JP2019111823A - Manufacturing method of fiber reinforced resin molded body - Google Patents

Manufacturing method of fiber reinforced resin molded body Download PDF

Info

Publication number
JP2019111823A
JP2019111823A JP2019027498A JP2019027498A JP2019111823A JP 2019111823 A JP2019111823 A JP 2019111823A JP 2019027498 A JP2019027498 A JP 2019027498A JP 2019027498 A JP2019027498 A JP 2019027498A JP 2019111823 A JP2019111823 A JP 2019111823A
Authority
JP
Japan
Prior art keywords
fiber
melting point
resin molded
point polymer
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027498A
Other languages
Japanese (ja)
Other versions
JP6783882B2 (en
Inventor
森口 芳文
Yoshifumi Moriguchi
芳文 森口
貴至 岩本
Takashi Iwamoto
貴至 岩本
雄俊 中谷
Taketoshi Nakatani
雄俊 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2019027498A priority Critical patent/JP6783882B2/en
Publication of JP2019111823A publication Critical patent/JP2019111823A/en
Application granted granted Critical
Publication of JP6783882B2 publication Critical patent/JP6783882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

To provide a fiber reinforced resin molded body excellent in mechanical properties and high in quality by blending a reinforced fiber consisting of a continuous fiber and a matrix resin more uniformly and sufficiently.SOLUTION: There is provided a manufacturing method of a fiber reinforced resin molded body, including laminating a plurality of fabrics constituted by a continuous fiber, in which the continuous fiber constituting the fabrics contains at least a composite fiber by composing 2 kinds of thermoplastic polymers having different melting points, thermally molding the laminate with a prescribed molding die to maintain a shape of the fiber with melting a low melting point polymer constituting the fabrics and not melting a high melting point polymer, size enlarging a prescribed shape, cooling and solidifying to obtain the fiber reinforced resin molded body.SELECTED DRAWING: None

Description

本発明は、繊維強化樹脂成型体を製造する方法に関するものである。   The present invention relates to a method for producing a fiber-reinforced resin molded body.

繊維強化樹脂材料は補強繊維とマトリクス樹脂で構成される機械的物性に優れた複合素材であり、船舶、航空機、機械類、自動車の部材などに利用されている。例えば補強繊維とマトリクス樹脂からなるプリプレグシートを積層し、所定の形状に賦形する方法や、補強繊維からなるプリフォームにマトリクス樹脂を含浸させる方法などにより製造される。
補強繊維としてガラス繊維、炭素繊維、アラミド繊維などの高強度・高弾性率繊維が用いることで機械的物性に優れた樹脂材料を得ることができる。補強繊維が無機繊維である場合、使用済みの製品のリサイクルが困難であり、また屈曲の多い成型品に用いる場合は補強繊維による補強効果が十分に得られないこともあるため、補強繊維として熱可塑性樹脂からなる繊維のみを用いた複合材料も検討されている。マトリクス樹脂としては熱硬化性樹脂や熱可塑性樹脂が使用されているが、後者は成形時のサイクルタイムが短く、自動車分野などで開発が進められている。マトリクス樹脂に熱可塑性樹脂を用いて、自動車内装材に好適な複合材料として、例えば、特許文献1には、繊維長5〜100mmの強化繊維と粒子形態や繊維形態の熱可塑性樹脂とを湿式分散法により抄造したシートにニードリングして加熱・圧縮によりスタンパブルシート(素板)を得る方法が開示されている。
A fiber reinforced resin material is a composite material excellent in mechanical properties composed of reinforcing fibers and a matrix resin, and is used for ships, aircraft, machinery, members of automobiles and the like. For example, it is manufactured by laminating a prepreg sheet comprising reinforcing fiber and matrix resin and shaping it into a predetermined shape, or a method of impregnating a preform comprising reinforcing fiber with a matrix resin.
By using high strength and high modulus fibers such as glass fibers, carbon fibers and aramid fibers as the reinforcing fibers, a resin material having excellent mechanical properties can be obtained. When the reinforcing fiber is an inorganic fiber, it is difficult to recycle the used product, and when it is used for a product having a large amount of bending, the reinforcing fiber may not have a sufficient reinforcing effect. Composite materials using only fibers made of a plastic resin have also been studied. As a matrix resin, a thermosetting resin or a thermoplastic resin is used, but the latter has a short cycle time during molding and is being developed in the automotive field and the like. As a composite material suitable for automobile interior materials using a thermoplastic resin as a matrix resin, for example, Patent Document 1 wet-disperses a reinforcing fiber having a fiber length of 5 to 100 mm and a thermoplastic resin in particle form or fiber form There is disclosed a method of obtaining a stampable sheet (base plate) by needling on a sheet formed by a method and heating and compressing.

マトリクス樹脂として熱可塑性樹脂を選択した場合、熱可塑性樹脂は、溶融時もある程度の粘度を有するため、溶融した熱可塑性樹脂を補強繊維間に均一かつ十分に含浸し難いが、特許文献1の技術によれば、粒子形態や繊維形態の熱可塑性樹脂と補強繊維とを湿式分散法により混合させるため、均一に混合しやすいという利点がある。   When a thermoplastic resin is selected as the matrix resin, the thermoplastic resin has a certain viscosity even during melting, so it is difficult to impregnate the molten thermoplastic resin uniformly and sufficiently between the reinforcing fibers, but the technique of Patent Document 1 According to the above, there is an advantage that the thermoplastic resin in the form of particles or fibers and the reinforcing fibers are mixed by the wet dispersion method, so that they can be uniformly mixed easily.

特開2004−217829号公報(特許請求の範囲、段落番号0001、0025〜0027)Unexamined-Japanese-Patent No. 2004-217829 (Claims, Paragraph No. 0001, 0025-0027)

補強繊維が繊維長5〜100mmの短繊維の場合は、上記した特許文献1のように混合しやすいが、補強繊維が連続繊維の場合には上記方法が適用できない。連続繊維からなる補強層とマトリクス樹脂と一体化する方法としては、例えば補強繊維からなるシートに熱可塑性樹脂からなるフィルムを積層したものを熱処理により一体化する方法、粉末状の熱可塑性樹脂を連続補強繊維シートに散布等により担持させた後に熱処理する方法、補強繊維からなるシートの表面に熱可塑性樹脂をコーティングした後に熱処理する方法などが挙げられる。本発明は、より均一かつ十分に連続繊維からなる補強繊維間にマトリクス樹脂を配合させ、機械的特性に優れた品質の高い繊維強化樹脂成型体を提供することを課題とする。 When the reinforcing fiber is a short fiber having a fiber length of 5 to 100 mm, mixing is easy as in Patent Document 1 described above, but when the reinforcing fiber is a continuous fiber, the above method can not be applied. As a method of integrating a reinforcing layer made of continuous fibers and a matrix resin, for example, a method of integrating a laminate of a film made of a thermoplastic resin and a sheet made of reinforcing fibers by heat treatment, continuous powdery thermoplastic resin Examples of the method include a method of heat treatment after supporting the reinforcing fiber sheet by spraying or the like, a method of heat treating after coating a thermoplastic resin on the surface of the sheet made of the reinforcing fibers, and the like. An object of the present invention is to provide a high-quality fiber-reinforced resin molded article excellent in mechanical properties by blending a matrix resin between reinforcing fibers composed of continuous fibers more uniformly and sufficiently.

本発明は、前記課題を達成するものであり、以下を要旨とする。   The present invention achieves the above-mentioned subject, and makes the following a gist.

すなわち、本発明は、連続繊維によって構成される織布であって、織布を構成する連続繊維が、融点の異なる2種の熱可塑性重合体が複合された複合繊維を少なくとも含むものであり、該織布を複数枚積層し、該積層体を、所定の成型金型にて、熱成型することにより、織布を構成する低融点重合体を溶かし、高融点重合体は溶かさずに繊維の形状を維持させ、所定の形状を賦形し、冷却固化して、繊維強化樹脂成型体を得ることを特徴とする繊維強化樹脂成型体の製造方法を要旨とする。   That is, the present invention is a woven fabric constituted by continuous fibers, and the continuous fibers constituting the woven fabric at least include a composite fiber in which two types of thermoplastic polymers having different melting points are complexed, A plurality of the woven fabrics are laminated, and the laminate is thermoformed with a predetermined molding die to dissolve the low melting point polymer constituting the woven fabric, and to melt the high melting point polymer without melting. A method of producing a fiber-reinforced resin molded article is characterized in that the shape is maintained, a predetermined shape is shaped, and cooling and solidification are performed to obtain a fiber-reinforced resin molded article.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における繊維強化樹脂成型体を得るためには、連続繊維によって構成される織布を複数枚積層する。織布は、少なくとも2種の融点の異なる熱可塑性重合体を含んでいる。融点の異なる2種の熱可塑性重合体のうち、低融点の重合体は、樹脂成型体のマトリックス樹脂となり、高融点の重合体が繊維形態を維持して樹脂成型体における補強繊維となる。なお、本発明において、明確な融点を有さない非晶性の重合体については軟化点を融点とみなす。   In order to obtain the fiber-reinforced resin molded body in the present invention, a plurality of woven fabrics composed of continuous fibers are laminated. The woven fabric comprises at least two different melting point thermoplastic polymers. Of the two types of thermoplastic polymers having different melting points, the low melting point polymer becomes the matrix resin of the resin molded body, and the high melting point polymer maintains the fiber form and becomes the reinforcing fiber in the resin molded body. In the present invention, the softening point is regarded as the melting point for an amorphous polymer which does not have a definite melting point.


繊維強化樹脂成型体において、補強繊維として、連続繊維によって構成される織布を選択している理由は、機械的強度と寸法安定性 に優れることにある。例えば、不織布は構成繊維がランダムに配置されたものであるが、このような不織布に比べ、織布は、繊維が均一に配置され、物理特性の方向性も制御し易い。

The reason why a woven fabric composed of continuous fibers is selected as a reinforcing fiber in a fiber-reinforced resin molded product is that it is excellent in mechanical strength and dimensional stability. For example, non-woven fabrics are those in which constituent fibers are randomly arranged, but compared to such non-woven fabrics, fibers are uniformly arranged in a woven fabric, and the directionality of physical properties can be easily controlled.

本発明における織布は、少なくとも2種の融点の異なる熱可塑性重合体を含む。例えば、織布を構成する連続繊維が、高融点重合体と低融点重合体とからなる複合繊維によって構成される。例えば、芯部が高融点重合体、鞘部が低融点重合体からなる芯鞘型複合繊維、高融点重合体と低融点重合体とが貼り合わされてなるサイドバイサイド型複合繊維が挙げられる。また、織布を構成する連続繊維として、高融点重合体からなる繊維と低融点重合体からなる繊維とが所望の比率で混繊されたマルチフィラメント糸を用いることが挙げられる。さらには、高融点重合体からなるフィラメントまたはマルチフィラメント糸と、低融点重合体からなるフィラメントまたはマルチフィラメント糸とを用い、織物を製織する際に、適宜の比率でそれぞれの糸を配列させて織布としたものが挙げられる。なお、連続繊維には必要に応じて撚糸や仮撚り加工、インターレース加工、タスラン加工などを施してもよく、また、織布を得る際に紡績糸やスリットヤーンも併用可能である。   The woven fabric in the present invention comprises at least two different melting point thermoplastic polymers. For example, the continuous fiber which comprises a woven fabric is comprised by the composite fiber which consists of high melting polymer and low melting polymer. For example, a core-sheath type composite fiber in which the core part is a high melting point polymer and the sheath part is a low melting point polymer, and a side-by-side type composite fiber in which a high melting point polymer and a low melting point polymer are laminated. Moreover, using the multifilament yarn with which the fiber which consists of a high melting point polymer and the fiber which consists of a low melting point polymer are mixed by the desired ratio as a continuous fiber which comprises a woven fabric is mentioned. Furthermore, using a filament or multifilament yarn comprising a high melting point polymer and a filament or multifilament yarn comprising a low melting point polymer, when weaving a fabric, the respective yarns are arranged in an appropriate ratio to perform weaving. What is clothed is mentioned. The continuous fibers may be subjected to twisting, false twisting, interlacing, taslan processing, etc. as necessary, and when obtaining a woven fabric, spun yarn or slit yarn may be used in combination.


高融点重合体と低融点重合体との組み合わせとしては、具体的には、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリエチレンテレフタレート/ポリアミド、ポリエチレンテレフタレート/低融点ポリエステル共重合体等が挙げられる。

Specific examples of the combination of the high melting point polymer and the low melting point polymer include polyethylene terephthalate / polypropylene, polyethylene terephthalate / polyethylene, polyethylene terephthalate / polyamide, polyethylene terephthalate / low melting point polyester copolymer, and the like.

織布の織組織は、特に限定されないが、平織、綾織、朱子織や、多重織を用いることもできる。   The woven structure of the woven fabric is not particularly limited, but plain weave, twill weave, satin weave, and multiple weave can also be used.

このような織布が複数枚積層され、織布を構成する熱可塑性重合体のうち、最も融点の低い重合体が溶融または軟化することによって、積層された織布同士は一体化する。   A plurality of such woven fabrics are laminated, and the polymer having the lowest melting point of the thermoplastic polymers constituting the woven fabric is melted or softened, whereby the laminated woven fabrics are integrated.


高融点重合体と低融点重合体との質量比は、高融点重合体:低融点重合体=3〜7;7〜3であるのが好ましい。ここで、高融点重合体とは、繊維強化樹脂成型体とした際に補強繊維となるものであり、一方、低融点重合体とは、繊維強化樹脂成型体とした際にマトリックス樹脂となるものである。高融点重合体の量がこの比率よりも少ないと、補強繊維の比率が少なくなるため、耐衝撃性や曲げ強度が低下する傾向となる。一方、高融点重合体の量がこの比率よりも多いと、マトリックス樹脂となる低融点重合体の比率が少なくなり、溶融させて成型体を得るにあたりマトリックス樹脂の量が少なく所望の形状の成型体になりにくく、成型時に溶融させた樹脂を追加することを要する。

The mass ratio of the high melting point polymer to the low melting point polymer is preferably high melting point polymer: low melting point polymer = 3 to 7; 7 to 3. Here, the high melting point polymer is a reinforcing fiber when forming a fiber reinforced resin molded body, while the low melting point polymer is a matrix resin when forming a fiber reinforced resin molded body It is. If the amount of the high melting point polymer is less than this ratio, the ratio of the reinforcing fibers decreases, so that the impact resistance and the bending strength tend to decrease. On the other hand, when the amount of the high melting point polymer is larger than this ratio, the proportion of the low melting point polymer to be the matrix resin decreases, and the amount of the matrix resin is small to obtain a molded body by melting. It is difficult to become difficult and it is necessary to add the melted resin at the time of molding.

本発明においては、複数枚積層した積層体を用いて、織布間の熱接着を予め行わず、一気に織布間を一体化すると同時に熱成型を行うことにより繊維強化樹脂成型体を得る。すなわち、上記した連続繊維によって構成される織布であって、該織布が融点の異なる熱可塑性重合体を少なくとも2種含むことにより構成されたものであり、該織布を複数枚積層し、該積層体を、所定の成型金型にて熱成型して、織布を構成する低融点重合体(マトリックス樹脂となるもの)を溶かし、高融点重合体は溶かさずに繊維の形状を維持させ、所定の形状を賦形し、冷却固化して、繊維強化樹脂成型体を得る。積層体は、2枚以上の織布を積層したものとし、積層枚数の上限は限定しないが、成型体の要求性能に応じて適宜選択すればよいが、10枚程度とする。熱成型においては、上記と同様で、積層体に予め熱を加えて次いで金型で成型する方法、金型内で加熱して熱成型する方法、予め熱を加えてさらに金型内でも加熱により熱成型する方法のいずれでもよい。熱成型においては、高融点重合体は溶けずに繊維形態を維持するため良好に樹脂成型体の補強繊維としての役割を担うものとなる。   In the present invention, a fiber reinforced resin molded product is obtained by using a laminate of a plurality of laminated layers without thermally bonding between the woven fabrics in advance, and at the same time integrating the woven fabrics together and performing thermoforming. That is, it is a woven fabric constituted by the above-mentioned continuous fibers, wherein the woven fabric is constituted by including at least two kinds of thermoplastic polymers different in melting point, and a plurality of the woven fabrics are laminated; The laminate is thermoformed in a predetermined molding die to dissolve the low melting point polymer (which becomes the matrix resin) constituting the woven fabric, and maintain the shape of the fiber without melting the high melting point polymer. , Forming a predetermined shape, and cooling and solidifying to obtain a fiber-reinforced resin molded body. The laminated body is formed by laminating two or more woven fabrics, and the upper limit of the number of laminated sheets is not limited, but may be appropriately selected according to the required performance of the molded body, but is about 10 sheets. In the case of heat molding, as described above, a method in which heat is applied to the laminate in advance and then molding in a mold, a method in which heating is performed in a mold for thermal molding, heat is applied in advance, and heating is also performed in a mold Any method of thermoforming may be used. In the heat molding, the high melting point polymer does not melt, and in order to maintain the fiber form, the resin molded body plays a role as a reinforcing fiber.

本発明によれば、繊維強化樹脂成型体を得るための材料として、高融点重合体と低融点重合体を含む織物を用いており、成型体とする際に、高融点重合体が補強繊維となり、低融点重合体がマトリックス樹脂となるものであり、材料の段階より、高融点重合体と低融点重合体とが繊維の形態として均一に存在しているため、マトリックス樹脂と補強繊維とが均一に存在する成型体を得ることができる。   According to the present invention, a fabric containing a high melting point polymer and a low melting point polymer is used as a material for obtaining a fiber-reinforced resin molded body, and when forming a molded body, the high melting point polymer becomes a reinforcing fiber The low melting point polymer is to be a matrix resin, and the high melting point polymer and the low melting point polymer are uniformly present in the form of fibers from the stage of the material, so the matrix resin and reinforcing fibers are uniform. It is possible to obtain a molded body present in

次に、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

実施例1
芯にポリエチレンテレフタレート(融点250℃)、鞘にエチレンテレフタレートを主たる繰り返し単位とするポリエステル共重合体(融点160℃)が配された芯鞘複合フィラメントからなる1670dtex/192fのマルチフィラメント糸(A)を準備した。芯鞘複合フィラメントの芯鞘比は、体積比で芯:鞘=2.7:1であった。
Example 1
1670 dtex / 192f multifilament yarn (A) comprising a core-sheath composite filament in which polyethylene terephthalate (melting point 250 ° C.) is disposed in the core and polyester copolymer (melting point 160 ° C.) comprising ethylene terephthalate as the main repeating unit in the sheath Got ready. The core-sheath ratio of the core-sheath composite filaments was core: sheath = 2.7: 1 in volume ratio.

前記芯鞘複合フィラメントからなるマルチフィラメント糸を経糸および緯糸に配して平織組織の織布を作製した。織密度は、経緯ともに25本/インチとした。   A multifilament yarn consisting of the core-sheath composite filaments was placed on the warp and weft to produce a plain weave woven fabric. The weave density was 25 yarns / inch for both reasons.

上記作製した平織組織の織布を3枚重ねて積層体を得、この積層体を、180℃の雰囲気中で加熱した後、雄型と雌型とからなる平板金型にて成型し、平板状の補強繊維成型体を得た。
Three laminated woven fabrics of the above-mentioned plain weave structure are stacked to obtain a laminate, and this laminate is heated in an atmosphere of 180 ° C., and then molded with a flat plate mold consisting of a male mold and a female mold Was obtained.

Claims (1)

連続繊維によって構成される織布であって、織布を構成する連続繊維が、融点の異なる2種の熱可塑性重合体が複合された複合繊維を少なくとも含むものであり、該織布を複数枚積層し、該積層体を、所定の成型金型にて、熱成型することにより、織布を構成する低融点重合体を溶かし、高融点重合体は溶かさずに繊維の形状を維持させ、所定の形状を賦形し、冷却固化して、繊維強化樹脂成型体を得ることを特徴とする繊維強化樹脂成型体の製造方法。
A woven fabric constituted by continuous fibers, wherein the continuous fibers constituting the woven fabric at least include a composite fiber in which two types of thermoplastic polymers having different melting points are complexed, and a plurality of the woven fabrics are used. The low melting point polymer constituting the woven fabric is melted by thermoforming the laminated body with a predetermined molding die, maintaining the shape of the fiber without melting the high melting point polymer, and A method for producing a fiber-reinforced resin molded article, comprising the steps of: shaping and cooling to solidify the fiber-reinforced resin molded article.
JP2019027498A 2019-02-19 2019-02-19 Manufacturing method of fiber reinforced resin molded body Active JP6783882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027498A JP6783882B2 (en) 2019-02-19 2019-02-19 Manufacturing method of fiber reinforced resin molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027498A JP6783882B2 (en) 2019-02-19 2019-02-19 Manufacturing method of fiber reinforced resin molded body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015031838A Division JP6685647B2 (en) 2015-02-20 2015-02-20 Method for producing plate for obtaining fiber-reinforced resin molding

Publications (2)

Publication Number Publication Date
JP2019111823A true JP2019111823A (en) 2019-07-11
JP6783882B2 JP6783882B2 (en) 2020-11-11

Family

ID=67222034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027498A Active JP6783882B2 (en) 2019-02-19 2019-02-19 Manufacturing method of fiber reinforced resin molded body

Country Status (1)

Country Link
JP (1) JP6783882B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197312A (en) * 1982-05-07 1983-11-17 Toray Ind Inc Fiber and fiber-reinforced elastic body and preparation thereof
JPS63270834A (en) * 1987-04-28 1988-11-08 東洋紡績株式会社 Composite molding sheet and its production
JP2005052987A (en) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd Fiber reinforced thermoplastic resin composite material, its manufacturing method and molded product using the composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197312A (en) * 1982-05-07 1983-11-17 Toray Ind Inc Fiber and fiber-reinforced elastic body and preparation thereof
JPS63270834A (en) * 1987-04-28 1988-11-08 東洋紡績株式会社 Composite molding sheet and its production
JP2005052987A (en) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd Fiber reinforced thermoplastic resin composite material, its manufacturing method and molded product using the composite material

Also Published As

Publication number Publication date
JP6783882B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
JP5583277B2 (en) Manufacturing method of molded body by low pressure molding
TWI661922B (en) Molding mold and compression molding method
US5380477A (en) Process of making fiber reinforced laminates
JP5658176B2 (en) Fiber-reinforced resin sheet and fiber-reinforced resin molded body using the same
CN109715385B (en) Laminated substrate and method for producing same
JP6197968B1 (en) Manufacturing method of structure
JP5749343B2 (en) Method for producing composite molded body having undercut portion
KR100230025B1 (en) Fiber reinforced porous sheets
WO2019188873A1 (en) Press-molded article manufacturing method
TW201834837A (en) Fiber-reinforced resin molding material
TW201843038A (en) Multilayer composite and production method thereof
US20170159212A1 (en) Fiber-reinforced composite material and method for producing the same
JPS63270834A (en) Composite molding sheet and its production
JP6783882B2 (en) Manufacturing method of fiber reinforced resin molded body
KR20180079729A (en) Quasi-Isotropic Product using the fiber reinforced composite material and manufacturing method therof
JP5547412B2 (en) Planar composite
JP7082966B2 (en) Fiber-reinforced foamed particle molded product and its manufacturing method
EP3543282B1 (en) Method for manufacturing molded article
JP6783883B2 (en) Base plate for obtaining fiber reinforced plastic molded body
JP6685647B2 (en) Method for producing plate for obtaining fiber-reinforced resin molding
WO2021106649A1 (en) Fiber-reinforced composite material and sandwich structure
JP2581107B2 (en) Knitted fabric for composite molding
WO2021106651A1 (en) Prepreg, preform, fiber-reinforced composite material, and method for producing said prepreg, said preform or said fiber-reinforced composite material
JP6148281B2 (en) Molding method of fiber reinforced molded product
JPH01104851A (en) Composite molding sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R150 Certificate of patent or registration of utility model

Ref document number: 6783882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150