JP2019109053A - Rotation angle detector - Google Patents

Rotation angle detector Download PDF

Info

Publication number
JP2019109053A
JP2019109053A JP2017240179A JP2017240179A JP2019109053A JP 2019109053 A JP2019109053 A JP 2019109053A JP 2017240179 A JP2017240179 A JP 2017240179A JP 2017240179 A JP2017240179 A JP 2017240179A JP 2019109053 A JP2019109053 A JP 2019109053A
Authority
JP
Japan
Prior art keywords
magnetic
circumferential direction
flux density
radial direction
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017240179A
Other languages
Japanese (ja)
Other versions
JP6485822B1 (en
Inventor
立男 西村
Tatsuo Nishimura
立男 西村
義浩 深山
Yoshihiro Miyama
義浩 深山
秀哲 有田
Hideaki Arita
秀哲 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017240179A priority Critical patent/JP6485822B1/en
Priority to DE102018213788.9A priority patent/DE102018213788A1/en
Application granted granted Critical
Publication of JP6485822B1 publication Critical patent/JP6485822B1/en
Publication of JP2019109053A publication Critical patent/JP2019109053A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/40Position sensors comprising arrangements for concentrating or redirecting magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/77Specific profiles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

To provide a rotation angle detector capable of suppressing an increase in weight and improving detection accuracy.SOLUTION: When an angle half of the angle between a center O of a rotor 1 and both ends of a bias magnetic field generator 21 in the circumferential direction is defined as (a), an angle between the center O of the rotor 1 and both ends of the gap between the bias magnetic field generator 21 and a magnetic material circumferential direction outer portion 242 in the circumferential direction is defined as (b), and an angle between the center O of the rotor 1 and both ends of the magnetic material circumferential direction outer portion 242 in the circumferential direction is defined as (c), a+b>180/X and a+b+c<360/X are satisfied.SELECTED DRAWING: Figure 2

Description

この発明は、磁界強度の変化を利用した回転角度検出装置に関する。   The present invention relates to a rotation angle detection device using a change in magnetic field strength.

従来、外周面に磁性体から構成された凹凸部を有する回転子と、凹凸部に対向して設けられた固定子とを備えた回転角度検出装置が知られている。固定子は、回転子の周方向に並べられた複数の磁束密度検出部を有している。また、固定子は、径方向についてそれぞれの磁束密度検出部よりも外側に設けられ、径方向についてそれぞれの磁束密度検出部に重ねられて周方向に延びて形成された磁石を有している。また、固定子は、周方向に磁石を挟む一対の磁性体部材を有している(例えば、特許文献1参照)。   Conventionally, there has been known a rotation angle detection device including a rotor having an uneven portion made of a magnetic material on an outer peripheral surface, and a stator provided opposite to the uneven portion. The stator has a plurality of magnetic flux density detection units arranged in the circumferential direction of the rotor. In addition, the stator is provided outside the respective magnetic flux density detection portions in the radial direction, and has magnets formed so as to be superimposed on the respective magnetic flux density detection portions in the radial direction and extend in the circumferential direction. In addition, the stator has a pair of magnetic members that sandwich a magnet in the circumferential direction (see, for example, Patent Document 1).

実開平4−94581号公報Japanese Utility Model Application Publication No. 4-94581

しかしながら、回転子の周方向についての磁性体部材の寸法が小さい場合には、磁性体部材を通らない漏れ磁束が多くなる。これにより、複数の磁束密度検出部のそれぞれにおいて検出される磁束密度の振幅のばらつきが大きくなる。その結果、回転角度検出装置の検出精度が低くなる。回転子の周方向についての磁性体部材の寸法を大きくした場合には、回転角度検出装置の重量が増加するという課題があった。   However, when the dimension of the magnetic member in the circumferential direction of the rotor is small, the leakage flux which does not pass through the magnetic member increases. Thereby, the variation in the amplitude of the magnetic flux density detected in each of the plurality of magnetic flux density detection units becomes large. As a result, the detection accuracy of the rotation angle detection device is lowered. When the dimension of the magnetic member in the circumferential direction of the rotor is increased, there is a problem that the weight of the rotation angle detection device increases.

この発明は、上述のような課題を解決するためになされたものであり、その目的は、重量の増加を抑制するとともに検出精度を向上させることができる回転角度検出装置を提供するものである。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a rotation angle detection device capable of suppressing an increase in weight and improving detection accuracy.

この発明に係る回転角度検出装置は、外周面に磁性体から構成された凹凸部を有する回転子と、凹凸部に対向して設けられ、バイアス磁界発生部および複数の磁束密度検出部を有する固定子と、回転子の径方向についてバイアス磁界発生部の外側に設けられた磁性体径方向外側部および回転子の周方向についてバイアス磁界発生部を挟む一対の磁性体周方向外側部を有する磁性体部材とを備え、凹凸部は、Xを1以上の整数とした場合に、周方向について機械角360度に対してX周期分変化するように形成され、複数の磁束密度検出部は、凹凸部に対して隙間を空けて対向し、周方向に沿って等間隔で凹凸部の1周期の間に設けられ、バイアス磁界発生部は、径方向についてそれぞれの磁束密度検出部よりも外側に設けられ、径方向についてそれぞれの磁束密度検出部に重ねられて周方向に延びて形成され、磁性体周方向外側部は、バイアス磁界発生部よりも径方向について内側に設けられ、周方向についてのバイアス磁界発生部の両端部と回転子の中心との間の角度の半分の角度をaとし、周方向についてのバイアス磁界発生部および磁性体周方向外側部の間の隙間の両端部と回転子の中心との間の角度をbとし、周方向についての磁性体周方向外側部の両端部と回転子の中心との間の角度をcとした場合に、a+b>180/X、およびa+b+c<360/Xを満たす。   The rotation angle detection device according to the present invention includes a rotor having a concavo-convex portion formed of a magnetic material on an outer peripheral surface, and a fixing provided opposite to the concavo-convex portion and having a bias magnetic field generation portion and a plurality of magnetic flux density detection portions. A magnetic body having a magnetic material radial direction outer portion provided outside the bias magnetic field generating portion in the radial direction of the rotor and a pair of magnetic body circumferential outer portions sandwiching the bias magnetic field generating portion in the circumferential direction of the rotor And the concavo-convex portion is formed to change by an X cycle with respect to a mechanical angle of 360 degrees in the circumferential direction when X is an integer of 1 or more, and the plurality of magnetic flux density detection portions The magnetic flux density detection portion is provided on the outer side of the respective magnetic flux density detection portions in the radial direction. , In the radial direction The magnetic flux density detection portion is overlapped with and formed in the circumferential direction, and the magnetic material circumferential direction outer side portion is provided radially inward of the bias magnetic field generation portion, and both ends of the bias magnetic field generation portion in the circumferential direction A half angle of the angle between the part and the center of the rotor is a, and between the both ends of the gap between the bias magnetic field generating part and the magnetic material circumferential direction outer part in the circumferential direction and the center of the rotor Assuming that the angle is b and the angle between the both ends of the outer circumferential portion of the magnetic material in the circumferential direction and the center of the rotor is c, a + b> 180 / X and a + b + c <360 / X are satisfied.

この発明に係る回転角度検出装置によれば、回転子の周方向についての磁性体周方向外側部の寸法の増加を抑制するとともに複数の磁束密度検出部のそれぞれにおいて検出される磁束密度の振幅のばらつきを低減させることができる。これにより、回転角度検出装置の重量の増加を抑制するとともに回転角度検出装置の検出精度を向上させることができる。   According to the rotation angle detection device according to the present invention, it is possible to suppress an increase in the size of the outer peripheral portion of the magnetic body in the circumferential direction of the rotor and to suppress the amplitude of the magnetic flux density detected in each of the plurality of magnetic flux density detectors. Variations can be reduced. Thus, it is possible to suppress an increase in the weight of the rotation angle detection device and to improve the detection accuracy of the rotation angle detection device.

この発明の実施の形態1に係る回転角度検出装置を示す平断面図である。It is a plane sectional view showing the rotation angle detecting device concerning Embodiment 1 of this invention. 図1の回転角度検出装置のA部を示す拡大図である。It is an enlarged view which shows the A section of the rotation angle detection apparatus of FIG. 図2の固定子を示すブロック図である。It is a block diagram which shows the stator of FIG. この発明の実施の形態2に係る回転角度検出装置の要部を示す平断面図である。It is a plane sectional view which shows the principal part of the rotation angle detection apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る回転角度検出装置の要部を示す平断面図である。It is a plane sectional view which shows the principal part of the rotation angle detection apparatus which concerns on Embodiment 3 of this invention. α>β、γ>0の場合の回転角度検出装置の要部を示す平断面図である。It is a plane sectional view showing an important section of a rotation angle detecting device in the case of alpha> beta and gamma> 0. 図6の3個の磁束密度検出部が検出する磁束密度を示すグラフである。It is a graph which shows the magnetic flux density which three magnetic flux density detection parts of FIG. 6 detect. 図6の3個の磁束密度検出部が検出する磁束密度の振幅の比を示す表である。It is a table | surface which shows the ratio of the amplitude of the magnetic flux density which three magnetic flux density detection parts of FIG. 6 detect. α<β、γ<0の場合の回転角度検出装置の要部を示す平断面図である。It is a plane sectional view showing an important section of a rotation angle detecting device in the case of alpha <beta, gamma <0. 図9の3個の磁束密度検出部が検出する磁束密度を示すグラフである。It is a graph which shows the magnetic flux density which three magnetic flux density detection parts of FIG. 9 detect. 図9の3個の磁束密度検出部が検出する磁束密度の振幅の比を示す表である。It is a table | surface which shows the ratio of the amplitude of the magnetic flux density which three magnetic flux density detection parts of FIG. 9 detect. α=βの場合の回転角度検出装置の要部を示す平断面図である。It is a plane sectional view showing an important section of a rotation angle detecting device in the case of alpha = beta. 図12の3個の磁束密度検出部が検出する磁束密度を示すグラフである。It is a graph which shows the magnetic flux density which three magnetic flux density detection parts of FIG. 12 detect. 図12の3個の磁束密度検出部が検出する磁束密度の振幅の比を示す表である。It is a table | surface which shows the ratio of the amplitude of the magnetic flux density which three magnetic flux density detection parts of FIG. 12 detect. この発明の実施の形態4に係る回転角度検出装置の要部を示す平断面図である。It is a plane sectional view which shows the principal part of the rotation angle detection apparatus which concerns on Embodiment 4 of this invention. 図15のB部を示す拡大図である。It is an enlarged view which shows the B section of FIG. この発明の実施の形態5に係る回転角度検出装置の要部を示す平断面図である。It is a plane sectional view which shows the principal part of the rotation angle detection apparatus which concerns on Embodiment 5 of this invention. 図17のC部を示す拡大図である。It is an enlarged view which shows the C section of FIG. 図17のD部を示す拡大図である。It is an enlarged view which shows the D section of FIG. この発明の実施の形態6に係る回転角度検出装置の要部を示す平断面図である。It is a plane sectional view which shows the principal part of the rotation angle detection apparatus which concerns on Embodiment 6 of this invention.

実施の形態1.
図1は、この発明の実施の形態1に係る回転角度検出装置を示す平断面図、図2は、図1の回転角度検出装置のA部を示す拡大図である。実施の形態1に係る回転角度検出装置は、回転子1と、回転子1の径方向について回転子1の外側に設けられ、回転子1の周方向に延びる固定子2とを備えている。以下、径方向とは、回転子1についての径方向とし、周方向とは、回転子1についての周方向とし、軸方向とは、回転子1についての軸方向とする。
Embodiment 1
FIG. 1 is a plan sectional view showing a rotation angle detection device according to a first embodiment of the present invention, and FIG. 2 is an enlarged view showing a portion A of the rotation angle detection device of FIG. The rotation angle detection device according to the first embodiment includes a rotor 1 and a stator 2 provided outside the rotor 1 in the radial direction of the rotor 1 and extending in the circumferential direction of the rotor 1. Hereinafter, the radial direction refers to the radial direction of the rotor 1, the circumferential direction to the circumferential direction of the rotor 1, and the axial direction to the axial direction of the rotor 1.

回転子1は、円柱形状の回転軸11と、径方向について回転軸11の外側に設けられた凹凸部12とを有している。凹凸部12は、回転子1の外周面に配置されている。凹凸部12は、磁性体から構成されている。凹凸部12は、Xを1以上の整数とした場合に、周方向についての機械角360度に対してX周期分変化するように形成されている。図1では、X=12の場合の凹凸部12を示している。   The rotor 1 has a cylindrical rotary shaft 11 and a concavo-convex portion 12 provided on the outer side of the rotary shaft 11 in the radial direction. The uneven portion 12 is disposed on the outer peripheral surface of the rotor 1. The uneven portion 12 is made of a magnetic material. The uneven portion 12 is formed to change by an X cycle with respect to a mechanical angle of 360 degrees in the circumferential direction when X is an integer of 1 or more. FIG. 1 shows the uneven portion 12 in the case of X = 12.

固定子2は、径方向について凹凸部12に対向して設けられている。固定子2は、1個のバイアス磁界発生部21と、複数の磁束密度検出部22とを有している。バイアス磁界発生部21は、径方向についてそれぞれの磁束密度検出部22よりも外側に設けられている。また、バイアス磁界発生部21は、径方向についてそれぞれの磁束密度検出部22に重ねられて周方向に延びて形成されている。複数の磁束密度検出部22は、凹凸部12に対して隙間を空けて対向して配置されている。また、複数の磁束密度検出部22は、周方向に沿って等間隔で凹凸部12の1周期の間に設けられている。図2では、磁束密度検出部22の数が3個である場合の固定子2を示している。   The stator 2 is provided to face the uneven portion 12 in the radial direction. The stator 2 has one bias magnetic field generation unit 21 and a plurality of magnetic flux density detection units 22. The bias magnetic field generation unit 21 is provided outside the respective magnetic flux density detection units 22 in the radial direction. In addition, the bias magnetic field generation unit 21 is formed so as to overlap the respective magnetic flux density detection units 22 in the radial direction and extend in the circumferential direction. The plurality of magnetic flux density detection units 22 are disposed to face the uneven portion 12 with a gap therebetween. The plurality of magnetic flux density detection units 22 are provided at regular intervals along the circumferential direction during one cycle of the uneven portion 12. FIG. 2 shows the stator 2 in the case where the number of the magnetic flux density detection units 22 is three.

図3は、図2の固定子2を示すブロック図である。固定子2は、複数の磁束密度検出部22で得られた複数の検出信号のそれぞれを用いて回転子1の回転角度を算出する回転角度演算処理部23をさらに有している。   FIG. 3 is a block diagram showing the stator 2 of FIG. The stator 2 further includes a rotation angle calculation processing unit 23 that calculates the rotation angle of the rotor 1 using each of the plurality of detection signals obtained by the plurality of magnetic flux density detection units 22.

図1および図2に示すように、固定子2は、磁性体部材24をさらに有している。磁性体部材24は、磁性体から構成されている。磁性体部材24は、径方向についてバイアス磁界発生部21の外側に設けられた磁性体径方向外側部241を有している。磁性体径方向外側部241は、径方向についてバイアス磁界発生部21に重ねられて配置されている。磁性体径方向外側部241は、周方向に延びて配置されている。磁性体径方向外側部241は、周方向全領域に渡って、径方向についての寸法が一定となるように形成されている。磁性体径方向外側部241の周方向両端部は、バイアス磁界発生部21の周方向両端部よりも周方向について外側に突出している。   As shown in FIGS. 1 and 2, the stator 2 further includes a magnetic member 24. The magnetic member 24 is made of a magnetic material. The magnetic member 24 has a magnetic material radial direction outer portion 241 provided on the outer side of the bias magnetic field generating portion 21 in the radial direction. The magnetic material radial direction outer side portion 241 is disposed so as to overlap the bias magnetic field generating portion 21 in the radial direction. The magnetic material radial direction outer side portion 241 is disposed to extend in the circumferential direction. The magnetic material radial direction outer portion 241 is formed so that the dimension in the radial direction is constant over the entire circumferential direction. Both circumferential end portions of the magnetic material radial direction outer side portion 241 protrude outward in the circumferential direction more than circumferential end portions of the bias magnetic field generating portion 21.

また、磁性体部材24は、周方向についてバイアス磁界発生部21を挟む一対の磁性体周方向外側部242を有している。径方向についての磁性体周方向外側部242の内側端部は、径方向についてのバイアス磁界発生部21の内側端部よりも径方向について内側に設けられている。一対の磁性体周方向外側部242は、周方向についての磁性体径方向外側部241の両端部に接続されている。   In addition, the magnetic member 24 has a pair of magnetic outer circumferential portions 242 sandwiching the bias magnetic field generating portion 21 in the circumferential direction. The inner end portion of the magnetic body circumferential direction outer side portion 242 in the radial direction is provided on the inner side in the radial direction from the inner end portion of the bias magnetic field generating portion 21 in the radial direction. The pair of magnetic body circumferential direction outer side portions 242 is connected to both end portions of the magnetic body radial direction outer side portion 241 in the circumferential direction.

径方向についての磁性体径方向外側部241の外側面と、径方向についての磁性体周方向外側部242の外側面とは、回転子1の軸方向に視た場合に、回転子1の中心Oを中心とした同一円上に配置されている。   The outer surface of the magnetic material radial direction outer portion 241 in the radial direction and the outer surface of the magnetic material circumferential direction outer portion 242 in the radial direction are the centers of the rotor 1 when viewed in the axial direction of the rotor 1 It is arranged on the same circle centering on O.

周方向についてのバイアス磁界発生部21の両端部と回転子1の中心Oとの間の角度の半分の角度をaとする。周方向についてのバイアス磁界発生部21および磁性体周方向外側部242の間の隙間の両端部と回転子1の中心Oとの間の角度をbとする。周方向についての磁性体周方向外側部242の両端部と回転子1の中心Oとの間の角度をcとする。この場合に、a+b>180/X、およびa+b+c<360/Xを満たすように、固定子2が形成されている。   An angle half of the angle between the both ends of the bias magnetic field generating unit 21 and the center O of the rotor 1 in the circumferential direction is a. An angle between the both ends of the gap between the bias magnetic field generating unit 21 and the magnetic material circumferential direction outer portion 242 in the circumferential direction and the center O of the rotor 1 is b. An angle between both ends of the magnetic material circumferential direction outer side portion 242 in the circumferential direction and the center O of the rotor 1 is c. In this case, the stator 2 is formed to satisfy a + b> 180 / X and a + b + c <360 / X.

回転角度検出装置の検出精度を向上させるためには、3個の磁束密度検出部22のそれぞれで検出される磁束密度の振幅を等しくする必要がある。この条件を満たすためには、従来の回転角度検出装置では、磁性体周方向外側部は、周方向について中央側に配置された磁束密度検出部22から周方向について180度/Xだけ外側の位置から少なくとも360度/Xだけ外側の位置までに渡って配置される必要があった。   In order to improve the detection accuracy of the rotation angle detection device, it is necessary to equalize the amplitudes of the magnetic flux density detected by each of the three magnetic flux density detection units 22. In order to satisfy this condition, in the conventional rotation angle detection device, the magnetic material circumferential direction outer side portion is positioned 180 degrees / X outside in the circumferential direction from the magnetic flux density detection unit 22 disposed on the center side in the circumferential direction. It had to be placed across from at least 360 degrees / X to the outside position.

実施の形態1に係る回転角度検出装置では、周方向についての磁性体周方向外側部242の外側端部である磁性体突部外端243の位置は、周方向について中央側に配置された磁束密度検出部22から周方向について360度/Xだけ外側の位置よりも周方向内側となる。また、実施の形態1に係る回転角度検出装置では、周方向についての磁性体周方向外側部242の内側端部である磁性体突部内端244の位置は、周方向について中央側に配置された磁束密度検出部22から周方向について180度/Xだけ外側の位置よりも周方向外側となる。したがって、周方向についての磁性体周方向外側部242の寸法の増大が抑制される。その結果、回転角度検出装置の重量の増加が抑制される。   In the rotation angle detection device according to the first embodiment, the position of the magnetic material protrusion outer end 243 which is the outer end portion of the magnetic material circumferential direction outer side portion 242 in the circumferential direction is the magnetic flux disposed on the center side in the circumferential direction. The position from the density detection unit 22 in the circumferential direction is 360 degrees / X outside the position in the circumferential direction. Further, in the rotation angle detection device according to the first embodiment, the position of the inner end 244 of the magnetic material protrusion, which is the inner end of the magnetic material circumferential direction outer side portion 242 in the circumferential direction, is located on the center side in the circumferential direction. The magnetic flux density detection unit 22 is located on the outer side in the circumferential direction than the position located 180 ° / X in the circumferential direction. Therefore, the increase in the dimension of the magnetic material circumferential direction outer side portion 242 in the circumferential direction is suppressed. As a result, the increase in weight of the rotation angle detection device is suppressed.

磁性体突部外端243の位置が磁性体部材24における周方向の中央部に近づくにつれて、3個の磁束密度検出部22における周方向の中央側に配置された磁束密度検出部22が検出する磁束密度の振幅が小さくなる。一方、磁性体突部内端244の位置が磁性体部材24における周方向の中央部から遠ざかるにつれて、3個の磁束密度検出部22における磁性体周方向外側部242側に配置された磁束密度検出部22が検出する磁束密度の振幅が小さくなる。これにより、3個の磁束密度検出部22のそれぞれが検出する磁束密度の振幅のばらつきが低減される。その結果、回転角度検出装置の検出精度が向上する。   As the position of the magnetic material protrusion outer end 243 approaches the circumferential center of the magnetic member 24, the magnetic flux density detection units 22 disposed at the circumferential center of the three magnetic flux density detection units 22 detect The amplitude of the magnetic flux density is reduced. On the other hand, as the position of the magnetic material protrusion inner end 244 moves away from the circumferential center of the magnetic material member 24, the magnetic flux density detection units disposed on the magnetic material circumferential direction outer side 242 of the three magnetic flux density detection units 22. The amplitude of the magnetic flux density detected by 22 decreases. Thereby, the variation in the amplitude of the magnetic flux density detected by each of the three magnetic flux density detectors 22 is reduced. As a result, the detection accuracy of the rotation angle detection device is improved.

以上説明したように、この発明の実施の形態1に係る回転角度検出装置によれば、a+b>180/X、およびa+b+c<360/Xを満たす。これにより、周方向についての磁性体周方向外側部242の寸法の増加を抑制するとともに複数の磁束密度検出部22のそれぞれにおいて検出される磁束密度の振幅のばらつきを低減させることができる。これにより、回転角度検出装置の重量の増加を抑制するとともに回転角度検出装置の検出精度を向上させることができる。   As described above, according to the rotation angle detection device according to the first embodiment of the present invention, a + b> 180 / X and a + b + c <360 / X are satisfied. Accordingly, it is possible to suppress an increase in the size of the magnetic material circumferential direction outer side portion 242 in the circumferential direction and to reduce variation in the amplitude of the magnetic flux density detected in each of the plurality of magnetic flux density detectors 22. Thus, it is possible to suppress an increase in the weight of the rotation angle detection device and to improve the detection accuracy of the rotation angle detection device.

実施の形態2.
図4は、この発明の実施の形態2に係る回転角度検出装置の要部を示す平断面図である。実施の形態2に係る回転角度検出装置では、α=a+b−180/X、β=360/X−(a+b+c)とする。この場合に、α=βを満たすように固定子2が形成されている。その他の構成は、実施の形態1と同様である。
Second Embodiment
FIG. 4 is a plan sectional view showing an essential part of a rotation angle detecting device according to Embodiment 2 of the present invention. In the rotation angle detection device according to the second embodiment, α = a + b−180 / X and β = 360 / X− (a + b + c). In this case, the stator 2 is formed to satisfy α = β. The other configuration is the same as that of the first embodiment.

ここで、αは、小型化しない場合の理想的な磁性体部材における磁性体突部内端244aおよび実施の形態2における磁性体突部内端244と回転子1の中心Oとの間の角度を示す。βは、小型化しない場合の理想的な磁性体部材における磁性体突部外端243aおよび実施の形態2における磁性体突部外端243と回転子1の中心Oとの間の角度を示す。小型化しない場合の理想的な磁性体部材とは、磁性体突部内端244aの位置が、周方向について中央側に配置された磁束密度検出部22から周方向について180度/Xだけ外側の位置となる磁性体部材である。また、小型化しない場合の理想的な磁性体部材とは、磁性体突部外端243aの位置が、周方向について中央側に配置された磁束密度検出部22から周方向について360度/Xだけ外側の位置となる磁性体部材である。   Here, α represents the angle between the inner end 244a of the magnetic body protrusion and the inner end 244 of the magnetic body protrusion in the second embodiment and the center O of the rotor 1 in an ideal magnetic body member not to be miniaturized. . β indicates the angle between the magnetic material protrusion outer end 243 a and the magnetic material protrusion outer end 243 in Embodiment 2 and the center O of the rotor 1 in an ideal magnetic material member when not miniaturized. The ideal magnetic member in the case where the size is not reduced means that the position of the inner end 244a of the magnetic material projection is outside by 180 degrees / X in the circumferential direction from the magnetic flux density detection unit 22 disposed on the center side in the circumferential direction. The magnetic member is Further, an ideal magnetic member in the case where the size is not reduced means that the position of the magnetic material protrusion outer end 243a is only 360 degrees / X in the circumferential direction from the magnetic flux density detection unit 22 disposed on the center side in the circumferential direction. It is a magnetic body member which becomes an outside position.

ここで、小型化しない場合の理想的な磁性体部材について、詳しく説明する。バイアス磁界発生部21で発生した磁束は、磁性体径方向外側部241、磁性体周方向外側部242、磁性体周方向外側部242と回転子1との間のギャップ、回転子1、バイアス磁界発生部21と回転子1とのギャップの順に通過する。回転子1の回転にともなう磁性体部材24の磁気抵抗変化量は、磁性体周方向外側部242と回転子1との間のギャップの磁気抵抗変化量およびバイアス磁界発生部21と回転子1とのギャップの磁気抵抗変化量に比べて遥かに小さい。したがって、磁束密度検出部22の磁気抵抗変化量は、磁性体周方向外側部242と回転子1との間のギャップの変化量およびバイアス磁界発生部21と回転子1との間のギャップの変化量で規定される。   Here, an ideal magnetic member in the case where it is not miniaturized is described in detail. The magnetic flux generated by the bias magnetic field generation unit 21 is the magnetic material radial direction outer part 241, the magnetic material circumferential direction outer part 242, the gap between the magnetic material circumferential direction outer part 242 and the rotor 1, the rotor 1, the bias magnetic field It passes through in order of the gap of generating part 21 and rotor 1. The amount of change in magnetoresistance of the magnetic member 24 caused by the rotation of the rotor 1 can be determined by changing the amount of change in magnetoresistance of the gap between the outer peripheral portion 242 of the magnetic body and the rotor 1 and the bias magnetic field Much smaller than the amount of magnetoresistance change in the gap. Therefore, the amount of change in magnetic resistance of the magnetic flux density detection unit 22 is determined by the amount of change in the gap between the magnetic material circumferential direction outer portion 242 and the rotor 1 and the change in the gap between the bias magnetic field generation unit 21 and the rotor 1 It is prescribed by quantity.

小型化しない場合の理想的な磁性体部材において、磁性体突部内端244aの位置が180/X度であり、磁性体突部外端243aの位置が360/X度である。これにより、回転子1の回転角度に依らず、回転子1の凸部が磁性体周方向外側部242に必ず対向する。したがって、磁性体周方向外側部242と回転子1との間のギャップ長が最小となる箇所が必ず存在する。これにより、磁性体周方向外側部242と回転子1との間のギャップの磁気抵抗は、回転子1の回転角度に依らずに一定となる。   In an ideal magnetic member not to be miniaturized, the position of the inner end 244a of the magnetic material projection is 180 / X degrees, and the position of the outer end 243a of the magnetic material projection is 360 / X degrees. Thus, regardless of the rotational angle of the rotor 1, the convex portion of the rotor 1 always faces the magnetic material circumferential direction outer side portion 242. Therefore, there is always a place where the gap length between the magnetic material circumferential direction outer side portion 242 and the rotor 1 is minimized. Thereby, the magnetic resistance of the gap between the magnetic material circumferential direction outer side portion 242 and the rotor 1 becomes constant regardless of the rotation angle of the rotor 1.

3個の磁束密度検出部22における周方向の中央側に配置された磁束密度検出部22を中央側磁束密度検出部とする。3個の磁束密度検出部22における磁性体周方向外側部242側に配置された磁束密度検出部22を周方向外側磁束密度検出部とする。中央側磁束密度検出部22aが配置されたバイアス磁界発生部21の部分と回転子1との間のギャップ長についての回転子1が1回転する間の最大値は、周方向外側磁束密度検出部が配置されたバイアス磁界発生部21の部分と回転子1との間にギャップ長についての回転子1が1回転する間の最大値と等しい。中央側磁束密度検出部が配置されたバイアス磁界発生部21の部分と回転子1との間のギャップ長についての回転子1が1回転する間の最小値は、周方向外側磁束密度検出部が配置されたバイアス磁界発生部21の部分と回転子1との間のギャップ長についての回転子1が1回転する間の最小値と等しい。したがって、中央側磁束密度検出部の磁気抵抗変化量は、周方向外側磁束密度検出部の磁気抵抗変化量と等しい。   The magnetic flux density detection unit 22 disposed on the center side in the circumferential direction of the three magnetic flux density detection units 22 is referred to as a central magnetic flux density detection unit. The magnetic flux density detection units 22 disposed on the side of the magnetic material circumferential direction outer portion 242 in the three magnetic flux density detection units 22 are referred to as a circumferential direction outer magnetic flux density detection unit. The maximum value of the gap length between the rotor 1 and the portion of the bias magnetic field generation unit 21 in which the central magnetic flux density detection unit 22a is disposed during one rotation of the rotor 1 corresponds to the circumferential outer magnetic flux density detection unit Between the portion of the bias magnetic field generating unit 21 in which the V.V. For the gap length between the rotor 1 and the portion of the bias magnetic field generation unit 21 in which the central magnetic flux density detection unit is arranged, the circumferential outer magnetic flux density detection unit The gap length between the portion of the arranged bias magnetic field generating portion 21 and the rotor 1 is equal to the minimum value during one rotation of the rotor 1. Therefore, the amount of change in magnetic resistance of the center-side magnetic flux density detection unit is equal to the amount of change in magnetic resistance of the circumferential outer magnetic flux density detection unit.

3個の磁束密度検出部22のそれぞれが配置されたバイアス磁界発生部21の部分のそれぞれと回転子1と間のギャップ長の変化量は、互いに等しい。したがって、3個の磁束密度検出部22の磁気抵抗変化量は、互いに等しい。磁束密度検出部22で検出される磁束密度の振幅は、バイアス磁界発生部21の起磁力と磁束密度検出部22の磁気抵抗変化量との積で算出される。したがって、3個の磁束密度検出部22で検出される磁束密度の振幅は、互いに等しい。これにより、3個の磁束密度検出部22のそれぞれが検出する磁束密度の振幅のばらつきが除去される。その結果、回転角度検出装置の検出精度が向上する。   The amount of change in the gap length between each of the portions of the bias magnetic field generation unit 21 in which each of the three magnetic flux density detection units 22 is disposed and the rotor 1 is equal to each other. Therefore, the amounts of change in magnetoresistance of the three magnetic flux density detectors 22 are equal to one another. The amplitude of the magnetic flux density detected by the magnetic flux density detection unit 22 is calculated by the product of the magnetomotive force of the bias magnetic field generation unit 21 and the amount of change in magnetic resistance of the magnetic flux density detection unit 22. Therefore, the amplitudes of the magnetic flux density detected by the three magnetic flux density detectors 22 are equal to one another. Thereby, the variation in the amplitude of the magnetic flux density detected by each of the three magnetic flux density detection units 22 is eliminated. As a result, the detection accuracy of the rotation angle detection device is improved.

一方、磁性体突部外端243の位置が360度/Xよりも大きい場合であって、中央側磁束密度検出部が配置されたバイアス磁界発生部21の部分と回転子1との間のギャップ長が最小となる場合に、回転子1の凸部における磁性体周方向外側部242と対向する面が増加する。これにより、中央側磁束密度検出部の磁気抵抗の最大値が減少する。その結果、中央側磁束密度検出部が検出する磁束密度の振幅が増加する。   On the other hand, when the position of the magnetic material protrusion outer end 243 is larger than 360 degrees / X, the gap between the rotor 1 and the portion of the bias magnetic field generation unit 21 in which the center side magnetic flux density detection unit is arranged. When the length is minimized, the surface of the convex portion of the rotor 1 facing the magnetic material circumferential direction outer portion 242 is increased. As a result, the maximum value of the magnetic resistance of the central magnetic flux density detection unit is reduced. As a result, the amplitude of the magnetic flux density detected by the central magnetic flux density detection unit is increased.

磁性体突部外端243の位置が360度/Xの場合であって、周方向外側磁束密度検出部が配置されたバイアス磁界発生部21の部分と回転子1との間のギャップ長が最大または最小となる場合に、回転子1の凸部が磁性体周方向外側部242と対向する。一方、磁性体突部外端243の位置が360度/Xよりも大きい場合であって、周方向外側磁束密度検出部が配置されたバイアス磁界発生部21の部分と回転子1との間のギャップ長が最大または最小となる場合に、回転子1の凸部が磁性体周方向外側部242と対向する。したがって、磁性体突部外端243の位置を360度/Xから360度/Xよりも大きくした場合であっても、回転子1の凸部における磁性体周方向外側部242と対向する面が増加しない。回転子1の凹凸部12に対向する磁性体周方向外側部242が増加するため、回転子1が1回転する間に、周方向外側磁束密度検出部の磁気抵抗の最大値および最小値のそれぞれがわずかに減少する。したがって、周方向外側磁束密度検出部が検出する磁束密度の増加は微小である。   In the case where the position of the magnetic material protrusion outer end 243 is 360 degrees / X, the gap length between the rotor 1 and the portion of the bias magnetic field generating unit 21 where the circumferential outer magnetic flux density detection unit is disposed is maximum Alternatively, in the case of the minimum, the convex portion of the rotor 1 faces the magnetic material circumferential direction outer side portion 242. On the other hand, when the position of the magnetic material protrusion outer end 243 is larger than 360 degrees / X, between the rotor 1 and the portion of the bias magnetic field generation unit 21 in which the circumferential outer magnetic flux density detection unit is arranged. When the gap length is maximum or minimum, the convex portion of the rotor 1 faces the magnetic material circumferential direction outer portion 242. Therefore, even when the position of the magnetic material protrusion outer end 243 is made larger than 360 degrees / X to 360 degrees / X, the surface of the convex portion of the rotor 1 facing the magnetic material circumferential direction outer portion 242 is It does not increase. Since the magnetic material circumferential direction outer side portion 242 opposed to the concavo-convex portion 12 of the rotor 1 increases, each of the maximum value and the minimum value of the magnetic resistance of the circumferential direction outer magnetic flux density detection portion during one rotation of the rotor 1 Will decrease slightly. Therefore, the increase in the magnetic flux density detected by the circumferential outer magnetic flux density detection unit is small.

以上のことから、磁性体突部外端243の位置が360度/Xよりも大きい場合に、中央側磁束密度検出部が検出する磁束密度の振幅は、周方向外側磁束密度検出部が検出する磁束密度の振幅よりも大きくなる。これにより、3個の磁束密度検出部22のそれぞれが検出する磁束密度の振幅が異なる。その結果、回転角度検出装置の検出精度が悪化する。   From the above, when the position of the magnetic material protrusion outer end 243 is larger than 360 degrees / X, the amplitude of the magnetic flux density detected by the central magnetic flux density detection unit is detected by the circumferential outer magnetic flux density detection unit It becomes larger than the amplitude of the magnetic flux density. Thereby, the amplitude of the magnetic flux density which each of three magnetic flux density detection parts 22 detects differs. As a result, the detection accuracy of the rotation angle detection device is degraded.

磁性体突部内端244の位置が180度/Xよりも小さい場合に、周方向外側磁束密度検出部の磁気抵抗の最大値が減少する。したがって、周方向外側磁束密度検出部が検出する磁束密度の振幅が増加する。一方、中央側磁束密度検出部の磁気抵抗の最大値の減少および最小値の減少は、微小である。これにより、中央側磁束密度検出部が検出する磁束密度の振幅の増加は微小である。したがって、周方向外側磁束密度検出部が検出する磁束密度の振幅は、中央側磁束密度検出部が検出する磁束密度の振幅よりも大きくなる。これにより、3個の磁束密度検出部22のそれぞれが検出する磁束密度の振幅が異なる。その結果、回転角度検出装置の検出精度が悪化する。したがって、磁性体突部内端244aの位置が180/X度であり、磁性体突部外端243aの位置が360/X度である場合が、小型化しない場合の理想的な磁性体部材となる。   When the position of the magnetic material protrusion inner end 244 is smaller than 180 degrees / X, the maximum value of the magnetic resistance of the circumferential outer magnetic flux density detection unit decreases. Therefore, the amplitude of the magnetic flux density detected by the circumferential direction outer magnetic flux density detection unit is increased. On the other hand, the decrease in the maximum value and the decrease in the minimum value of the reluctance of the central magnetic flux density detection unit are minute. Thus, the increase in the amplitude of the magnetic flux density detected by the central magnetic flux density detection unit is small. Therefore, the amplitude of the magnetic flux density detected by the circumferential direction outer magnetic flux density detection unit is larger than the amplitude of the magnetic flux density detected by the center side magnetic flux density detection unit. Thereby, the amplitude of the magnetic flux density which each of three magnetic flux density detection parts 22 detects differs. As a result, the detection accuracy of the rotation angle detection device is degraded. Therefore, when the position of the magnetic material protrusion inner end 244a is 180 / X degrees and the position of the magnetic material protrusion outer end 243a is 360 / X degrees, it becomes an ideal magnetic material member in the case where the size is not reduced. .

実施の形態2に係る回転角度検出装置では、小型化しない場合の理想的な磁性体部材における磁性体突部外端243aの位置から磁性体突部外端243の位置への周方向内側に移動する角度と、小型化しない場合の理想的な磁性体部材における磁性体突部内端244aの位置から磁性体突部内端244の位置への周方向外側に移動する角度とが等しい。これにより、3個の磁束密度検出部22における磁性体周方向外側部242側に配置された磁束密度検出部22が検出する磁束密度の振幅の減少値と、3個の磁束密度検出部22における周方向の中央側に配置された磁束密度検出部22が検出する磁束密度の振幅の減少値とが等しくなる。   In the rotation angle detection device according to the second embodiment, movement inward in the circumferential direction from the position of the magnetic material protrusion outer end 243a to the position of the magnetic material protrusion outer end 243 in an ideal magnetic material member without downsizing The angle of movement is equal to the angle of circumferential outward movement from the position of the magnetic material protrusion inner end 244a in the ideal magnetic material member in the case where miniaturization is not performed to the position of the magnetic material protrusion inner end 244. Thereby, the decrease value of the amplitude of the magnetic flux density detected by the magnetic flux density detection unit 22 disposed on the magnetic material circumferential direction outer side 242 side in the three magnetic flux density detection units 22 and the three magnetic flux density detection units 22 The reduction value of the amplitude of the magnetic flux density detected by the magnetic flux density detection unit 22 disposed on the center side in the circumferential direction becomes equal.

以上説明したように、この発明の実施の形態2に係る回転角度検出装置によれば、α=a+b−180/X、β=360/X−(a+b+c)とした場合に、α=βを満たす。これにより、3個の磁束密度検出部22のそれぞれが検出する磁束密度の振幅のばらつきを低減させることができる。その結果、回転角度検出装置の検出精度を向上させるとともに回転角度検出装置の小型化および軽量化を図ることができる。   As described above, according to the rotation angle detection device according to the second embodiment of the present invention, when α = a + b−180 / X and β = 360 / X− (a + b + c), α = β is satisfied. . Thereby, the dispersion | variation in the amplitude of the magnetic flux density which each of the three magnetic flux density detection parts 22 detects can be reduced. As a result, the detection accuracy of the rotation angle detection device can be improved, and the size and weight of the rotation angle detection device can be reduced.

実施の形態3.
図5は、この発明の実施の形態3に係る回転角度検出装置の要部を示す平断面図である。実施の形態3に係る回転角度検出装置では、α=a+b−180/X、β=360/X−(a+b+c)、γ=a−180/Xとする。この場合に、α>βおよびγ>0、または、α<βおよびγ<0を満たすように固定子2が形成されている。その他の構成は、実施の形態1と同様である。
Third Embodiment
FIG. 5 is a plan sectional view showing an essential part of a rotation angle detecting device according to a third embodiment of the present invention. In the rotation angle detection device according to the third embodiment, α = a + b−180 / X, β = 360 / X− (a + b + c), and γ = a−180 / X. In this case, the stator 2 is formed to satisfy α> β and γ> 0, or α <β and γ <0. The other configuration is the same as that of the first embodiment.

ここで、αは、小型化しない場合の理想的な磁性体部材における磁性体突部内端244aおよび実施の形態3における磁性体突部内端244と回転子1の中心Oとの間の角度を示す。βは、小型化しない場合の理想的な磁性体部材における磁性体突部外端243aおよび実施の形態3における磁性体突部外端243と回転子1の中心Oとの間の角度を示す。小型化しない場合の理想的な磁性体部材とは、磁性体突部内端244aの位置が、周方向について中央側に配置された磁束密度検出部22から周方向について180度/Xだけ外側の位置となる磁性体部材である。また、小型化しない場合の理想的な磁性体部材とは、磁性体突部外端243aの位置が、周方向について中央側に配置された磁束密度検出部22から周方向について360度/Xだけ外側の位置となる磁性体部材である。   Here, α represents the angle between the inner end 244a of the magnetic body protrusion and the inner end 244 of the magnetic body protrusion in the third embodiment and the center O of the rotor 1 in the ideal magnetic body member when not miniaturized . β indicates the angle between the magnetic material protrusion outer end 243 a and the magnetic material protrusion outer end 243 in the third embodiment and the center O of the rotor 1 in an ideal magnetic material member when not miniaturized. The ideal magnetic member in the case where the size is not reduced means that the position of the inner end 244a of the magnetic material projection is outside by 180 degrees / X in the circumferential direction from the magnetic flux density detection unit 22 disposed on the center side in the circumferential direction. The magnetic member is Further, an ideal magnetic member in the case where the size is not reduced means that the position of the magnetic material protrusion outer end 243a is only 360 degrees / X in the circumferential direction from the magnetic flux density detection unit 22 disposed on the center side in the circumferential direction. It is a magnetic body member which becomes an outside position.

小型化しない場合の理想的な磁性体部材における磁性体突部外端243aの位置から磁性体突部外端243の位置への周方向内側に移動する角度は、小型化しない場合の理想的な磁性体部材における磁性体突部内端244aの位置から磁性体突部内端244の位置への周方向外側に移動する角度よりも小さい。また、バイアス磁界発生部21における周方向の寸法は、小型化しない場合の理想的なバイアス磁界発生部における周方向についての寸法よりも大きい。これにより、3個の磁束密度検出部22における磁性体周方向外側部242側に配置された磁束密度検出部22が検出する磁束密度の振幅の減少分は、バイアス磁界発生部21の大型化によって補われる。   The angle of circumferential inward movement from the position of the magnetic material protrusion outer end 243a to the position of the magnetic material protrusion outer end 243 in an ideal magnetic material member when not miniaturized is ideal in the case where the miniaturization is not performed This angle is smaller than the angle of the movement in the circumferential direction outward from the position of the inner end 244 a of the magnetic material protrusion in the magnetic member to the position of the inner end 244 of the magnetic material protrusion. Further, the dimension in the circumferential direction of the bias magnetic field generation unit 21 is larger than the dimension in the circumferential direction of the ideal bias magnetic field generation unit when the size is not reduced. As a result, the decrease in the amplitude of the magnetic flux density detected by the magnetic flux density detection unit 22 disposed on the side of the magnetic material circumferential direction outer portion 242 in the three magnetic flux density detection units 22 is caused by the enlargement of the bias magnetic field generation unit 21. Be compensated.

図6は、α>β、γ>0の場合の回転角度検出装置の要部を示す平断面図、図7は、図6の3個の磁束密度検出部が検出する磁束密度を示すグラフ、図8は、図6の3個の磁束密度検出部が検出する磁束密度の振幅の比を示す表である。図6では、α=7度、β=6度、γ=1度となっている。図6から図8において、一対の周方向外側磁束密度検出部の一方をUとし、中央側磁束密度検出部をVとし、他方の周方向外側磁束密度検出部をWとしている。図8では、周方向外側磁束密度検出部Uが検出する磁束密度の振幅に対する各磁束密度検出部が検出する磁束密度の振幅の比を示している。図8に示すように、各磁束密度検出部22が検出する磁束密度の振幅は、互いに等しくなっている。   6 is a plan sectional view showing the main part of the rotation angle detection device in the case of α> β and γ> 0, and FIG. 7 is a graph showing the magnetic flux density detected by the three magnetic flux density detectors of FIG. FIG. 8 is a table showing the ratio of the amplitudes of the magnetic flux density detected by the three magnetic flux density detectors in FIG. In FIG. 6, α = 7 degrees, β = 6 degrees, and γ = 1 degrees. 6 to 8, one of the pair of circumferential outer magnetic flux density detectors is U, the central magnetic flux density detector is V, and the other circumferential outer magnetic flux density detector is W. FIG. 8 shows the ratio of the amplitude of the magnetic flux density detected by each magnetic flux density detection unit to the amplitude of the magnetic flux density detected by the circumferential outer magnetic flux density detection unit U. As shown in FIG. 8, the amplitudes of the magnetic flux densities detected by the respective magnetic flux density detection units 22 are equal to one another.

図9は、α<β、γ<0の場合の回転角度検出装置の要部を示す平断面図、図10は、図9の3個の磁束密度検出部が検出する磁束密度を示すグラフ、図11は、図9の3個の磁束密度検出部が検出する磁束密度の振幅の比を示す表である。図9では、α=0度、β=1度、γ=−1度となっている。図9から図11において、一対の周方向外側磁束密度検出部の一方をUとし、中央側磁束密度検出部をVとし、他方の周方向外側磁束密度検出部をWとしている。図11では、周方向外側磁束密度検出部Uが検出する磁束密度の振幅に対する各磁束密度検出部が検出する磁束密度の振幅の比を示している。図11に示すように、各磁束密度検出部22が検出する磁束密度の振幅は、互いに等しくなっている。   9 is a plan sectional view showing the main part of the rotation angle detection device in the case of α <β and γ <0, and FIG. 10 is a graph showing the magnetic flux density detected by the three magnetic flux density detectors of FIG. FIG. 11 is a table showing the ratio of the amplitudes of the magnetic flux density detected by the three magnetic flux density detectors in FIG. In FIG. 9, α = 0 degrees, β = 1 degrees, and γ = −1 degrees. 9 to 11, one of the pair of circumferential outer magnetic flux density detectors is U, the central magnetic flux density detector is V, and the other circumferential outer magnetic flux density detector is W. FIG. 11 shows the ratio of the amplitude of the magnetic flux density detected by each magnetic flux density detection unit to the amplitude of the magnetic flux density detected by the circumferential direction outer magnetic flux density detection unit U. As shown in FIG. 11, the amplitudes of the magnetic flux densities detected by the respective magnetic flux density detectors 22 are equal to one another.

図12は、α=βの場合の回転角度検出装置の要部を示す平断面図、図13は、図12の3個の磁束密度検出部が検出する磁束密度を示すグラフ、図14は、図12の3個の磁束密度検出部が検出する磁束密度の振幅の比を示す表である。図12では、α=3度、β=3度となっている。図12から図14において、一対の周方向外側磁束密度検出部の一方をUとし、中央側磁束密度検出部をVとし、他方の周方向外側磁束密度検出部をWとしている。図14では、周方向外側磁束密度検出部Uが検出する磁束密度の振幅に対する各磁束密度検出部が検出する磁束密度の振幅の比を示している。図14に示すように、各磁束密度検出部22が検出する磁束密度の振幅は、互いに等しくなっている。   FIG. 12 is a plan sectional view showing the main part of the rotation angle detector when α = β, FIG. 13 is a graph showing the magnetic flux density detected by the three magnetic flux density detectors of FIG. It is a table | surface which shows the ratio of the amplitude of the magnetic flux density which three magnetic flux density detection parts of FIG. 12 detect. In FIG. 12, α = 3 degrees and β = 3 degrees. In FIG. 12 to FIG. 14, one of the pair of circumferential outer magnetic flux density detectors is U, the central magnetic flux density detector is V, and the other circumferential outer magnetic flux density detector is W. FIG. 14 shows the ratio of the amplitude of the magnetic flux density detected by each magnetic flux density detection unit to the amplitude of the magnetic flux density detected by the circumferential outer magnetic flux density detection unit U. As shown in FIG. 14, the amplitudes of the magnetic flux densities detected by the respective magnetic flux density detection units 22 are equal to one another.

以上説明したように、この発明の実施の形態3に係る回転角度検出装置によれば、α=a+b−180/X、β=360/X−(a+b+c)、γ=a−180/Xとした場合に、α>βおよびγ>0、または、α<βおよびγ<0を満たす。これにより、3個の磁束密度検出部22のそれぞれが検出する磁束密度の振幅のばらつきを低減させることができる。その結果、回転角度検出装置の検出精度を向上させるとともに回転角度検出装置の小型化および軽量化を図ることができる。   As described above, according to the rotation angle detection device according to the third embodiment of the present invention, α = a + b−180 / X, β = 360 / X− (a + b + c), and γ = a−180 / X. In some cases, α> β and γ> 0, or α <β and γ <0. Thereby, the dispersion | variation in the amplitude of the magnetic flux density which each of the three magnetic flux density detection parts 22 detects can be reduced. As a result, the detection accuracy of the rotation angle detection device can be improved, and the size and weight of the rotation angle detection device can be reduced.

また、小型化しない場合の理想的な磁性体部材における磁性体突部外端243aの位置から磁性体突部外端243の位置への周方向内側に移動する角度が、小型化しない場合の理想的な磁性体部材における磁性体突部内端244aの位置から磁性体突部内端244の位置への周方向外側に移動する角度より小さくてよい。これにより、磁性体部材24の設計自由度を向上させることができる。   Further, the ideal in the case where the angle of moving inward in the circumferential direction from the position of the magnetic material protrusion outer end 243a to the position of the magnetic material protrusion outer end 243 in the ideal magnetic material member in the case of not downsizing is not miniaturization The angle may be smaller than the angle of the movement in the circumferential direction outward from the position of the inner end 244a of the magnetic member in the magnetic member to the position of the inner end 244 of the magnetic member. Thereby, the design freedom of the magnetic member 24 can be improved.

実施の形態4.
図15は、この発明の実施の形態4に係る回転角度検出装置の要部を示す平断面図、図16は、図15のB部を示す拡大図である。磁性体周方向外側部242は、磁性体径方向外側部241における径方向についての外側面から周方向について外側に延びる周方向延長面245を有している。また、磁性体周方向外側部242は、周方向について外側を向く周方向外側向面246を有している。また、磁性体周方向外側部242は、周方向延長面245における周方向についての外側の部分と周方向外側向面246における径方向について外側の部分とに接続された周方向斜面247を有している。磁性体周方向外側部242が周方向斜面247を有することによって、実施の形態4に係る磁性体周方向外側部242は、実施の形態1に係る磁性体周方向外側部242よりも小型化および軽量化が図られている。
Fourth Embodiment
FIG. 15 is a plan sectional view showing an essential part of a rotation angle detecting device according to Embodiment 4 of the present invention, and FIG. 16 is an enlarged view showing a portion B of FIG. The magnetic body circumferential direction outer side portion 242 has a circumferential direction extending surface 245 extending outward in the circumferential direction from the outer side surface in the radial direction of the magnetic body radial direction outer side portion 241. In addition, the magnetic body circumferential direction outer side portion 242 has a circumferential direction outer facing surface 246 which faces the outer side in the circumferential direction. In addition, the magnetic body circumferential direction outer portion 242 has a circumferential slope 247 connected to a portion in the circumferential direction in the circumferential extension surface 245 and a portion in the circumferential direction outward in the circumferential outer facing surface 246. ing. The magnetic body circumferential direction outer side portion 242 according to the fourth embodiment is smaller in size and smaller than the magnetic body circumferential direction outer side portion 242 according to the first embodiment because the magnetic body circumferential direction outer side portion 242 has the circumferential direction slope 247. Weight reduction is achieved.

周方向についての磁性体径方向外側部241の外側端部における径方向についての寸法をdとする。周方向についての周方向延長面245の寸法をeとする。径方向についての周方向外側向面246の寸法をfとする。この場合に、d≦e、およびf≦dを満たすように磁性体部材24が形成されている。   The dimension in the radial direction at the outer end of the magnetic material radial direction outer portion 241 in the circumferential direction is d. The dimension of the circumferential extension surface 245 in the circumferential direction is e. Let the dimension of the circumferential direction outward surface 246 about radial direction be f. In this case, the magnetic member 24 is formed to satisfy d ≦ e and f ≦ d.

磁性体部材24は、積層された複数の鋼板から構成されている。固定子2は、それぞれの磁性体周方向外側部242に設けられた一対の第1かしめ25を有している。第1かしめ25は、複数の鋼板のそれぞれを固定する。また、固定子2は、周方向についての磁性体径方向外側部241の中央部に設けられた第2かしめ26を有している。第2かしめ26は、複数の鋼板のそれぞれを固定する。その他の構成は、実施の形態1、実施の形態2、または実施の形態3と同様である。   The magnetic member 24 is composed of a plurality of stacked steel plates. The stator 2 has a pair of first crimps 25 provided on the respective magnetic material circumferential direction outer side portions 242. The first crimp 25 fixes each of the plurality of steel plates. The stator 2 also has a second crimp 26 provided at the center of the magnetic material radial direction outer portion 241 in the circumferential direction. The second crimp 26 fixes each of the plurality of steel plates. The other configuration is the same as that of the first embodiment, the second embodiment, or the third embodiment.

磁性体径方向外側部241における磁性体周方向外側部242側の端部における磁束密度と、磁性体周方向外側部242における磁性体径方向外側部241側の端部における磁束密度とが同程度となるのは、d=eの場合である。磁性体周方向外側部242に設けられた第1かしめ25の位置を考慮すると、磁性体径方向外側部241における磁性体周方向外側部242側の端部における磁束密度と、磁性体周方向外側部242における磁性体径方向外側部241側の端部における磁束密度とが同程度となるのは、d≦eの場合である。   The magnetic flux density at the end of the magnetic material radial direction outer side portion 241 on the side of the magnetic material circumferential direction outer side portion 242 is the same as the magnetic flux density at the end portion on the magnetic material radial outer side portion 241 side of the magnetic material circumferential direction outer side portion 242 It becomes the case of d = e. Considering the position of the first crimp 25 provided at the magnetic outer circumferential portion 242, the magnetic flux density at the end of the magnetic outer radial portion 241 on the magnetic outer circumferential portion 242 side, and the magnetic outer circumferential end The magnetic flux density at the end on the side of the magnetic material radial direction outer portion 241 in the portion 242 is approximately the same as in the case of d ≦ e.

磁性体周方向外側部242を通る磁束は、周方向外側向面246に達するまでに磁性体周方向外側部242と凹凸部12との間の隙間を渡って、凹凸部12を通る。したがって、f≦dでよい。   The magnetic flux passing through the magnetic material circumferential direction outer portion 242 passes through the uneven portion 12 across the gap between the magnetic material circumferential direction outer side portion 242 and the uneven portion 12 before reaching the circumferential direction outward facing surface 246. Therefore, f ≦ d may be sufficient.

以上説明したように、この発明の実施の形態4に係る回転角度検出装置によれば、d≦e、およびf≦dを満たす。これにより、回転角度検出装置の軽量化および低コスト化を図ることができる。また、回転角度検出装置の軽量化によって、振動に対する回転角度検出装置の耐久性を向上させることができる。また、磁性体部材24を小さくすることによって、回転角度検出装置の検出信号にモータなどの外部機器からのノイズが影響することを低減させることができる。また、磁性体部材24を通る磁束密度を小さくすることなく、磁性体部材24の軽量化を図ることができる。これにより、磁束密度検出部22の検出信号を小さくすることなく、磁性体部材24の軽量化を図ることができる。また、磁性体部材24を小さくすることによって、モータなどの外部機器からの伝熱を小さくすることができる。これにより、バイアス磁界発生部21の温度の上昇を抑制することができる。その結果、バイアス磁界発生部21の減磁を抑制することができる。バイアス磁界発生部21の減磁が発生する場合には、磁束密度検出部22の検出信号が小さくなる。したがって、バイアス磁界発生部21の減磁を抑制することによって、回転角度検出装置の検出精度を向上させることができる。   As described above, according to the rotation angle detection device of the fourth embodiment of the present invention, d ≦ e and f ≦ d are satisfied. Thereby, weight reduction and cost reduction of a rotation angle detection apparatus can be achieved. Further, by reducing the weight of the rotation angle detection device, the durability of the rotation angle detection device against vibration can be improved. In addition, by making the magnetic member 24 smaller, it is possible to reduce the influence of noise from an external device such as a motor on the detection signal of the rotation angle detection device. In addition, weight reduction of the magnetic member 24 can be achieved without reducing the magnetic flux density passing through the magnetic member 24. Thus, the weight reduction of the magnetic member 24 can be achieved without reducing the detection signal of the magnetic flux density detection unit 22. In addition, by reducing the size of the magnetic member 24, heat transfer from an external device such as a motor can be reduced. Thereby, the temperature rise of the bias magnetic field generation unit 21 can be suppressed. As a result, the demagnetization of the bias magnetic field generation unit 21 can be suppressed. When demagnetization of the bias magnetic field generation unit 21 occurs, the detection signal of the magnetic flux density detection unit 22 decreases. Therefore, by suppressing the demagnetization of the bias magnetic field generation unit 21, the detection accuracy of the rotation angle detection device can be improved.

実施の形態5.
図17は、この発明の実施の形態5に係る回転角度検出装置の要部を示す平断面図、図18は、図17のC部を示す拡大図、図19は、図17のD部を示す拡大図である。磁性体径方向外側部241は、磁性体狭小部248と、周方向について磁性体狭小部248よりも外側に設けられた磁性体広大部249とを有している。磁性体狭小部248は、磁性体径方向外側部241における周方向についての中央部と外側端部との間の部分に設けられている。径方向についての磁性体狭小部248の外側の面には、周方向に延びる凹部250が形成されている。径方向についての磁性体広大部249の寸法は、径方向についての磁性体狭小部248の寸法よりも大きい。
Embodiment 5
17 is a plan sectional view showing an essential part of a rotation angle detecting device according to a fifth embodiment of the present invention, FIG. 18 is an enlarged view showing a part C of FIG. 17 and FIG. 19 is a part D of FIG. It is an enlarged view which shows. The magnetic body radial direction outer side portion 241 includes a magnetic body narrow portion 248 and a magnetic body wide portion 249 provided outside the magnetic body narrow portion 248 in the circumferential direction. The magnetic body narrowing portion 248 is provided in a portion between the central portion and the outer end portion in the circumferential direction in the magnetic body radial direction outer side portion 241. A circumferentially extending recess 250 is formed on the outer surface of the magnetic substance narrowing portion 248 in the radial direction. The dimension of the magnetic body wide portion 249 in the radial direction is larger than the dimension of the magnetic body narrow portion 248 in the radial direction.

径方向についての磁性体広大部249の寸法をgとする。径方向についての磁性体狭小部248の寸法をhとする。周方向についてのバイアス磁界発生部21の寸法の半分をiとする。バイアス磁界発生部21における磁性体狭小部248に対向する部分における周方向についての寸法をjとする。この場合に、g≧h×(i/j)を満たすように固定子2が形成されている。径方向についての磁性体広大部249の寸法gは、周方向についての磁性体径方向外側部241の外側端部における径方向についての寸法dと同一となっている。その他の構成は、実施の形態4と同様である。   The dimension of the magnetic material wide portion 249 in the radial direction is g. The dimension of the magnetic substance narrowing portion 248 in the radial direction is h. A half of the dimension of the bias magnetic field generation unit 21 in the circumferential direction is i. The dimension in the circumferential direction of the portion of the bias magnetic field generation unit 21 facing the magnetic material narrow portion 248 is j. In this case, the stator 2 is formed to satisfy g を 満 た す h × (i / j). The dimension g of the magnetic body wide portion 249 in the radial direction is the same as the dimension d in the radial direction at the outer end of the magnetic material radial outer side portion 241 in the circumferential direction. The other configuration is the same as that of the fourth embodiment.

磁性体部材24が磁気飽和しないためには、径方向についての磁性体径方向外側部241の寸法は、周方向についてのバイアス磁界発生部21の長さに比例する長さが必要である。バイアス磁界発生部21の磁束密度をBとする。磁気飽和時の磁性体部材24の磁束密度をBとする。この場合に、B×j≦B×hの関係によって、磁気飽和しない場合のhが算出される。磁束密度Bは、パーミアンスとバイアス磁界発生部21の起磁力との積により導出可能である。ここで用いられるパーミアンスは、磁性体部材24と回転子1とのギャップ長が最小の時のパーミアンスである。磁性体部材24が磁気飽和しない場合のgは、h、iおよびjにより算出される。 In order for the magnetic member 24 not to be magnetically saturated, the dimension of the magnetic material radial direction outer portion 241 in the radial direction needs to have a length proportional to the length of the bias magnetic field generating portion 21 in the circumferential direction. The magnetic flux density of the bias magnetic field generation unit 21 is B. The magnetic flux density of the magnetic member 24 at the time of magnetic saturation is assumed to be B s . In this case, h in the case of no magnetic saturation is calculated by the relationship of B × j ≦ B s × h. The magnetic flux density B can be derived from the product of permeance and the magnetomotive force of the bias magnetic field generation unit 21. The permeance used here is the permeance when the gap length between the magnetic member 24 and the rotor 1 is minimum. The value g when the magnetic member 24 is not magnetically saturated is calculated by h, i and j.

バイアス磁界発生部21で発生した磁束は、バイアス磁界発生部21の磁束密度Bと、バイアス磁界発生部21における径方向外側を向く面の面積との積で表される。磁性体径方向外側部241に鎖交する磁束は、磁性体径方向外側部241の磁束密度B’と磁性体径方向外側部241における周方向を向く面の面積との積で表される。ここで、バイアス磁界発生部21の軸方向寸法と磁性体径方向外側部241の軸方向寸法とが等しいとする。この場合に、バイアス磁界発生部21で発生した磁束と磁性体径方向外側部241に鎖交する磁束とが等しいことから、B×j=B’×hが成り立つ。磁気飽和時の磁性体部材24の磁束密度をBとすると、磁性体径方向外側部241の磁束密度B’は、磁性体径方向外側部241に磁気飽和が発生しないために、B’≦Bsとなる必要がある。したがって、磁性体部材24に磁気飽和が発生しない場合に径方向についての磁性体狭小部248の寸法hは、B×j≦B×hの関係によって算出される。 The magnetic flux generated by the bias magnetic field generation unit 21 is represented by the product of the magnetic flux density B of the bias magnetic field generation unit 21 and the area of the surface of the bias magnetic field generation unit 21 facing outward in the radial direction. The magnetic flux interlinking with the magnetic substance radial direction outer part 241 is represented by the product of the magnetic flux density B ′ of the magnetic substance radial direction outer part 241 and the area of the surface facing the circumferential direction in the magnetic substance radial direction outer part 241. Here, it is assumed that the axial dimension of the bias magnetic field generation unit 21 and the axial dimension of the magnetic material radial direction outer portion 241 are equal. In this case, B × j = B ′ × h holds because the magnetic flux generated by the bias magnetic field generation unit 21 is equal to the magnetic flux linked to the magnetic material radial direction outer portion 241. Assuming that the magnetic flux density of the magnetic member 24 at the time of magnetic saturation is B s , the magnetic flux density B ′ of the magnetic material radial outer side portion 241 does not generate magnetic saturation in the magnetic radial direction outer side 241. It needs to be Bs. Therefore, when magnetic saturation does not occur in the magnetic member 24, the dimension h of the magnetic narrow portion 248 in the radial direction is calculated by the relationship B × j ≦ B s × h.

バイアス磁界発生部21で発生した磁束は、バイアス磁界発生部21の磁束密度Bとバイアス磁界発生部21における径方向外側を向く面の面積との積で表される。したがって、磁性体広大部249に鎖交する磁束は、磁性体狭小部248に鎖交する磁束よりも大きい。磁性体狭小部248の磁束密度B’は、B’=(B×j)/hを満たす。また、磁性体広大部249の磁束密度B’’は、B’’=(B×i)/gを満たす。磁性体広大部249の磁束密度B’’は、磁性体狭小部248の磁束密度B’よりも小さくなる必要がある。したがって、B’’≦B’が成り立つ。これにより、径方向についての磁性体広大部249の寸法gは、g≧h×(i/j)の関係によって算出される。   The magnetic flux generated by the bias magnetic field generation unit 21 is represented by the product of the magnetic flux density B of the bias magnetic field generation unit 21 and the area of the surface of the bias magnetic field generation unit 21 facing radially outward. Therefore, the magnetic flux interlinking with the magnetic material wide portion 249 is larger than the magnetic flux interlinking with the magnetic material narrow portion 248. The magnetic flux density B ′ of the magnetic substance narrow portion 248 satisfies B ′ = (B × j) / h. Further, the magnetic flux density B ′ ′ of the magnetic material wide portion 249 satisfies B ′ ′ = (B × i) / g. The magnetic flux density B ′ ′ of the magnetic body wide portion 249 needs to be smaller than the magnetic flux density B ′ of the magnetic body narrow portion 248. Therefore, B ′ ′ ≦ B ′ holds. Thereby, the dimension g of the magnetic material large portion 249 in the radial direction is calculated by the relationship of g ≧ h × (i / j).

以上説明したように、この発明の実施の形態5に係る回転角度検出装置によれば、g≧h×(i/j)を満たす。これにより、回転角度検出装置の軽量化および低コスト化を図ることができる。また、回転角度検出装置の軽量化によって、振動に対する回転角度検出装置の耐久性を向上させることができる。また、磁性体部材24を小さくすることによって、回転角度検出装置の検出信号にモータなどの外部機器からのノイズが影響することを低減させることができる。また、磁性体部材24を通る磁束密度を小さくすることなく、磁性体部材24の軽量化を図ることができる。これにより、磁束密度検出部22の検出信号を小さくすることなく、磁性体部材24の軽量化を図ることができる。   As described above, according to the rotation angle detection device of the fifth embodiment of the present invention, ggh × (i / j) is satisfied. Thereby, weight reduction and cost reduction of a rotation angle detection apparatus can be achieved. Further, by reducing the weight of the rotation angle detection device, the durability of the rotation angle detection device against vibration can be improved. In addition, by making the magnetic member 24 smaller, it is possible to reduce the influence of noise from an external device such as a motor on the detection signal of the rotation angle detection device. In addition, weight reduction of the magnetic member 24 can be achieved without reducing the magnetic flux density passing through the magnetic member 24. Thus, the weight reduction of the magnetic member 24 can be achieved without reducing the detection signal of the magnetic flux density detection unit 22.

実施の形態6.
図20は、この発明の実施の形態6に係る回転角度検出装置の要部を示す平断面図である。磁性体部材24は、積層された複数の鋼板から構成されている。固定子2は、磁性体周方向外側部242に設けられ複数の鋼板のそれぞれを固定する第1かしめ25を有している。また、固定子2は、周方向についての磁性体径方向外側部241の中央部に設けられ複数の鋼板のそれぞれを固定する第2かしめ26をさらに有している。径方向についての磁性体径方向外側部241の外側の面には、周方向に延びる複数の凹部250が形成されている。第2かしめ26は、磁性体径方向外側部241における凹部250が形成されていない部分に配置されている。その他の構成は、実施の形態5と同様である。
Sixth Embodiment
FIG. 20 is a plan cross-sectional view showing the main parts of a rotation angle detection device according to Embodiment 6 of the present invention. The magnetic member 24 is composed of a plurality of stacked steel plates. The stator 2 has a first crimp 25 provided at the magnetic material circumferential direction outer side portion 242 and fixing each of the plurality of steel plates. In addition, the stator 2 further includes a second crimp 26 provided at the center of the magnetic material radial direction outer side portion 241 in the circumferential direction and fixing each of the plurality of steel plates. A plurality of recesses 250 extending in the circumferential direction are formed on the outer surface of the radially outer portion 241 of the magnetic material in the radial direction. The second crimp 26 is disposed at a portion of the magnetic material radial direction outer portion 241 where the concave portion 250 is not formed. The other configuration is the same as that of the fifth embodiment.

以上説明したように、この発明の実施の形態6に係る回転角度検出装置によれば、固定子2は、磁性体周方向外側部242に設けられ複数の鋼板のそれぞれを固定する第1かしめ25を有している。これにより、回転角度検出装置の検出精度に影響することなく、積層された複数の鋼板のそれぞれを固定することができる。   As described above, according to the rotation angle detection device according to the sixth embodiment of the present invention, the stator 2 is provided on the magnetic material circumferential direction outer portion 242, and the first crimp 25 for fixing each of the plurality of steel plates have. Thus, each of the stacked steel plates can be fixed without affecting the detection accuracy of the rotation angle detection device.

また、固定子2は、周方向についての磁性体径方向外側部241の中央部に設けられ複数の鋼板のそれぞれを固定する第2かしめ26を有している。これにより、回転角度検出装置の検出精度に影響することなく、積層された複数の鋼板のそれぞれを固定することができる。   Further, the stator 2 has a second crimping 26 provided at the center of the magnetic material radial direction outer side portion 241 in the circumferential direction and fixing each of the plurality of steel plates. Thus, each of the stacked steel plates can be fixed without affecting the detection accuracy of the rotation angle detection device.

1 回転子、2 固定子、11 回転軸、12 凹凸部、21 バイアス磁界発生部、22 磁束密度検出部、23 回転角度演算処理部、24 磁性体部材、25 第1かしめ、26 第2かしめ、241 磁性体径方向外側部、242 磁性体周方向外側部、243 磁性体突部外端、244 磁性体突部内端、245 周方向延長面、246 周方向外側向面、247 周方向斜面、248 磁性体狭小部、249 磁性体広大部、250 凹部。   DESCRIPTION OF SYMBOLS 1 rotor, 2 stators, 11 rotating shafts, 12 uneven parts, 21 bias magnetic field generation parts, 22 magnetic flux density detection parts, 23 rotation angle calculation processing parts, 24 magnetic material members, 25 first caulking, 26 second caulking, 241 Magnetic material radial direction outer part, 242 Magnetic material circumferential outer part, 243 Magnetic material protrusion outer end, 244 Magnetic material protrusion inner end, 245 circumferential extension surface, 246 circumferential direction outward facing surface, 247 circumferential slope, 248 Small magnetic part, 249 large magnetic part, 250 concave.

Claims (7)

外周面に磁性体から構成された凹凸部を有する回転子と、
前記凹凸部に対向して設けられ、バイアス磁界発生部および複数の磁束密度検出部を有する固定子と、
前記回転子の径方向について前記バイアス磁界発生部の外側に設けられ前記径方向について前記バイアス磁界発生部に重ねられた磁性体径方向外側部および前記回転子の周方向について前記バイアス磁界発生部を挟む一対の磁性体周方向外側部を有する磁性体部材と
を備え、
前記凹凸部は、Xを1以上の整数とした場合に、前記周方向について機械角360度に対してX周期分変化するように形成され、
複数の前記磁束密度検出部は、前記凹凸部に対して隙間を空けて対向し、前記周方向に沿って等間隔で前記凹凸部の1周期の間に設けられ、
前記バイアス磁界発生部は、前記径方向についてそれぞれの前記磁束密度検出部よりも外側に設けられ、前記径方向についてそれぞれの前記磁束密度検出部に重ねられて前記周方向に延びて形成され、
前記径方向についての前記磁性体周方向外側部の内側端部は、前記径方向についての前記バイアス磁界発生部の内側端部よりも前記径方向について内側に設けられ、
前記周方向についての前記バイアス磁界発生部の両端部と前記回転子の中心との間の角度の半分の角度をaとし、前記周方向についての前記バイアス磁界発生部および前記磁性体周方向外側部の間の隙間の両端部と前記回転子の中心との間の角度をbとし、前記周方向についての前記磁性体周方向外側部の両端部と前記回転子の中心との間の角度をcとした場合に、
a+b>180/X、およびa+b+c<360/X
を満たす回転角度検出装置。
A rotor having an uneven portion made of a magnetic material on the outer peripheral surface;
A stator provided opposite to the uneven portion and having a bias magnetic field generation unit and a plurality of magnetic flux density detection units;
A magnetic material radial direction outer portion provided on the outer side of the bias magnetic field generation unit in the radial direction of the rotor and overlapped with the bias magnetic field generation unit in the radial direction and the bias magnetic field generation unit in the circumferential direction of the rotor And a magnetic member having a pair of magnetic outer circumferential portions sandwiching the magnetic members.
The uneven portion is formed to change by an X cycle with respect to a mechanical angle of 360 degrees in the circumferential direction, when X is an integer of 1 or more,
The plurality of magnetic flux density detection units are opposed to the concavo-convex portion with a gap therebetween, and are provided in one cycle of the concavo-convex portion at equal intervals along the circumferential direction,
The bias magnetic field generation unit is provided outside the respective magnetic flux density detection units in the radial direction, and is formed so as to overlap the respective magnetic flux density detection units in the radial direction and extend in the circumferential direction.
The inner end portion of the magnetic body circumferential direction outer side portion in the radial direction is provided inside the radial direction with respect to the inner end portion of the bias magnetic field generating portion in the radial direction.
An angle half of the angle between both ends of the bias magnetic field generation unit in the circumferential direction and the center of the rotor is a, and the bias magnetic field generation unit and the magnetic material circumferential direction outer side section in the circumferential direction The angle between the ends of the gap between the two and the center of the rotor is b, and the angle between the ends of the outer peripheral portion of the magnetic material in the circumferential direction and the center of the rotor is c If you
a + b> 180 / X, and a + b + c <360 / X
Rotation angle detection device that meets
α=a+b−180/X、β=360/X−(a+b+c)、γ=a−180/Xとした場合に、
α>βおよびγ>0、または、α<βおよびγ<0
を満たす請求項1に記載の回転角度検出装置。
When α = a + b−180 / X, β = 360 / X− (a + b + c), and γ = a−180 / X,
α> β and γ> 0, or α <β and γ <0
The rotation angle detection device according to claim 1, wherein
α=a+b−180/X、β=360/X−(a+b+c)とした場合に、
α=β
を満たす請求項1に記載の回転角度検出装置。
When α = a + b−180 / X and β = 360 / X− (a + b + c),
α = β
The rotation angle detection device according to claim 1, wherein
前記磁性体周方向外側部は、前記磁性体径方向外側部における前記径方向についての外側面から前記周方向に延びる周方向延長面と、前記周方向について外側を向く周方向外側向面とを有し、
前記周方向についての前記磁性体径方向外側部の外側端部における前記径方向についての寸法をdとし、前記周方向についての前記周方向延長面の寸法をeとし、前記径方向についての前記周方向外側向面の寸法をfとした場合に、
d≦e、およびf≦d
を満たす請求項1から請求項3までの何れか一項に記載の回転角度検出装置。
The magnetic body circumferential direction outer side portion includes: a circumferential direction extending surface extending in the circumferential direction from an outer side surface in the radial direction in the magnetic body radial direction outer side portion; and a circumferential direction outward surface facing the outer side in the circumferential direction Have
The dimension in the radial direction at the outer end of the magnetic material radial direction outer portion in the circumferential direction is d, the dimension of the circumferential extension surface in the circumferential direction is e, and the circumferential direction in the radial direction When the dimension of the direction outward facing surface is f,
d ≦ e and f ≦ d
The rotation angle detection device according to any one of claims 1 to 3, wherein
前記磁性体径方向外側部は、前記磁性体径方向外側部における前記周方向についての中央部と外側端部との間の部分に設けられ前記径方向についての外側の面に前記周方向に延びる凹部が形成された磁性体狭小部と、前記周方向について前記磁性体狭小部よりも外側に設けられ、前記径方向についての寸法が前記径方向についての前記磁性体狭小部の寸法よりも大きい磁性体広大部と有し、
前記径方向についての前記磁性体広大部の寸法をgとし、前記径方向についての前記磁性体狭小部の寸法をhとし、前記周方向についての前記バイアス磁界発生部の寸法の半分をiとし、前記バイアス磁界発生部21における前記磁性体狭小部に対向する部分における前記周方向についての寸法をjとした場合に、
g≧h×(i/j)
を満たす請求項1から請求項4までの何れか一項に記載の回転角度検出装置。
The magnetic body radial direction outer side portion is provided in a portion between the central portion and the outer side end portion in the circumferential direction in the magnetic body radial direction outer side portion, and extends in the circumferential direction in the radial outer side surface. A magnetic material narrow portion in which a recess is formed, and a magnetic material which is provided outside the magnetic material narrow portion in the circumferential direction, and a dimension in the radial direction is larger than a dimension of the magnetic material narrow portion in the radial direction With the large part of the body,
Let g be the size of the magnetic body wide portion in the radial direction, h be the size of the magnetic body narrow portion in the radial direction, and i be half the size of the bias magnetic field generating portion in the circumferential direction. In the case where the dimension in the circumferential direction of the portion of the bias magnetic field generation unit 21 facing the magnetic material narrow portion is j,
g ≧ h × (i / j)
The rotation angle detection device according to any one of claims 1 to 4, wherein
前記磁性体部材は、積層された複数の鋼板から構成されており、
前記固定子は、前記磁性体周方向外側部に設けられ複数の前記鋼板のそれぞれを固定する第1かしめをさらに有している請求項1から請求項5までの何れか一項に記載の回転角度検出装置。
The magnetic member is composed of a plurality of stacked steel plates,
The rotation according to any one of claims 1 to 5, wherein the stator further has a first crimp provided at the circumferential outer portion of the magnetic body and fixing each of the plurality of steel plates. Angle detector.
前記磁性体部材は、積層された複数の鋼板から構成されており、
前記固定子は、前記周方向についての前記磁性体径方向外側部の中央部に設けられ複数の前記鋼板のそれぞれを固定する第2かしめをさらに有している請求項1から請求項6までの何れか一項に記載の回転角度検出装置。
The magnetic member is composed of a plurality of stacked steel plates,
The stator according to any one of claims 1 to 6, further comprising a second crimp provided at a central portion of the magnetic material radial direction outer portion in the circumferential direction and fixing each of the plurality of steel plates. The rotation angle detection device according to any one of the preceding claims.
JP2017240179A 2017-12-15 2017-12-15 Rotation angle detector Active JP6485822B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017240179A JP6485822B1 (en) 2017-12-15 2017-12-15 Rotation angle detector
DE102018213788.9A DE102018213788A1 (en) 2017-12-15 2018-08-16 Turning angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240179A JP6485822B1 (en) 2017-12-15 2017-12-15 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP6485822B1 JP6485822B1 (en) 2019-03-20
JP2019109053A true JP2019109053A (en) 2019-07-04

Family

ID=65802292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240179A Active JP6485822B1 (en) 2017-12-15 2017-12-15 Rotation angle detector

Country Status (2)

Country Link
JP (1) JP6485822B1 (en)
DE (1) DE102018213788A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0580207A1 (en) * 1992-07-16 1994-01-26 General Motors Corporation Method and device for sensing movement of a ferro-magnetic object
JPH10122807A (en) * 1996-10-25 1998-05-15 Nippon Seiki Co Ltd Traveling object detector
JP2004340668A (en) * 2003-05-14 2004-12-02 Tdk Corp Apparatus for detecting moving object
JP2011107085A (en) * 2009-11-20 2011-06-02 Tdk Corp Moving object detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0580207A1 (en) * 1992-07-16 1994-01-26 General Motors Corporation Method and device for sensing movement of a ferro-magnetic object
JPH10122807A (en) * 1996-10-25 1998-05-15 Nippon Seiki Co Ltd Traveling object detector
JP2004340668A (en) * 2003-05-14 2004-12-02 Tdk Corp Apparatus for detecting moving object
JP2011107085A (en) * 2009-11-20 2011-06-02 Tdk Corp Moving object detection device

Also Published As

Publication number Publication date
DE102018213788A1 (en) 2019-06-19
JP6485822B1 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
US6501265B2 (en) Angular position detection device having linear output characteristics
JP4858855B2 (en) Rotation angle detector and rotating machine
JP5764929B2 (en) Linear rotary actuator
JP2014033588A (en) Resolver, motor and stator
JPWO2015140941A1 (en) Permanent magnet motor rotor
JP2009288158A (en) Rotation angle detecting device
JP6849188B2 (en) Angle detector
JP2008076148A (en) Torsional torque measuring apparatus
JP7166551B2 (en) Torque sensor stator structure
JP2019109053A (en) Rotation angle detector
CN112703661A (en) Rotating electrical machine
JP6675570B2 (en) Magnetostrictive torque sensor
WO2020195003A1 (en) Motor
JPWO2010013309A1 (en) Magnetic position sensor
JP2007093420A (en) Rotation angle sensor
JP6532574B1 (en) Rotation angle detection device
JP3758174B2 (en) Non-contact position sensor
JP2020108275A (en) Rotor of dynamo-electric machine
JP2019198147A (en) Rotary electric machine
JP2019211335A (en) Magnetostrictive torque sensor having rotating angle detection function
JP7179297B2 (en) Torque sensor stator structure
JPH11136886A (en) Permanent magnet motor
JP2006162557A (en) Torque sensor
JP2012222909A (en) Motor
JP4001849B2 (en) Magnetic rotary position sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6485822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250