JP2019105385A - Heat source system - Google Patents

Heat source system Download PDF

Info

Publication number
JP2019105385A
JP2019105385A JP2017236967A JP2017236967A JP2019105385A JP 2019105385 A JP2019105385 A JP 2019105385A JP 2017236967 A JP2017236967 A JP 2017236967A JP 2017236967 A JP2017236967 A JP 2017236967A JP 2019105385 A JP2019105385 A JP 2019105385A
Authority
JP
Japan
Prior art keywords
temperature
medium
heat
heat source
source system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017236967A
Other languages
Japanese (ja)
Other versions
JP7023694B2 (en
Inventor
万知 楠
Machi Kusunoki
万知 楠
佐藤 智洋
Tomohiro Sato
智洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP2017236967A priority Critical patent/JP7023694B2/en
Publication of JP2019105385A publication Critical patent/JP2019105385A/en
Application granted granted Critical
Publication of JP7023694B2 publication Critical patent/JP7023694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

To provide a heat source system that can be expected of an even greater energy saving effect relative to a case of utilizing a heat source device of a water cooling type as a hot heat source.SOLUTION: A heat source system 10 comprises water service pipe 11 buried in a road or the like paved with asphalt 3 to carry out heat exchange between hot water (HR) delivered from an air conditioner 1 and the ground surface. A PLC 19 controls a valve BV3 to open and controls valves BV1, BV2 and BV4 to close if the temperature of the asphalt 3 is at a prescribed one or higher. A TIC 17 controls a three-way valve 15 to open or close so as to mix hot water heated by the water service pipe 11 with hot water having bypassed the water service pipe 11 to control the temperature thereof to reach a prescribed one. The hot water of the prescribed temperature is directly supplied to the air conditioner 1 without flowing through a heat exchanger 21.SELECTED DRAWING: Figure 1

Description

本発明は、熱源システム、特に熱源システムにおける温熱源に関する。   The present invention relates to a heat source system, and more particularly to a heat source in a heat source system.

4管式のセントラル空調では、除湿を行うために除湿再加熱制御を行っている。除湿再加熱制御では、要求温度より冷たい空気にするためにいったん過冷却し、その後加熱を行うために、夏期においても空調機に冷水だけでなく温水も供給している。この供給する温水の生成のために、ガスや電気といったエネルギーを消費すると、省エネが実現しにくくなる。   In the four-pipe central air conditioning, dehumidification and reheating control is performed to dehumidify. In the dehumidification reheating control, not only cold water but also hot water is supplied to the air conditioner even in summer to perform supercooling to make the air cooler than the required temperature and then perform heating. If energy such as gas or electricity is consumed to generate the hot water to be supplied, energy saving becomes difficult to realize.

そこで、吸収式冷凍機から送出される使用済みの冷却水の温度が変流量制御により高温に保たれるので、従来では、この高温の使用済みの冷却水を空調機での冷却除湿に続く空気の再熱の熱源に有効利用する技術が提案されている(例えば、特許文献1)。   Therefore, since the temperature of the used cooling water delivered from the absorption refrigerator is maintained at a high temperature by variable flow rate control, conventionally, the high temperature used cooling water is air that follows the cooling dehumidification in the air conditioner. A technique for effectively utilizing the heat source for reheating of has been proposed (for example, Patent Document 1).

特開2006−170508号公報JP, 2006-170508, A 特開2007−212085号公報JP 2007-212085 A

しかしながら、特許文献1では、水冷式の熱源装置(吸収式冷凍機)を温熱源として利用しているが、熱源装置での排熱だけで使用済み冷却水を所望の温度まで加熱することはそれほど期待できない。つまり、使用済み冷却水を所望の温度まで加熱するためにエネルギーが消費される。   However, in Patent Document 1, although a water-cooled heat source device (absorption type refrigerator) is used as a heat source, it is not so much to heat the used cooling water to a desired temperature only by the exhaust heat in the heat source device. I can not expect it. That is, energy is consumed to heat the used cooling water to a desired temperature.

本発明は、水冷式の熱源装置を温熱源として利用する場合に比して、より一層の省エネ効果が期待できる熱源システムを提供することを目的とする。   An object of the present invention is to provide a heat source system in which a further energy saving effect can be expected as compared with the case of using a water-cooled heat source device as a heat source.

本発明に係る熱源システムは、所定の温度の媒体を設備に供給する熱源システムにおいて、地表面の近傍に埋設され、前記熱源システムに送られてくる媒体と地表面との間で熱交換を行う熱交換手段と、前記熱交換手段により熱交換された媒体を所定の温度に調節して前記設備に供給する供給機構と、を有し、太陽の日射により温められた地表面の熱を温熱源として利用することを特徴とする。   A heat source system according to the present invention is a heat source system for supplying a medium having a predetermined temperature to equipment, which is buried near the ground surface and performs heat exchange between the medium sent to the heat source system and the ground surface A heat exchange means, and a supply mechanism which adjusts the medium heat-exchanged by the heat exchange means to a predetermined temperature and supplies the medium to the equipment, and heats the heat of the ground surface warmed by solar radiation as a heat source It is characterized by using as.

また、前記熱交換手段は、舗装されている地表面の下に埋設される配管であることを特徴とする。   Further, the heat exchange means is a pipe which is buried under the ground surface being paved.

また、前記供給機構は、前記熱交換手段により熱交換された媒体の温度が所定の温度となるよう調節する温度調節機構を備えることを特徴とする。   Further, the supply mechanism is characterized by comprising a temperature control mechanism for adjusting the temperature of the medium heat-exchanged by the heat exchange means to a predetermined temperature.

また、前記温度調節機構は、前記熱源システムに送られてくる媒体のうち前記熱交換手段により熱交換された媒体と、前記熱交換手段により熱交換されない媒体と、を混合する三方弁と、前記三方弁から出力される媒体の温度を測定する測定手段と、前記測定手段により測定された媒体の温度に基づき前記三方弁の開度を制御することで、前記熱交換手段により熱交換された媒体の温度が所定の温度となるよう調節する三方弁制御手段と、を有することを特徴とする。   Further, the temperature control mechanism is a three-way valve for mixing the medium sent to the heat source system, the medium heat-exchanged by the heat exchange means, and the medium not heat-exchanged by the heat exchange means; The medium heat-exchanged by the heat exchange means by controlling the opening degree of the three-way valve based on the measuring means for measuring the temperature of the medium output from the three-way valve and the temperature of the medium measured by the measuring means And three-way valve control means for adjusting so that the temperature of the air conditioner becomes a predetermined temperature.

また、前記供給機構は、前記熱源システムに送られてくる媒体の温度と地表面の温度との関係によって前記設備に供給する媒体の流路を制御する流路制御手段を有することを特徴とする。   Further, the supply mechanism is characterized by having a flow path control means for controlling the flow path of the medium to be supplied to the equipment according to the relationship between the temperature of the medium sent to the heat source system and the temperature of the ground surface. .

また、前記流路制御手段は、前記温度調節機構により媒体の温度が所定の温度に調節されている場合、媒体を前記設備に直接供給することを特徴とする。   Further, the flow path control means is characterized in that the medium is directly supplied to the equipment when the temperature of the medium is adjusted to a predetermined temperature by the temperature control mechanism.

また、前記流路制御手段は、前記熱交換手段により熱交換された媒体の温度が所定の温度に達するよう前記温度調節機構が調節できない場合、媒体を加熱手段に供給して所定の温度に加熱させてから前記設備に供給することを特徴とする。   The flow path control means supplies the medium to the heating means to heat the medium to a predetermined temperature when the temperature control mechanism can not adjust the temperature of the medium heat-exchanged by the heat exchange means to reach a predetermined temperature. It is characterized in that it is supplied to the equipment after being allowed to

また、前記流路制御手段は、前記熱源システムに送られてくる媒体の温度より前記地表面の温度が低い場合、媒体を前記熱交換手段に供給することなく加熱手段に供給して所定の温度に加熱させてから前記設備に供給することを特徴とする。   In addition, when the temperature of the ground surface is lower than the temperature of the medium sent to the heat source system, the flow path control means supplies the medium to the heating means without supplying the medium to the heat exchange means, and the predetermined temperature is obtained. And then supply to the equipment.

また、前記設備は、除湿再加熱制御を行う空調機であることを特徴とする。   Moreover, the said installation is an air conditioner which performs dehumidification reheating control, It is characterized by the above-mentioned.

また、前記熱源システムに送られてくる媒体は、前記供給機構により供給されてくる所定の温度の媒体が前記空調機により利用されることで所定の温度より低くなった媒体であることを特徴とする。   Further, the medium sent to the heat source system is a medium in which the medium having a predetermined temperature supplied by the supply mechanism is used by the air conditioner and the temperature is lower than the predetermined temperature. Do.

本発明によれば、太陽の日射により温められた地表面の熱を温熱源として有効利用することで、より一層の省エネ効果が期待できる。   According to the present invention, a further energy saving effect can be expected by effectively using the heat of the ground surface warmed by the sun's solar radiation as a heat source.

本発明に係る熱源システムの一実施の形態を示した計装図である。It is an instrumentation figure showing an embodiment of a heat source system concerning the present invention. 本実施の形態においてPLC(Programmable Logic Controller)が行うバルブの開閉制御の開閉パターンをテーブル形式にて示す図である。It is a figure which shows the opening-and-closing pattern of the opening-and-closing control of the valve which PLC (Programmable Logic Controller) performs in this Embodiment in a table form. 本実施の形態におけるTIC(Temperature Indication Controller)が行う三方弁制御を示す図である。It is a figure which shows three-way valve control which TIC (Temperature Indication Controller) in this Embodiment performs.

以下、図面に基づいて、本発明の好適な実施の形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

図1は、本発明に係る熱源システムの一実施の形態を示した計装図である。本実施の形態では、温水を供給する設備として、4管式の空調機(AHU:Air Handling Unit)1を想定している。そのため、空調機1に冷水も供給する構成も有しているが、本実施の形態では、説明に用いないので図1から便宜的に省略している。なお、冷水を空調機1に供給する構成は、従前と同じでよい。   FIG. 1 is an instrumentation diagram showing an embodiment of a heat source system according to the present invention. In the present embodiment, a 4-pipe air conditioner (AHU: Air Handling Unit) 1 is assumed as a facility for supplying hot water. Therefore, although it also has a structure which supplies cold water also to the air conditioner 1, in this Embodiment, since it does not use for description, it is abbreviate | omitted from FIG. 1 for convenience. The configuration for supplying cold water to the air conditioner 1 may be the same as before.

本実施の形態における熱源システム10は、所定の温度の温水(HS)を空調機1に供給する。空調機1における加熱コイル(HC)2は、この温水(HS)によって過冷却された空気を再加熱する。再加熱に利用された温水(HR)は、所定の温度より低温になった状態で熱源システム10に戻される。   The heat source system 10 in the present embodiment supplies hot water (HS) of a predetermined temperature to the air conditioner 1. The heating coil (HC) 2 in the air conditioner 1 reheats the air supercooled by the hot water (HS). Hot water (HR) used for reheating is returned to the heat source system 10 in a state where the temperature is lower than a predetermined temperature.

本実施の形態における熱源システム10は、大きく熱交換手段11と供給機構12とに大別される。熱交換手段11は、地表面の近傍に埋設され、熱源システム10に空調機1から送られてくる温水(HR)と地表面との間で熱交換を行う。本実施の形態では、熱交換手段を配水管にて実現する。道路や駐車場等は、通常、アスファルト等によって舗装されている。本実施の形態では、道路等がアスファルト3によって舗装されていることを前提に説明するが、熱交換手段(以下、「配水管」という)11は、そのアスファルト3の下、つまりアスファルトと地表面との間に埋設される。後述する説明からその理由が明らかになるが、省エネ効果を向上させるためには、配水管11は、相対的に細く、長く、またアスファルト3と接するよう設置するのが効果的である。また、温度検出器(TE:Temperature sensing Element)13は、アスファルト3の温度を測定する測定手段である。   The heat source system 10 in the present embodiment is roughly divided into the heat exchange means 11 and the supply mechanism 12. The heat exchange means 11 is buried near the ground surface and performs heat exchange between the hot water (HR) sent from the air conditioner 1 to the heat source system 10 and the ground surface. In the present embodiment, the heat exchange means is realized by a water distribution pipe. Roads and parking lots are usually paved with asphalt or the like. In this embodiment, although it is explained on the premise that roads and the like are paved with asphalt 3, heat exchange means (hereinafter referred to as "water distribution pipe") 11 is under asphalt 3, that is, asphalt and ground surface. Be buried between Although the reason will become clear from the following description, in order to improve the energy saving effect, it is effective to install the water distribution pipe 11 so as to be relatively thin, long, and in contact with the asphalt 3. Also, a temperature detector (TE: Temperature sensing Element) 13 is a measuring means for measuring the temperature of the asphalt 3.

供給機構12は、配水管11での熱交換により温められた温水を所定の温度に調節して空調機1に供給する。所定の温度、すなわち空調機1に供給する温水(HS)の温度として、本実施の形態では、おおよそ40度を想定している。もちろん、この温度に限る必要はないし、所定の温度に幅(範囲)を持たせてもよい。   The supply mechanism 12 adjusts the hot water warmed by the heat exchange in the water distribution pipe 11 to a predetermined temperature and supplies it to the air conditioner 1. In the present embodiment, approximately 40 degrees is assumed as the predetermined temperature, that is, the temperature of the hot water (HS) supplied to the air conditioner 1. Of course, it is not necessary to limit to this temperature, and a predetermined temperature may have a range (range).

図1において、実線は配水管を、破線は信号線(制御信号線、データ信号線)を示している。また、BV1〜BV4は、バルブである。   In FIG. 1, a solid line indicates a water distribution pipe, and a broken line indicates a signal line (control signal line, data signal line). BV1 to BV4 are valves.

空調機1から送られてくる温水(HR)が流れる配水管には、温水(HR)の温度を測定する温度検出器14が取り付けられ、ポンプ20側とバルブBV1側に分岐される。ポンプ20から先に延びる配水管は、配水管11側と配水管11を通らずに三方弁15側に分岐される。配水管11の出口は、三方弁15の入口の1つに接続される。   A temperature detector 14 for measuring the temperature of the hot water (HR) is attached to the water pipe through which the hot water (HR) sent from the air conditioner 1 flows, and it is branched into the pump 20 side and the valve BV1 side. A water distribution pipe extending forward from the pump 20 is branched to the three-way valve 15 side without passing through the water distribution pipe 11 side and the water distribution pipe 11. The outlet of the water distribution pipe 11 is connected to one of the inlets of the three-way valve 15.

三方弁15の出口から先に延びる配水管は、バルブBV2側とバルブBV3側に分岐される。三方弁15の出口近傍の配水管には、三方弁15の出口における温水の温度を測定する配管温度検出器(TEW:Temperature sensing Element for Water)16が取り付けられる。バルブBV3から先に延びる配水管は、空調機1に温水(HS)を送る。一方、バルブBV2から先に延びる配管は、ポンプ23を介して熱交換器21に接続される。バルブBV1から先に延びる配水管は、バルブBV2とポンプ23との間の配水管と接合される。熱交換器21から先に延びる配水管は、バルブBV4を介してバルブBV3側からの配水管と接合され、前述したように温水(HS)を空調機1に送る。配水管とバルブBV1〜BV4、更に三方弁15、温度検出器14、配管温度検出器16、ポンプ20,23及び熱交換器21は前述した接続関係にある。   A water distribution pipe extending forward from the outlet of the three-way valve 15 is branched into the valve BV2 side and the valve BV3 side. A pipe temperature detector (TEW: Temperature sensing Element for Water) 16 that measures the temperature of the hot water at the outlet of the three-way valve 15 is attached to the water distribution pipe near the outlet of the three-way valve 15. A water distribution pipe extending from the valve BV3 sends hot water (HS) to the air conditioner 1. On the other hand, the piping extending from the valve BV2 is connected to the heat exchanger 21 via the pump 23. A water distribution pipe extending from the valve BV1 is joined to a water distribution pipe between the valve BV2 and the pump 23. A water distribution pipe extending forward from the heat exchanger 21 is joined to the water distribution pipe from the valve BV3 side via the valve BV4, and sends hot water (HS) to the air conditioner 1 as described above. The water pipe and the valves BV1 to BV4, the three-way valve 15, the temperature detector 14, the pipe temperature detector 16, the pumps 20 and 23, and the heat exchanger 21 are in the above-described connection relationship.

TIC17は、配管温度検出器16により測定された温水の温度に基づき三方弁15の開度を制御することで、配水管11により熱交換された温水の温度が所定の温度となるよう調節する三方弁制御手段として機能する。TIC17は、コントローラであり、CPU、ROM、RAM、ハードディスクドライブ(HDD)等の記憶手段を搭載し、インストールされたプログラムに従って動作、制御する。三方弁制御手段をPLCで実現してもよい。電動モータ18は、TIC17による制御のもと、三方弁15の開閉を行う。熱源システム10は、配水管11により熱交換された温水の温度が所定の温度となるよう調節する温度調節機構を備えているが、本実施の形態では、TIC17、三方弁15、配管温度検出器16及び電動モータ18によって温度調節機構を実現する。   The TIC 17 controls the opening degree of the three-way valve 15 based on the temperature of the hot water measured by the piping temperature detector 16 to adjust the temperature of the hot water heat-exchanged by the water pipe 11 to a predetermined temperature. It functions as a valve control means. The TIC 17 is a controller equipped with storage means such as a CPU, a ROM, a RAM, a hard disk drive (HDD), etc., and operates and controls according to the installed program. The three-way valve control means may be realized by PLC. The electric motor 18 opens and closes the three-way valve 15 under the control of the TIC 17. The heat source system 10 includes a temperature control mechanism that adjusts the temperature of the hot water heat-exchanged by the water distribution pipe 11 to a predetermined temperature, but in the present embodiment, the TIC 17, the three-way valve 15, and the piping temperature detector A temperature control mechanism is realized by 16 and the electric motor 18.

PLC19は、バルブBV1〜BV4の開閉制御及びポンプ20の動作制御を行うコントローラであり、温度検出器13,14による測定温度に基づきバルブBV1〜BV4を後述するように開閉させることで、空調機1から送られ、また空調機1に供給する温水の流路を制御する流路制御手段として機能する。PLC19は、CPU、ROM、RAM、ハードディスクドライブ(HDD)等の記憶手段を搭載し、インストールされたプログラムに従って動作、制御する。   The PLC 19 is a controller that performs opening / closing control of the valves BV1 to BV4 and operation control of the pump 20, and opens / closes the valves BV1 to BV4 based on the temperature measured by the temperature detectors 13 and 14 as described later. Functions as a flow path control unit that controls the flow path of the hot water supplied to the air conditioner 1. The PLC 19 includes storage means such as a CPU, a ROM, a RAM, a hard disk drive (HDD), etc., and operates and controls in accordance with the installed program.

熱交換器21は、送られてきた温水を所定の温度に加熱する加熱手段である。温熱源装置22は、熱交換器21の熱源として利用される。熱交換器21及び温熱源装置22は、既設の設備を利用してもよい。   The heat exchanger 21 is a heating means for heating the sent hot water to a predetermined temperature. The heat source device 22 is used as a heat source of the heat exchanger 21. The heat exchanger 21 and the heat source apparatus 22 may use existing equipment.

図2は、本実施の形態においてPLC19が行うバルブBV1〜BV4の開閉制御の開閉パターンをテーブル形式にて示す図である。本実施の形態におけるPLC18は、フリーヒーティング、プレヒーティング及びヒーティング無しという3種類の制御モードに従ってバルブBV1〜BV4の開閉制御を行う。本実施の形態では、前述したように温水の加熱手段として熱交換器21を用意しているが、「フリーヒーティング」は、熱交換器21を利用せずに温水を加熱する手段として配水管11のみを利用するモードである。すなわち、空調機1から送られてくる温水(HR)を配水管11に供給し、配水管11で温められた温水を温度調節機構によって所定の温度に調節してから空調機1に直接供給するモードである。このように、フリーヒーティングでは、温水を、配水管11を通過させ、熱交換器21を通過させないように流路制御する。   FIG. 2 is a table showing an opening / closing pattern of opening / closing control of the valves BV1 to BV4 performed by the PLC 19 in the present embodiment. The PLC 18 in the present embodiment performs opening / closing control of the valves BV1 to BV4 in accordance with three control modes of free heating, preheating, and no heating. In the present embodiment, as described above, the heat exchanger 21 is prepared as heating means for hot water, but “free heating” is a water distribution pipe as means for heating hot water without using the heat exchanger 21. This is a mode using only 11. That is, the hot water (HR) sent from the air conditioner 1 is supplied to the water distribution pipe 11, and the hot water warmed by the water distribution pipe 11 is adjusted to a predetermined temperature by the temperature control mechanism and then supplied directly to the air conditioner 1. It is a mode. As described above, in the free heating, the hot water is controlled to flow through the water distribution pipe 11 and not through the heat exchanger 21.

「プレヒーティング」は、フリーヒーティングと同様に、空調機1から送られてくる温水(HR)を配水管11に供給するものの、配水管11で熱交換された温水の温度が所定の温度に達するよう温度調節機構が調節できない場合、配水管11を介して前もって加熱した温水を熱交換器21に供給して所定の温度になるまで更に加熱させてから空調機1に供給するモードである。プレヒーティングでは、温水を、加熱する手段である配水管11及び熱交換器21の双方を通過させるように流路制御する。   "Preheating" supplies hot water (HR) sent from the air conditioner 1 to the water distribution pipe 11 similarly to free heating, but the temperature of the hot water heat-exchanged by the water distribution pipe 11 is a predetermined temperature If the temperature control mechanism can not be adjusted so as to reach the above, the mode is a mode in which hot water previously heated through the water distribution pipe 11 is supplied to the heat exchanger 21 to be further heated to a predetermined temperature and then supplied to the air conditioner 1 . In preheating, the hot water is flow-controlled so as to pass through both the water distribution pipe 11 and the heat exchanger 21 which are means for heating.

「ヒーティング無し」は、温水の加熱手段として配水管11を全く利用せずに空調機1から送られてくる温水を熱交換器21に直接供給するモードである。すなわち、空調機1から送られてくる温水(HR)を熱交換器21に供給して所定の温度に加熱させてから空調機1に供給するモードである。ヒーティング無しでは、温水を、熱交換器21を通過させ、配水管11を通過させないように流路制御する。   "No heating" is a mode in which the hot water sent from the air conditioner 1 is directly supplied to the heat exchanger 21 without using the water distribution pipe 11 at all as the heating means for the hot water. That is, in this mode, the hot water (HR) sent from the air conditioner 1 is supplied to the heat exchanger 21, heated to a predetermined temperature, and then supplied to the air conditioner 1. Without heating, the hot water is allowed to pass through the heat exchanger 21 and flow controlled so as not to pass through the water distribution pipe 11.

本実施の形態において特徴的なことは、太陽の日射により温められた地表面の熱を温熱源として利用することである。アスファルト3の場合、太陽の日射により60℃近くまで温度が上昇する場合がある。本実施の形態では、太陽の日射により熱せられたアスファルト3の熱を利用して、ぬるくなった温水(HR)を熱交換により高温にする。配水管11を埋設する初期費用はかかるかもしれないが、その後のランニングコストは、三方弁15及びバルブBV1〜BV4を開閉させ、またポンプ20を駆動させる程度ですむ。   What is characteristic in the present embodiment is that the heat of the ground surface warmed by solar radiation is used as a heat source. In the case of asphalt 3, the temperature may rise to nearly 60 ° C. due to the solar radiation of the sun. In the present embodiment, the warm hot water (HR) is heated to a high temperature by heat exchange using the heat of the asphalt 3 heated by the sun's solar radiation. Although the initial cost of burying the water distribution pipe 11 may be high, the subsequent running cost may be as large as opening and closing the three-way valve 15 and the valves BV1 to BV4 and driving the pump 20.

以下、本実施の形態における熱源システム10の作用について説明する。熱源システム10は、空調機1から送られてくる所定の温度(40℃)未満の温水(HR)の温度を、所定の温度の温水(HS)にしてから空調機1に供給する。そのために、PLC19は、温度検出器14により測定される温水(HR)の温度と、温度検出器13により測定されるアスファルト3の温度との関係によって空調機1に供給する温水の流路を制御する。   Hereinafter, the operation of the heat source system 10 in the present embodiment will be described. The heat source system 10 changes the temperature of the hot water (HR) having a temperature lower than the predetermined temperature (40 ° C.) sent from the air conditioner 1 into the hot water (HS) of the predetermined temperature and then supplies the hot water (HS) to the air conditioner 1. Therefore, the PLC 19 controls the flow path of the hot water supplied to the air conditioner 1 according to the relationship between the temperature of the hot water (HR) measured by the temperature detector 14 and the temperature of the asphalt 3 measured by the temperature detector 13 Do.

まず、アスファルト3の温度が所定の温度以上であれば、温水(HR)を配水管11に送ることで所定の温度まで上昇させることが可能である。従って、アスファルト3の温度が所定の温度以上の場合、アスファルト3の温度は温水(HR)の温度より高いとも言えるが、この場合、PLC19は、フリーヒーティングモードで熱源システム10を運転させる。つまり、図2に示すテーブルに従うと、バルブBV3を開制御し、バルブBV1,BV2,BV4を閉制御する。これにより、温水(HR)は、ポンプ20を通って矢印Aに示すように配水管11に送られる。また、矢印Bに示すように三方弁15にも送られる。   First, if the temperature of the asphalt 3 is equal to or higher than a predetermined temperature, it is possible to raise the temperature to a predetermined temperature by sending hot water (HR) to the water distribution pipe 11. Therefore, it can be said that the temperature of the asphalt 3 is higher than the temperature of the hot water (HR) when the temperature of the asphalt 3 is equal to or higher than the predetermined temperature. In this case, the PLC 19 operates the heat source system 10 in the free heating mode. That is, according to the table shown in FIG. 2, the valve BV3 is controlled to open, and the valves BV1, BV2 and BV4 are closed. Thereby, the hot water (HR) is sent to the water distribution pipe 11 through the pump 20 as shown by the arrow A. Further, as shown by arrow B, it is also sent to the three-way valve 15.

配水管11に送られた温水は、太陽の日射により熱せられたアスファルト3と配水管11との間の熱交換により加熱され、三方弁15に送られる。   The hot water sent to the water distribution pipe 11 is heated by heat exchange between the asphalt 3 heated by solar radiation of the sun and the water distribution pipe 11, and is sent to the three-way valve 15.

三方弁15には、配水管11を通ることで加熱された温水と、配水管11をバイパスし、空調機1からの加熱されていない温水と、が送られてくる。TIC17は、配管温度検出器16による測定温度に基づいて三方弁15の入口側の開度を調節することによって三方弁15の出口から出す温水の温度を調節する。   The hot water heated by passing through the water distribution pipe 11 and the unheated hot water from the air conditioner 1 bypassing the water distribution pipe 11 are sent to the three-way valve 15. The TIC 17 adjusts the temperature of the hot water discharged from the outlet of the three-way valve 15 by adjusting the opening degree of the inlet side of the three-way valve 15 based on the temperature measured by the piping temperature detector 16.

図3は、本実施の形態におけるTIC17が行う三方弁制御を示す図であり、配水管11側の入口(以下、単に「配水管側」という)の開度を示す図である。図3において、“SP”は上記所定の温度に相当する設定値である。配水管側の温水の温度が所定の温度(40℃)の場合、配水管側からの温水のみを出力すればよい。そのために、配水管側の開度を100%、配水管11をバイパスした側の入口(以下、単に「バイパス側」という)の開度を0%とする。そして、配水管側の温水の温度が所定の温度(40℃)より高くなるに連れ、配水管側の開度を100%から絞っていき、一方、バイパス側の開度を0%から上げていく。このようにして、TIC17は、所定の温度以上の配水管側の温水に、加熱されていない40℃未満のバイパス側の温水を混合することで、三方弁15の出口から出る温水が所定の温度となるよう調節する。   FIG. 3 is a diagram showing three-way valve control performed by the TIC 17 in the present embodiment, and is a diagram showing an opening degree of an inlet on the water distribution pipe 11 side (hereinafter simply referred to as “water distribution pipe side”). In FIG. 3, "SP" is a set value corresponding to the predetermined temperature. When the temperature of the hot water on the water distribution pipe side is a predetermined temperature (40 ° C.), it is sufficient to output only the hot water from the water distribution pipe side. Therefore, the opening degree of the water distribution pipe side is 100%, and the opening degree of the inlet on the side which bypassed the water distribution pipe 11 (hereinafter, simply referred to as "bypass side") is 0%. Then, as the temperature of the hot water on the distribution pipe side becomes higher than the predetermined temperature (40 ° C.), the opening degree on the distribution pipe side is narrowed from 100%, while the opening degree on the bypass side is raised from 0%. Go. Thus, the TIC 17 mixes the warm water on the distribution pipe side not lower than a predetermined temperature with the warm water on the bypass side less than 40 ° C. that is not heated, so that the hot water exiting from the outlet of the three-way valve 15 has a predetermined temperature Adjust to become

以上のようにして所定の温度に温度調節された温水は、バルブBV2が閉じ、バルブBV3が開いていることから、矢印C方向に流れ、バルブBV3を通って空調機1に供給される。   The hot water whose temperature has been adjusted to a predetermined temperature as described above flows in the direction of arrow C since the valve BV2 is closed and the valve BV3 is open, and is supplied to the air conditioner 1 through the valve BV3.

以上説明したように、本実施の形態によれば、太陽の日射により熱せられたアスファルト3の熱を利用して、ぬるくなった温水(HR)を熱交換により所定の温度まで加熱し所定の温度となった温水(HS)を空調機1に供給することができる。この際、温熱源装置22を温熱源とする熱交換器21を一切作動させる必要がない。このため、温熱源装置22を動作させるための燃料代は不要となるので、省エネ効果を向上させることができ、ランニングコストの削減につながる。   As described above, according to the present embodiment, the heat of asphalt 3 heated by the sun's rays of the sun is used to heat warmth warm water (HR) to a predetermined temperature by heat exchange, and the predetermined temperature is obtained. The hot water (HS) that has become can be supplied to the air conditioner 1. Under the present circumstances, it is not necessary to operate the heat exchanger 21 which makes the heat-source apparatus 22 a heat source at all. For this reason, since the fuel cost for operating the heat-and-heat source device 22 becomes unnecessary, the energy saving effect can be improved, which leads to the reduction of the running cost.

ところで、日射の関係で、温水(HR)を配水管11による熱交換だけでは所定の温度以上に加熱することができない場合がある。アスファルト3の温度が40℃に満たない場合がこれに該当する。つまり、アスファルト3の測定温度が40℃に満たないものの温水(HR)の温度より高い場合、PLC19は、プレヒーティングモードで熱源システム10を運転させる。つまり、図2に示すテーブルに従うと、バルブBV2,BV4を開制御し、バルブBV1,BV3を閉制御する。これにより、温水(HR)は、ポンプ20を通って矢印Aに示すように配水管11に送られる。また、矢印Bに示すように三方弁15にも送られる。   By the way, due to the relationship of solar radiation, it may not be possible to heat the hot water (HR) to a predetermined temperature or more only by heat exchange with the water distribution pipe 11. The case where the temperature of asphalt 3 is less than 40 ° C. corresponds to this. That is, when the measurement temperature of the asphalt 3 is less than 40 ° C. but higher than the temperature of the hot water (HR), the PLC 19 operates the heat source system 10 in the preheating mode. That is, according to the table shown in FIG. 2, the valves BV2 and BV4 are controlled to open, and the valves BV1 and BV3 are closed. Thereby, the hot water (HR) is sent to the water distribution pipe 11 through the pump 20 as shown by the arrow A. Further, as shown by arrow B, it is also sent to the three-way valve 15.

そして、フリーヒーティングモードと同様に、TIC17は、配管温度検出器16による測定温度に基づいて三方弁15の出口から出す温水の温度を調節する。しかしながら、ここでは、温水の測定温度は所定の温度に満たない。この場合、TIC17は、配水管11側の開度を100%として三方弁15から温水を出力させる。   Then, as in the free heating mode, the TIC 17 adjusts the temperature of the hot water discharged from the outlet of the three-way valve 15 based on the temperature measured by the pipe temperature detector 16. However, here, the measured temperature of the hot water does not reach the predetermined temperature. In this case, the TIC 17 causes hot water to be output from the three-way valve 15 with the degree of opening on the side of the water distribution pipe 11 being 100%.

この温水は、矢印D方向に流れ、開制御されているバルブBV2及びポンプ23を通って熱交換器21に送られる。バルブBV3は閉制御されているので、空調機1に送られることはない。熱交換器21では、送られてきた温水を所定の温度になるまで加熱して出力する。熱交換器21から出される温水は、バルブBV4が開制御され、バルブBV3が閉制御されていることから空調機1に供給される。   This hot water flows in the direction of arrow D and is sent to the heat exchanger 21 through the valve BV2 and the pump 23 that are controlled to be opened. Since the valve BV3 is controlled to be closed, it is not sent to the air conditioner 1. The heat exchanger 21 heats the sent hot water to a predetermined temperature and outputs it. The hot water discharged from the heat exchanger 21 is supplied to the air conditioner 1 because the valve BV4 is controlled to open and the valve BV3 is controlled to close.

本実施の形態によれば、配水管11による熱交換だけでは温水の温度を所定の温度まで上げることができない場合、熱交換器21を利用して所定の温度まで温度を上昇させる。ただ、温水の加熱の全てを熱交換器21に任せるのではなく、温水を配水管11に送り若干でも加熱させることで省エネ効果の低下を少しでも回避する。つまり、温水(HR)を、配水管11を通して加熱し、不十分な温度上昇を熱交換器21で補完させるように流路制御する。   According to the present embodiment, when the temperature of the hot water can not be raised to the predetermined temperature only by the heat exchange with the water distribution pipe 11, the temperature is raised to the predetermined temperature using the heat exchanger 21. However, rather than leaving all of the heating of the hot water to the heat exchanger 21, the hot water is sent to the water distribution pipe 11 to slightly heat it, thereby avoiding any reduction in the energy saving effect. That is, the hot water (HR) is heated through the water distribution pipe 11, and the flow control is performed so that the temperature rise is compensated by the heat exchanger 21.

ところで、太陽の日射が足りない場合や冬場などでは、アスファルト3の温度が温水(HR)の温度より低い場合も想定しうる。この場合、配水管11で熱交換が行われると、温水(HR)の温度が更に低下してしまう可能性が生じてくる。従って、アスファルト3の温度が温水(HR)より低い場合、PLC19は、ヒーティング無しモードで熱源システム10を運転させる。つまり、図2に示すテーブルに従うと、バルブBV1,BV4を開制御し、バルブBV2,BV3を閉制御する。これにより、温水(HR)は、矢印Eに示すように流れ、ポンプ23を介して熱交換器21に送られる。熱交換器21では、送られてきた温水を所定の温度になるまで加熱して出力する。熱交換器21から出される温水は、プレヒーティングモードと同様に空調機1に直接供給される。   By the way, when the sun's solar radiation is insufficient, or in winter, it may be assumed that the temperature of the asphalt 3 is lower than the temperature of the hot water (HR). In this case, when heat exchange is performed in the water distribution pipe 11, the temperature of the hot water (HR) may be further decreased. Therefore, when the temperature of asphalt 3 is lower than hot water (HR), the PLC 19 operates the heat source system 10 in the no heating mode. That is, according to the table shown in FIG. 2, the valves BV1 and BV4 are controlled to open, and the valves BV2 and BV3 are controlled to close. Thereby, warm water (HR) flows as shown by arrow E, and is sent to the heat exchanger 21 via the pump 23. The heat exchanger 21 heats the sent hot water to a predetermined temperature and outputs it. The hot water emitted from the heat exchanger 21 is directly supplied to the air conditioner 1 as in the preheating mode.

本実施の形態によれば、アスファルト3の温度が温水(HR)より低い場合、配水管11による熱交換を全く利用せずに熱交換器21を利用して温水の温度を上げる。他の制御モードのように配水管11側に送った温水を利用すると、その温水の温度は却って低下している可能性があるので、本実施の形態では、バルブBV2,BV3を閉じることで悪影響を及ぼしかねない熱交換を回避するようにした。   According to the present embodiment, when the temperature of the asphalt 3 is lower than the hot water (HR), the temperature of the hot water is raised using the heat exchanger 21 without utilizing the heat exchange by the water distribution pipe 11 at all. If the hot water sent to the side of the water distribution pipe 11 is used as in the other control modes, the temperature of the hot water may be rather decreased. Therefore, in the present embodiment, closing the valves BV2 and BV3 adversely affects To avoid heat exchange that could

以上説明したように、本実施の形態では、配水管11をアスファルト3で舗装されている道路等に埋設する場合を例にして説明した。上記説明から明らかなように、温水(HR)の温度を上昇させるためには、配水管11を相対的に細く、長く、アスファルト3に接触するように設置するのが効果的である。アスファルト3は、太陽の日射により高温になりやすいため、熱利用には効率的であるが、熱せられるような地表面であれば、必ずしもアスファルト3に限定する必要はない。例えば、石、煉瓦、コンクリート、砂利などが敷き固められて舗装されている地表面でもよい。本実施の形態と同様に太陽光(太陽の日射)を利用するシステムとして太陽光発電システムが存在する。太陽光発電システムのパネルを屋根ではなく道路等に設置するとしても、地表面上に設置する必要がある。これに対し、本実施の形態は地表面下に埋設するので、配水管11の設置スペースは、太陽光発電のパネルと比較して制限を受けにくい。また、配水管11は、管の太さ、長さ、素材等について選択の余地があるので、設置する場所や方法に柔軟に対応しやすい。   As described above, in the present embodiment, the case where the water distribution pipe 11 is embedded in a road or the like paved with the asphalt 3 has been described as an example. As apparent from the above description, in order to raise the temperature of the hot water (HR), it is effective to install the water distribution pipe 11 so as to be relatively thin, long, and in contact with the asphalt 3. The asphalt 3 is efficient for heat utilization because it is likely to be high temperature due to solar radiation, but it is not necessary to be limited to the asphalt 3 as long as the ground surface can be heated. For example, the ground surface may be paved with stone, brick, concrete, gravel, etc. As in the present embodiment, a solar power generation system exists as a system that uses sunlight (sunlight of the sun). Even if the panels of the photovoltaic system are installed not on the roof but on roads, etc., they need to be installed on the ground surface. On the other hand, since the present embodiment is buried under the ground surface, the installation space of the water distribution pipe 11 is not likely to be restricted compared to the panel of the solar power generation. Moreover, since there is room for selection about the thickness, length, material, etc. of a pipe, the water distribution pipe 11 is easy to correspond flexibly to the installation place and method.

また、本実施の形態では、温水を提供する設備として4管式の空調機1を例にして説明したが、温水を利用する異なる設備にも適用可能である。例えば、温水をシャワーなどの浴室の設備や病院等の施設に供給してもよい。   Further, although the four-pipe air conditioner 1 has been described as an example of the facility for providing hot water in the present embodiment, the present invention is also applicable to different facilities that use hot water. For example, hot water may be supplied to bathroom facilities such as showers and facilities such as hospitals.

本実施の形態では、太陽の日射により温められた地表面の熱を温熱源として利用することを特徴としている。その一実施の形態として、空調機1と熱源システム10の間で温水を循環させる空調システムに適用した場合を例にして説明した。つまり、空調機1が温水(HS)の供給先であり、温水(HR)の供給元でもあるが、温水の供給先と供給元を、必ずしも一致させる必要はない。   The present embodiment is characterized in that the heat of the ground surface warmed by the solar radiation of the sun is used as a heat source. The case where it applied to the air-conditioning system which circulates warm water between the air conditioner 1 and the heat-source system 10 was made into an example and demonstrated as the one embodiment. That is, although the air conditioner 1 is the supply destination of the hot water (HS) and the supply source of the hot water (HR), the supply destination and the supply source of the hot water do not necessarily have to coincide with each other.

また、本実施の形態では、水を媒体とした場合を例にして説明したが、水以外の流体、また流体以外の気体等他の媒体にも適用可能である。   Further, although the case of using water as the medium has been described as an example in the present embodiment, the present invention is also applicable to other media such as fluid other than water and gas other than fluid.

1 空調機、2 加熱コイル(HC)、3 アスファルト、10 熱源システム、11 熱交換手段(配水管)、12 供給機構、13,14 温度検出器、15 三方弁、16 配管温度検出器、17 TIC、18 電動モータ、19 PLC、20,23 ポンプ、21 熱交換器、22 温熱源装置、BV1,BV2,BV3,BV4 バルブ。
Reference Signs List 1 air conditioner, 2 heating coil (HC), 3 asphalt, 10 heat source system, 11 heat exchange means (water distribution pipe), 12 supply mechanism, 13, 14 temperature detector, 15 three-way valve, 16 piping temperature detector, 17 TIC , 18 electric motor, 19 PLC, 20, 23 pumps, 21 heat exchangers, 22 heat source devices, BV1, BV2, BV3, BV4 valves.

Claims (10)

所定の温度の媒体を設備に供給する熱源システムにおいて、
地表面の近傍に埋設され、前記熱源システムに送られてくる媒体と地表面との間で熱交換を行う熱交換手段と、
前記熱交換手段により熱交換された媒体を所定の温度に調節して前記設備に供給する供給機構と、
を有し、太陽の日射により温められた地表面の熱を温熱源として利用することを特徴とする熱源システム。
In a heat source system for supplying a medium of a predetermined temperature to an installation,
Heat exchange means embedded near the ground surface and performing heat exchange between the medium sent to the heat source system and the ground surface;
A supply mechanism which adjusts the medium heat-exchanged by the heat exchange means to a predetermined temperature and supplies the medium to the equipment;
A heat source system, comprising: heat of the ground surface warmed by solar radiation as the heat source.
前記熱交換手段は、舗装されている地表面の下に埋設される配管であることを特徴とする請求項1に記載の熱源システム。   The heat source system according to claim 1, wherein the heat exchange means is a pipe embedded below the ground surface being paved. 前記供給機構は、前記熱交換手段により熱交換された媒体の温度が所定の温度となるよう調節する温度調節機構を備えることを特徴とする請求項1に記載の熱源システム。   The heat source system according to claim 1, wherein the supply mechanism includes a temperature control mechanism which adjusts the temperature of the medium heat-exchanged by the heat exchange means to a predetermined temperature. 前記温度調節機構は、
前記熱源システムに送られてくる媒体のうち前記熱交換手段により熱交換された媒体と、前記熱交換手段により熱交換されない媒体と、を混合する三方弁と、
前記三方弁から出力される媒体の温度を測定する測定手段と、
前記測定手段により測定された媒体の温度に基づき前記三方弁の開度を制御することで、前記熱交換手段により熱交換された媒体の温度が所定の温度となるよう調節する三方弁制御手段と、
を有することを特徴とする請求項3に記載の熱源システム。
The temperature control mechanism is
A three-way valve for mixing, among the media sent to the heat source system, the medium heat-exchanged by the heat exchange means and the medium not heat-exchanged by the heat exchange means;
Measuring means for measuring the temperature of the medium output from the three-way valve;
Three-way valve control means for adjusting the temperature of the medium heat-exchanged by the heat exchange means to be a predetermined temperature by controlling the opening degree of the three-way valve based on the temperature of the medium measured by the measuring means ,
The heat source system according to claim 3, comprising:
前記供給機構は、前記熱源システムに送られてくる媒体の温度と地表面の温度との関係によって前記設備に供給する媒体の流路を制御する流路制御手段を有することを特徴とする請求項3に記載の熱源システム。   The said supply mechanism is characterized by having a flow-path control means which controls the flow path of the medium supplied to the said installation by the relationship between the temperature of the medium sent to the said heat source system, and the temperature of the ground surface. The heat source system according to 3. 前記流路制御手段は、前記温度調節機構により媒体の温度が所定の温度に調節されている場合、媒体を前記設備に直接供給することを特徴とする請求項5に記載の熱源システム。   The heat source system according to claim 5, wherein the flow path control means directly supplies the medium to the facility when the temperature of the medium is adjusted to a predetermined temperature by the temperature control mechanism. 前記流路制御手段は、前記熱交換手段により熱交換された媒体の温度が所定の温度に達するよう前記温度調節機構が調節できない場合、媒体を加熱手段に供給して所定の温度に加熱させてから前記設備に供給することを特徴とする請求項5に記載の熱源システム。   When the temperature control mechanism can not adjust the temperature of the medium heat-exchanged by the heat exchange means to reach a predetermined temperature, the flow path control means supplies the medium to the heating means to heat the medium to the predetermined temperature. The heat source system according to claim 5, wherein the heat source system is supplied from the 前記流路制御手段は、前記熱源システムに送られてくる媒体の温度より前記地表面の温度が低い場合、媒体を前記熱交換手段に供給することなく加熱手段に供給して所定の温度に加熱させてから前記設備に供給することを特徴とする請求項5に記載の熱源システム。   When the temperature of the ground surface is lower than the temperature of the medium sent to the heat source system, the flow path control means supplies the medium to the heating means without supplying the medium to the heat exchange means to heat the medium to a predetermined temperature. The heat source system according to claim 5, wherein the heat source system is supplied to the equipment after being allowed to cool. 前記設備は、除湿再加熱制御を行う空調機であることを特徴とする請求項1に記載の熱源システム。   The heat source system according to claim 1, wherein the equipment is an air conditioner that performs dehumidification and reheating control. 前記熱源システムに送られてくる媒体は、前記供給機構により供給されてくる所定の温度の媒体が前記空調機により利用されることで所定の温度より低くなった媒体であることを特徴とする請求項9に記載の熱源システム。
The medium sent to the heat source system is a medium in which the medium having a predetermined temperature supplied by the supply mechanism is used by the air conditioner and the temperature is lower than the predetermined temperature. The heat source system according to Item 9.
JP2017236967A 2017-12-11 2017-12-11 Heat source system Active JP7023694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017236967A JP7023694B2 (en) 2017-12-11 2017-12-11 Heat source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017236967A JP7023694B2 (en) 2017-12-11 2017-12-11 Heat source system

Publications (2)

Publication Number Publication Date
JP2019105385A true JP2019105385A (en) 2019-06-27
JP7023694B2 JP7023694B2 (en) 2022-02-22

Family

ID=67061156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017236967A Active JP7023694B2 (en) 2017-12-11 2017-12-11 Heat source system

Country Status (1)

Country Link
JP (1) JP7023694B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281203A (en) * 1998-01-27 1999-10-15 Nkk Corp Soil heat source heat pump system and its operation method
JP2017150778A (en) * 2016-02-26 2017-08-31 新晃工業株式会社 Dehumidifying/reheating air-conditioning system utilizing ground thermal energy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248673A (en) 2004-03-02 2005-09-15 Earth Resources:Kk Road heating system
JP4929028B2 (en) 2006-04-28 2012-05-09 ミサワ環境技術株式会社 Solar geothermal heat storage supply equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281203A (en) * 1998-01-27 1999-10-15 Nkk Corp Soil heat source heat pump system and its operation method
JP2017150778A (en) * 2016-02-26 2017-08-31 新晃工業株式会社 Dehumidifying/reheating air-conditioning system utilizing ground thermal energy

Also Published As

Publication number Publication date
JP7023694B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
Lee Dynamic performance of ground-source heat pumps fitted with frequency inverters for part-load control
US10066858B2 (en) Method of heating a building
US7628337B2 (en) Secondary heating system
JP2009150623A (en) System for evaluating air-conditioning heat source performance
KR101564761B1 (en) Cooling and heating system of water heat storage by difference of water temperature using integrated waterworks
CN105890225A (en) Partial heat recovery type air conditioner cold hot water and life hot water joint supply system
KR101838797B1 (en) Geothermal heating and cooling devices using a single thermal storage tank to perform heating and cooling at the same time and its control method
KR20140055709A (en) Heat pump system using ground heat source
KR20090116457A (en) Water source heating system
JP2005098543A (en) Heat using device for air conditioning
JP4404731B2 (en) Air-conditioning system using geothermal heat
JP7023694B2 (en) Heat source system
CN201255461Y (en) Device of hot water heat supply air conditioner for preventing heater from freezing by inlet of fresh air in cold area
JPH10232000A (en) Liquid piping facility for heat utilizing
KR102214024B1 (en) Heat source supply system using fuel cell
KR101445266B1 (en) Central Control Association Management System of New Renewable Energy for Air Conditioning and Heating
JP2005226924A (en) Hybrid hot water supply system
CN102338449B (en) Cooling water type stepless control condensed heat recovery system
JP2005344953A (en) Hybrid type geothermal heat utilization system
KR102456840B1 (en) Thermal network system and control method using solar heat
JP6243723B2 (en) Heat storage system
JP5909102B2 (en) Air conditioning system
JP2010249378A (en) Air-conditioning facility and operation method thereof
JPS60155843A (en) Air conditioning control device by heat accumulation in water distributing pipe
James Larson PE An Alternate Take on Airside Economizing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220209

R150 Certificate of patent or registration of utility model

Ref document number: 7023694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350