / dQ output from the differential curve calculation unit 10 are compared with each other to match or approximate Estimate SOH from reference data. In addition, the estimation method of SOH may be another method. For example, in the differential curve calculation unit 10, a differential curve V− showing a relationship between dQ / dV, which is a ratio of the change amount dQ of the battery capacity Q of the specific cell 4c to the change amount dV of the battery voltage V of the specific cell 4c. The SOH of the specific unit cell 4c may be estimated by calculating dQ / dV and identifying feature points from the differential curve V-dQ / dV. In this case, for example, in a predetermined range of the battery voltage V, a point at which the slope of the differential curve V-dQ / dV is maximum is taken as a feature point, or a midpoint between two points crossing one peak at a predetermined dQ / dV. As a feature point.

図4を参照すると、メインコントローラ2が実行する、本発明に係る電池パック20の劣化指標推定制御手順を示すルーチンがフローチャートで示されており、以下、同フローチャートに沿い説明する。
ステップS10では、充放電指令部11によって充放電制御部6が放電状態となり、すべての単電池4nが放電開始される。そして、ステップS12に進む。
Referring to FIG. 4, a routine executed by the main controller 2 and indicating a control procedure for estimating the deterioration index of the battery pack 20 according to the present invention is shown in the form of a flowchart, which will be described below.
In step S10, the charge / discharge control unit 6 is in a discharged state by the charge / discharge command unit 11, and the discharge of all the unit cells 4n is started. Then, the process proceeds to step S12.

ステップS12では、ステップS10によって放電が開始されたすべての単電池4nの電圧が電圧センサ7によってそれぞれ検出される。そして、ステップS14に進む。
ステップS14では、ステップS12によって検出されるすべての単電池4nのそれぞれの電圧から、放電完了電圧に達した最少単電池4mが存在するか否かが放電完了検出部19によって判別される。放電完了電圧に達した最少単電池4mが存在しないと判別すると、ステップS12に戻り、再びすべての単電池4nの電圧がそれぞれ検出される。また、放電完了電圧に達した最少単電池4mが存在すると判別すると、ステップS16に移行して放電が終了する。
In step S12, the voltage sensor 7 detects the voltages of all the unit cells 4n whose discharge has been started in step S10. Then, the process proceeds to step S14.
In step S14, the discharge completion detection unit 19 determines whether or not there is a minimum single battery 4m that has reached the discharge completion voltage from the voltages of all the unit cells 4n detected in step S12. If it is determined that the minimum unit cell 4m that has reached the discharge completion voltage does not exist, the process returns to step S12, and the voltages of all the unit cells 4n are detected again. When it is determined that the minimum unit cell 4m that has reached the discharge completion voltage is present, the process proceeds to step S16, and the discharge ends.

即ち、ステップS10によって放電が開始されたあと、ステップS12及びステップS14を繰り返すことで放電完了電圧に達した最少単電池4mが存在するまで放電を続け、放電完了電圧に達した最少単電池4mが存在すると、ステップS16によって放電が終了する。そして、ステップS18に進む。
ステップS18では、ステップS16によって放電が終了されたときに一番電圧が高い単電池4n、即ち特定単電池4cが特定される。また、これと同時に特定単電池4cは、開回路電圧(OCV)が測定されてデータ保存部13に記憶される。そして、ステップS20に進む。
That is, after the discharge is started in step S10, the discharge is continued until the minimum cell 4m reaching the discharge completion voltage by repeating steps S12 and S14, and the minimum cell 4m reaching the discharge completion voltage is If it exists, the discharge ends in step S16. Then, the process proceeds to step S18.
In step S18, when the discharge is ended in step S16, the unit cell 4n having the highest voltage, that is, the specific unit cell 4c is identified. At the same time, the open circuit voltage (OCV) of the specific cell 4 c is measured and stored in the data storage unit 13. Then, the process proceeds to step S20.

ステップS20では、充放電指令部11によって充電が開始されて、ステップS22に進む。
ステップS22では、微分曲線算出部及びSOH推定部16によって特定単電池4cのSOHが推定される。そして、ステップS24に進む。
ステップS24では、放電終了時の特定単電池4cの残容量を算出する。詳しくは、ステップS22によって推定された特定単電池4cのSOHから算出される現在の特定単電池4cの満充電容量と、ステップS18によって記憶されたOCVから算出されるSOCに基づいて、放電完了時の特定単電池4cの残容量が算出される。そして、ステップS26に進む。
At step S20, the charge / discharge command unit 11 starts charging, and the process proceeds to step S22.
In step S22, the differential curve calculation unit and the SOH estimation unit 16 estimate the SOH of the specific cell 4c. Then, the process proceeds to step S24.
In step S24, the remaining capacity of the specific cell 4c at the end of the discharge is calculated. Specifically, at the time of discharge completion based on the full charge capacity of the current specific single battery 4c calculated from the SOH of the specific single battery 4c estimated in step S22 and the SOC calculated from the OCV stored in step S18. The remaining capacity of the specific unit cell 4c is calculated. Then, the process proceeds to step S26.

ステップS26では、ステップS22によって推定された特定単電池4cのSOHとステップS24において算出した放電終了時の特定単電池4cの残容量とに基づいて、電池パック20のSOHを推定する。詳しくは、ステップS22によって推定された特定単電池4cのSOHから現在の特定単電池4cの満充電容量を演算し、当該満充電容量からステップS22において算出した放電終了時の特定単電池4cの残容量を減算して、電池パック20を充放電した際に使用可能な容量の範囲を算出する。そして、この使用可能な容量で規定される電池パック20のSOHを演算して、本ルーチンが終了する。   In step S26, the SOH of the battery pack 20 is estimated based on the SOH of the specific cell 4c estimated in step S22 and the remaining capacity of the specific cell 4c at the end of the discharge calculated in step S24. Specifically, the full charge capacity of the current specific single battery 4c is calculated from the SOH of the specific single battery 4c estimated in step S22, and the remaining specific single battery 4c at the end of the discharge calculated in step S22 from the full charge capacity. The capacity is subtracted to calculate the range of usable capacity when the battery pack 20 is charged and discharged. Then, the SOH of the battery pack 20 defined by the usable capacity is calculated, and this routine ends.

図5を参照すると、充電完了時における単電池4nぞれぞれのSOCの値を示す棒グラフが示されている。以下、単電池4nの電圧特性及びステップS18によって特定された特定単電池4cのSOHをステップS22によって推定し、ステップS24及びステップS26によって特定単電池4cのSOHから演算される満充電容量と放電終了時の特定単電池4cの残容量とに基づいて電池パック20のSOHを算出した効果について説明する。   Referring to FIG. 5, there is shown a bar graph indicating the SOC value of each of the unit cells 4n when charging is completed. Hereinafter, the voltage characteristics of the unit cell 4n and the SOH of the specific unit cell 4c specified in step S18 are estimated in step S22, and the full charge capacity and the discharge end calculated from the SOH of the specific unit cell 4c in step S24 and step S26 The effect of calculating the SOH of the battery pack 20 on the basis of the remaining capacity of the specific battery 4c at the time will be described.

すべての単電池4nが放電完了状態から充電されるとき、それぞれの単電池4nは、略同一速度で充電される。詳しくは、特定単電池4cは、充電率C1から充電が開始されると、充電率Cmax(SOC=100%、満充電容量)になるまで充電可能である。ここで、充電率Cmax−充電率C1=充電率C2、即ち特定単電池4cが充電率C1から充電率Cmaxになるまでの間に充電される充電率を充電率C2とする。このとき、すべての単電池4n(4i、4ii、4m・・・)が充電率C2に相当する充電量だけ均等に充電される。また、特定単電池4cが充電率Cmaxになるまで充電されると特定単電池4cの過充電を防止するため、すべての単電池4nの充電が終了する。   When all the cells 4n are charged from the discharge completion state, the respective cells 4n are charged at substantially the same speed. Specifically, when charging is started from the charging rate C1, the specific cell 4c can be charged until the charging rate Cmax (SOC = 100%, full charge capacity) is reached. Here, the charging rate Cmax−charging rate C1 = charging rate C2, that is, the charging rate at which the specific single battery 4c is charged until the charging rate C1 reaches the charging rate Cmax is taken as a charging rate C2. At this time, all the cells 4n (4i, 4ii, 4m,...) Are equally charged by the charge amount corresponding to the charge rate C2. Further, when the specific cell 4c is charged to the charging rate Cmax, the charging of all the cells 4n is completed in order to prevent overcharging of the specific cell 4c.

即ち、すべての単電池4nは、特定単電池4cの充電率C2から算出される充電容量と同じ充電容量の範囲内で充電及び放電するので、特定単電池4cのSOHから演算される満充電容量から充電率C1に相当する充電容量を減算した値を用いることで電池パック20のSOHを算出することが可能である。
このように特定単電池4cを特定して(ステップS18)特定単電池4cのSOHを推定し(ステップS22)、放電完了時の特定単電池4cの残容量を算出して(ステップS24)特定単電池4cの満充電容量から減算する(ステップS26)ことで、電池パック20のSOHを推定することができる。
That is, since all the cells 4n are charged and discharged within the same range of charge capacity as the charge capacity calculated from the charge rate C2 of the specific cell 4c, the full charge capacity calculated from SOH of the specific cell 4c It is possible to calculate the SOH of the battery pack 20 by using a value obtained by subtracting the charging capacity corresponding to the charging rate C1 from the above.
Thus, the specific cell 4c is specified (step S18), the SOH of the specific cell 4c is estimated (step S22), and the remaining capacity of the specific cell 4c at the time of discharge completion is calculated (step S24). By subtracting the full charge capacity of the battery 4c (step S26), the SOH of the battery pack 20 can be estimated.

以上説明したように、本発明に係る二次電池の劣化度合測定装置は、複数の単電池4nを並列及び直列に接続して構成された電池パック20の劣化度合を測定する二次電池の劣化度合測定装置であって、すべての単電池4nそれぞれの電圧を測定する電圧センサ7と、電圧センサ7によって測定されたすべての単電池4nのうち、所定の放電完了電圧に達した最少単電池4mが存在することを検出する放電完了検出部19と、放電完了検出部19によりすべての単電池4nのうち放電完了電圧に達したときに一番電圧が高い特定単電池4cを特定する単電池特定部14と、単電池特定部14により特定した特定単電池4cのSOHを推定するSOH推定部16と、単電池特定部14により特定した特定単電池4cの放電完了時の残容量を演算するSOC算出部17と、SOH推定部16によって推定された特定単電池4cのSOHとSOC算出部17により演算した特定単電池4cの残容量とに基づいて電池パック20のSOHを算出する電池容量算出部15とを備える。   As described above, the apparatus for measuring the degree of deterioration of the secondary battery according to the present invention is a deterioration of the secondary battery for measuring the degree of deterioration of the battery pack 20 configured by connecting a plurality of single cells 4n in parallel and in series. It is a degree measurement device, and a minimum of 4m of single cells that have reached a predetermined discharge completion voltage among voltage cells 7 measuring voltage of each of all cells 4n and all cells 4n measured by voltage sensor 7 Of all the cells 4n by the discharge completion detection unit 19 that detects the presence of a single battery, and a battery specification that identifies the specific single battery 4c with the highest voltage when the discharge completion voltage is reached among all the cells 4n The remaining capacity at the time of discharge completion of the specified single battery 4c specified by the unit 14 and the SOH estimating unit 16 that estimates the SOH of the specified single battery 4c specified by the single battery specification unit 14 is calculated. Battery capacity for calculating the SOH of the battery pack 20 based on the SOC calculation unit 17 and the SOH of the specific battery 4c estimated by the SOH estimation unit 16 and the remaining capacity of the specific battery 4c calculated by the SOC calculation unit 17 And a calculation unit 15.

従って、すべての単電池4nのうち、放電完了電圧に達した最少単電池4mが存在するときに一番電圧が高い特定単電池4cを単電池特定部14によって特定し、SOH推定部16によって推定される特定単電池4cとSOC算出部17によって演算される特定単電池4cの放電完了時の残容量とに基づいて電池パック20のSOHを算出するようにしたので、電池パック20の放電完了時点である最少単電池4mが存在することを放電完了検出部19が検出したときから、特定単電池4cが満充電になるまでの実質的な充放電可能な範囲、即ちSOHをすべての単電池4nのばらつきを考慮して推定することができる。   Therefore, among all the unit cells 4n, when the minimum unit cell 4m which has reached the discharge completion voltage is present, the unit cell identification unit 14 identifies the specific unit cell 4c having the highest voltage, and the SOH estimation unit 16 estimates it. Since the SOH of the battery pack 20 is calculated based on the specific cell 4c to be stored and the remaining capacity at the completion of the discharge of the specific cell 4c calculated by the SOC calculation unit 17, the discharge completion time of the battery pack 20 From the time the discharge completion detection unit 19 detects that the minimum unit cell 4m is present to a full chargeable / dischargeable range until the specific unit cell 4c is fully charged, that is, SOH Can be estimated in consideration of the variation of

特に、複数の単電池4nそれぞれの入出力電流を測定する電流センサ8を有し、SOH推定部16は、電圧センサ7及び電流センサ8によって検出される電池パック20を充電した際の特定単電池4cの電圧及び入出力電流の変化に基づいて特定単電池4cのSOHを推定し、SOC算出部17は、SOH推定部16により推定した特定単電池4cのSOHと、電池パック20のいずれかの単電池4nが放電完了電圧に達したときの特定単電池4cのOCV(開回路電圧)とに基づいて、いずれかの単電池4nが放電完了電圧に達したときの特定単電池4cのSOCを演算する。   In particular, the SOH estimating unit 16 includes the current sensor 8 that measures the input / output current of each of the plurality of unit cells 4 n, and the specific unit cell when charging the battery pack 20 detected by the voltage sensor 7 and the current sensor 8 The SOC calculating unit 17 estimates the SOH of the specific cell 4c based on the change of the voltage of 4c and the input / output current, and the SOC calculating unit 17 calculates the SOH of the specific cell 4c estimated by the SOH estimating unit 16 or any one of the battery packs 20. Based on the OCV (open circuit voltage) of the specific battery 4c when the battery 4n reaches the discharge completion voltage, the SOC of the specific battery 4c when any battery 4n reaches the discharge completion voltage Calculate

従って、電池パック20を充電した際の特定単電池4cの電圧及び入出力電流の変化に基づいて推定された特定単電池4cのSOHと特定単電池4cのOCVとに基づいて特定単電池4cの残容量を演算することで、電池パック20のSOHを正確に推定することができる。
そして、電池容量算出部15は、SOH推定部16により推定した特定単電池4cのSOHに基づいて特定単電池4cの現在の満充電容量を演算し、満充電容量からSOC算出部17により演算した特定単電池4cの充電率C1から算出した残容量を減算して、電池パック20のSOHを推定する。
Therefore, based on the SOH of the specific cell 4c and the OCV of the specific cell 4c estimated based on the change of the voltage and the input / output current of the specific cell 4c when the battery pack 20 is charged, the specific cell 4c By calculating the remaining capacity, the SOH of the battery pack 20 can be accurately estimated.
Then, the battery capacity calculation unit 15 calculates the current full charge capacity of the specific single battery 4 c based on the SOH of the specific single battery 4 c estimated by the SOH estimation unit 16, and calculates it by the SOC calculation unit 17 from the full charge capacity. The remaining capacity calculated from the charging rate C1 of the specific battery 4c is subtracted to estimate the SOH of the battery pack 20.

従って、SOH推定部16により推定した特定単電池4cのSOHに基づく特定単電池4cの現在の満充電容量から、電池パック20のいずれかの単電池4nが放電完了電圧に達したときの特定単電池4cの残容量を減算することで、この減算された値に基づいて、実際に電池パック20の充放電可能な容量を演算することで、電池パック20のSOHを正確に推定することができる。   Therefore, from the current full charge capacity of the specific single battery 4c based on the SOH of the specific single battery 4c estimated by the SOH estimating unit 16, a specific single battery when any single battery 4n of the battery pack 20 reaches the discharge completion voltage. By subtracting the remaining capacity of battery 4c, the SOH of battery pack 20 can be accurately estimated by actually calculating the chargeable / dischargeable capacity of battery pack 20 based on the subtracted value. .

そして、SOH推定部16は、特定単電池4cの電圧Vと、特定単電池4cの電池容量Qの変化量dQに対する特定単電池4cの電圧Vの変化量dVの割合であるdV/dQとの関係を示す微分曲線V−dV/dQにおける特徴点の電圧V、または特定単電池4cの電圧Vと、特定単電池4cの電圧Vの変化量dVに対する特定単電池4cの電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V−dQ/dVにおける特徴点の電圧Vに基づいて、特定単電池4cのSOHを推定する。   Then, the SOH estimating unit 16 calculates the voltage V of the specific cell 4c and dV / dQ, which is the ratio of the change amount dV of the voltage V of the specific cell 4c to the change amount dQ of the battery capacity Q of the specific cell 4c. The amount of change in the battery capacity Q of the specific battery 4c with respect to the voltage V of the feature point in the differential curve V-dV / dQ indicating the relationship or the voltage V of the specific battery 4c and the amount of change dV of the voltage V of the specific battery 4c Based on the voltage V of the feature point in the differential curve V-dQ / dV which shows the relationship with dQ / dV which is a ratio of dQ, SOH of the specific cell 4c is estimated.

従って、特定単電池4cのSOHを、電圧及び入出力電流の変化に基づいて早期に推定することができる。
以上で本発明に係る二次電池の劣化度合測定装置の説明を終えるが、本発明は上記実施形態に限られるものではなく、発明の主旨を逸脱しない範囲で変更可能である。
例えば、本実施形態では、電池パック20のSOHを推定するようにしたが、組電池4それぞれのSOHを推定するようにしてもよい。
Therefore, the SOH of the specific cell 4c can be estimated early based on the change of the voltage and the input / output current.
The description of the deterioration degree measuring device for a secondary battery according to the present invention is finished above, but the present invention is not limited to the above embodiment, and can be changed without departing from the scope of the invention.
For example, in the present embodiment, the SOH of the battery pack 20 is estimated, but the SOH of each of the assembled battery 4 may be estimated.

また、本実施形態では、メインコントローラ2が車両に搭載されているものとしているが、メインコントローラ2を車両と別体にし、SOHを推定するときにのみ接続させるような装置にしてもよい。   Further, in the present embodiment, the main controller 2 is mounted on a vehicle, but the main controller 2 may be separate from the vehicle and may be connected only when the SOH is estimated.

4 組電池(二次電池ユニット)
4c 特定単電池
4m 最少単電池(単電池)
4n 単電池
7 電圧センサ
8 電流センサ
14 単電池特定部
15 電池容量算出部
16 SOH推定部(劣化指標推定部)
17 SOC算出部(残容量算出部)
19 放電完了検出部
20 電池パック(二次電池ユニット)
4 Battery pack (secondary battery unit)
4c Specified single battery 4m minimum single battery (single battery)
4n single battery 7 voltage sensor 8 current sensor 14 single battery specification unit 15 battery capacity calculation unit 16 SOH estimation unit (deterioration index estimation unit)
17 SOC calculation unit (remaining capacity calculation unit)
19 discharge completion detection unit 20 battery pack (secondary battery unit)

Claims (5)

複数の単電池を接続して構成された二次電池ユニットの劣化度合を測定する二次電池の劣化度合測定装置であって、
前記複数の単電池それぞれの電圧を測定する電圧センサと、
前記電圧センサによって測定された複数の単電池のうち、所定の放電完了電圧に達した単電池が存在することを検出する放電完了検出部と、
前記放電完了検出部により複数の単電池のうち前記放電完了電圧に達したときに一番電圧が高い特定単電池を特定する単電池特定部と、
前記単電池特定部により特定した前記特定単電池の劣化指標を推定する劣化指標推定部と、
前記単電池特定部により特定した前記特定電池の放電完了時の残容量を演算する残容量算出部と、
前記劣化指標推定部によって推定された特定単電池の劣化指標と前記残容量算出部により演算した前記特定単電池の残容量とに基づいて二次電池ユニットの劣化指標を算出する電池容量算出部と、を備える二次電池の劣化度合測定装置。
A secondary battery deterioration degree measuring device for measuring the deterioration degree of a secondary battery unit configured by connecting a plurality of single cells,
A voltage sensor that measures a voltage of each of the plurality of unit cells;
A discharge completion detection unit configured to detect the presence of a single battery having reached a predetermined discharge completion voltage among the plurality of single batteries measured by the voltage sensor;
A single battery identification unit that identifies a specific single battery having the highest voltage when the discharge completion voltage is reached among the plurality of single batteries by the discharge completion detection unit;
A deterioration index estimation unit configured to estimate a deterioration index of the specific single battery specified by the single battery specification unit;
A remaining capacity calculation unit that calculates a remaining capacity at the completion of discharging of the specific battery specified by the unit cell specification unit;
A battery capacity calculation unit that calculates a deterioration indicator of a secondary battery unit based on the deterioration indicator of the specific cell estimated by the deterioration indicator estimation unit and the remaining capacity of the specific cell calculated by the remaining capacity calculation unit; And a secondary battery deterioration degree measuring device.
前記複数の単電池それぞれの入出力電流を測定する電流センサを有し、
前記劣化指標推定部は、前記電圧センサ及び前記電流センサによって検出される前記二次電池ユニットを充電した際の前記特定単電池の電圧及び入出力電流の変化に基づいて当該特定単電池の劣化指標を推定し、
前記残容量算出部は、前記劣化指標推定部により推定した前記特定単電池の劣化指標と、前記二次電池ユニットのいずれかの単電池が前記放電完了電圧に達したときの前記特定単電池の開回路電圧とに基づいて、前記いずれかの単電池が前記放電完了電圧に達したときの前記特定単電池の残容量を演算することを特徴とする請求項1に記載の二次電池の劣化度合測定装置。
It has a current sensor which measures the input and output current of each of the plurality of unit cells,
The deterioration index estimation unit is a deterioration index of the specific single battery based on changes in the voltage and the input / output current of the specific single battery at the time of charging the secondary battery unit detected by the voltage sensor and the current sensor. Estimate
The remaining capacity calculation unit includes the deterioration index of the specific cell estimated by the deterioration index estimation unit, and the specific cell when any cell of the secondary battery unit reaches the discharge completion voltage. The deterioration of the secondary battery according to claim 1, wherein the remaining capacity of the specific cell when any one of the cells reaches the discharge completion voltage is calculated based on the open circuit voltage. Degree measuring device.
前記電池容量算出部は、前記劣化指標推定部により推定した前記特定単電池の劣化指標に基づいて前記特定単電池の現在の満充電容量を演算し、当該満充電容量から前記残容量算出部により演算した前記特定単電池の残容量を減算した値に基づいて、前記二次電池ユニットの劣化指標を推定することを特徴とする請求項2に記載の二次電池の劣化度合測定装置。   The battery capacity calculation unit calculates the current full charge capacity of the specific single battery based on the deterioration indicator of the specific single battery estimated by the deterioration index estimation unit, and the remaining capacity calculation unit calculates the full charge capacity of the specific single battery. The deterioration degree measuring device for a secondary battery according to claim 2, wherein the deterioration index of the secondary battery unit is estimated based on a value obtained by subtracting the calculated remaining capacity of the specific single battery. 前記劣化指標推定部は、前記特定単電池の電圧Vと、前記特定単電池の電池容量Qの変化量dQに対する前記特定単電池の電圧Vの変化量dVの割合であるdV/dQとの関係を示す微分曲線V-dV/dQにおける特徴点の電圧Vに基づいて、前記特定単電池の劣化指標を推定することを特徴とする請求項2または3に記載の二次電池の劣化度合測定装置。   The deterioration index estimation unit relates the voltage V of the specific cell, and dV / dQ, which is a ratio of the change amount dV of the voltage V of the specific cell to the change amount dQ of the battery capacity Q of the specific cell. The deterioration degree measuring device of a secondary battery according to claim 2 or 3, wherein the deterioration index of the specific cell is estimated based on a voltage V of a characteristic point in a differential curve V-dV / dQ indicating . 前記劣化指標推定部は、前記特定単電池の電圧Vと、前記特定単電池の電圧Vの変化量dVに対する前記特定単電池の電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V-dQ/dVにおける特徴点の電圧Vに基づいて、前記特定単電池の劣化指標を推定することを特徴とする請求項2または3に記載の二次電池の劣化度合測定装置。   The deterioration index estimation unit is a relationship between the voltage V of the specific cell and dQ / dV which is a ratio of the change amount dQ of the battery capacity Q of the specific cell to the change amount dV of the voltage V of the specific cell. The deterioration degree measuring device of a secondary battery according to claim 2 or 3, wherein the deterioration index of the specific cell is estimated based on a voltage V of a feature point in a differential curve V-dQ / dV indicating. .
JP2017246924A 2017-12-22 2017-12-22 Secondary battery degradation degree measuring device Pending JP2019113414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246924A JP2019113414A (en) 2017-12-22 2017-12-22 Secondary battery degradation degree measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246924A JP2019113414A (en) 2017-12-22 2017-12-22 Secondary battery degradation degree measuring device

Publications (1)

Publication Number Publication Date
JP2019113414A true JP2019113414A (en) 2019-07-11

Family

ID=67221483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246924A Pending JP2019113414A (en) 2017-12-22 2017-12-22 Secondary battery degradation degree measuring device

Country Status (1)

Country Link
JP (1) JP2019113414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191939A1 (en) * 2020-03-23 2021-09-30 Tdk株式会社 Secondary battery control device, battery pack, and secondary battery control method
WO2022180732A1 (en) * 2021-02-25 2022-09-01 三菱電機株式会社 Storage battery diagnosing system
JP7484870B2 (en) 2021-11-01 2024-05-16 トヨタ自動車株式会社 Battery pack deterioration diagnostic device and battery pack deterioration diagnostic method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191939A1 (en) * 2020-03-23 2021-09-30 Tdk株式会社 Secondary battery control device, battery pack, and secondary battery control method
WO2022180732A1 (en) * 2021-02-25 2022-09-01 三菱電機株式会社 Storage battery diagnosing system
JP7370491B2 (en) 2021-02-25 2023-10-27 三菱電機株式会社 Storage battery diagnostic device
JP7484870B2 (en) 2021-11-01 2024-05-16 トヨタ自動車株式会社 Battery pack deterioration diagnostic device and battery pack deterioration diagnostic method

Similar Documents

Publication Publication Date Title
US10955479B2 (en) Battery control device
TWI591358B (en) Cell state calculation apparatus and cell state calculation method
EP2963433B1 (en) Method and apparatus for estimating state of battery
JP7141012B2 (en) Secondary battery system
EP3171187B1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP2019045351A (en) Secondary battery system
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
EP3171186B1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP2019056595A (en) Secondary battery system
WO2011155128A1 (en) Battery capacity display apparatus and battery capacity display method
JP2014006245A (en) Internal resistance estimation device and internal resistance estimation method
JP2019070621A (en) Secondary battery system
JP2015175854A (en) Battery cell state-of-health estimation method
KR102572652B1 (en) Method for estimating state of charge of battery
JP2018205138A (en) Secondary battery system
JP2019061741A (en) Secondary battery system
JP2018205139A (en) Secondary battery system
JP6978723B2 (en) Rechargeable battery system
US10910676B2 (en) Ni—Cd battery with a state of charge indicator
JP2013108919A (en) Soc estimator
JP2020079723A (en) Secondary battery system
JP2019113414A (en) Secondary battery degradation degree measuring device
WO2019181138A1 (en) Device for measuring degree of deterioration of secondary battery
EP3988952A1 (en) Method for detecting abnormal battery cell
JP2019165553A (en) Charging device for secondary battery unit