WO2014073196A1 - Magnetic detecting unit and stroke detecting device using magnetic detecting unit - Google Patents

Magnetic detecting unit and stroke detecting device using magnetic detecting unit Download PDF

Info

Publication number
WO2014073196A1
WO2014073196A1 PCT/JP2013/006506 JP2013006506W WO2014073196A1 WO 2014073196 A1 WO2014073196 A1 WO 2014073196A1 JP 2013006506 W JP2013006506 W JP 2013006506W WO 2014073196 A1 WO2014073196 A1 WO 2014073196A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic detection
magnetic
detection element
magnet
flux density
Prior art date
Application number
PCT/JP2013/006506
Other languages
French (fr)
Japanese (ja)
Inventor
笹之内 清孝
野添 利幸
山下 康弘
御池 幸司
前田 和宏
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012244173A external-priority patent/JP2016011833A/en
Priority claimed from JP2012261979A external-priority patent/JP2016011834A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014073196A1 publication Critical patent/WO2014073196A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention relates to a magnetic detection unit mainly used to detect an operation amount of a brake pedal or the like of an automobile, and a stroke detection device having the magnetic detection unit.
  • FIG. 11 is a side view of a conventional brake pedal.
  • a rotating body (not shown) is rotatably accommodated in a case (not shown) made of an insulating resin, and a plurality of magnets 2 are attached to the rotating body.
  • the rotation angle detection device 1 is mounted in the vicinity of the rotation axis 3A of the brake pedal 3 of the automobile. Then, the center of the rotating body is attached to the rotating shaft 3A. Furthermore, a magnetic detection element (not shown) such as a Hall element (not shown), which is disposed opposite to the magnet 2 with a predetermined gap, passes through a connector, a lead (not shown), etc. (Not shown) is electrically connected.
  • a magnetic detection element such as a Hall element (not shown)
  • a lead not shown
  • the magnetism detection element detects the magnetism from the magnet 2, and the detection result of the magnetism detection element is output to the electronic circuit of the car body.
  • the electronic circuit performs a predetermined operation to calculate the rotation angle of the rotating body (the amount of operation of the brake pedal 3), and various control of the vehicle is performed according to the calculation result.
  • the rotating body and the magnet 2 of the rotation angle detection device 1 are rotated. Then, from the change in magnetism of the magnet 2 detected by the magnetism detection element, the rotation angle of the rotating body (the amount of operation by which the brake pedal 3 is depressed) is detected, and various control of the vehicle is performed.
  • Patent Document 1 As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
  • One aspect of the present invention is provided with a first magnetic detection element and a second magnetic detection element which are disposed in a case, are disposed opposite to a magnet, and are disposed at predetermined intervals as a magnetic detection unit, The first magnetic detection element and the second magnetic detection element detect the magnetic flux density of the magnet.
  • the stroke of the magnet can be detected with high precision and reliability.
  • a magnetism detection unit is provided as a stroke detection device, and a magnet is attached to an operating body that moves in a first direction in conjunction with a pedal.
  • FIG. 1 is a cross-sectional view of a stroke detection device according to a first embodiment of the present invention.
  • FIG. 2 is a block circuit diagram of a magnetic detection unit according to Embodiment 1 of the present invention. It is a perspective view which shows the relationship of arrangement
  • FIG. 1 It is a perspective view which shows the relationship of arrangement
  • the magnet 2 is rotated within a range of rotation angles of several tens of degrees at which the brake pedal 3 is depressed and the magnetic detection element detects a change in magnetism of the magnet at this time. The amount of operation of the brake pedal 3 is detected.
  • the conventional rotation angle detection device there is a problem that it is difficult to detect the operation amount of the brake pedal 3 with high accuracy.
  • Embodiment 1 The first embodiment of the present invention will be described below with reference to FIGS. 1 to 5C.
  • FIG. 1 is a cross-sectional view of a stroke detection device according to a first embodiment of the present invention.
  • the case 11 is box-shaped and made of insulating resin such as polybutylene terephthalate or ABS.
  • the working body 12 is cylindrical and made of an insulating resin such as polyoxymethylene or a nonmagnetic material such as aluminum.
  • the operating body 12 is accommodated in the housing 11 so as to be movable in the left and right direction in FIG.
  • the magnet 13 is ring-shaped and is a magnet such as ferrite or Nd-Fe-B alloy, and the left and right sides are magnetized to the N pole and the S pole, and the magnet 13 is mounted on the outer periphery of the middle portion of the working body 12 There is.
  • the north pole south pole of the magnet 13 is as shown in FIG. In FIG. 3, the visible surface of the ring-shaped magnet 13 is the S pole, and the back surface of the magnet 13 is the N pole.
  • the magnetic detection unit 14 includes a first magnetic detection element 16A, a second magnetic detection element 16B, a control circuit 17, and a plurality of terminals 18.
  • the wiring substrate 15 is formed of paper phenol, glass-containing epoxy, or the like in which a plurality of wiring patterns (not shown) are formed of copper foil or the like on upper and lower surfaces.
  • a first magnetic detection element 16A such as a Hall element and a second magnetic detection element 16B are disposed on the lower surface of the wiring board 15 and mounted at a predetermined interval in the moving direction (first direction) of the working body 12 It is attached.
  • the distance between the center of the first magnetic detection element 16A and the center of the second magnetic detection element 16B is about 2 to 5 mm.
  • the first magnetic detection element 16A and the first magnetic detection element 16A shown in FIG. 1 when the distance between the first magnetic detection element 16A and the second magnetic detection element 16B is about 2 to 5 mm, the first magnetic detection element 16A and the first magnetic detection element 16A shown in FIG.
  • the distance between the two magnetic detection elements 16B should be narrower.
  • the first magnetic detection element 16A and the second magnetic detection element 16A are shown in FIG. 1 in comparison with the actual embodiment.
  • the first magnetic detection element 16A and the second magnetic detection element 16B are connected to a control circuit 17 such as a microcomputer via a differential circuit 17A such as an operational amplifier as shown in the block circuit diagram of FIG.
  • the first magnetic detection element 16A is directly connected to the control circuit 17.
  • a plurality of terminals 18 connected to the control circuit 17 via a wiring pattern are implanted on the upper surface of the wiring substrate 15.
  • the terminal 18 is made of, for example, a copper alloy.
  • the lower surface of the wiring board 15 is covered with a case 19.
  • the case 19 is box-shaped and made of insulating resin such as polybutylene terephthalate.
  • the magnetic detection unit 14 is formed.
  • the magnetic detection unit 14 is mounted on the top surface of the housing 11.
  • FIG. 1 the positional relationship between the first magnetic detection element 16A, the second magnetic detection element 16B, and the magnet 13 will be described with reference to FIGS. 1 and 3.
  • FIG. 1 the positional relationship between the first magnetic detection element 16A, the second magnetic detection element 16B, and the magnet 13 will be described with reference to FIGS. 1 and 3.
  • FIG. 3 is a perspective view showing a state where the magnet 13 is positioned between the first magnetic detection element 16A and the second magnetic detection element 16B.
  • the first magnetic detection element 16A and the second magnetic detection element 16B are disposed at an interval in the direction along the first direction.
  • the movement of the magnet 13 will be described in detail below, but the magnet 13 moves along the first direction.
  • the operating shaft 20 is made of insulating resin or metal.
  • the spring 21 is a spring in which a steel or copper alloy wire is wound in a coil shape.
  • the spring 21 is mounted between the right end of the operating body 12 and the inner surface of the housing 11 in a slightly bent state.
  • the actuating shaft 20 is fixed to the left end of the actuating body 12, and the actuating shaft 20 projects from the housing 11 in the left direction of the drawing.
  • the stroke detection device 22 is configured as described above.
  • the tip of the actuating shaft 20 is attached to the arm 23A of the brake pedal 23, and the stroke detection device 22 is attached to the vehicle.
  • the control circuit 17 of the magnetic detection unit 14 is electrically connected to the electronic circuit (not shown) of the vehicle via the plurality of terminals 18 and connectors, leads (not shown) and the like.
  • the arm 23A pivots with the pivot shaft 23B as a fulcrum, and the actuating body 12 is pressed by the arm 23A via the actuating shaft 20 and moves in the first direction Do.
  • the magnet 13 mounted on the working body 12 also moves in the first direction.
  • Each of the first magnetic detection element 16A and the second magnetic detection element 16B includes an element that detects magnetism in a first direction and an element that detects magnetism in a third direction.
  • the first direction is a direction in which the magnet 13 moves
  • the second direction is a direction orthogonal to the first direction when the stroke detection device 22 is viewed from above.
  • the third direction is a direction extending upward in the drawing.
  • the magnetic waveform of the first direction is represented by L
  • the magnetic waveform of the third direction is represented by M.
  • the first magnetic detection element 16A detects the magnetic flux density of the magnet 13.
  • the relationship between the moving distance (stroke) of the magnet 13 and the magnetic flux density detected by the first magnetic detection element 16A is shown in FIG. 4A, and the moving distance (stroke) of the magnet 13 and the magnetic flux detected by the second magnetic detection element 16B.
  • the relationship with density is shown in FIG. 4B.
  • FIG. 4C shows the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B.
  • the second magnetic detection element 16 B detects the magnetic flux density of the magnet 13 with a slight delay.
  • the detection results of the first magnetic detection element 16A and the second magnetic detection element 16B are respectively output to the differential circuit 17A.
  • the waveforms L2 and M2 from the second magnetic detection element 16B are respectively subtracted from the waveforms L1 and M1 of the magnetic flux density from the first magnetic detection element 16A, and the waveforms L3 and M3 shown in FIG. Is obtained.
  • the waveforms L3 and M3 of the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B are output from the differential circuit 17A to the control circuit 17.
  • control circuit 17 and the differential circuit 17A are collectively referred to as an operation unit.
  • the waveform R1 of the difference in magnetic flux density obtained by calculation with the differential circuit 17A has a predetermined value P or more for the period of the stroke S1. It is. However, the waveform R1 is less than the predetermined value P in the period of S2 before S1 and the period of S3 after S2. That is, in the period of stroke S2 and stroke S3, it has become weak magnetic flux density which can not be detected.
  • the magnetic flux density (waveform R2) directly input from the first magnetic detection element 16A to the control circuit 17 is the predetermined value P or more even in the period of the strokes S2 and S3.
  • the control circuit 17 can detect that the magnet 13 is approaching or separating from the first magnetic detection element 16A.
  • the influence of the external magnetic field other than the magnet 13 which is calculated from the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B is subtracted Can not detect the stroke of the magnet 13 with high accuracy.
  • the control circuit 17 can detect that the magnet 13 approaches or leaves.
  • the voltage output from the terminal 18 has a constant voltage waveform.
  • the voltage waveform N2 as shown in FIG. 5C is output from the control circuit 17 to the electronic circuit of the vehicle.
  • a constant voltage waveform is provided during a stroke S2 of approximately 10 mm in which the magnet 13 is approaching, and during a stroke S1 of approximately 20 mm in which the magnetic flux density is a predetermined value P or more, high precision stroke detection is possible.
  • An increasing linear voltage waveform is a constant voltage waveform during a stroke S3 of about 10 mm in which the magnet 13 is separated.
  • the control circuit 17 since the control circuit 17 outputs the voltage waveform N2 from the terminal 18, stroke detection can be performed in a long range of the magnet 13 which moves largely according to the depression operation of the brake pedal 23.
  • a voltage different from that of the strokes S2, S1 and S3, for example, 0 V is a control circuit It is output from 17.
  • the voltage is 0 V in this embodiment, this is an example, and it is not necessary to set the voltage to 0 V.
  • the length of the stroke is an example of the present embodiment, and is not limited to this length.
  • the electronic circuit calculates the stroke of the magnet 13, that is, the operation amount by which the brake pedal 23 is depressed, and various control of the vehicle according to the depression amount, such as control of the brake device or turning off the stop lamp. Control is performed.
  • the actuating body 12 of the stroke detection device 22 and the magnet 13 are moved by the depression operation of the brake pedal 23, and the magnetic flux density of the magnet 13 becomes the first magnetic detection element 16A of the magnetic detection unit 14 and the second magnetic detection element 16B detects.
  • detection results of the first magnetic detection element 16A and the second magnetic detection element 16B are calculated by the control circuit 17.
  • the electronic circuit detects the stroke of the magnet 13, that is, the operation amount with which the brake pedal 23 is depressed, from the voltage waveform N2 output from the control circuit 17, and various control of the vehicle is performed.
  • the magnet 13 mounted on the working body 12 moving in conjunction with the brake pedal 23 is separated by a predetermined distance in the moving direction of the working body 12.
  • the angle at which the arm 23A pivots about the pivot shaft 23B is in the range of several tens of degrees.
  • the actuating body 12 and the magnet 13 are pressed by the arm 23A through the actuating shaft 20, and move as large as, for example, 40 to 50 mm. By detecting the magnetism of the magnet 13 during this long stroke, it is possible to detect the operation amount of the brake pedal 23 with high accuracy.
  • the magnetism detection unit can reliably detect the magnetism of the magnet 13 with high accuracy.
  • the stroke S1 (the stroke is about 20 mm) in which the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B is equal to or greater than the predetermined value P.
  • the control circuit 17 performs a predetermined operation based on the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B. Then, a linear voltage waveform N2 that increases in a while according to the stroke of the magnet 13 is output. Therefore, the influence of the external magnetic field other than the magnet 13 is removed by subtraction, so that the stroke of the magnet 13 can be detected with high accuracy.
  • the control circuit 17 performs the first magnetic detection When the element 16A has a magnetic flux density equal to or more than a predetermined value P, it outputs a constant voltage value. Therefore, it is possible to detect the magnetism of the magnet 13 during a long stroke which moves as much as about 40 to 50 mm.
  • the first magnetic detection element 16A disposed on the left is directly connected to the control circuit 17, and the stroke is detected using the magnetic flux density detected by the first magnetic detection element 16A.
  • the control circuit 17 outputs a constant voltage waveform N2.
  • the stroke S3 is slightly smaller than the stroke S2.
  • the second magnetic detection element 16B is also directly connected to the control circuit 17 as in the first magnetic detection element 16A, the detection result of the magnetic flux density of the first magnetic detection element 16A is used during the stroke S2.
  • the detection result of the magnetic flux density of the second magnetic detection element 16B can be used during the stroke S3.
  • the strokes S2 and S3 can be made to have substantially the same length, and a longer stroke can be detected compared to the first embodiment.
  • the first magnetic detection element 16A and the second magnetic detection element 16B, the control circuit 17 and the differential circuit 17A are mounted on the lower surface of the wiring substrate 15, and the components are connected by the wiring pattern.
  • the magnetic detection unit 14 is formed.
  • the present invention is not limited to this configuration, and may be integrally formed as an IC chip or the like.
  • the magnetic detection unit 14 is used to detect, for example, the operation amount of the accelerator pedal, stroke detection of vertical movement of the valve of the exhaust gas recirculation device, stroke detection of vertical and horizontal movement of the headlamp other than the brake pedal. 14 may be used.
  • the operating body 12 and the magnet 13 are largely moved according to the depression operation of the brake pedal 23, and the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B with the movement of the magnet 13
  • the control circuit 17 detects the stroke of the magnet 13 from the difference in magnetic flux density while the difference between the magnetic flux density and the magnetic flux density is greater than the predetermined value. Detect strokes of With this configuration, it is possible to provide a magnetic detection unit capable of detecting the amount of pedal operation with high accuracy and reliability, and a stroke detection device using the same.
  • the first magnetic detection element 16A and the second magnetic detection element 16B are arranged in series at a predetermined interval along the first direction. However, in the present embodiment shown in FIG. 6, the first magnetic detection element 16A and the second magnetic detection element 16B are disposed along the second direction.
  • the magnetic flux density detected by the first magnetic detection element 16A and the first detected by the second magnetic detection element 16B As shown in FIG. 6, when the first magnetic detection element 16A and the second magnetic detection element 16B are arranged, the magnetic flux density detected by the first magnetic detection element 16A and the first detected by the second magnetic detection element 16B.
  • the magnetic flux density in the direction of is the same.
  • FIGS. 8 to 10 show conceptual voltage values, and are not waveform diagrams completely corresponding to FIGS. 4 to 5.
  • FIG. 8 shows the first magnetic detection element 16A and the second magnetic detection element 16A in the case where the first magnetic detection element 16A and the second magnetic detection element 16B are disposed along the first direction as shown in FIG.
  • the voltage waveform diagram based on the detection result of the magnetic detection element 16B of FIG. 9 shows the first magnetic detection element 16A and the second magnetic detection element 16A in the case where the first magnetic detection element 16A and the second magnetic detection element 16B are disposed along the second direction as shown in FIG.
  • the voltage value Q1 calculated from the magnetic flux density detected from the first magnetic detection element 16A rises, and the magnetic flux density detected from the second magnetic detection element 16B slightly later than that.
  • the calculated voltage value Q2 rises.
  • the waveforms should be completely coincident. is there.
  • the voltage waveform Q2 is output from the second magnetic detection element 16B.
  • the first magnetic detection element 16A does not output the same voltage waveform (Q1) as Q2.
  • the electronic circuit can detect a failure.
  • the first magnetic detection element 16A and the second magnetic detection element 16B are disposed completely along the second direction.
  • the first magnetic detection element 16A and the second magnetic detection element 16B are disposed obliquely with respect to the two directions.
  • the arrangement of FIG. 7 can obtain the same effect as that of the first embodiment.
  • a plurality of magnetic detection elements such as three or four may be arranged at predetermined intervals.
  • the magnetic detection element disposed along the first direction and the magnetic detection element disposed along the second direction may coexist.
  • the arrangement of the magnetic detection elements is not limited to the above embodiment.
  • the magnetic detection unit according to the present invention and the stroke detection device using the same can detect a pedal operation amount with high accuracy. It is useful for operation of the brake pedal etc. of a car.

Abstract

A magnetic detecting unit is characterized in comprising a first magnetic detecting element and a second magnetic detecting element that are disposed in a case, disposed facing a magnet, and disposed at a prescribed interval, and is characterized in that the first magnetic detecting element and the second magnetic detecting element detect the magnetic flux density of the magnet. Moreover, a magnetic detecting device having the magnetic unit is characterized in that the magnet is mounted on a moving body that moves in a first direction in conjunction with a pedal. By virtue of this configuration, the stroke of the magnet can be reliably detected with precision and the amount of travel of the pedal can be reliably detected with precision.

Description

磁気検出ユニット及び磁気検出ユニットを有するストローク検出装置Stroke detection device having a magnetic detection unit and a magnetic detection unit
 本発明は、主に自動車のブレーキペダル等の操作量の検出に使用される磁気検出ユニット、及び磁気検出ユニットを有するストローク検出装置に関する。 The present invention relates to a magnetic detection unit mainly used to detect an operation amount of a brake pedal or the like of an automobile, and a stroke detection device having the magnetic detection unit.
 近年、自動車の高機能化が進むなか、様々な回転角度検出装置やストローク検出装置等を用いて、ブレーキペダル等が踏み込まれた操作量を検出し、車両の多様な制御を行う装置が増えている。 In recent years, while advanced functions of automobiles progress, there are an increasing number of devices that perform various control of vehicles by detecting the amount of operation when a brake pedal or the like is depressed using various rotation angle detection devices, stroke detection devices, etc. There is.
 従来の回転角度検出装置について、図11を参照しながら説明する。 A conventional rotation angle detection device will be described with reference to FIG.
 図11は従来のブレーキペダルの側面図である。回転角度検出装置1においては、絶縁樹脂製のケース(図示せず)内に回転体(図示せず)が回転可能に収納されると共に、回転体に複数の磁石2が装着されている。 FIG. 11 is a side view of a conventional brake pedal. In the rotation angle detection device 1, a rotating body (not shown) is rotatably accommodated in a case (not shown) made of an insulating resin, and a plurality of magnets 2 are attached to the rotating body.
 そして、回転角度検出装置1が自動車のブレーキペダル3の回動軸3Aの近傍に取り付けられる。そして、回動軸3Aに回転体の中心が装着される。さらに、磁石2と所定の間隙を空けて対向配置された、ホール素子等の磁気検出素子(図示せず)が、コネクタやリード線(図示せず)等を介して、車両の電子回路(図示せず)に電気的に接続される。 Then, the rotation angle detection device 1 is mounted in the vicinity of the rotation axis 3A of the brake pedal 3 of the automobile. Then, the center of the rotating body is attached to the rotating shaft 3A. Furthermore, a magnetic detection element (not shown) such as a Hall element (not shown), which is disposed opposite to the magnet 2 with a predetermined gap, passes through a connector, a lead (not shown), etc. (Not shown) is electrically connected.
 以上のように構成される従来のブレーキペダルにおいて、ブレーキペダル3を足で踏み込むと、アーム3Bの回動に伴って回転角度検出装置1の回転体が回転する。回転体に装着されている磁石2も回転する。磁石2が回転すると、磁石2から対向した磁気検出素子へ流れる磁界の方向が変化する。 In the conventional brake pedal configured as described above, when the brake pedal 3 is depressed with a foot, the rotating body of the rotation angle detection device 1 is rotated with the rotation of the arm 3B. The magnet 2 mounted on the rotating body also rotates. When the magnet 2 rotates, the direction of the magnetic field flowing from the magnet 2 to the opposing magnetic detection element changes.
 そして、磁石2からの磁気を磁気検出素子が検出して、磁気検出素子における検出結果が、自動車本体の電子回路へ出力される。電子回路が所定の演算を行い、回転体の回転角度(ブレーキペダル3が踏み込まれた操作量)を算出し、算出結果に応じて車両の様々な制御が行われる。 The magnetism detection element detects the magnetism from the magnet 2, and the detection result of the magnetism detection element is output to the electronic circuit of the car body. The electronic circuit performs a predetermined operation to calculate the rotation angle of the rotating body (the amount of operation of the brake pedal 3), and various control of the vehicle is performed according to the calculation result.
 つまり、ブレーキペダル3の踏み込み操作によって、回転角度検出装置1の回転体と磁石2を回転させる。そして、磁気検出素子が検出した磁石2の磁気の変化から、回転体の回転角度(ブレーキペダル3が踏み込まれた操作量)を検出して、車両の様々な制御が行われていた。 That is, when the brake pedal 3 is depressed, the rotating body and the magnet 2 of the rotation angle detection device 1 are rotated. Then, from the change in magnetism of the magnet 2 detected by the magnetism detection element, the rotation angle of the rotating body (the amount of operation by which the brake pedal 3 is depressed) is detected, and various control of the vehicle is performed.
 なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。 As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
特開2010-223656号公報JP, 2010-223656, A
 本発明の一態様は、磁気検出ユニットとして、ケース内に配置され、磁石に対向配置され、かつ、所定の間隔で配置された第一の磁気検出素子と第二の磁気検出素子とを備え、第一の磁気検出素子および第二の磁気検出素子が、磁石の磁束密度を検出する。 One aspect of the present invention is provided with a first magnetic detection element and a second magnetic detection element which are disposed in a case, are disposed opposite to a magnet, and are disposed at predetermined intervals as a magnetic detection unit, The first magnetic detection element and the second magnetic detection element detect the magnetic flux density of the magnet.
 この構成により、高精度で確実に、磁石のストロークを検出することができる。 According to this configuration, the stroke of the magnet can be detected with high precision and reliability.
 また、本発明の別の一態様は、ストローク検出装置として、磁気検出ユニットを有し、磁石が、ペダルに連動して第1の方向に移動する作動体に装着されている。 Further, according to another aspect of the present invention, a magnetism detection unit is provided as a stroke detection device, and a magnet is attached to an operating body that moves in a first direction in conjunction with a pedal.
 この構成により、高精度で、確実なペダルの操作量の検出が可能である。 With this configuration, it is possible to detect the pedal operation amount with high accuracy and with certainty.
本発明の実施の形態1によるストローク検出装置の断面図である。1 is a cross-sectional view of a stroke detection device according to a first embodiment of the present invention. 本発明の実施の形態1による磁気検出ユニットのブロック回路図である。FIG. 2 is a block circuit diagram of a magnetic detection unit according to Embodiment 1 of the present invention. 本発明の実施の形態1による磁石と磁気検出素子との配置の関係を示す斜視図である。It is a perspective view which shows the relationship of arrangement | positioning of the magnet by Embodiment 1 of this invention, and a magnetic detection element. 本発明の実施の形態1による第一の磁気検出素子16Aによる磁束密度の検出結果を示す波形図である。It is a wave form diagram which shows the detection result of the magnetic flux density by the 1st magnetic detection element 16A by Embodiment 1 of this invention. 本発明の実施の形態1による第二の磁気検出素子16Bによる磁束密度の検出結果を示す波形図である。It is a wave form diagram which shows the detection result of the magnetic flux density by the 2nd magnetic detection element 16B by Embodiment 1 of this invention. 本発明の実施の形態1による第一の磁気検出素子16Aと第二の磁気検出素子16Bが検出した磁束密度の検出結果の差を示す波形図である。It is a wave form diagram which shows the difference of the detection result of the magnetic flux density which the 1st magnetic detection element 16A and 2nd magnetic detection element 16B by Embodiment 1 of this invention detected. 本発明の実施の形態1による端子18からの出力を示す波形図である。It is a wave form diagram which shows the output from the terminal 18 by Embodiment 1 of this invention. 本発明の実施の形態1による制御回路17に入力される磁束密度を示す波形図である。It is a wave form diagram showing the magnetic flux density inputted into control circuit 17 by Embodiment 1 of the present invention. 本発明の実施の形態1による端子18からの出力を示す波形図である。It is a wave form diagram which shows the output from the terminal 18 by Embodiment 1 of this invention. 本発明の実施の形態2による磁石と磁気検出素子との配置の関係を示す斜視図である。It is a perspective view which shows the relationship of arrangement | positioning of the magnet by Embodiment 2 of this invention, and a magnetic detection element. 本発明の実施の形態3による磁石と磁気検出素子との配置の関係を示す斜視図である。It is a perspective view which shows the relationship of arrangement | positioning of the magnet by Embodiment 3 of this invention, and a magnetic detection element. 図3に示す磁気検出素子による電圧波形図である。It is a voltage waveform figure by the magnetic detection element shown in FIG. 図6に示す磁気検出素子による電圧波形図である。It is a voltage waveform figure by the magnetic detection element shown in FIG. 図7に示す磁気検出素子による電圧波形図である。It is a voltage waveform figure by the magnetic detection element shown in FIG. 従来のブレーキペダルの側面図である。It is a side view of the conventional brake pedal.
 本発明の実施の形態の説明に先立ち、従来の回転角度検出装置の課題について説明する。 Prior to the description of the embodiments of the present invention, the problems of the conventional rotation angle detection device will be described.
 図11に示す従来の回転角度検出装置においては、ブレーキペダル3が踏み込み操作される数十度の回転角度の範囲で磁石2を回転させ、この時の磁石の磁気の変化を磁気検出素子が検出して、ブレーキペダル3の操作量を検出している。従来の回転角度検出装置においては、精度の高いブレーキペダル3の操作量の検出を行うことが困難であるという課題があった。 In the conventional rotation angle detection device shown in FIG. 11, the magnet 2 is rotated within a range of rotation angles of several tens of degrees at which the brake pedal 3 is depressed and the magnetic detection element detects a change in magnetism of the magnet at this time. The amount of operation of the brake pedal 3 is detected. In the conventional rotation angle detection device, there is a problem that it is difficult to detect the operation amount of the brake pedal 3 with high accuracy.
 (実施の形態1)
 以下、本発明の実施の形態1について、図1~図5Cを参照しながら説明する。
Embodiment 1
The first embodiment of the present invention will be described below with reference to FIGS. 1 to 5C.
 図1は本発明の実施の形態1によるストローク検出装置の断面図である。図1において、筐体11は箱型で、ポリブチレンテレフタレートやABS等の絶縁樹脂製である。作動体12は円柱状で、ポリオキシメチレン等の絶縁樹脂またはアルミニウム等の非磁性体製である。筐体11内に作動体12が図1における左右方向へ移動可能に収納されている。 FIG. 1 is a cross-sectional view of a stroke detection device according to a first embodiment of the present invention. In FIG. 1, the case 11 is box-shaped and made of insulating resin such as polybutylene terephthalate or ABS. The working body 12 is cylindrical and made of an insulating resin such as polyoxymethylene or a nonmagnetic material such as aluminum. The operating body 12 is accommodated in the housing 11 so as to be movable in the left and right direction in FIG.
 磁石13はリング状で、フェライトやNd-Fe-B合金等の磁石で、左右面がN極とS極に着磁されると共に、磁石13が作動体12の中間部の外周に装着されている。磁石13のN極S極は、図3に示す通りである。図3において、リング状の磁石13の見える面がS極で、磁石13の裏面がN極である。 The magnet 13 is ring-shaped and is a magnet such as ferrite or Nd-Fe-B alloy, and the left and right sides are magnetized to the N pole and the S pole, and the magnet 13 is mounted on the outer periphery of the middle portion of the working body 12 There is. The north pole south pole of the magnet 13 is as shown in FIG. In FIG. 3, the visible surface of the ring-shaped magnet 13 is the S pole, and the back surface of the magnet 13 is the N pole.
 そして、磁気検出ユニット14は、第一の磁気検出素子16A、第二の磁気検出素子16B、制御回路17、複数の端子18を有する。配線基板15は、上下面に銅箔等によって複数の配線パターン(図示せず)が形成された、紙フェノールやガラス入りエポキシ等で形成されている。配線基板15の下面には、ホール素子等の第一の磁気検出素子16Aと第二の磁気検出素子16Bが、配置され、作動体12の移動方向(第1の方向)に所定の間隔で実装装着されている。本実施の形態では、第一の磁気検出素子16Aの中心と、第二の磁気検出素子16Bの中心の間隔が、約2~5mmである。 The magnetic detection unit 14 includes a first magnetic detection element 16A, a second magnetic detection element 16B, a control circuit 17, and a plurality of terminals 18. The wiring substrate 15 is formed of paper phenol, glass-containing epoxy, or the like in which a plurality of wiring patterns (not shown) are formed of copper foil or the like on upper and lower surfaces. A first magnetic detection element 16A such as a Hall element and a second magnetic detection element 16B are disposed on the lower surface of the wiring board 15 and mounted at a predetermined interval in the moving direction (first direction) of the working body 12 It is attached. In the present embodiment, the distance between the center of the first magnetic detection element 16A and the center of the second magnetic detection element 16B is about 2 to 5 mm.
 なお、図1に示す本実施の形態では、第一の磁気検出素子16Aと第二の磁気検出素子16Bの間隔が約2~5mmの場合、図1に示す第一の磁気検出素子16Aと第二の磁気検出素子16Bの間隔はもっと狭くすべきである。しかしながら、第一の磁気検出素子16Aと第二の磁気検出素子16Bなどの位置関係を分かりやすくするために、図1では、実際の実施の形態よりも、第一の磁気検出素子16Aと第二の磁気検出素子16Bの間隔を離して図示している。 In the present embodiment shown in FIG. 1, when the distance between the first magnetic detection element 16A and the second magnetic detection element 16B is about 2 to 5 mm, the first magnetic detection element 16A and the first magnetic detection element 16A shown in FIG. The distance between the two magnetic detection elements 16B should be narrower. However, in order to make it easy to understand the positional relationship between the first magnetic detection element 16A and the second magnetic detection element 16B, the first magnetic detection element 16A and the second magnetic detection element 16A are shown in FIG. 1 in comparison with the actual embodiment. The magnetic detection elements 16B of FIG.
 第一の磁気検出素子16Aと第二の磁気検出素子16Bが、図2のブロック回路図に示すように、マイクロコンピュータ等の制御回路17にオペアンプ等の差動回路17Aを介して接続され、かつ、第一の磁気検出素子16Aは制御回路17に直接接続されている。 The first magnetic detection element 16A and the second magnetic detection element 16B are connected to a control circuit 17 such as a microcomputer via a differential circuit 17A such as an operational amplifier as shown in the block circuit diagram of FIG. The first magnetic detection element 16A is directly connected to the control circuit 17.
 配線基板15の上面には配線パターンを介して制御回路17に接続される、複数の端子18が植設されている。端子18は例えば銅合金で出来ている。また、配線基板15の下面は、ケース19で覆われている。ケース19は箱型でポリブチレンテレフタレート等の絶縁樹脂製である。 A plurality of terminals 18 connected to the control circuit 17 via a wiring pattern are implanted on the upper surface of the wiring substrate 15. The terminal 18 is made of, for example, a copper alloy. Further, the lower surface of the wiring board 15 is covered with a case 19. The case 19 is box-shaped and made of insulating resin such as polybutylene terephthalate.
 上記で説明したように、磁気検出ユニット14が形成されている。 As described above, the magnetic detection unit 14 is formed.
 そして、磁気検出ユニット14が筐体11の上面に装着されている。 The magnetic detection unit 14 is mounted on the top surface of the housing 11.
 次に、第一の磁気検出素子16Aと第二の磁気検出素子16B、磁石13との配置関係について、図1および図3を参照しながら説明する。 Next, the positional relationship between the first magnetic detection element 16A, the second magnetic detection element 16B, and the magnet 13 will be described with reference to FIGS. 1 and 3. FIG.
 図3は、第一の磁気検出素子16Aと第二の磁気検出素子16Bとの間に磁石13が位置する状態を示す斜視図である。 FIG. 3 is a perspective view showing a state where the magnet 13 is positioned between the first magnetic detection element 16A and the second magnetic detection element 16B.
 図3に示すように、磁石13に対して、第一の磁気検出素子16Aと第二の磁気検出素子16Bが、第1の方向に沿う方向に、間隔を空けて配置されている。なお、磁石13の動きについては、以下で詳細に説明するが、磁石13は第1の方向に沿って移動する。 As shown in FIG. 3, with respect to the magnet 13, the first magnetic detection element 16A and the second magnetic detection element 16B are disposed at an interval in the direction along the first direction. The movement of the magnet 13 will be described in detail below, but the magnet 13 moves along the first direction.
 次に、図1について説明する。作動軸20は絶縁樹脂または金属製である。ばね21は鋼または銅合金線がコイル状に巻回されたばねである。ばね21がやや撓んだ状態で、作動体12の右端と筐体11の内面との間に装着されている。作動体12の左端に作動軸20が固着され、作動軸20は筐体11から図面の左方向に突出している。ストローク検出装置22は、上記の通りに構成されている。 Next, FIG. 1 will be described. The operating shaft 20 is made of insulating resin or metal. The spring 21 is a spring in which a steel or copper alloy wire is wound in a coil shape. The spring 21 is mounted between the right end of the operating body 12 and the inner surface of the housing 11 in a slightly bent state. The actuating shaft 20 is fixed to the left end of the actuating body 12, and the actuating shaft 20 projects from the housing 11 in the left direction of the drawing. The stroke detection device 22 is configured as described above.
 作動軸20の先端が、ブレーキペダル23のアーム23Aに装着され、ストローク検出装置22が車両に取り付けられる。また、磁気検出ユニット14の制御回路17は複数の端子18と、コネクタやリード線(図示せず)等を介して、車両の電子回路(図示せず)に電気的に接続される。 The tip of the actuating shaft 20 is attached to the arm 23A of the brake pedal 23, and the stroke detection device 22 is attached to the vehicle. Also, the control circuit 17 of the magnetic detection unit 14 is electrically connected to the electronic circuit (not shown) of the vehicle via the plurality of terminals 18 and connectors, leads (not shown) and the like.
 以上の構成において、ブレーキペダル23を足で踏み込むと、アーム23Aが回動軸23Bを支点として回動し、作動体12が作動軸20を介してアーム23Aに押圧され、第1の方向へ移動する。同時に、作動体12に装着されている磁石13も第1の方向に移動する。 In the above configuration, when the brake pedal 23 is stepped on with a foot, the arm 23A pivots with the pivot shaft 23B as a fulcrum, and the actuating body 12 is pressed by the arm 23A via the actuating shaft 20 and moves in the first direction Do. At the same time, the magnet 13 mounted on the working body 12 also moves in the first direction.
 次に、第一の磁気検出素子16Aおよび第二の磁気検出素子16Bの磁束密度の検出結果と、磁石の移動距離(ストローク)との関係について、図3、図4A~Cを参照しながら説明する。 Next, the relationship between the detection result of the magnetic flux density of the first magnetic detection element 16A and the second magnetic detection element 16B and the moving distance (stroke) of the magnet will be described with reference to FIGS. 3 and 4A to 4C. Do.
 第一の磁気検出素子16Aおよび第二の磁気検出素子16Bのそれぞれが、第1の方向の磁気を検出する素子と、第3の方向の磁気を検出する素子とを備えている。第1の方向は、磁石13が移動する方向で、第2の方向は、ストローク検出装置22を上面から見た時、第1の方向と直交する方向である。さらに、第3の方向は、図面において、上方に延伸する方向である。 Each of the first magnetic detection element 16A and the second magnetic detection element 16B includes an element that detects magnetism in a first direction and an element that detects magnetism in a third direction. The first direction is a direction in which the magnet 13 moves, and the second direction is a direction orthogonal to the first direction when the stroke detection device 22 is viewed from above. Furthermore, the third direction is a direction extending upward in the drawing.
 図4A~4Cにおいて、第1の方向の磁気の波形をL、第3の方向の磁気の波形をMで表している。 In FIGS. 4A to 4C, the magnetic waveform of the first direction is represented by L, and the magnetic waveform of the third direction is represented by M.
 磁石13は、ブレーキペダル23が踏まれると、磁気検出ユニット14の左下の位置から、第1の方向に移動する。その時の磁束密度の変化について、以下、説明する。 When the brake pedal 23 is depressed, the magnet 13 moves in the first direction from the lower left position of the magnetic detection unit 14. The change in magnetic flux density at that time will be described below.
 先ず、第一の磁気検出素子16Aが磁石13の磁束密度を検出する。磁石13の移動距離(ストローク)と第一の磁気検出素子16Aが検出する磁束密度との関係を図4Aに示し、磁石13の移動距離(ストローク)と第二の磁気検出素子16Bが検出する磁束密度との関係を図4Bに示す。また、第一の磁気検出素子16Aと第二の磁気検出素子16Bが検出した磁束密度の差を図4Cに示す。 First, the first magnetic detection element 16A detects the magnetic flux density of the magnet 13. The relationship between the moving distance (stroke) of the magnet 13 and the magnetic flux density detected by the first magnetic detection element 16A is shown in FIG. 4A, and the moving distance (stroke) of the magnet 13 and the magnetic flux detected by the second magnetic detection element 16B. The relationship with density is shown in FIG. 4B. Further, FIG. 4C shows the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B.
 磁石13が第1の方向に移動すると、少し遅れて、第二の磁気検出素子16Bが磁石13の磁束密度を検出する。 When the magnet 13 moves in the first direction, the second magnetic detection element 16 B detects the magnetic flux density of the magnet 13 with a slight delay.
 そして、図2に示すように、第一の磁気検出素子16Aおよび第二の磁気検出素子16Bの検出結果のそれぞれが、差動回路17Aへ出力される。差動回路17Aでは、第一の磁気検出素子16Aからの磁束密度の波形L1とM1から、第二の磁気検出素子16Bからの波形L2とM2がそれぞれ減算され、図4Cに示す波形L3およびM3が得られる。第一の磁気検出素子16Aと第二の磁気検出素子16Bが検出した磁束密度の差の波形L3とM3が、差動回路17Aから制御回路17へ出力される。 Then, as shown in FIG. 2, the detection results of the first magnetic detection element 16A and the second magnetic detection element 16B are respectively output to the differential circuit 17A. In the differential circuit 17A, the waveforms L2 and M2 from the second magnetic detection element 16B are respectively subtracted from the waveforms L1 and M1 of the magnetic flux density from the first magnetic detection element 16A, and the waveforms L3 and M3 shown in FIG. Is obtained. The waveforms L3 and M3 of the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B are output from the differential circuit 17A to the control circuit 17.
 そして、制御回路17で所定の演算が行われ、図5Aの波形図に示すような、磁石13のストロークに応じて、暫時増加する直線状の電圧波形N1が端子18から出力される。 Then, a predetermined calculation is performed by the control circuit 17, and a linear voltage waveform N 1 which is gradually increased according to the stroke of the magnet 13 as shown in the waveform diagram of FIG. 5A is output from the terminal 18.
 なお、制御回路17および差動回路17Aを合わせて演算部と表す。 The control circuit 17 and the differential circuit 17A are collectively referred to as an operation unit.
 直線状の電圧波形N1が端子18から出力される時、図5Bに示すように、差動回路17Aで演算して求められる磁束密度の差の波形R1は、ストロークS1の期間は所定値P以上である。ところが、S1の前のS2の期間や、S2の後のS3の期間では、波形R1が所定値P未満となっている。つまり、ストロークS2と、ストロークS3の期間では、検出ができない弱い磁束密度となっている。 When a linear voltage waveform N1 is output from the terminal 18, as shown in FIG. 5B, the waveform R1 of the difference in magnetic flux density obtained by calculation with the differential circuit 17A has a predetermined value P or more for the period of the stroke S1. It is. However, the waveform R1 is less than the predetermined value P in the period of S2 before S1 and the period of S3 after S2. That is, in the period of stroke S2 and stroke S3, it has become weak magnetic flux density which can not be detected.
 一方、第一の磁気検出素子16Aから制御回路17へ直接入力される磁束密度(波形R2)は、ストロークS2やS3の期間でも所定値P以上である。波形R2が制御回路17に入力されることより、磁石13が第一の磁気検出素子16Aに接近、あるいは離れていっていることを、制御回路17が検出することが可能になる。 On the other hand, the magnetic flux density (waveform R2) directly input from the first magnetic detection element 16A to the control circuit 17 is the predetermined value P or more even in the period of the strokes S2 and S3. As the waveform R2 is input to the control circuit 17, the control circuit 17 can detect that the magnet 13 is approaching or separating from the first magnetic detection element 16A.
 つまり、ストロークS2やS3の期間では、第一の磁気検出素子16Aと第二の磁気検出素子16Bが検出した磁束密度の差から演算を行うような、磁石13以外の外部の磁界の影響を減算によって除去した、磁石13の高精度なストロークの検出はできない。しかし、ストロークS2やS3の期間では、磁石13が接近したり、離れたりということは制御回路17が検出できる。 That is, in the period of the strokes S2 and S3, the influence of the external magnetic field other than the magnet 13 which is calculated from the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B is subtracted Can not detect the stroke of the magnet 13 with high accuracy. However, during the stroke S2 or S3, the control circuit 17 can detect that the magnet 13 approaches or leaves.
 ストロークS2やS3の期間では、図5Cに示す通り、端子18から出力される電圧は、一定の電圧波形となる。 During the strokes S2 and S3, as shown in FIG. 5C, the voltage output from the terminal 18 has a constant voltage waveform.
 上記説明の通り、図5Cに示すような、電圧波形N2が制御回路17から車両の電子回路へ出力される。 As described above, the voltage waveform N2 as shown in FIG. 5C is output from the control circuit 17 to the electronic circuit of the vehicle.
 すなわち、磁石13が接近している約10mmのストロークS2の間は一定の電圧波形、磁束密度が所定値P以上である約20mmのストロークS1の間は、高精度なストロークの検出が可能な暫時増加する直線状の電圧波形、磁石13が離れる約10mmのストロークS3の間は一定の電圧波形となる。本実施の形態では、電圧波形N2を制御回路17が端子18から出力するので、ブレーキペダル23の踏み込み操作に応じて大きく移動する、磁石13の長い範囲でのストローク検出が行える。 That is, a constant voltage waveform is provided during a stroke S2 of approximately 10 mm in which the magnet 13 is approaching, and during a stroke S1 of approximately 20 mm in which the magnetic flux density is a predetermined value P or more, high precision stroke detection is possible. An increasing linear voltage waveform is a constant voltage waveform during a stroke S3 of about 10 mm in which the magnet 13 is separated. In the present embodiment, since the control circuit 17 outputs the voltage waveform N2 from the terminal 18, stroke detection can be performed in a long range of the magnet 13 which moves largely according to the depression operation of the brake pedal 23.
 なお、ストロークS2の前の期間や、ストロークS3の後の期間は、磁束密度が所定値Pより弱くて検出ができないため、ストロークS2やS1、S3の期間とは異なる電圧、例えば0Vが制御回路17から出力される。 Since the magnetic flux density is weaker than the predetermined value P and can not be detected in the period before the stroke S2 or the period after the stroke S3, a voltage different from that of the strokes S2, S1 and S3, for example, 0 V is a control circuit It is output from 17.
 なお、本実施の形態では0Vとしているが、一例であり、必ずしも0Vに設定する必要はない。 Although the voltage is 0 V in this embodiment, this is an example, and it is not necessary to set the voltage to 0 V.
 また、ストロークの長さは、本実施の形態の一例であり、この長さに限定されるものではない。 Further, the length of the stroke is an example of the present embodiment, and is not limited to this length.
 電圧波形N2から、電子回路が磁石13のストローク、すなわちブレーキペダル23が踏み込まれた操作量を算出して、踏み込み量に応じたブレーキ装置の制御やストップランプの消点灯等の、車両の様々な制御が行われる。 From the voltage waveform N2, the electronic circuit calculates the stroke of the magnet 13, that is, the operation amount by which the brake pedal 23 is depressed, and various control of the vehicle according to the depression amount, such as control of the brake device or turning off the stop lamp. Control is performed.
 つまり、ブレーキペダル23の踏み込み操作によって、ストローク検出装置22の作動体12と磁石13を移動させ、磁石13の磁束密度を磁気検出ユニット14の第一の磁気検出素子16Aと第二の磁気検出素子16Bが検出する。同時に、第一の磁気検出素子16Aと第二の磁気検出素子16Bの検出結果が制御回路17で演算される。そして、電子回路で、制御回路17から出力される電圧波形N2から、磁石13のストローク、すなわちブレーキペダル23が踏み込まれた操作量が検出され、車両の様々な制御が行われる。 That is, the actuating body 12 of the stroke detection device 22 and the magnet 13 are moved by the depression operation of the brake pedal 23, and the magnetic flux density of the magnet 13 becomes the first magnetic detection element 16A of the magnetic detection unit 14 and the second magnetic detection element 16B detects. At the same time, detection results of the first magnetic detection element 16A and the second magnetic detection element 16B are calculated by the control circuit 17. Then, the electronic circuit detects the stroke of the magnet 13, that is, the operation amount with which the brake pedal 23 is depressed, from the voltage waveform N2 output from the control circuit 17, and various control of the vehicle is performed.
 そして、本発明の磁気検出ユニット14やストローク検出装置22においては、ブレーキペダル23に連動して移動する作動体12に装着された磁石13に対して、作動体12の移動方向に所定の間隔で設けられた第一の磁気検出素子16Aと第二の磁気検出素子16Bを、所定の間隙を空けて対向配置することによって、高精度で、確実なブレーキペダル23の操作量の検出が行える。 In the magnetic detection unit 14 and the stroke detection device 22 according to the present invention, the magnet 13 mounted on the working body 12 moving in conjunction with the brake pedal 23 is separated by a predetermined distance in the moving direction of the working body 12. By arranging the first magnetic detection element 16A and the second magnetic detection element 16B so as to face each other with a predetermined gap, it is possible to detect the operation amount of the brake pedal 23 with high accuracy and with certainty.
 すなわち、ブレーキペダル23が踏み込み操作された際に、アーム23Aが回動軸23Bを支点として回動する角度は数十度の範囲である。一方、作動体12と磁石13が作動軸20を介してアーム23Aに押圧されて、例えば、40~50mmと大きく移動する。この長いストロークの間、磁石13の磁気を検出することによって、高精度なブレーキペダル23の操作量の検出が可能である。 That is, when the brake pedal 23 is depressed, the angle at which the arm 23A pivots about the pivot shaft 23B is in the range of several tens of degrees. On the other hand, the actuating body 12 and the magnet 13 are pressed by the arm 23A through the actuating shaft 20, and move as large as, for example, 40 to 50 mm. By detecting the magnetism of the magnet 13 during this long stroke, it is possible to detect the operation amount of the brake pedal 23 with high accuracy.
 また、磁石13に対向配置された第一の磁気検出素子16Aと第二の磁気検出素子16Bから検出される磁束密度の差が所定の値P以上の間は、これらの磁束密度の差から制御回路17が磁石13のストロークを検出する。そして、第一の磁気検出素子16Aと第二の磁気検出素子16Bから検出される磁束密度の差が所定の値Pより小さい間は、第一の磁気検出素子16Aの磁束密度から磁石13のストロークを検出する。この構成により、本実施の形態の磁気検出ユニットでは、磁石13の磁気を高精度で、確実に検出することができる。 Further, when the difference between the magnetic flux density detected from the first magnetic detection element 16A and the second magnetic detection element 16B disposed opposite to the magnet 13 is a predetermined value P or more, control is performed based on the difference between these magnetic flux densities The circuit 17 detects the stroke of the magnet 13. Then, while the difference between the magnetic flux density detected from the first magnetic detection element 16A and the second magnetic detection element 16B is smaller than the predetermined value P, the stroke of the magnet 13 is determined from the magnetic flux density of the first magnetic detection element 16A. To detect With this configuration, the magnetism detection unit according to the present embodiment can reliably detect the magnetism of the magnet 13 with high accuracy.
 つまり、上述したように、本実施の形態では、第一の磁気検出素子16Aと第二の磁気検出素子16Bが検出した磁束密度の差が、所定値P以上であるストロークS1(ストロークが約20mm)の間は、第一の磁気検出素子16Aと第二の磁気検出素子16Bが検出した磁束密度の差から制御回路17が所定の演算を行う。そして、磁石13のストロークに応じて暫時増加する直線状の電圧波形N2を出力する。よって、磁石13以外の外部の磁界の影響が減算によって除去されるので、磁石13の高精度なストロークの検出を行うことができる。 That is, as described above, in the present embodiment, the stroke S1 (the stroke is about 20 mm) in which the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B is equal to or greater than the predetermined value P. The control circuit 17 performs a predetermined operation based on the difference between the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B. Then, a linear voltage waveform N2 that increases in a while according to the stroke of the magnet 13 is output. Therefore, the influence of the external magnetic field other than the magnet 13 is removed by subtraction, so that the stroke of the magnet 13 can be detected with high accuracy.
 一方、第一の磁気検出素子16Aと第二の磁気検出素子16Bの磁束密度の差が、所定の値Pより小さいストロークS2とストロークS3のそれぞれの期間は、制御回路17に第一の磁気検出素子16Aが、所定値P以上の磁束密度の場合は、一定の電圧値を出力する。よって、約40~50mmと大きく移動する長いストロークの期間、磁石13の磁気の検出を行うことが可能になる。 On the other hand, during the respective periods of stroke S2 and stroke S3 where the difference in magnetic flux density between the first magnetic detection element 16A and the second magnetic detection element 16B is smaller than the predetermined value P, the control circuit 17 performs the first magnetic detection When the element 16A has a magnetic flux density equal to or more than a predetermined value P, it outputs a constant voltage value. Therefore, it is possible to detect the magnetism of the magnet 13 during a long stroke which moves as much as about 40 to 50 mm.
 なお、上記した実施の形態1では、左方に配置された第一の磁気検出素子16Aを制御回路17に直接接続し、第一の磁気検出素子16Aで検出される磁束密度を用いて、ストロークS2とS3の間、制御回路17から一定の電圧波形N2を出力している。この構成では、ストロークS2に比べストロークS3がやや小さくなる。もし、第一の磁気検出素子16Aと同様に、第二の磁気検出素子16Bも制御回路17に直接接続すれば、ストロークS2の間は第一の磁気検出素子16Aの磁束密度の検出結果を用い、ストロークS3の間は第二の磁気検出素子16Bの磁束密度の検出結果を用いることができる。この構成では、ストロークS2とS3がほぼ同じ長さのストロークにすることができ、本実施の形態1より、さらに長いストロークの検出を行うことができる。 In the first embodiment described above, the first magnetic detection element 16A disposed on the left is directly connected to the control circuit 17, and the stroke is detected using the magnetic flux density detected by the first magnetic detection element 16A. Between S2 and S3, the control circuit 17 outputs a constant voltage waveform N2. In this configuration, the stroke S3 is slightly smaller than the stroke S2. If the second magnetic detection element 16B is also directly connected to the control circuit 17 as in the first magnetic detection element 16A, the detection result of the magnetic flux density of the first magnetic detection element 16A is used during the stroke S2. The detection result of the magnetic flux density of the second magnetic detection element 16B can be used during the stroke S3. In this configuration, the strokes S2 and S3 can be made to have substantially the same length, and a longer stroke can be detected compared to the first embodiment.
 また、実施の形態1では、配線基板15の下面に第一の磁気検出素子16Aと第二の磁気検出素子16B、制御回路17と差動回路17Aを実装装着し、各部品を配線パターンによって接続して、磁気検出ユニット14を形成した構成としている。しかしながら、この構成には限定されず、ICチップ等として一体に形成した構成としてもよい。 In the first embodiment, the first magnetic detection element 16A and the second magnetic detection element 16B, the control circuit 17 and the differential circuit 17A are mounted on the lower surface of the wiring substrate 15, and the components are connected by the wiring pattern. Thus, the magnetic detection unit 14 is formed. However, the present invention is not limited to this configuration, and may be integrally formed as an IC chip or the like.
 さらに、実施の形態1では、磁気検出ユニット14やストローク検出装置22によって、ブレーキペダル23の踏み込み操作量を検出する構成について説明した。しかしながら、ブレーキペダル以外の、例えばアクセルペダルの操作量の検出や、排ガス再循環装置のバルブの上下動のストローク検出、ヘッドランプの上下左右動のストローク検出等に本実施の形態1の磁気検出ユニット14を用いてもよい。 Further, in the first embodiment, the configuration in which the depression operation amount of the brake pedal 23 is detected by the magnetic detection unit 14 or the stroke detection device 22 has been described. However, the magnetic detection unit according to the first embodiment is used to detect, for example, the operation amount of the accelerator pedal, stroke detection of vertical movement of the valve of the exhaust gas recirculation device, stroke detection of vertical and horizontal movement of the headlamp other than the brake pedal. 14 may be used.
 このように本実施の形態によれば、磁石13の磁束密度を検出する第一の磁気検出素子16Aと第二の磁気検出素子16B、及びこれらに接続された制御回路17から磁気検出ユニット14は形成されている。そして、磁気検出ユニット14を、ブレーキペダル23に連動して移動する作動体12に装着された磁石13に、所定の間隙を空けて対向配置してストローク検出装置22を構成する。よって、ブレーキペダル23の踏み込み操作に応じて作動体12と磁石13を大きく移動させると共に、磁石13の移動に伴って第一の磁気検出素子16Aと第二の磁気検出素子16Bが検出した磁束密度の差が所定の値以上の間は、これらの磁束密度の差から制御回路17が磁石13のストロークを検出し、磁束密度の差が所定の値より小さい間は、これらの磁束密度から磁石13のストロークを検出する。この構成により、高精度で、確実なペダルの操作量の検出が可能な磁気検出ユニット、及びこれを用いたストローク検出装置を提供することができる。 As described above, according to the present embodiment, the first magnetic detection element 16A and the second magnetic detection element 16B that detect the magnetic flux density of the magnet 13 and the control circuit 17 connected to these detect the magnetic detection unit 14 It is formed. Then, the magnetism detection unit 14 is disposed opposite to the magnet 13 attached to the operating body 12 moving in conjunction with the brake pedal 23 with a predetermined gap therebetween, to configure the stroke detection device 22. Therefore, the operating body 12 and the magnet 13 are largely moved according to the depression operation of the brake pedal 23, and the magnetic flux density detected by the first magnetic detection element 16A and the second magnetic detection element 16B with the movement of the magnet 13 The control circuit 17 detects the stroke of the magnet 13 from the difference in magnetic flux density while the difference between the magnetic flux density and the magnetic flux density is greater than the predetermined value. Detect strokes of With this configuration, it is possible to provide a magnetic detection unit capable of detecting the amount of pedal operation with high accuracy and reliability, and a stroke detection device using the same.
 (実施の形態2)
 次に第一の磁気検出素子16Aと第二の磁気検出素子16Bの配置について、他の実施の形態を説明する。
Second Embodiment
Next, another embodiment of the arrangement of the first magnetic detection element 16A and the second magnetic detection element 16B will be described.
 実施の形態1では、第一の磁気検出素子16Aと第二の磁気検出素子16Bを第1の方向に沿って、所定の間隔で直列に並べて配置している。しかし、図6に示す本実施の形態では、第一の磁気検出素子16Aと第二の磁気検出素子16Bを第2の方向に沿って、配置している。 In the first embodiment, the first magnetic detection element 16A and the second magnetic detection element 16B are arranged in series at a predetermined interval along the first direction. However, in the present embodiment shown in FIG. 6, the first magnetic detection element 16A and the second magnetic detection element 16B are disposed along the second direction.
 図6に示すように第一の磁気検出素子16Aと第二の磁気検出素子16Bを配置すると、第一の磁気検出素子16Aで検出する磁束密度と第二の磁気検出素子16Bで検出する第1の方向の磁束密度が同じになる。 As shown in FIG. 6, when the first magnetic detection element 16A and the second magnetic detection element 16B are arranged, the magnetic flux density detected by the first magnetic detection element 16A and the first detected by the second magnetic detection element 16B. The magnetic flux density in the direction of is the same.
 実施の形態1で説明した図3に示す配置と、図6に示す配置の検出の違いについて、磁束密度から検出される電圧値を用いて、概念的に以下、説明する。 The difference between the arrangement shown in FIG. 3 described in the first embodiment and the detection of the arrangement shown in FIG. 6 will be conceptually described below using voltage values detected from the magnetic flux density.
 なお、図8~図10は概念的な電圧値を表しており、図4~図5と完全に対応している波形図ではない。 8 to 10 show conceptual voltage values, and are not waveform diagrams completely corresponding to FIGS. 4 to 5.
 まず、図8は、図3に示すように第一の磁気検出素子16Aと第二の磁気検出素子16Bを第1の方向に沿って配置する場合における、第一の磁気検出素子16A及び第二の磁気検出素子16Bの検出結果に基づく電圧波形図である。また、図9は、図6に示すように第一の磁気検出素子16Aと第二の磁気検出素子16Bを第2の方向に沿って配置する場合における、第一の磁気検出素子16Aと第二の磁気検出素子16Bの検出結果に基づく電圧波形図である。 First, FIG. 8 shows the first magnetic detection element 16A and the second magnetic detection element 16A in the case where the first magnetic detection element 16A and the second magnetic detection element 16B are disposed along the first direction as shown in FIG. The voltage waveform diagram based on the detection result of the magnetic detection element 16B of FIG. 9 shows the first magnetic detection element 16A and the second magnetic detection element 16A in the case where the first magnetic detection element 16A and the second magnetic detection element 16B are disposed along the second direction as shown in FIG. The voltage waveform diagram based on the detection result of the magnetic detection element 16B of FIG.
 図8では、まず、第一の磁気検出素子16Aから検出される磁束密度から算出される電圧値Q1が上昇し、それより少し遅れて、第二の磁気検出素子16Bから検出される磁束密度から算出される電圧値Q2が上昇する。 In FIG. 8, first, the voltage value Q1 calculated from the magnetic flux density detected from the first magnetic detection element 16A rises, and the magnetic flux density detected from the second magnetic detection element 16B slightly later than that. The calculated voltage value Q2 rises.
 この電圧値Q1と電圧値Q2を用いて磁石の位置検出をすれば、容易に長いストロークの検出ができる。 If the position of the magnet is detected using the voltage value Q1 and the voltage value Q2, a long stroke can be easily detected.
 一方、図9では、第一の磁気検出素子16Aから検出される磁束密度Q1と第二の磁気検出素子16Bから検出される磁束密度Q2が一致するため電圧波形Q1の電圧波形とQ2の波形が重なっている。 On the other hand, in FIG. 9, since the magnetic flux density Q1 detected from the first magnetic detection element 16A and the magnetic flux density Q2 detected from the second magnetic detection element 16B match, the voltage waveform of the voltage waveform Q1 and the waveform of Q2 are overlapping.
 実施の形態2では、図6に示すように第一の磁気検出素子16Aと第二の磁気検出素子16Bが第2の方向に沿って配置されれば、波形が完全に一致しているはずである。しかしながら、一方の磁気検出素子に故障等の不具合が生じた場合、例えば第一の磁気検出素子16Aに故障等の不具合が生じた場合、第二の磁気検出素子16Bからは電圧波形Q2が出力されているのに、第一の磁気検出素子16AからはQ2と同じ電圧波形(Q1)が出力されない。よって電子回路が不具合を検出することができる。 In the second embodiment, as shown in FIG. 6, if the first magnetic detection element 16A and the second magnetic detection element 16B are arranged along the second direction, the waveforms should be completely coincident. is there. However, when a defect such as a failure occurs in one of the magnetic detection elements, for example, when a defect such as a failure occurs in the first magnetic detection element 16A, the voltage waveform Q2 is output from the second magnetic detection element 16B. However, the first magnetic detection element 16A does not output the same voltage waveform (Q1) as Q2. Thus, the electronic circuit can detect a failure.
 (実施の形態3)
 実施の形態1では、第一の磁気検出素子16Aと第二の磁気検出素子16Bが第2の方向に完全に沿って配置されていたが、実施の形態3では、図7に示す通り、第2の方向に対して、斜めに第一の磁気検出素子16Aと第二の磁気検出素子16Bを配置している。
Third Embodiment
In the first embodiment, the first magnetic detection element 16A and the second magnetic detection element 16B are disposed completely along the second direction. However, in the third embodiment, as shown in FIG. The first magnetic detection element 16A and the second magnetic detection element 16B are disposed obliquely with respect to the two directions.
 図7に示すように斜め方向に配置した場合、図10に示すように、先ず、第一の磁気検出素子16Aから、磁石13のストロークに応じて変化する電圧波形Q1が出力された後、これにやや遅れて第二の磁気検出素子16Bから電圧波形Q3が出力される。このずれた電圧波形Q1とQ3の、所定のストロークにおける差vを検出することで、出力電圧の変動等のより高精度な検出が可能となる。 When arranged in an oblique direction as shown in FIG. 7, as shown in FIG. 10, first, after the voltage waveform Q1 that changes according to the stroke of the magnet 13 is outputted from the first magnetic detection element 16A, The voltage waveform Q3 is output from the second magnetic detection element 16B with a slight delay. By detecting the difference v between the deviated voltage waveforms Q1 and Q3 in a predetermined stroke, it is possible to more accurately detect the fluctuation of the output voltage or the like.
 図8と図10を比較すれば明らかなように、図10では図8より第二の磁気検出素子16Bから検出される電圧波形Q3を第1の方向に沿って配置した場合より電圧波形Q1の出力タイミングと電圧波形Q3の出力タイミングの差は短い。 As apparent from the comparison between FIG. 8 and FIG. 10, in FIG. 10, the voltage waveform Q3 detected from the second magnetic detection element 16B in FIG. The difference between the output timing and the output timing of the voltage waveform Q3 is short.
 図7に示す配置の方が図3に示す配置より、検出精度は低くなるが、図7の配置でも実施の形態1と同様の効果が得られる。 Although the detection accuracy is lower in the arrangement shown in FIG. 7 than in the arrangement shown in FIG. 3, the arrangement of FIG. 7 can obtain the same effect as that of the first embodiment.
 なお、上記実施の形態1~3では、磁気検出素子を2つ配置したが、三つ、あるいは四つなど、複数個の磁気検出素子を所定の間隔で配置しても良い。 In the first to third embodiments, although two magnetic detection elements are arranged, a plurality of magnetic detection elements such as three or four may be arranged at predetermined intervals.
 第1の方向に沿って配置される磁気検出素子と第2の方向に沿って配置される磁気検出素子が並存していてもよい。 The magnetic detection element disposed along the first direction and the magnetic detection element disposed along the second direction may coexist.
 磁気検出素子の配置については上記実施の形態に限定されるものではない。 The arrangement of the magnetic detection elements is not limited to the above embodiment.
 本発明による磁気検出ユニット、及びこれを用いたストローク検出装置は、高精度なペダルの操作量の検出が可能である。自動車のブレーキペダル等の操作用として有用である。 The magnetic detection unit according to the present invention and the stroke detection device using the same can detect a pedal operation amount with high accuracy. It is useful for operation of the brake pedal etc. of a car.
 11 筐体
 12 作動体
 13 磁石
 14 磁気検出ユニット
 15 配線基板
 16A 第一の磁気検出素子
 16B 第二の磁気検出素子
 17 制御回路
 17A 差動回路
 18 端子
 19 ケース
 20 作動軸
 21 ばね
 22 ストローク検出装置
 23 ブレーキペダル
 23A アーム
 23B 回動軸
11 housing 12 working body 13 magnet 14 magnetic detection unit 15 wiring board 16A first magnetic detection element 16B second magnetic detection element 17 control circuit 17A differential circuit 18 terminal 19 case 20 operation axis 21 spring 22 stroke detection device 23 Brake pedal 23A arm 23B rotation axis

Claims (7)

  1.  ケース内に配置され、磁石に対向配置され、かつ、所定の間隔で配置された第一の磁気検出素子と第二の磁気検出素子とを備え、
     前記第一の磁気検出素子および前記第二の磁気検出素子が、前記磁石の磁束密度を検出する
    ことを特徴とする磁気検出ユニット。
    A first magnetic sensing element and a second magnetic sensing element disposed in the case, disposed to face the magnet, and disposed at predetermined intervals;
    A magnetic detection unit, wherein the first magnetic detection element and the second magnetic detection element detect the magnetic flux density of the magnet.
  2.  請求項1記載の磁気検出ユニットにおいて、
     前記磁石は第1の方向に移動し、
     前記第一の磁気検出素子および前記第二の磁気検出素子は、前記第1の方向に沿って配置されている
    ことを特徴とする磁気検出ユニット。
    In the magnetic detection unit according to claim 1,
    The magnet moves in a first direction,
    A magnetic detection unit characterized in that the first magnetic detection element and the second magnetic detection element are disposed along the first direction.
  3.  請求項1記載の磁気検出ユニットにおいて、
     前記磁石は第1の方向に移動し、
     前記第一の磁気検出素子および前記第二の磁気検出素子が、前記第1の方向に垂直である第2の方向に沿って配置されている
    ことを特徴とする磁気検出ユニット。
    In the magnetic detection unit according to claim 1,
    The magnet moves in a first direction,
    A magnetic detection unit characterized in that the first magnetic detection element and the second magnetic detection element are arranged along a second direction which is perpendicular to the first direction.
  4.  請求項2記載の磁気検出ユニットが、更に、演算部を備え、
     前記磁石が前記第1の方向に移動する時、前記第一の磁気検出素子が検出した磁束密度と、前記第二の磁気検出素子が検出した磁束密度に基づいて、前記演算部が前記磁石のストロークを算出する
    ことを特徴とする磁気検出ユニット。
    The magnetic detection unit according to claim 2 further comprises an operation unit,
    When the magnet moves in the first direction, the calculation unit generates the magnetic field based on the magnetic flux density detected by the first magnetic detection element and the magnetic flux density detected by the second magnetic detection element. A magnetic detection unit characterized by calculating a stroke.
  5.  請求項4記載の磁気検出ユニットにおいて、
     前記演算部は、前記第一の磁気検出素子で検出された磁束密度と、前記第二の磁気検出素子で検出された磁束密度との差を演算し、
     前記演算部には、前記第一の磁気検出素子で検出された磁束密度が入力される
    ことを特徴とする磁気検出ユニット。
    In the magnetic detection unit according to claim 4,
    The calculation unit calculates a difference between the magnetic flux density detected by the first magnetic detection element and the magnetic flux density detected by the second magnetic detection element;
    A magnetic detection unit characterized in that the magnetic flux density detected by the first magnetic detection element is input to the calculation unit.
  6.  請求項1記載の磁気検出ユニットを有する磁気検出装置であって、
     前記磁石が、ペダルに連動して第1の方向に移動する作動体に装着されている
    ことを特徴とするストローク検出装置。
    A magnetic detection device comprising the magnetic detection unit according to claim 1, wherein
    The said magnet is mounted | worn with the action | operation body which moves to a 1st direction in response to a pedal, The stroke detection apparatus characterized by the above-mentioned.
  7.  請求項4記載の磁気検出ユニットを有する磁気検出装置であって、
     前記磁石が、ペダルに連動して第1の方向に移動する作動体に装着され、
     前記第一の磁気検出素子で検出された磁束密度と、前記第二の磁気検出素子で検出された磁束密度との差が所定の値以上の時は、前記第一の磁気検出素子で検出された磁束密度と、前記第二の磁気検出素子で検出された磁束密度との差から、前記磁石のストロークを検出し、
     前記第一の磁気検出素子で検出された磁束密度と、前記第二の磁気検出素子で検出された磁束密度との差が所定の値より小さい時は、前記第一の磁気検出素子で検出された磁束密度から、前記磁石のストロークを検出する
    ことを特徴とするストローク検出装置。
    A magnetic detection apparatus comprising the magnetic detection unit according to claim 4;
    The magnet is attached to an operating body that moves in a first direction in conjunction with a pedal,
    When the difference between the magnetic flux density detected by the first magnetic detection element and the magnetic flux density detected by the second magnetic detection element is equal to or greater than a predetermined value, detection is performed by the first magnetic detection element The stroke of the magnet is detected from the difference between the detected magnetic flux density and the magnetic flux density detected by the second magnetic detection element,
    When the difference between the magnetic flux density detected by the first magnetic detection element and the magnetic flux density detected by the second magnetic detection element is smaller than a predetermined value, detection is performed by the first magnetic detection element A stroke detection device characterized in that the stroke of the magnet is detected from the magnetic flux density.
PCT/JP2013/006506 2012-11-06 2013-11-05 Magnetic detecting unit and stroke detecting device using magnetic detecting unit WO2014073196A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-244173 2012-11-06
JP2012244173A JP2016011833A (en) 2012-11-06 2012-11-06 Magnetic detection unit and stroke detection device using the same
JP2012-261979 2012-11-30
JP2012261979A JP2016011834A (en) 2012-11-30 2012-11-30 Magnetic detection unit and stroke detection device using the same

Publications (1)

Publication Number Publication Date
WO2014073196A1 true WO2014073196A1 (en) 2014-05-15

Family

ID=50684321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006506 WO2014073196A1 (en) 2012-11-06 2013-11-05 Magnetic detecting unit and stroke detecting device using magnetic detecting unit

Country Status (1)

Country Link
WO (1) WO2014073196A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027633A1 (en) * 2014-08-20 2016-02-25 アルプス電気株式会社 Position detection device
WO2016125303A1 (en) * 2015-02-06 2016-08-11 三菱電機株式会社 Actuator
CN106643456A (en) * 2017-01-26 2017-05-10 吉林大学 Pedal travel measuring device and method for driving data collection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612484Y2 (en) * 1985-09-02 1994-03-30 エスエムシー株式会社 Piston position detection device
JPH074905A (en) * 1993-03-09 1995-01-10 Sumitomo Electric Ind Ltd Moving-amount detector
JP2007303925A (en) * 2006-05-10 2007-11-22 Tokai Rika Co Ltd Failure detection circuit of noncontact sensor
JP2010038717A (en) * 2008-08-05 2010-02-18 Tokai Rika Co Ltd Operating position determining device and paddle shift switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612484Y2 (en) * 1985-09-02 1994-03-30 エスエムシー株式会社 Piston position detection device
JPH074905A (en) * 1993-03-09 1995-01-10 Sumitomo Electric Ind Ltd Moving-amount detector
JP2007303925A (en) * 2006-05-10 2007-11-22 Tokai Rika Co Ltd Failure detection circuit of noncontact sensor
JP2010038717A (en) * 2008-08-05 2010-02-18 Tokai Rika Co Ltd Operating position determining device and paddle shift switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027633A1 (en) * 2014-08-20 2016-02-25 アルプス電気株式会社 Position detection device
JPWO2016027633A1 (en) * 2014-08-20 2017-05-25 アルプス電気株式会社 Position detection device
WO2016125303A1 (en) * 2015-02-06 2016-08-11 三菱電機株式会社 Actuator
CN106643456A (en) * 2017-01-26 2017-05-10 吉林大学 Pedal travel measuring device and method for driving data collection system
CN106643456B (en) * 2017-01-26 2019-04-16 吉林大学 A kind of pedal travel measuring device and method for driving data acquisition system

Similar Documents

Publication Publication Date Title
JP6463789B2 (en) Magnetic angular position sensor
JP5680287B2 (en) Current sensor
US20090140724A1 (en) Magnetic Field Sensor Assembly
JP6049570B2 (en) Rotation detector
CN109507619B (en) Magnetic sensor apparatus and method
US20100289484A1 (en) Multi-position switch having dual output hall device
US10508897B2 (en) Magnet device and position sensing system
US11293744B2 (en) Method for increasing the position measurement accuracy using inductive position sensor
CN104976949B (en) Measuring device for contactless rotation angle detection
JP2016170167A (en) Magnetic sensor
WO2014073196A1 (en) Magnetic detecting unit and stroke detecting device using magnetic detecting unit
RU2615612C2 (en) Contactless true dual axis shaft encoder
JP6492193B2 (en) Position detection device
EP1046022B1 (en) Magnetoresistive sensor for measuring relative displacements of construction parts
JP2014095615A (en) Magnetic detection unit and stroke detection device using the same
AU2003206627B2 (en) Path sensor with an magnetoelectric transformer element
JP2014095614A (en) Stroke detection device
WO2015122064A1 (en) Current sensor
JP2016011834A (en) Magnetic detection unit and stroke detection device using the same
JP6455314B2 (en) Rotation detector
JP6285268B2 (en) Magnetic property measuring device
JP2016011833A (en) Magnetic detection unit and stroke detection device using the same
JP2017090068A (en) Rotation angle detection device and angle sensor unit used therefor
US7019607B2 (en) Precision non-contact digital switch
JP2010271298A (en) Angle sensor, and rotation angle detecting device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP