JP2011107085A - Moving object detection device - Google Patents

Moving object detection device Download PDF

Info

Publication number
JP2011107085A
JP2011107085A JP2009265106A JP2009265106A JP2011107085A JP 2011107085 A JP2011107085 A JP 2011107085A JP 2009265106 A JP2009265106 A JP 2009265106A JP 2009265106 A JP2009265106 A JP 2009265106A JP 2011107085 A JP2011107085 A JP 2011107085A
Authority
JP
Japan
Prior art keywords
yoke
bias magnet
magnetic pole
length
pole surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009265106A
Other languages
Japanese (ja)
Other versions
JP5057114B2 (en
Inventor
Hiroshi Suzuki
啓史 鈴木
Seiji Fukuoka
誠二 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009265106A priority Critical patent/JP5057114B2/en
Publication of JP2011107085A publication Critical patent/JP2011107085A/en
Application granted granted Critical
Publication of JP5057114B2 publication Critical patent/JP5057114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a variation of a bias magnetic field caused by a variation of a relative position between and among a magneto-sensing element, a bias magnet and a yoke, thereby reducing a variation of the maximum detection distance of each product. <P>SOLUTION: A moving object detection device holds, by a holding member, a Hall IC 10 with a built-in Hall element, the bias magnet 40, and the yoke 60 disposed between and among the Hall IC, the bias magnet, and the yoke 60 which is configured to face a magnetic pole surface of the bias magnet 40, and has a length in the x-direction of the yoke 60 longer than that in the x-direction of the magnetic pole surface of the bias magnet 40. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁界変化を検出する検出装置に係り、特に、例えば工業用工作機械や自動車のエンジンに用いられる軟磁性体からなるラックや歯車のような直線移動や回転移動する検知対象移動体の移動状態を磁気的に検出する場合等に用いて好適な移動体検出装置に関する。   The present invention relates to a detection device that detects a change in a magnetic field, and in particular, a detection target moving body that moves linearly or rotates, such as a rack or gear made of a soft magnetic material used in an engine of an industrial machine tool or an automobile, for example. The present invention relates to a moving body detection apparatus suitable for use in magnetically detecting a moving state.

工業用工作機械や自動車のエンジン等に用いられる軟磁性体のラックや歯車のような直線移動や回転移動する検知対象移動体の移動状態を磁気的に検出するために、永久磁石であるバイアス磁石によりバイアス磁界を加えた感磁素子に軟磁性体が近接することによって感磁素子の出力信号が変化する特性を利用する移動体検出装置がある。   Bias magnet that is a permanent magnet for magnetically detecting the moving state of a moving object to be detected that moves linearly or rotates, such as racks and gears of soft magnetic materials used in industrial machine tools, automobile engines, etc. Thus, there is a moving body detection apparatus that utilizes the characteristic that the output signal of the magnetosensitive element changes when the soft magnetic body approaches the magnetosensitive element to which a bias magnetic field is applied.

このような移動体検出装置において、感磁素子とバイアス磁石の間に、バイアス磁石の磁極面と同面積かつ同形状のヨークを配置し、感磁素子に印加するバイアス磁界の平滑化を試みたものが知られている(下記特許文献1参照)。   In such a moving body detection apparatus, a yoke having the same area and shape as the magnetic pole surface of the bias magnet is arranged between the magnetic sensing element and the bias magnet to attempt to smooth the bias magnetic field applied to the magnetic sensing element. The one is known (see Patent Document 1 below).

特許3469707号公報Japanese Patent No. 3469707

特許文献1の従来例の場合、感磁素子や、バイアス磁石、ヨークを保持する保持部材(例えばセンサー・パッケージのハウジングシェル)へのそれらの部品の組み付け誤差や、保持部材自体の製品ばらつきにより、感磁素子に印加するバイアス磁界が変動し、移動体検出装置として組み立てたときの製品としての最大検出距離(検知対象移動体の動きを検出できる最大距離)に個体差が生じてしまうという問題があった。   In the case of the conventional example of Patent Document 1, due to the assembly error of those parts to the holding member (for example, the housing shell of the sensor package) holding the magnetosensitive element, the bias magnet, and the yoke, or the product variation of the holding member itself, There is a problem that the bias magnetic field applied to the magnetosensitive element fluctuates, resulting in individual differences in the maximum detection distance (maximum distance at which the movement of the detection target moving body can be detected) as a product when assembled as a moving body detection device. there were.

本発明はこうした状況を認識してなされたものであり、その目的は、感磁素子、永久磁石及びヨーク相互の位置のばらつきに起因する磁界の変動を抑制し、最大検出距離の製品ばらつきの低減を図ることのできる移動体検出装置を提供することにある。   The present invention has been made in view of such a situation, and its purpose is to suppress fluctuations in the magnetic field caused by variations in the positions of the magnetosensitive element, permanent magnet and yoke, and to reduce product variations in the maximum detection distance. It is an object of the present invention to provide a moving body detection apparatus capable of achieving the above.

本発明の第1の態様は、移動体検出装置である。この移動体検出装置は、感磁素子と、永久磁石と、前記感磁素子と永久磁石との間に配置されたヨークとを備え、
前記ヨークは前記永久磁石の磁極面に対面しており、前記永久磁石の磁極面の特定方向の長さよりも、前記ヨークの同方向の長さの方が大きい。
A first aspect of the present invention is a moving body detection apparatus. The moving body detection apparatus includes a magnetic sensing element, a permanent magnet, and a yoke disposed between the magnetic sensing element and the permanent magnet.
The yoke faces the magnetic pole surface of the permanent magnet, and the length of the yoke in the same direction is larger than the length of the magnetic pole surface of the permanent magnet in a specific direction.

前記第1の態様において、前記ヨークの前記特定方向の長さが、前記磁極面の特定方向の長さの1.2倍以上であるとよい。   In the first aspect, the length of the yoke in the specific direction may be 1.2 times or more the length of the magnetic pole surface in the specific direction.

本発明の第2の態様は、移動体検出装置である。この移動体検出装置は、2つの感磁素子と、永久磁石と、前記2つの感磁素子と永久磁石との間に配置されたヨークとを備え、
前記ヨークは前記永久磁石の磁極面に対面しており、
前記2つの感磁素子を結ぶ直線方向の前記磁極面の長さよりも、前記ヨークの同方向の長さの方が大きい。
The second aspect of the present invention is a moving body detection apparatus. The moving body detection apparatus includes two magnetic sensing elements, a permanent magnet, and a yoke disposed between the two magnetic sensing elements and the permanent magnet.
The yoke faces the magnetic pole surface of the permanent magnet,
The length of the yoke in the same direction is larger than the length of the magnetic pole surface in the linear direction connecting the two magnetosensitive elements.

前記第2の態様において、前記2つの感磁素子を結ぶ直線方向の前記ヨークの長さが、前記磁極面の同方向の長さの1.2倍以上であるとよい。   In the second aspect, the length of the yoke in the linear direction connecting the two magnetosensitive elements may be 1.2 times or more of the length in the same direction of the magnetic pole surface.

前記第1又は第2の態様において、前記感磁素子、前記永久磁石及び前記ヨークを保持する保持部材を備え、前記保持部材は前記永久磁石及び前記ヨークが挿入される挿入穴を有するとよい。   In the first or second aspect, a holding member that holds the magnetosensitive element, the permanent magnet, and the yoke may be provided, and the holding member may have an insertion hole into which the permanent magnet and the yoke are inserted.

また、前記感磁素子は表面実装型感磁素子であって基板に固着され、前記基板が前記保持部材で保持されているとよい。   The magnetosensitive element may be a surface mount type magnetosensitive element, and may be fixed to a substrate, and the substrate may be held by the holding member.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明に係る移動体検出装置によれば、軟磁性体のヨーク形状を工夫することで、感磁素子、永久磁石及びヨーク相互の位置のばらつきに起因する感磁素子位置での磁界変動を抑制することができ、ひいては最大検出距離の製品ばらつきの低減を図ることが可能である。   According to the moving body detection apparatus of the present invention, by devising the yoke shape of the soft magnetic body, the magnetic field fluctuation at the position of the magnetic sensitive element due to the variation in the positions of the magnetic sensitive element, the permanent magnet and the yoke is suppressed. As a result, it is possible to reduce the product variation of the maximum detection distance.

また、使用中に振動や衝撃が加わり、感磁素子、永久磁石及びヨークの相互位置関係が変化してしまっても、感磁素子への印加磁界変動を小さく抑えることが可能であり、その結果、振動や衝撃に起因する誤動作を抑制できる。   In addition, even if vibration or impact is applied during use and the mutual positional relationship of the magnetosensitive element, permanent magnet, and yoke changes, it is possible to suppress fluctuations in the applied magnetic field to the magnetosensitive element. In addition, malfunction caused by vibration and impact can be suppressed.

本発明の第1の実施の形態に係る移動体検出装置の要部構成であって、(A)は分解斜視図、(B)はバイアス磁石、ヨーク及び感磁素子としてのホールICを組み付けた後の斜視図。It is a principal part structure of the moving body detection apparatus which concerns on the 1st Embodiment of this invention, (A) is an exploded perspective view, (B) assembled | attached the Hall IC as a bias magnet, a yoke, and a magnetosensitive element. FIG. 本発明の第1の実施の形態に係る移動体検出装置の全体構成を示す側断面図。1 is a side sectional view showing an overall configuration of a moving object detection apparatus according to a first embodiment of the present invention. ホールICに内蔵されている1つのホール素子の位置(センシングポイント)とこれに対向するバイアス磁石及びヨークの配置であって、(A)はバイアス磁石の磁極面と同面積、同形状のヨークを重ねて配置した従来例の場合の正面図、(B)は同平面図、(C)はバイアス磁石の磁極面よりも面積が大きい(又は特定方向において磁極面の長さよりも長い)ヨークを重ねて配置した第1の実施の形態の場合の正面図、(D)は同平面図。The position (sensing point) of one Hall element built in the Hall IC and the arrangement of a bias magnet and a yoke facing the Hall element, wherein (A) shows a yoke having the same area and shape as the magnetic pole surface of the bias magnet. The front view in the case of the conventional example arranged in an overlapping manner, (B) is the same plan view, (C) is an overlapping yoke having a larger area than the magnetic pole face of the bias magnet (or longer than the length of the magnetic pole face in a specific direction). The front view in the case of 1st Embodiment arrange | positioned and (D) is the same top view. ホールICに内蔵されている2つのホール素子の位置(センシングポイント)とこれに対向するバイアス磁石及びヨークの配置であって、(A)はバイアス磁石の磁極面と同面積、同形状のヨークを重ねて配置した従来例の場合の正面図、(B)は同平面図、(C)はバイアス磁石の磁極面よりも面積が大きい(又は特定方向において磁極面の長さよりも長い)ヨークを重ねて配置した第1の実施の形態の場合の正面図、(D)は同平面図。The position (sensing point) of the two Hall elements built in the Hall IC and the arrangement of the bias magnet and the yoke opposite to each other, (A) shows a yoke having the same area and shape as the magnetic pole surface of the bias magnet. The front view in the case of the conventional example arranged in an overlapping manner, (B) is the same plan view, (C) is an overlapping yoke having a larger area than the magnetic pole face of the bias magnet (or longer than the length of the magnetic pole face in a specific direction). The front view in the case of 1st Embodiment arrange | positioned and (D) is the same top view. 本発明の第2の実施の形態に係る移動体検出装置の要部構成であって、(A)は分解斜視図、(B)はバイアス磁石及びヨークを組み付けた後の斜視図、(C)はさらにホールICを搭載した基板を組み付けた後の斜視図。It is a principal part structure of the moving body detection apparatus which concerns on the 2nd Embodiment of this invention, Comprising: (A) is a disassembled perspective view, (B) is a perspective view after attaching a bias magnet and a yoke, (C). FIG. 3 is a perspective view after assembling a substrate on which a Hall IC is further mounted. 本発明の第2の実施の形態に係る移動体検出装置の全体構成であって、(A)は封止樹脂の充填前で、リード線を省略した平面図、(B)は側断面図。It is a whole structure of the moving body detection apparatus concerning the 2nd Embodiment of this invention, Comprising: (A) is the top view which abbreviate | omitted the lead wire before filling with sealing resin, (B) is a sectional side view. バイアス磁石に重ねて配置されるヨーク形状の例示であり、(A−1)はバイアス磁石の磁極面と同面積かつ同形状の正方形板状のヨークを用いた従来例(モデル:Y05)の平面図、(A−2)は同正面図、(B−1)はxy方向の長さがバイアス磁石の磁極面の長さと同じ正方形板状部に加えて、x方向の両側に帯状(矩形板状)のはみ出し部を有することでx方向長さが前記磁極面よりも大きくなったヨークを用いたモデル:YMA1の平面図、(B−2)は同正面図、(C−1)はxy方向の長さがバイアス磁石の磁極面の長さと同じ正方形板状部に加えて、x方向の両側にさらに長い帯状(矩形板状)のはみ出し部を有することでx方向長さが前記磁極面よりも大きくなったヨークを用いたモデル:YMA2の平面図、(C−2)は同正面図、(D−1)はxy方向の長さがバイアス磁石の磁極面の長さと同じ正方形板状部に加えて、x方向の両側に三角形板状のはみ出し部を有することでx方向長さが前記磁極面よりも大きくなったヨークを用いたモデル:YMB1の平面図、(D−2)は同正面図、(E−1)はxy方向の長さがバイアス磁石の磁極面の長さと同じ正方形板状部に加えて、x方向の両側に円弧板状のはみ出し部を有することでx方向長さが前記磁極面よりも大きくなったヨークを用いたモデル:YMC1の平面図、(E−2)は同正面図、(F−1)はy方向の長さがバイアス磁石の磁極面の長さよりも短く、x方向長さが前記磁極面よりも大きい長方形板状のヨークを用いたモデル:YMD1の平面図、(F−2)は同正面図、(G−1)はバイアス磁石の磁極面と同面積かつ同形状の円板形状のヨークを用いた従来例(モデル:YC05)の平面図、(G−2)は同正面図、(H−1)はバイアス磁石の磁極面よりも大径の円板形状のヨークを用いたモデル:YC07)の平面図、(H−2)は同正面図。It is an illustration of a yoke shape arranged so as to overlap a bias magnet, and (A-1) is a plane of a conventional example (model: Y05) using a square plate-like yoke having the same area and shape as the magnetic pole surface of the bias magnet. (A-2) is the same front view, (B-1) is a strip (rectangular plate) on both sides in the x direction, in addition to the square plate portion whose length in the xy direction is the same as the length of the magnetic pole surface of the bias magnet. Model) using a yoke whose x-direction length is larger than the magnetic pole surface by having a protruding portion of (shape): a plan view of YMA1, (B-2) is the front view, and (C-1) is xy In addition to a square plate-like portion whose length in the direction is the same as the length of the magnetic pole surface of the bias magnet, a longer strip (rectangular plate-shaped) protruding portion is provided on both sides in the x direction so that the length in the x direction is the magnetic pole surface. Model with larger yoke: Plan view of YMA2, (C-2) The same front view, (D-1) shows that the length in the xy direction is the same as the length of the magnetic pole surface of the bias magnet, and in addition to the triangular plate-like protrusions on both sides in the x direction, Model using a yoke whose length is larger than the magnetic pole surface: a plan view of YMB1, (D-2) is the front view, and (E-1) is the length of the magnetic pole surface of the bias magnet in the xy direction. A model using a yoke having an arc plate-like protruding portion on both sides in the x direction in addition to a square plate portion having the same length as that of the yoke whose x direction length is larger than the magnetic pole surface: YMC1 plan view; (E-2) is the same front view, and (F-1) is a rectangular plate-shaped yoke whose length in the y direction is shorter than the length of the magnetic pole surface of the bias magnet and whose length in the x direction is larger than the magnetic pole surface. Model used: Plan view of YMD1, (F-2) is the same front view, (G-1) is A plan view of a conventional example (model: YC05) using a disk-shaped yoke having the same area and shape as the magnetic pole surface of the magnet, (G-2) is the front view, and (H-1) is the bias magnet. A plan view of a model (YC07) using a disk-shaped yoke having a diameter larger than that of the magnetic pole surface, and (H-2) is a front view thereof. バイアス磁石とヨーク間にセンターずれ(中心位置ずれ)がない状態におけるヨーク形状別シミュレーション結果であって、(A)はシミュレーションモデル概念図、(B)は各モデルY00〜Y11のヨーク及びバイアス磁石形状、寸法と、素子(センシングポイント)−磁石間隔(Y00の場合)、及び素子−ヨーク間隔(Y01〜Y11)の関係を示す表、(C)は各モデルY00〜Y11についてx方向位置とz方向磁束密度Bzとの関係を示すヨーク形状別Bz分布図。The simulation results for each yoke shape when there is no center shift (center position shift) between the bias magnet and the yoke, (A) is a conceptual diagram of the simulation model, and (B) is the yoke and bias magnet shape of each model Y00-Y11. Table showing relationship between dimensions, element (sensing point) -magnet interval (in the case of Y00), and element-yoke interval (Y01-Y11), (C) is the x-direction position and z-direction for each model Y00-Y11 The Bz distribution map according to yoke shape which shows the relationship with magnetic flux density Bz. 2つの素子(例えば、2つのホール素子を内蔵するホールIC)とヨーク間にセンターずれが存在する場合(バイアス磁石とヨーク間にはずれ無し)であって、(A)は2つの素子位置(2つのセンシングポイント)におけるBzの差ΔBzの求め方を示す説明図、(B)は各モデルY00〜Y11のΔBz及び|ΔBz|を示す表、(C)はY00〜Y11のx方向ヨーク幅とΔBzとの関係を示すグラフ。In the case where there is a center shift between two elements (for example, a Hall IC incorporating two Hall elements) and the yoke (no shift between the bias magnet and the yoke), (A) shows two element positions (2 (B) is a table showing ΔBz and | ΔBz | of each model Y00 to Y11, and (C) is an x-direction yoke width and ΔBz of Y00 to Y11. The graph which shows the relationship. バイアス磁石とヨーク間にセンターずれが存在する場合の各モデルY01S〜Y11S(Y01〜Y11のヨーク中心をバイアス磁石中心に対してx方向に0.5mmずらしたもの)についてx方向位置とz方向磁束密度Bzとの関係を示すヨーク形状別Bz分布図。The position in the x direction and the magnetic flux in the z direction for each model Y01S to Y11S (the yoke center of Y01 to Y11 is shifted by 0.5 mm in the x direction with respect to the bias magnet center) when there is a center deviation between the bias magnet and the yoke The Bz distribution map according to yoke shape which shows the relationship with density Bz. バイアス磁石とヨーク間にセンターずれが存在し、かつ2つの素子(例えば、2つのホール素子を内蔵するホールIC)とヨーク間にセンターずれが存在する場合であって、(A)はバイアス磁石、ヨーク及び素子(センシングポイント)の位置ずれの1例を示す正面図、(B)は同平面図、(C)は各モデルY00S〜Y11SのΔBz及び|ΔBz|を、バイアス磁石とヨーク間にずれの無いモデルY00〜Y11と対比して示す表、(D)はY01S〜Y11Sのx方向ヨーク幅とΔBzとの関係を、バイアス磁石とヨーク間にずれの無いモデルY00〜Y11と対比して示すグラフ。A center deviation exists between the bias magnet and the yoke, and a center deviation exists between the two elements (for example, a Hall IC incorporating two Hall elements) and the yoke, and (A) is a bias magnet, Front view showing an example of the positional deviation of the yoke and the element (sensing point), (B) is the same plan view, (C) is the deviation of ΔBz and | ΔBz | of each model Y00S to Y11S between the bias magnet and the yoke. (D) shows the relationship between the Y01S to Y11S x-direction yoke width and ΔBz in comparison with the models Y00 to Y11 having no deviation between the bias magnet and the yoke. Graph. 多様な形状のモデルY05,Y07,YMA1,YMA2,YMB1,YMC1,YMD1,YC05,YC07に関して、(A)はx方向位置とz方向磁束密度Bzとの関係を示すヨーク形状別Bz分布図、(B)は2つの素子(例えば、2つのホール素子を内蔵するホールIC)とヨーク間にセンターずれが存在する場合の、各モデルについてのΔBz及び|ΔBz|を示す表。Regarding models Y05, Y07, YMA1, YMA2, YMB1, YMC1, YMD1, YC05, and YC07 of various shapes, (A) is a Bz distribution diagram by yoke shape showing the relationship between the x-direction position and the z-direction magnetic flux density Bz. B) is a table showing ΔBz and | ΔBz | for each model when there is a center shift between two elements (for example, a Hall IC incorporating two Hall elements) and a yoke.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1(A),(B)は、本発明の第1の実施の形態に係る移動体検出装置100の要部構成構成を、図2は移動体検出装置100の全体構成をそれぞれ示す。これらの図に示すように、移動体検出装置100は、ケース20と、保持部材30とを備える。ケース20及び保持部材30は、例えば絶縁樹脂製である。保持部材30には、感磁素子としてのホール素子を内蔵したホールIC10と、バイアス磁界発生用の永久磁石であるバイアス磁石40と、バイアス磁石40の磁極面に対面(密着)した軟磁性体のヨーク60と、基板70とが保持される。なお、バイアス磁石40は厚み方向に着磁されており、一方の磁極面がN極、他方の磁極面がS極である。また、ヨーク60はバイアス磁石40の磁極面とは異なる形状(例えば、磁極面よりも大きな面積)であり、磁極面からはみ出した部分を有するが、詳細は後述する。   1A and 1B show the main configuration of the mobile object detection device 100 according to the first embodiment of the present invention, and FIG. 2 shows the overall configuration of the mobile object detection device 100, respectively. As shown in these drawings, the moving body detection device 100 includes a case 20 and a holding member 30. The case 20 and the holding member 30 are made of an insulating resin, for example. The holding member 30 is composed of a Hall IC 10 incorporating a Hall element as a magnetosensitive element, a bias magnet 40 that is a permanent magnet for generating a bias magnetic field, and a soft magnetic material that faces (contacts) the magnetic pole surface of the bias magnet 40. The yoke 60 and the substrate 70 are held. The bias magnet 40 is magnetized in the thickness direction, and one magnetic pole surface is an N pole and the other magnetic pole surface is an S pole. The yoke 60 has a shape different from the magnetic pole surface of the bias magnet 40 (for example, an area larger than the magnetic pole surface), and has a portion protruding from the magnetic pole surface, details of which will be described later.

図1(A),(B)に示すように、ホールIC10(本実施の形態では、リード端子を有するもの)はホール素子とその出力を増幅する増幅器とを内蔵したものであり、ホール素子を1個又は複数個有する。そして、ホールIC10は、保持部材30の有する支持部31の先端部に形成された凹部39内に位置し、固定的に保持される。   As shown in FIGS. 1A and 1B, the Hall IC 10 (in this embodiment, having a lead terminal) includes a Hall element and an amplifier that amplifies its output. One or more. And Hall IC10 is located in the recessed part 39 formed in the front-end | tip part of the support part 31 which the holding member 30 has, and is hold | maintained fixedly.

保持部材30の支持部31には、磁石挿入部36aとヨーク挿入部36bとからなる挿入穴36が形成されており、バイアス磁石40は挿入穴36の磁石挿入部36a内に挿入保持され、ヨーク60は、挿入穴36のヨーク挿入部36b内に挿入保持されてホールIC10の近傍に位置し、ホールIC10にバイアス磁界を加える。なお、挿入穴36の開口は、図2のようにケース20を保持部材30に被せることによって塞がれる。   The support portion 31 of the holding member 30 is formed with an insertion hole 36 including a magnet insertion portion 36a and a yoke insertion portion 36b, and the bias magnet 40 is inserted and held in the magnet insertion portion 36a of the insertion hole 36. 60 is inserted and held in the yoke insertion portion 36b of the insertion hole 36 and is positioned in the vicinity of the Hall IC 10, and applies a bias magnetic field to the Hall IC 10. The opening of the insertion hole 36 is closed by covering the case 20 with the holding member 30 as shown in FIG.

図2のように、基板70は、支持部31の上辺部(ホールIC10の近傍)に支持固定される。ホールIC10のリード端子11は基板70に接続され、基板70にはホールIC10の出力信号を保護(処理)する電子部品(図示せず)が実装(搭載)されて出力信号保護(処理)回路が組み立てられている。   As shown in FIG. 2, the substrate 70 is supported and fixed on the upper side portion of the support portion 31 (in the vicinity of the Hall IC 10). The lead terminals 11 of the Hall IC 10 are connected to the board 70, and an electronic component (not shown) that protects (processes) the output signal of the Hall IC 10 is mounted (mounted) on the board 70, and an output signal protection (processing) circuit is provided. It is assembled.

保持部材30の有する円柱状栓体部32を貫通してL字状に折り曲げ形成(インサート成型)された複数本の導体50の末端部が基板70にそれぞれ接続され、導体50の先端部がコネクタピン51として保持部材30の有するコネクタ部33の内側ハウジング内に突出している。なお、導体50はホールIC10により検出された出力信号を外部に導出するためのものである。基板70は、導体50(保持部材30と一体)が貫通して半田固定されることで支持部31の上辺部に固定支持される。そしてホールIC10は、端子11が基板70に半田固定されることで支持部31先端部の凹部39内に固定的に保持される。   The end portions of the plurality of conductors 50 that are bent and formed in an L shape (insert molding) through the cylindrical plug body portion 32 of the holding member 30 are connected to the substrate 70, respectively, and the tip ends of the conductors 50 are the connectors. The pin 51 protrudes into the inner housing of the connector portion 33 of the holding member 30. The conductor 50 is for leading out the output signal detected by the Hall IC 10 to the outside. The substrate 70 is fixedly supported on the upper side portion of the support portion 31 by passing through the conductor 50 (integrated with the holding member 30) and soldering. The Hall IC 10 is fixedly held in the recess 39 at the tip of the support portion 31 by soldering the terminal 11 to the substrate 70.

ケース20は、有底円筒状で一端が開口部となっており、保持部材30と嵌合する構造となっている。保持部材30の円柱状栓体部32には、くびれ部34が形成されており、このくびれ部34にはゴム等の水密封止用弾性体としてのOリング35が装着されている。そして、円柱状栓体部32の外側にケース20を被せることで、ケース20内部が水密封止される。なお、ケース20にはフランジ部21が一体に形成され、フランジ部21の内側にブッシュ22が嵌合固定されている。また、ケース20の外周部(フランジ部21の前側)には移動体検出装置100を相手側に取り付けるためにOリング取付け溝45が形成されており、その周囲にゴム等の水密封止用弾性体としてのOリング46が装着されている。   The case 20 has a bottomed cylindrical shape with one end serving as an opening, and is configured to be fitted to the holding member 30. A constricted portion 34 is formed in the cylindrical plug portion 32 of the holding member 30, and an O-ring 35 is attached to the constricted portion 34 as an elastic body for watertight sealing such as rubber. Then, by covering the case 20 on the outside of the cylindrical plug body 32, the inside of the case 20 is watertightly sealed. A flange portion 21 is formed integrally with the case 20, and a bush 22 is fitted and fixed inside the flange portion 21. Further, an O-ring mounting groove 45 is formed on the outer peripheral portion of the case 20 (on the front side of the flange portion 21) in order to mount the moving body detection device 100 on the other side, and a water-tight sealing elastic material such as rubber is formed around the O-ring mounting groove 45. An O-ring 46 as a body is attached.

図3及び図4において、ホールIC10のセンシングポイント(ホール素子の位置)とバイアス磁石40及びヨーク60との相互関係について説明する。   3 and 4, the mutual relationship between the sensing point (the position of the Hall element) of the Hall IC 10 and the bias magnet 40 and the yoke 60 will be described.

図3は1つのホール素子を内蔵したホールICを用いる場合であって、図3(A),(B)は従来例に相当する構成で、バイアス磁石の磁極面と同面積かつ同形状の正方形状のヨークを、バイアス磁石の磁極面に重ねたものであり、ヨーク平面のx方向及びこれに直交するy方向の中心0を通過してxy方向に垂直なz方向上にホールICのセンシングポイントを位置させている。   FIG. 3 shows a case where a Hall IC incorporating a single Hall element is used. FIGS. 3A and 3B show a configuration corresponding to the conventional example, and a square having the same area and shape as the magnetic pole surface of the bias magnet. Is formed on the magnetic pole surface of the bias magnet. The sensing point of the Hall IC passes through the center 0 in the y direction perpendicular to the x direction of the yoke plane and in the z direction perpendicular to the xy direction. Is located.

図3(C),(D)は第1の実施の形態に係る場合であり、x方向の長さがバイアス磁石40の磁極面の同方向長さよりも大きく、y方向の長さは磁極面の同方向長さに等しい長方形状のヨーク60を、相互の中心が一致するようにバイアス磁石40の磁極面に重ねたものであり、ヨーク平面の中心0を通過するz方向上にホールIC10のセンシングポイントを位置させている。なお、通常の使用方法では、x方向は、図2に示した軟磁性体歯車1の外周面の移動方向を向いている。   3C and 3D show the case according to the first embodiment, where the length in the x direction is larger than the length of the magnetic pole surface of the bias magnet 40 in the same direction, and the length in the y direction is the magnetic pole surface. A rectangular yoke 60 having the same length in the same direction is overlapped on the magnetic pole surface of the bias magnet 40 so that the centers of the two coincide with each other, and the Hall IC 10 is formed in the z direction passing through the center 0 of the yoke plane. The sensing point is located. In the normal usage method, the x direction faces the moving direction of the outer peripheral surface of the soft magnetic gear 1 shown in FIG.

移動体検出装置100は、図2に示されるように、ホールIC10が検知対象移動体の例示である軟磁性体歯車1の外周面に対向するように支持された状態で使用される。歯車1の歯は紙面に垂直な方向に移動する。そして、歯車1がセンシングポイントに近いか、遠いかによってセンシングポイントにおける磁界が変化し、これをホール素子で検出する。   As shown in FIG. 2, the moving body detection device 100 is used in a state where the Hall IC 10 is supported so as to face the outer peripheral surface of the soft magnetic gear 1 that is an example of the detection target moving body. The teeth of the gear 1 move in a direction perpendicular to the paper surface. The magnetic field at the sensing point changes depending on whether the gear 1 is close to or far from the sensing point, and this is detected by the Hall element.

図3(C),(D)の構成とすれば、バイアス磁石40、ヨーク60及びホールIC10のx方向の相互の位置ずれに起因するセンシングポイントにおけるz方向磁束密度の変動が従来例に比較して緩和される。このことは後述のシミュレーションにおいて説明するが、前記位置ずれによる最大検出距離の製品ばらつきの低減に有効である。   3C and 3D, the fluctuation of the z-direction magnetic flux density at the sensing point due to the mutual displacement of the bias magnet 40, the yoke 60, and the Hall IC 10 in the x-direction compared to the conventional example. Is alleviated. This will be described in a later-described simulation, but is effective in reducing product variations in the maximum detection distance due to the positional deviation.

図4は2つのホール素子を内蔵した差動型ホールICを用いる場合であって、図4(A),(B)は従来例に相当する構成で、バイアス磁石の磁極面と同面積かつ同形状の正方形状のヨークを、バイアス磁石の磁極面に重ねたものであり、ヨーク平面のx方向及びこれに直交するy方向の中心0を通過してxy方向に垂直なz方向上にホールICの2つのセンシングポイントの中間点(2分割点)を位置させている。   FIG. 4 shows a case where a differential Hall IC incorporating two Hall elements is used. FIGS. 4A and 4B show a configuration corresponding to the conventional example, which has the same area and the same area as the magnetic pole surface of the bias magnet. A square-shaped yoke is superimposed on the magnetic pole face of the bias magnet, and passes through the center 0 in the x direction of the yoke plane and the y direction perpendicular to the yoke plane, and in the z direction perpendicular to the xy direction. An intermediate point (two division points) between the two sensing points is positioned.

図4(C),(D)は第1の実施の形態に係る場合であり、x方向の長さがバイアス磁石40の磁極面の同方向長さよりも大きく、y方向の長さは磁極面の同方向長さに等しい長方形状のヨーク60を、相互の中心が一致するようにバイアス磁石の磁極面に重ねたものであり、ヨーク平面の中心0を通過するz方向上にホールIC10の2つのセンシングポイントの中間点(2分割点)を位置させている。x方向はホールIC10の2つのセンシングポイント(2つのホール素子)を結ぶ直線に平行に設定される。また、通常の使用方法では、x方向及び2つのセンシングポイントを結ぶ直線方向は、図2の示した軟磁性体歯車1の外周面の移動方向を向いている。   4C and 4D show the case according to the first embodiment, where the length in the x direction is larger than the length of the magnetic pole surface of the bias magnet 40 in the same direction, and the length in the y direction is the magnetic pole surface. A rectangular yoke 60 having the same length in the same direction is superposed on the magnetic pole face of the bias magnet so that the centers thereof coincide with each other, and the hall IC 10 2 is placed on the z direction passing through the center 0 of the yoke plane. The middle point (two split points) of the two sensing points is located. The x direction is set parallel to a straight line connecting two sensing points (two Hall elements) of the Hall IC 10. Further, in the normal usage method, the x direction and the linear direction connecting the two sensing points are directed to the moving direction of the outer peripheral surface of the soft magnetic gear 1 shown in FIG.

図4(C),(D)の構成のように、2つのセンシングポイント(2つのホール素子)を結ぶ直線に平行な方向(つまりx方向)のヨーク長さをバイアス磁石40の磁極面の同方向長さよりも大きくすることで、バイアス磁石40、ヨーク60及びホールIC10のx方向の相互の位置ずれに起因するセンシングポイントにおけるz方向磁束密度の変動が従来例に比較して緩和される。このことは後述するシミュレーションにおいて説明するが、前記位置ずれによる最大検出距離の製品ばらつきの低減に有効である。   As shown in FIGS. 4C and 4D, the yoke length in the direction parallel to the straight line connecting the two sensing points (two Hall elements) (that is, the x direction) is the same as that of the magnetic pole surface of the bias magnet 40. By making it larger than the length in the direction, fluctuations in the z-direction magnetic flux density at the sensing point due to the positional displacement of the bias magnet 40, the yoke 60, and the Hall IC 10 in the x direction are alleviated as compared with the conventional example. This will be described in a simulation described later, but is effective in reducing product variations in the maximum detection distance due to the positional deviation.

図5(A),(B),(C)は、本発明の第2の実施の形態に係る移動体検出装置200の要部構成構成を、図6(A),(B)は移動体検出装置200の全体構成をそれぞれ示す。これらの図に示すように、移動体検出装置200は、保持部材を兼ねたケース25内に、ホールIC10(本実施の形態では表面実装型のもの)と、バイアス磁石40と、バイアス磁石40の磁極面に対面(密着)したヨーク60と、基板70とを収納したものである。なお、軟磁性体のヨーク60はバイアス磁石40の磁極面とは異なる形状(例えば、磁極面よりも大きな面積)であり、磁極面からはみ出した部分を有する。   5 (A), (B), and (C) show the main configuration of the moving body detection apparatus 200 according to the second embodiment of the present invention, and FIGS. 6 (A) and 6 (B) show the moving body. The whole structure of the detection apparatus 200 is shown, respectively. As shown in these drawings, the moving body detection device 200 includes a Hall IC 10 (surface-mounted type in this embodiment), a bias magnet 40, and a bias magnet 40 in a case 25 that also serves as a holding member. The yoke 60 facing the magnetic pole surface (contacted) and the substrate 70 are accommodated. The soft magnetic yoke 60 has a shape different from the magnetic pole surface of the bias magnet 40 (for example, an area larger than the magnetic pole surface), and has a portion protruding from the magnetic pole surface.

ケース25は、例えば絶縁樹脂製であり、有底で一方が開口した構造を持ち、基板挿入穴26及び磁石・ヨーク挿入穴27を有している。磁石・ヨーク挿入穴27は磁石挿入部27a及びヨーク挿入部27bとからなっている。そして、バイアス磁石40は磁石・ヨーク挿入穴27の磁石挿入部27a内に挿入保持され、ヨーク60は、ヨーク挿入部27b内に挿入保持される。   The case 25 is made of, for example, insulating resin, has a bottomed structure with one opening, and has a board insertion hole 26 and a magnet / yoke insertion hole 27. The magnet / yoke insertion hole 27 includes a magnet insertion portion 27a and a yoke insertion portion 27b. The bias magnet 40 is inserted and held in the magnet insertion portion 27a of the magnet / yoke insertion hole 27, and the yoke 60 is inserted and held in the yoke insertion portion 27b.

基板70にはホールIC10が表面実装されて固着され、さらにホールIC10の出力信号を保護(処理)する電子部品(図示せず)が実装(搭載)されて出力信号保護(処理)回路が組み立てられている。また、基板70の一方の端部には複数本のリード線55が固定されている。それらのリード線55は、ホールIC10により検出された出力信号を外部に導出するためのものである。ホールIC10や、電子部品、リード線55等を搭載した基板70は基板挿入穴26に挿入保持される。   The Hall IC 10 is surface-mounted and fixed on the substrate 70, and an electronic component (not shown) for protecting (processing) the output signal of the Hall IC 10 is mounted (mounted) to assemble an output signal protection (processing) circuit. ing. A plurality of lead wires 55 are fixed to one end portion of the substrate 70. These lead wires 55 are for leading out an output signal detected by the Hall IC 10 to the outside. The board 70 on which the Hall IC 10, electronic components, lead wires 55, etc. are mounted is inserted and held in the board insertion hole 26.

最後に、図6(B)のように、封止樹脂29をケース25内に充填することで、ケース25の開口は封止され、ケース25内のホールIC10や、バイアス磁石40、ヨーク60等は位置決め固定されることになる。ケース内において、バイアス磁石40及びヨーク60は、ホールIC10の近傍に位置し、ホールIC10にバイアス磁界を印加している。例えば、1つのホール素子を内蔵したホールICを用いる場合には図3(C),(D)の配置とし、2つのホール素子を内蔵したホールICを用いる場合には図4(C),(D)の配置とする。   Finally, as shown in FIG. 6B, the opening of the case 25 is sealed by filling the case 25 with the sealing resin 29, so that the Hall IC 10 in the case 25, the bias magnet 40, the yoke 60, etc. Is fixedly positioned. In the case, the bias magnet 40 and the yoke 60 are located in the vicinity of the Hall IC 10 and apply a bias magnetic field to the Hall IC 10. For example, when a Hall IC incorporating one Hall element is used, the arrangement shown in FIGS. 3C and 3D is used. When a Hall IC incorporating two Hall elements is used, FIGS. D).

移動体検出装置200は、図6(B)に示されるように、ホールIC10が検知対象移動体の例示である軟磁性体歯車1の外周面に対向するように支持された状態で使用される。歯車1の歯は紙面に垂直な方向に移動する。   As shown in FIG. 6B, the moving body detection device 200 is used in a state where the Hall IC 10 is supported so as to face the outer peripheral surface of the soft magnetic gear 1 that is an example of the detection target moving body. . The teeth of the gear 1 move in a direction perpendicular to the paper surface.

この第2の実施の形態の場合も、第1の実施の形態とはケース構造が異なるが、第1の実施の形態と同様の効果が得られる。   In the case of the second embodiment, the case structure is different from that of the first embodiment, but the same effects as those of the first embodiment can be obtained.

図7は第1及び第2実施の形態で使用できるその他のヨーク形状の例示であり、対比のために従来例に相当する構成も併せて示す。   FIG. 7 is an illustration of another yoke shape that can be used in the first and second embodiments, and a configuration corresponding to a conventional example is also shown for comparison.

図7(A−1),(A−2)は、従来例に相当するモデル:Y05であり、角柱状のバイアス磁石に対してバイアス磁石の磁極面と同面積かつ同形状の正方形板状のヨークを重ねた構成である。   FIGS. 7A-1 and 7A-2 show a model Y05 corresponding to the conventional example, which has a square plate shape with the same area and shape as the magnetic pole surface of the bias magnet with respect to the prismatic bias magnet. The yoke is stacked.

図7(B−1),(B−2)は第1及び第2実施の形態で使用できるモデル:YMA1であり、xy方向の長さがバイアス磁石の磁極面の長さと同じ正方形板状部に加えて、x方向の両側に帯状(矩形板状)のはみ出し部を有することでx方向長さが前記磁極面よりも大きくなったヨークを、角柱状のバイアス磁石に重ねた構成である。   FIGS. 7B-1 and 7B-2 are models that can be used in the first and second embodiments: YMA1, and a square plate-like portion in which the length in the xy direction is the same as the length of the magnetic pole surface of the bias magnet In addition, a yoke having a strip-like (rectangular plate-like) protruding portion on both sides in the x direction and having a length in the x direction larger than the magnetic pole surface is superimposed on a prismatic bias magnet.

図7(C−1),(C−2)は第1及び第2実施の形態で使用できるモデル:YMA2であり、xy方向の長さがバイアス磁石の磁極面の長さと同じ正方形板状部に加えて、x方向の両側にさらに長い帯状(矩形板状)のはみ出し部を有することでx方向長さが前記磁極面よりも大きくなったヨークを、角柱状のバイアス磁石に重ねた構成である。   FIGS. 7C-1 and 7C-2 are models that can be used in the first and second embodiments: YMA2, and a square plate-like portion whose length in the xy direction is the same as the length of the magnetic pole surface of the bias magnet In addition, a yoke having a longer belt-like (rectangular plate-like) protruding portion on both sides in the x-direction so that the length in the x-direction is larger than the magnetic pole surface is superimposed on the prismatic bias magnet. is there.

図7(D−1),(D−2)は第1及び第2実施の形態で使用できるモデル:YMB1であり、xy方向の長さがバイアス磁石の磁極面の長さと同じ正方形板状部に加えて、x方向の両側に三角形板状のはみ出し部を有することでx方向長さが前記磁極面よりも大きくなったヨークを、角柱状のバイアス磁石に重ねた構成である。   FIGS. 7D-1 and 7D-2 are models that can be used in the first and second embodiments: YMB1, and a square plate-like portion whose length in the xy direction is the same as the length of the magnetic pole surface of the bias magnet In addition, a yoke having a triangular plate-like protrusion on both sides in the x direction and having a length in the x direction larger than that of the magnetic pole surface is superimposed on a prismatic bias magnet.

図7(E−1),(E−2)は第1及び第2実施の形態で使用できるモデル:YMC1であり、xy方向の長さがバイアス磁石の磁極面の長さと同じ正方形板状部に加えて、x方向の両側に円弧板状のはみ出し部を有することでx方向長さが前記磁極面よりも大きくなったヨークを、角柱状のバイアス磁石に重ねた構成である。   FIGS. 7E-1 and 7E-2 are models that can be used in the first and second embodiments: YMC1, and a square plate-like portion whose length in the xy direction is the same as the length of the magnetic pole surface of the bias magnet In addition, a yoke having an arc plate-like protruding portion on both sides in the x direction and having a length in the x direction larger than the magnetic pole surface is superimposed on a prismatic bias magnet.

図7(F−1),(F−2)は第1及び第2実施の形態で使用できるモデル:YMD1であり、y方向の長さがバイアス磁石の磁極面の長さよりも短く、x方向長さが前記磁極面よりも大きい長方形板状のヨークを、角柱状のバイアス磁石に重ねた構成である。   FIGS. 7F-1 and 7F-2 are models that can be used in the first and second embodiments: YMD1, and the length in the y direction is shorter than the length of the magnetic pole surface of the bias magnet, and the x direction A rectangular plate-like yoke whose length is longer than the magnetic pole surface is superimposed on a prismatic bias magnet.

図7(G−1),(G−2)は従来例に相当するモデル:YC05であり、円柱状のバイアス磁石に対してバイアス磁石の磁極面と同面積かつ同形状の円板形状のヨークを重ねた構成である。   FIGS. 7G-1 and 7G-2 are models corresponding to the conventional example: YC05, and a disk-shaped yoke having the same area and shape as the magnetic pole surface of the bias magnet with respect to the cylindrical bias magnet. It is the structure which piled up.

図7(H−1),(H−2)は第1及び第2実施の形態で使用できるモデル:YC07であり、円柱状のバイアス磁石に対してバイアス磁石の磁極面よりも大径の円板形状のヨークを重ねた構成である。   7 (H-1) and 7 (H-2) are models that can be used in the first and second embodiments: YC07, and a circular-shaped bias magnet has a larger diameter than the magnetic pole surface of the bias magnet. It is the structure which piled up the plate-shaped yoke.

以下、図8〜図12でヨーク形状別シミュレーション結果の比較、検討を行う。   Hereinafter, comparison and examination of the simulation results for each yoke shape will be made with reference to FIGS.

図8は、角柱状バイアス磁石と長方形板状のヨーク間にセンターずれがない状態におけるヨーク形状別シミュレーション結果を示す。図8(A)はシミュレーションモデル概念図であり、モデルY01〜Y11の場合は、角柱状バイアス磁石(磁極面のx方向寸法:5mm、y方向寸法:5mm、z方向の磁石厚み:3mm)を用い、その磁極面に密着させて長方形板状のヨーク(感磁素子(実施の形態の場合にはホール素子)に対向する平面のx方向寸法:1〜15mm、y方向寸法:5mm=一定、z方向の磁石厚み:1mm=一定)を配置した場合である。素子(センシングポイント)と対面するヨーク平面との間隔dzは、ホールICのパッケージ肉厚、保持部材(ケース)、基板等の厚みを考慮して2.1mmと仮定してz方向磁束密度Bzを計算する。また、モデルY00はヨークの無い場合であって、同じ形状寸法のバイアス磁石の磁極面と素子(センシングポイント)との間隔dzmgは3.1mmと仮定してBzを計算する。   FIG. 8 shows a simulation result for each yoke shape in a state where there is no center shift between the prismatic bias magnet and the rectangular plate-shaped yoke. FIG. 8A is a conceptual diagram of a simulation model. In the case of models Y01 to Y11, a prismatic bias magnet (magnetic pole surface x-direction dimension: 5 mm, y-direction dimension: 5 mm, z-direction magnet thickness: 3 mm) is used. And a rectangular plate-shaped yoke (the x-direction dimension of the plane facing the magnetosensitive element (in the case of the embodiment, the hall element): 1 to 15 mm, the y-direction dimension: 5 mm = constant, This is a case where the magnet thickness in the z direction is 1 mm = constant). The distance dz between the element (sensing point) and the facing yoke plane is 2.1 mm in consideration of the package thickness of the Hall IC, the thickness of the holding member (case), the substrate, etc., and the z-direction magnetic flux density Bz is assumed to be 2.1 mm. calculate. Model Y00 is a case where there is no yoke, and Bz is calculated on the assumption that the distance dzmg between the magnetic pole surface of the bias magnet having the same shape and the element (sensing point) is 3.1 mm.

図8(B)は同図(A)のシミュレーションモデル概念図のように、ヨーク表面からdz離れた高さのx=−2.5〜+2.5mm、y=0でのBzの分布を各モデルについて計算した結果を示す表である。ホールICのパッケージ肉厚、保持部材(ケース)、基板等の厚みを考慮してdz=2.1mmとした。ヨークの無いモデルY00の場合、バイアス磁石の磁極面からdzmg(=3.1mm)離れた高さとした。   FIG. 8B shows the distribution of Bz at x = −2.5 to +2.5 mm at a height dz away from the yoke surface and y = 0 as in the simulation model conceptual diagram of FIG. It is a table | surface which shows the result calculated about the model. In consideration of the thickness of the Hall IC package, the thickness of the holding member (case), the substrate, etc., dz = 2.1 mm. In the case of model Y00 without a yoke, the height was set to be dzmg (= 3.1 mm) away from the magnetic pole surface of the bias magnet.

図8(C)は同図(B)の計算結果をグラフ表示としたものであり、モデルY00〜Y05までは山形カーブであり、ヨーク幅(x方向)を磁極面幅(x方向)よりも大きくなるように広げていくと、Bzはx方向位置にかかわらず均一に近づいていく。ヨークx方向長さがバイアス磁石よりも大きなモデルY06〜Y11では、ヨークx方向長さがバイアス磁石と同じモデルY05よりもかなり平坦に近くなっていることがわかる。換言すれば、バイアス磁石の磁極面のx方向長さの1.2倍以上のヨーク幅とすることが有効であると言える。   FIG. 8C is a graph showing the calculation result of FIG. 8B. The models Y00 to Y05 are angled curves, and the yoke width (x direction) is larger than the pole face width (x direction). When it is expanded so as to increase, Bz approaches uniformly regardless of the position in the x direction. It can be seen that in the models Y06 to Y11 in which the yoke x-direction length is larger than that of the bias magnet, the yoke x-direction length is substantially flatter than that of the model Y05 that is the same as the bias magnet. In other words, it can be said that it is effective to make the yoke width 1.2 times or more the x-direction length of the magnetic pole surface of the bias magnet.

従って、ヨーク幅(x方向)をバイアス磁石の磁極面幅(x方向)よりも大きくすることによって、バイアス磁石及びヨークに対するホールIC等の感磁素子の配置がx方向にずれても、感磁素子位置でのバイアス磁界の変動が少なく、製品ばらつきの発生抑制に寄与できる。   Therefore, by making the yoke width (x direction) larger than the magnetic pole face width (x direction) of the bias magnet, even if the arrangement of the magnetic sensing elements such as the Hall ICs with respect to the bias magnet and the yoke is shifted in the x direction, the magnetic There is little fluctuation of the bias magnetic field at the element position, which can contribute to the suppression of product variations.

なお、ホールICのパッケージにヨークを接するように配置する場合を考慮し、素子に対向するヨーク平面からdz=1.0mm離れた位置でのz方向磁束密度Bz分布も計算したが、図8とほぼ同様の結果が得られた。   In consideration of the case where the yoke is placed in contact with the Hall IC package, the z-direction magnetic flux density Bz distribution at a position dz = 1.0 mm away from the yoke plane facing the element was also calculated. Almost similar results were obtained.

図9は2つの素子(例えば、2つのホール素子を内蔵するホールIC)とヨーク間にセンターずれが存在する場合(バイアス磁石とヨーク間にはずれ無し)の2つの素子位置(2つのセンシングポイント)におけるBzの差ΔBzを考察したものである。図9(A)は2つの素子位置(2つのセンシングポイント)におけるBzの差ΔBzの求め方を示しており、2つの素子とヨーク間にセンターずれが存在しないときは2つの素子位置の中間点(2分割点)がx方向位置の0.0に合致している。ここでは、dz=2.1mmのとき、素子間隔2mmに対してx方向に組み付け誤差0.2mmが発生した場合を考察しており、2つの素子位置の中間点(2分割点)がx方向位置0.0から0.2mmずれる。従って、2つの素子はx=1.2mmとx=−0.8mmの位置となる。そして、図8(C)で求めた各モデルのBzの分布曲線から2つの素子位置でのBzの差ΔBzが求まる。図9(A)ではモデルY05とY06を例示しており、モデルY05(従来例)では2つの素子位置でのBzの差ΔBzは、Bz分布が山形の曲線であるため大きな値となるのに比べ、モデルY06ではBz分布が平坦に近づくため小さな値となっているのがわかる。   FIG. 9 shows two element positions (two sensing points) when there is a center deviation between two elements (for example, a Hall IC incorporating two Hall elements) and the yoke (no deviation between the bias magnet and the yoke). The difference ΔBz of Bz at is considered. FIG. 9A shows how to obtain the difference Bz of Bz at two element positions (two sensing points), and when there is no center shift between the two elements and the yoke, the intermediate point between the two element positions. (2 division points) is equal to 0.0 in the x-direction position. Here, a case where an assembly error of 0.2 mm occurs in the x direction with respect to an element interval of 2 mm when dz = 2.1 mm is considered, and an intermediate point (two division points) between two element positions is in the x direction. The position is shifted from 0.0 to 0.2 mm. Accordingly, the two elements are positioned at x = 1.2 mm and x = −0.8 mm. Then, the Bz difference ΔBz at the two element positions can be obtained from the Bz distribution curve of each model obtained in FIG. FIG. 9A illustrates models Y05 and Y06. In model Y05 (conventional example), the Bz difference ΔBz at the two element positions is large because the Bz distribution is a mountain-shaped curve. In comparison, it can be seen that the model Y06 has a small value because the Bz distribution approaches flat.

図9(B)はモデルY00〜Y11についてΔBz及び|ΔBz|を計算した表である。また図9(C)はモデルY00〜Y11のx方向ヨーク幅とΔBzとの関係をグラフで表したものである。これらの結果から、モデルY06以上のx方向ヨーク幅になると、ΔBzが急減することがわかる。換言すれば、バイアス磁石の磁極面のx方向長さ5mmに対してx方向ヨーク幅6mm以上(つまり、バイアス磁石の磁極面のx方向長さの1.2倍以上のx方向ヨーク幅)とすることで、ΔBzを大幅に低減できる。さらに、モデルY07以上のx方向ヨーク幅(バイアス磁石の磁極面のx方向長さの1.4倍以上のx方向ヨーク幅)とすれば、ΔBzをゼロ近傍に抑制可能である。   FIG. 9B is a table in which ΔBz and | ΔBz | are calculated for models Y00 to Y11. FIG. 9C is a graph showing the relationship between the x-direction yoke width and ΔBz of the models Y00 to Y11. From these results, it can be seen that ΔBz sharply decreases when the x-direction yoke width is equal to or greater than model Y06. In other words, the x-direction yoke width is 6 mm or more with respect to the x-direction length of 5 mm of the magnetic pole surface of the bias magnet (that is, the x-direction yoke width is 1.2 times or more the x-direction length of the magnetic pole surface of the bias magnet). By doing so, ΔBz can be significantly reduced. Furthermore, if the x-direction yoke width of model Y07 or more (x-direction yoke width of 1.4 times or more the x-direction length of the magnetic pole surface of the bias magnet) is used, ΔBz can be suppressed to near zero.

これらΔBzの大きさが、2つのホール素子を内蔵するホールICのアナログ信号のオフセット分となる。これを小さくすることで、ホールIC出力のハイレベルとローレベルの切り替わりの閾値に対する余裕度が大きくなり、製品ばらつきを考慮したときの最大検出距離を伸ばすことができる。   The magnitude of these ΔBz is the offset of the analog signal of the Hall IC incorporating two Hall elements. By reducing this, the margin for the switching threshold of the Hall IC output between the high level and the low level is increased, and the maximum detection distance can be extended when considering product variations.

図10は角柱状バイアス磁石と長方形板状のヨーク間にセンターずれが存在する場合の各モデルY01S〜Y11S(Y01〜Y11のヨーク中心をバイアス磁石中心に対してx方向に0.5mmずらしたもの)についてx方向位置とz方向磁束密度Bzとの関係を示すヨーク形状別Bz分布図である。モデルY06S以上のx方向ヨーク幅の場合、Bz分布が均一化されるので、x方向の位置ずれの影響は抑制されることがわかる。   FIG. 10 shows models Y01S to Y11S when the center deviation exists between the prismatic bias magnet and the rectangular plate-shaped yoke (the Y01 to Y11 yoke center is shifted by 0.5 mm in the x direction with respect to the bias magnet center). 3) is a Bz distribution diagram by yoke shape showing the relationship between the x-direction position and the z-direction magnetic flux density Bz. In the case of the x-direction yoke width of the model Y06S or more, it can be seen that the influence of the displacement in the x direction is suppressed because the Bz distribution is made uniform.

図11は角柱状バイアス磁石と長方形板状のヨーク間にセンターずれが存在し、かつ2つの素子(例えば、2つのホール素子を内蔵するホールIC)とヨーク間にセンターずれが存在する場合を考察したものであって、同図(A),(B)はバイアス磁石、ヨーク及び2つの素子の位置ずれの1例を示している。なお、ヨークのx方向長さが、バイアス磁石の磁極面の同方向長さよりもある程度以上大きい場合には、磁極面はヨークで覆われることになる。   FIG. 11 shows a case where there is a center shift between the prismatic bias magnet and the rectangular plate-shaped yoke, and there is a center shift between the two elements (for example, a Hall IC incorporating two Hall elements) and the yoke. FIGS. 4A and 4B show an example of positional deviation between the bias magnet, the yoke, and the two elements. In addition, when the x-direction length of the yoke is larger than the same length in the same direction as the magnetic pole surface of the bias magnet, the magnetic pole surface is covered with the yoke.

図11(C)は上記位置ずれのある各モデルY00S〜Y11S(それぞれヨークに対して磁石がx方向に−0.5mmずれ、かつヨークに対して2つの素子がx方向に+0.2mmずれている)のΔBz及び|ΔBz|を、バイアス磁石とヨーク間にずれの無いモデルY00〜Y11(但し、ヨークに対して2つの素子がx方向に+0.2mmずれている)と対比して示す表であり、同図(D)はY01S〜Y11Sのx方向ヨーク幅とΔBzとの関係を、バイアス磁石とヨーク間にずれの無いモデルY00〜Y11と対比して示すグラフである。   FIG. 11C shows the models Y00S to Y11S having the above-mentioned misalignment (the magnet is deviated by −0.5 mm in the x direction with respect to the yoke, and the two elements are deviated by +0.2 mm in the x direction with respect to the yoke). ΔBz and | ΔBz | are compared with models Y00 to Y11 in which there is no deviation between the bias magnet and the yoke (however, the two elements are offset by +0.2 mm in the x direction with respect to the yoke). FIG. 4D is a graph showing the relationship between the Y direction yoke width of Y01S to Y11S and ΔBz in comparison with models Y00 to Y11 having no deviation between the bias magnet and the yoke.

図11(D)からバイアス磁石とヨーク間にセンターずれが存在し、かつ2つの素子とヨーク間にセンターずれが存在する場合には、バイアス磁石とヨーク間にセンターずれが存在しない場合に比較してΔBzは大きくなるが、Y06S(x方向ヨーク幅6mm)以上のヨーク幅のモデルに関してはΔBzの大きさの差はかなり減少している。換言すれば、バイアス磁石の磁極面のx方向長さ5mmに対してx方向ヨーク幅6mm以上(つまり、バイアス磁石の磁極面のx方向長さの1.2倍以上のx方向ヨーク幅)とすることで、ΔBzを大幅に低減できる。とくにY07S(x方向ヨーク幅7mm、つまりバイアス磁石の磁極面のx方向長さの1.4倍)以上のヨーク幅のモデルの場合には殆どΔBzの大きさに差異はなくなっていることがわかる。   From FIG. 11 (D), when there is a center shift between the bias magnet and the yoke and there is a center shift between the two elements and the yoke, compared to a case where there is no center shift between the bias magnet and the yoke. ΔBz increases, but the difference in the magnitude of ΔBz is considerably reduced for the yoke width model of Y06S (x-direction yoke width 6 mm) or more. In other words, the x-direction yoke width is 6 mm or more with respect to the x-direction length of 5 mm of the magnetic pole surface of the bias magnet (that is, the x-direction yoke width is 1.2 times or more the x-direction length of the magnetic pole surface of the bias magnet). By doing so, ΔBz can be significantly reduced. In particular, in the case of a model with a yoke width equal to or greater than Y07S (x-direction yoke width 7 mm, that is, 1.4 times the x-direction length of the magnetic pole surface of the bias magnet), it can be seen that there is almost no difference in the magnitude of ΔBz. .

図12はヨーク形状を長方形板状以外にした場合であっても、バイアス磁石の磁極面の特定方向(例えばx方向)の長さよりも、ヨークの同方向の長さの方が大きい場合には
ΔBzを低減可能であることを示す。図12(A)は、図7において例示した多様な形状のモデルを含むY05,Y07,YMA1,YMA2,YMB1,YMC1,YMD1,YC05,YC07に関して、x方向位置とz方向磁束密度Bzとの関係を示すヨーク形状別Bz分布図であり、従来例に相当するモデルY05,YC05に比べて、他のモデルはBz分布が均一化されていることがわかる。
FIG. 12 shows a case where the length of the yoke in the same direction is longer than the length of the magnetic pole surface of the bias magnet in a specific direction (for example, the x direction) even when the yoke is not rectangular. It shows that ΔBz can be reduced. FIG. 12A shows the relationship between the x-direction position and the z-direction magnetic flux density Bz for Y05, Y07, YMA1, YMA2, YMB1, YMC1, YMD1, YC05, and YC07 including models of various shapes illustrated in FIG. The Bz distribution diagram by yoke shape showing the Bz distribution in other models compared to the models Y05 and YC05 corresponding to the conventional example.

図12(B)は2つの素子(例えば、2つのホール素子を内蔵するホールIC)とヨーク間に図9(A)で説明したセンターずれ(0.2mm)が存在する場合のΔBz及び|ΔBz|を示す表であり、従来例に相当するモデルY05,YC05に比べて、他のモデルのΔBzは小さくなっている。   FIG. 12B shows ΔBz and | ΔBz when the center shift (0.2 mm) described in FIG. 9A exists between two elements (for example, a Hall IC incorporating two Hall elements) and the yoke. Is a table, and ΔBz of other models is smaller than the models Y05 and YC05 corresponding to the conventional example.

以上説明したように、第1又は第2の実施の形態に係る移動体検出装置100,200の構成によれば、以下の効果を奏することができる。   As described above, according to the configuration of the moving body detection devices 100 and 200 according to the first or second embodiment, the following effects can be obtained.

(1) ヨーク60の特定方向(例えばx方向)長さをバイアス磁石40の同方向の長さよりも大きくすることで、感磁素子、永久磁石及びヨーク相互の特定方向位置のばらつきに起因する感磁素子位置での磁界変動を抑制することができ、ひいては最大検出距離の製品ばらつきの低減を図ることが可能である。 (1) By making the length of the yoke 60 in a specific direction (for example, the x direction) larger than the length of the bias magnet 40 in the same direction, the feeling caused by variations in the positions in the specific direction among the magnetosensitive element, the permanent magnet, and the yoke. It is possible to suppress the magnetic field fluctuation at the magnetic element position and to reduce the product variation of the maximum detection distance.

(2) とくに、図9(C)や図11(D)のヨーク幅と2素子間磁束密度差ΔBzの関係から、バイアス磁石の磁極面のx方向長さ5mmに対してx方向ヨーク幅6mm以上、つまり、バイアス磁石の磁極面のx方向長さの1.2倍以上のx方向ヨーク幅とすることで、ΔBzを大幅に低減でき、素子、バイアス磁石、ヨーク相互間に位置ずれがあっても、従来例と同等以上の磁気検出特性が得られる。 (2) In particular, from the relationship between the yoke width in FIGS. 9C and 11D and the magnetic flux density difference ΔBz between the two elements, the x-direction yoke width is 6 mm with respect to the x-direction length of 5 mm of the magnetic pole surface of the bias magnet. In other words, by setting the x-direction yoke width to 1.2 times or more the x-direction length of the magnetic pole surface of the bias magnet, ΔBz can be greatly reduced, and there is a positional deviation between the element, the bias magnet, and the yoke. However, a magnetic detection characteristic equivalent to or better than that of the conventional example can be obtained.

(3) また、移動体検出装置100,200の使用中に振動や衝撃が加わり、感磁素子、バイアス磁石40及びヨーク60の相互位置関係が変化してしまっても、感磁素子への印加磁界変動を小さく抑えることが可能であり、その結果、振動や衝撃に起因する誤動作を抑制できる効果がある。 (3) Even if vibration or impact is applied during the use of the moving body detection devices 100 and 200, and the mutual positional relationship between the magnetosensitive element, the bias magnet 40, and the yoke 60 changes, the application to the magnetosensitive element is performed. It is possible to suppress the fluctuation of the magnetic field to be small, and as a result, there is an effect that it is possible to suppress malfunction caused by vibration or impact.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way.

上記の説明では、バイアス磁石は角柱状や円柱状を例示したが、この形状に限定されるものではない。また、ヨーク形状も図7に例示したものに限られず、バイアス磁石の磁極面の特定方向の長さよりも、前記ヨークの同方向の長さの方が大きければ、前記特定方向の磁石、ヨーク、素子相互間の位置ずれに対して有効である。さらに、感磁素子としてホール素子の場合に言及したが、磁気抵抗効果素子等を使用してもよいことは明らかである。ヨークはバイアス磁石に密着している場合を例示したが、両者間に隙間があってもよい。   In the above description, the bias magnet is exemplified as a prismatic shape or a cylindrical shape, but is not limited to this shape. Further, the yoke shape is not limited to that illustrated in FIG. 7, and if the length of the yoke in the same direction is larger than the length of the magnetic pole surface of the bias magnet in the specific direction, the magnet, yoke, This is effective for misalignment between elements. Furthermore, although the case of a Hall element has been mentioned as the magnetosensitive element, it is apparent that a magnetoresistive element or the like may be used. The yoke is illustrated as being in close contact with the bias magnet, but there may be a gap between them.

1 軟磁性体歯車
10 ホールIC
20,25 ケース
26 基板挿入穴
27 磁石・ヨーク挿入穴
30 保持部材
31 支持部
32 円柱状栓体部
33 コネクタ部
36 挿入穴
40 バイアス磁石
50 導体
51 コネクタピン
55 リード線
60 ヨーク
70 基板
100,200 移動体検出装置
1 Soft magnetic gear 10 Hall IC
20, 25 Case 26 Substrate insertion hole 27 Magnet / yoke insertion hole 30 Holding member 31 Support part 32 Columnar plug body part 33 Connector part 36 Insertion hole 40 Bias magnet 50 Conductor 51 Connector pin 55 Lead wire 60 Yoke 70 Substrate 100, 200 Moving body detection device

Claims (6)

感磁素子と、永久磁石と、前記感磁素子と永久磁石との間に配置されたヨークとを備え、
前記ヨークは前記永久磁石の磁極面に対面しており、
前記永久磁石の磁極面の特定方向の長さよりも、前記ヨークの同方向の長さの方が大きい、移動体検出装置。
Comprising a magnetosensitive element, a permanent magnet, and a yoke disposed between the magnetosensitive element and the permanent magnet;
The yoke faces the magnetic pole surface of the permanent magnet,
The moving body detection apparatus in which the length of the yoke in the same direction is larger than the length of the magnetic pole surface of the permanent magnet in a specific direction.
請求項1に記載の移動体検出装置において、前記ヨークの前記特定方向の長さが、前記磁極面の特定方向の長さの1.2倍以上である、移動体検出装置。   The moving body detection apparatus according to claim 1, wherein a length of the yoke in the specific direction is 1.2 times or more a length of the magnetic pole surface in the specific direction. 2つの感磁素子と、永久磁石と、前記2つの感磁素子と永久磁石との間に配置されたヨークとを備え、
前記ヨークは前記永久磁石の磁極面に対面しており、
前記2つの感磁素子を結ぶ直線方向の前記磁極面の長さよりも、前記ヨークの同方向の長さの方が大きい、移動体検出装置。
Two magnetic sensing elements, a permanent magnet, and a yoke disposed between the two magnetic sensing elements and the permanent magnet;
The yoke faces the magnetic pole surface of the permanent magnet,
The moving body detection apparatus, wherein a length of the yoke in the same direction is larger than a length of the magnetic pole surface in a linear direction connecting the two magnetosensitive elements.
請求項3に記載の移動体検出装置において、前記2つの感磁素子を結ぶ直線方向の前記ヨークの長さが、前記磁極面の同方向の長さの1.2倍以上である、移動体検出装置。   4. The moving body detection apparatus according to claim 3, wherein the length of the yoke in the linear direction connecting the two magnetosensitive elements is 1.2 times or more the length of the magnetic pole surface in the same direction. Detection device. 請求項1から4のいずれかに記載の移動体検出装置において、前記感磁素子、前記永久磁石及び前記ヨークを保持する保持部材を備え、前記保持部材は前記永久磁石及び前記ヨークが挿入される挿入穴を有する、移動体検出装置。   5. The moving body detection device according to claim 1, further comprising: a holding member that holds the magnetosensitive element, the permanent magnet, and the yoke, wherein the holding magnet is inserted into the permanent magnet and the yoke. A moving body detection device having an insertion hole. 請求項1から5のいずれかに記載の移動体検出装置において、前記感磁素子は表面実装型感磁素子であって基板に固着され、前記基板が前記保持部材で保持されている、移動体検出装置。   The moving body detection device according to claim 1, wherein the magnetosensitive element is a surface-mounted magnetosensitive element fixed to a substrate, and the substrate is held by the holding member. Detection device.
JP2009265106A 2009-11-20 2009-11-20 Moving body detection device Active JP5057114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265106A JP5057114B2 (en) 2009-11-20 2009-11-20 Moving body detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265106A JP5057114B2 (en) 2009-11-20 2009-11-20 Moving body detection device

Publications (2)

Publication Number Publication Date
JP2011107085A true JP2011107085A (en) 2011-06-02
JP5057114B2 JP5057114B2 (en) 2012-10-24

Family

ID=44230717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265106A Active JP5057114B2 (en) 2009-11-20 2009-11-20 Moving body detection device

Country Status (1)

Country Link
JP (1) JP5057114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205096A (en) * 2012-03-27 2013-10-07 Tdk Corp Moving body detector
JP6485822B1 (en) * 2017-12-15 2019-03-20 三菱電機株式会社 Rotation angle detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160427A (en) * 1992-11-18 1994-06-07 Sumitomo Electric Ind Ltd Revolution sensor and method for detecting its fault
JP3469707B2 (en) * 1995-05-31 2003-11-25 アレグロ・マイクロシステムズ・インコーポレーテッド Hall effect iron article proximity sensor assembly
JP2006003225A (en) * 2004-06-17 2006-01-05 Denso Corp Magnetic sensor and rotation detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160427A (en) * 1992-11-18 1994-06-07 Sumitomo Electric Ind Ltd Revolution sensor and method for detecting its fault
JP3469707B2 (en) * 1995-05-31 2003-11-25 アレグロ・マイクロシステムズ・インコーポレーテッド Hall effect iron article proximity sensor assembly
JP2006003225A (en) * 2004-06-17 2006-01-05 Denso Corp Magnetic sensor and rotation detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205096A (en) * 2012-03-27 2013-10-07 Tdk Corp Moving body detector
JP6485822B1 (en) * 2017-12-15 2019-03-20 三菱電機株式会社 Rotation angle detector
JP2019109053A (en) * 2017-12-15 2019-07-04 三菱電機株式会社 Rotation angle detector

Also Published As

Publication number Publication date
JP5057114B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4424412B2 (en) Current sensor
EP2073025B1 (en) Current sensor with laminated magnetic core
US20190219421A1 (en) Displacement Sensor For Contactless Measurement Of A Relative Position, Production Method For A Magnetic Field Sensor Arrangement And Magnetic Field Sensor
JP2008151743A (en) Current sensor and method for forming the same
WO2018092404A1 (en) Current sensor device
WO2013128993A1 (en) Current sensor
JP2009047444A (en) Magnetic sensor and manufacturing method therefor
JP4999498B2 (en) Magnetic encoder device
US11079253B2 (en) Wiegand module and methods of forming the same
JP2015132534A (en) Current detection device
WO2018116852A1 (en) Current sensor
JP5057114B2 (en) Moving body detection device
JP6064117B2 (en) Current sensor
JP5356793B2 (en) Magnetic detection device and manufacturing method thereof
JP6232080B2 (en) Current sensor
JP4881041B2 (en) Magnetic sensor device
JP6314010B2 (en) Current sensor
JP5704352B2 (en) Current sensor
WO2022138303A1 (en) Electric current detecting device
CN102024605B (en) Multidirectional input device
WO2014073196A1 (en) Magnetic detecting unit and stroke detecting device using magnetic detecting unit
JP2004069695A (en) Magnetic sensor for pointing device
JP4281537B2 (en) Rotation detection sensor device
JP2013228208A (en) Moving object detector and manufacturing method of the same
JP2006084407A (en) Magnetometric sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150