JP2019106171A - 複数のアイテムを分類するためのシステム、方法およびコンピュータプログラム製品 - Google Patents
複数のアイテムを分類するためのシステム、方法およびコンピュータプログラム製品 Download PDFInfo
- Publication number
- JP2019106171A JP2019106171A JP2018183320A JP2018183320A JP2019106171A JP 2019106171 A JP2019106171 A JP 2019106171A JP 2018183320 A JP2018183320 A JP 2018183320A JP 2018183320 A JP2018183320 A JP 2018183320A JP 2019106171 A JP2019106171 A JP 2019106171A
- Authority
- JP
- Japan
- Prior art keywords
- defects
- defect
- class
- user
- classified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/40—Software arrangements specially adapted for pattern recognition, e.g. user interfaces or toolboxes therefor
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/0482—Interaction with lists of selectable items, e.g. menus
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
- G06N5/022—Knowledge engineering; Knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/94—Hardware or software architectures specially adapted for image or video understanding
- G06V10/945—User interactive design; Environments; Toolboxes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Quality & Reliability (AREA)
- Computational Linguistics (AREA)
- Probability & Statistics with Applications (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/719,433 US11138507B2 (en) | 2017-09-28 | 2017-09-28 | System, method and computer program product for classifying a multiplicity of items |
| US15/719,433 | 2017-09-28 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2019106171A true JP2019106171A (ja) | 2019-06-27 |
| JP2019106171A5 JP2019106171A5 (enExample) | 2021-09-30 |
Family
ID=65807515
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018183320A Pending JP2019106171A (ja) | 2017-09-28 | 2018-09-28 | 複数のアイテムを分類するためのシステム、方法およびコンピュータプログラム製品 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US11138507B2 (enExample) |
| JP (1) | JP2019106171A (enExample) |
| KR (1) | KR102377374B1 (enExample) |
| CN (1) | CN109598698B (enExample) |
| TW (1) | TWI748122B (enExample) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110598086B (zh) * | 2018-05-25 | 2020-11-24 | 腾讯科技(深圳)有限公司 | 文章推荐方法、装置、计算机设备及存储介质 |
| EP3792717A1 (en) * | 2019-09-12 | 2021-03-17 | FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. | Tracking system |
| US11282189B2 (en) * | 2019-09-16 | 2022-03-22 | Intel Corporation | Unsupervised clustering to identify anomalies |
| US11360030B2 (en) * | 2020-02-04 | 2022-06-14 | Applied Materials Isreal Ltd | Selecting a coreset of potential defects for estimating expected defects of interest |
| US11379972B2 (en) | 2020-06-03 | 2022-07-05 | Applied Materials Israel Ltd. | Detecting defects in semiconductor specimens using weak labeling |
| CN111680750B (zh) * | 2020-06-09 | 2022-12-06 | 创新奇智(合肥)科技有限公司 | 图像识别方法、装置和设备 |
| US11507252B2 (en) | 2020-08-19 | 2022-11-22 | Panasonic Intellectual Property Management Co., Ltd. | Methods and systems for monitoring objects for labelling |
| JP7635540B2 (ja) * | 2020-12-09 | 2025-02-26 | 富士フイルムビジネスイノベーション株式会社 | 情報処理装置、及び情報処理プログラム |
| US11176516B1 (en) * | 2020-12-21 | 2021-11-16 | Coupang Corp. | Systems and methods for automated information collection and processing |
| EP4315178A4 (en) * | 2021-03-30 | 2024-12-04 | Siemens Industry Software Inc. | METHOD AND SYSTEM FOR DETECTING A FALSE ERROR ON A COMPONENT OF A BOARD INSPECTED BY AN AOI MACHINE |
| US12198332B2 (en) * | 2021-09-28 | 2025-01-14 | Siemens Healthineers International Ag | Systems and methods for refining training data |
| KR20240112881A (ko) | 2021-12-20 | 2024-07-19 | 칼 짜이스 에스엠테 게엠베하 | 증가된 처리량을 갖는 반도체 피처의 측정 방법 및 장치 |
| WO2023143950A1 (en) | 2022-01-27 | 2023-08-03 | Carl Zeiss Smt Gmbh | Computer implemented method for the detection and classification of anomalies in an imaging dataset of a wafer, and systems making use of such methods |
| CN116486178B (zh) * | 2023-05-16 | 2024-01-19 | 中科慧远视觉技术(洛阳)有限公司 | 一种缺陷检测方法、装置、电子设备及存储介质 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005293264A (ja) * | 2004-03-31 | 2005-10-20 | Olympus Corp | 学習型分類装置及び学習型分類方法 |
| WO2010041377A1 (ja) * | 2008-10-06 | 2010-04-15 | パナソニック株式会社 | 代表画像表示装置及び代表画像選択方法 |
| US20170082555A1 (en) * | 2015-09-18 | 2017-03-23 | Kla-Tencor Corporation | Adaptive Automatic Defect Classification |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5544256A (en) * | 1993-10-22 | 1996-08-06 | International Business Machines Corporation | Automated defect classification system |
| US5966459A (en) * | 1997-07-17 | 1999-10-12 | Advanced Micro Devices, Inc. | Automatic defect classification (ADC) reclassification engine |
| US6185511B1 (en) * | 1997-11-28 | 2001-02-06 | Advanced Micro Devices, Inc. | Method to accurately determine classification codes for defects during semiconductor manufacturing |
| JP4132229B2 (ja) * | 1998-06-03 | 2008-08-13 | 株式会社ルネサステクノロジ | 欠陥分類方法 |
| US6922482B1 (en) * | 1999-06-15 | 2005-07-26 | Applied Materials, Inc. | Hybrid invariant adaptive automatic defect classification |
| JP2001156135A (ja) * | 1999-11-29 | 2001-06-08 | Hitachi Ltd | 欠陥画像の分類方法及びその装置並びにそれを用いた半導体デバイスの製造方法 |
| JP2001168160A (ja) * | 1999-12-07 | 2001-06-22 | Sony Corp | 半導体ウェハの検査システム |
| US6456899B1 (en) * | 1999-12-07 | 2002-09-24 | Ut-Battelle, Llc | Context-based automated defect classification system using multiple morphological masks |
| JP2002310962A (ja) * | 2001-04-19 | 2002-10-23 | Hitachi Ltd | 画像分類方法並びに観察方法及びその装置 |
| US7162071B2 (en) * | 2002-12-20 | 2007-01-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Progressive self-learning defect review and classification method |
| US7756320B2 (en) * | 2003-03-12 | 2010-07-13 | Hitachi High-Technologies Corporation | Defect classification using a logical equation for high stage classification |
| US7020536B2 (en) * | 2004-02-06 | 2006-03-28 | Powerchip Semiconductor Corp. | Method of building a defect database |
| CN101120329A (zh) * | 2004-10-12 | 2008-02-06 | 恪纳腾技术公司 | 用于分类样品上的缺陷的计算机实现的方法和系统 |
| US7904845B2 (en) * | 2006-12-06 | 2011-03-08 | Kla-Tencor Corp. | Determining locations on a wafer to be reviewed during defect review |
| KR101214806B1 (ko) * | 2010-05-11 | 2012-12-24 | 가부시키가이샤 사무코 | 웨이퍼 결함 검사 장치 및 웨이퍼 결함 검사 방법 |
| WO2011155123A1 (ja) * | 2010-06-07 | 2011-12-15 | 株式会社 日立ハイテクノロジーズ | 観察画像の分類基準の最適化方法、および画像分類装置 |
| JP5608575B2 (ja) * | 2011-01-19 | 2014-10-15 | 株式会社日立ハイテクノロジーズ | 画像分類方法および画像分類装置 |
| US10330608B2 (en) * | 2012-05-11 | 2019-06-25 | Kla-Tencor Corporation | Systems and methods for wafer surface feature detection, classification and quantification with wafer geometry metrology tools |
| US10140698B2 (en) * | 2015-08-10 | 2018-11-27 | Kla-Tencor Corporation | Polygon-based geometry classification for semiconductor mask inspection |
| TWI737659B (zh) * | 2015-12-22 | 2021-09-01 | 以色列商應用材料以色列公司 | 半導體試樣的基於深度學習之檢查的方法及其系統 |
| US10223615B2 (en) * | 2016-08-23 | 2019-03-05 | Dongfang Jingyuan Electron Limited | Learning based defect classification |
| US10713769B2 (en) * | 2018-06-05 | 2020-07-14 | Kla-Tencor Corp. | Active learning for defect classifier training |
| US10825650B2 (en) * | 2018-09-28 | 2020-11-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Machine learning on wafer defect review |
| CN110414538B (zh) * | 2019-07-24 | 2022-05-27 | 京东方科技集团股份有限公司 | 缺陷分类方法、缺陷分类训练方法及其装置 |
-
2017
- 2017-09-28 US US15/719,433 patent/US11138507B2/en active Active
-
2018
- 2018-08-29 TW TW107130054A patent/TWI748122B/zh active
- 2018-09-27 CN CN201811133946.XA patent/CN109598698B/zh active Active
- 2018-09-27 KR KR1020180115308A patent/KR102377374B1/ko active Active
- 2018-09-28 JP JP2018183320A patent/JP2019106171A/ja active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005293264A (ja) * | 2004-03-31 | 2005-10-20 | Olympus Corp | 学習型分類装置及び学習型分類方法 |
| WO2010041377A1 (ja) * | 2008-10-06 | 2010-04-15 | パナソニック株式会社 | 代表画像表示装置及び代表画像選択方法 |
| US20170082555A1 (en) * | 2015-09-18 | 2017-03-23 | Kla-Tencor Corporation | Adaptive Automatic Defect Classification |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20190037161A (ko) | 2019-04-05 |
| TW201933279A (zh) | 2019-08-16 |
| CN109598698B (zh) | 2024-02-27 |
| TWI748122B (zh) | 2021-12-01 |
| CN109598698A (zh) | 2019-04-09 |
| US20190095800A1 (en) | 2019-03-28 |
| KR102377374B1 (ko) | 2022-03-21 |
| US11138507B2 (en) | 2021-10-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI748122B (zh) | 用於對多個項進行分類的系統、方法和電腦程式產品 | |
| US12007335B2 (en) | Automatic optimization of an examination recipe | |
| CN114092387B (zh) | 生成可用于检查半导体样本的训练数据 | |
| US11568531B2 (en) | Method of deep learning-based examination of a semiconductor specimen and system thereof | |
| CN110945528B (zh) | 产生可用于检查半导体样品的训练集的方法及其系统 | |
| US12361531B2 (en) | Machine learning-based classification of defects in a semiconductor specimen | |
| US11423529B2 (en) | Determination of defect location for examination of a specimen | |
| US12277750B2 (en) | Identification of an array in a semiconductor specimen | |
| KR102893525B1 (ko) | 기준 이미지에 기반한 시편에서의 결함들 및/또는 가장자리 거칠기의 결정 | |
| US11360030B2 (en) | Selecting a coreset of potential defects for estimating expected defects of interest | |
| TWI906018B (zh) | 檢查方案的自動最佳化 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210705 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210819 |
|
| A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210819 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211216 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220106 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220406 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220622 |