JP2005248673A - Road heating system - Google Patents

Road heating system Download PDF

Info

Publication number
JP2005248673A
JP2005248673A JP2004093720A JP2004093720A JP2005248673A JP 2005248673 A JP2005248673 A JP 2005248673A JP 2004093720 A JP2004093720 A JP 2004093720A JP 2004093720 A JP2004093720 A JP 2004093720A JP 2005248673 A JP2005248673 A JP 2005248673A
Authority
JP
Japan
Prior art keywords
heat exchange
temperature
exchange medium
flow path
medium flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004093720A
Other languages
Japanese (ja)
Inventor
Takeshi Morikubo
剛 森久保
Tetsuji Tsujikawa
哲二 辻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARTH RESOURCES KK
Original Assignee
EARTH RESOURCES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARTH RESOURCES KK filed Critical EARTH RESOURCES KK
Priority to JP2004093720A priority Critical patent/JP2005248673A/en
Publication of JP2005248673A publication Critical patent/JP2005248673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a road heating system having a high efficiency by minimizing the running cost while reducing its environmental load. <P>SOLUTION: This road heating system 1 comprises a first heat exchange medium passage 3 installed to an area 2 whereto solar light is radiated, its one end 5b is laid underground and connected to one end 3b of a second heat exchange medium passage 5 in an area 4 which is not radiated by the solar light, another end 3a of the first heat exchange medium passage and another end 5a of the second heat exchange medium passage are connected together by a third heat exchange medium passage 7; and a medium-sending pressure pump 8 for circulating the heat exchange medium from the first heat exchange medium passage 3 to the second heat exchange medium passage 5 is installed through the third heat exchange medium passage 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流路内で熱交換媒体を循環させることで、流路を埋設した地表面を温めて凍結解消や融雪を行うロードヒーティングシステムに関する。  The present invention relates to a road heating system that circulates a heat exchange medium in a flow path, thereby warming a ground surface in which the flow path is embedded to perform freezing and snow melting.

地表面に流路を埋設し、この流路に対して少なくとも地表面温度よりも高温の熱交換媒体を循環させることで、地表面の凍結解消や防止、地表面の融雪を行うロードヒーティングシステムが知られている。一般に熱交換媒体は、システム作動持においては給湯器等の加熱源を用いて加熱されているため、システム稼動時のランニングコストが問題となっている。
ロードヒーティングシステムには、加熱源として給湯器等を利用しないものがある。例えば特許文献1には、太陽光で加熱される領域側に熱交換媒体としての1次循環水を循環させる第1の循環経路を設け、凍結する側の地中内に2次循環水を循環させる第2の循環経路を埋設し、第1の循環経路の一部と第2の循環経路の一部をヒートポンプ内に導入し、一次循環水の熱で2次循環水を加熱するシステムが提案されている。
A road heating system that embeds a flow path in the ground surface and circulates a heat exchange medium at least higher than the ground surface temperature in the flow path to eliminate or prevent freezing of the ground surface and to melt snow on the ground surface. It has been known. In general, since the heat exchange medium is heated using a heating source such as a water heater when the system is operated, the running cost during system operation is a problem.
Some road heating systems do not use a water heater or the like as a heating source. For example, Patent Document 1 provides a first circulation path for circulating primary circulating water as a heat exchange medium on a region heated by sunlight, and circulates secondary circulating water in the ground on the freezing side. A system is proposed in which the second circulation path is embedded, a part of the first circulation path and a part of the second circulation path are introduced into the heat pump, and the secondary circulation water is heated by the heat of the primary circulation water. Has been.

特開2004−12115JP2004-12115

特許文献1においては、給湯器等を加熱源として利用しないので、ランニングコストが抑えられる反面、2次循環水の温度がヒートポンプの性能に依存するので、高性能なヒートポンプが必要となり、初期コストが高くなってしまう。また、日差しのない夜間においては1次循環水の温度が十分な温度にならないこともあり、2次循環水の温度が十分に昇温できないことが懸念される。また、環境負荷軽減の観点やランニングコストの面から見ると、ロードヒーティングシステムを稼動させる際に、化石燃料や電気、ガス等の使用を極力抑え、自然エネルギーを用いることが望ましい。
本発明は、環境負荷を低減しつつもランニングコストを抑え、効率の良いロードヒーティングシステムを提供することを、その目的とする。
In Patent Document 1, since a water heater or the like is not used as a heating source, the running cost can be suppressed, but the temperature of the secondary circulating water depends on the performance of the heat pump, so a high-performance heat pump is required and the initial cost is low. It will be high. Further, at night when there is no sunlight, the temperature of the primary circulating water may not be sufficient, and there is a concern that the temperature of the secondary circulating water cannot be sufficiently increased. From the viewpoint of reducing environmental impact and running costs, it is desirable to use natural energy while minimizing the use of fossil fuel, electricity, gas, etc. when operating the road heating system.
An object of the present invention is to provide an efficient road heating system that reduces the environmental load while reducing the running cost.

請求項1の発明は、太陽光が照射される領域に配設された第1の熱交換媒体流路と、太陽光が照射されない領域の地中内に埋設され、その一端が第1の熱交換媒体流路の一端に接続された第2の熱交換媒体流路と、第1の熱交換媒体流路の他端と第2の熱交換媒体流路の他端とを連結する第3の熱交換媒体流路と、第3の熱交換媒体流路に配設され、第3の熱交換媒体流路を介して第1の熱交換媒体流路から第2の熱交換媒体流路へと熱交換媒体を循環させる媒体送圧ポンプとを有することを特徴としている。  The invention of claim 1 is embedded in the ground of the first heat exchange medium flow path disposed in the area irradiated with sunlight and the area not irradiated with sunlight, and one end thereof is the first heat. A third heat exchange medium flow path connected to one end of the exchange medium flow path, a third heat coupling medium connecting the other end of the first heat exchange medium flow path and the other end of the second heat exchange medium flow path. The heat exchange medium flow path and the third heat exchange medium flow path are disposed in the first heat exchange medium flow path to the second heat exchange medium flow path via the third heat exchange medium flow path. And a medium pressure pump for circulating the heat exchange medium.

請求項2の発明は、請求項1記載のロードヒーティングシステムにおいて、太陽光が照射されない領域の地表面温度または第2の熱交換媒体流路を通過している熱交換媒体の温度、あるいは第2の熱交換媒体流路を通過した熱交換媒体の温度を検出する第1温度検出手段と、媒体送圧ポンプの駆動を制御する制御手段とを有し、制御手段が、第1温度検出手段からの検出温度が予め設定された所定温度になると媒体送圧ポンプを駆動することを特徴としている。  According to a second aspect of the present invention, in the road heating system according to the first aspect of the present invention, the surface temperature of the region not irradiated with sunlight, the temperature of the heat exchange medium passing through the second heat exchange medium flow path, or the first A first temperature detection means for detecting the temperature of the heat exchange medium that has passed through the two heat exchange medium flow paths, and a control means for controlling the drive of the medium pressure pump, wherein the control means is a first temperature detection means. The medium pressure pump is driven when the detected temperature from the temperature reaches a predetermined temperature set in advance.

請求項3の発明は、請求項1または2記載のロードヒーティングシステムにおいて、第3の熱交換媒体流路の途中に、地中内採熱部を設けたことを特徴としている。
請求項4の発明は、請求項3記載のロードヒーティングシステムにおいて、地中内採熱部の上流側と下流側に位置する第3の熱交換媒体流路を繋ぐバイパス流路に設けられた電磁開閉弁と、太陽光が照射される領域の地表面温度または第1の熱交換媒体流路を通過している熱交換媒体の温度、あるいは第1の熱交換媒体流路を通過した熱交換媒体の温度を検出する第2温度検出手段と、地中内採熱部内の温度または地中内採熱部を通過している熱交換媒体の温度、あるいは地中内採熱部を通過した熱交換媒体の温度を検出する採熱温度検出手段とを有し、地中内採熱部を電磁開閉弁よりも媒体搬送方向下流側のバイパス流路に接続し、制御手段が、第2温度検出手段からの検出温度と採熱温度検出手段からの検出温度とを比較し、採熱温度検出手段からの検出温度が第2温度検出手段からの検出温度よりも高い場合には電磁開閉弁を開弁制御し、採熱温度検出手段からの検出温度が第2温度検出手段からの検出温度よりも低い場合には電磁開閉弁を閉弁制御することを特徴としている。
According to a third aspect of the present invention, in the road heating system according to the first or second aspect, an underground heat collecting section is provided in the middle of the third heat exchange medium flow path.
According to a fourth aspect of the present invention, in the road heating system according to the third aspect of the present invention, the load heating system according to the third aspect is provided in a bypass flow path that connects a third heat exchange medium flow path located upstream and downstream of the underground heat collecting section. The electromagnetic on-off valve and the surface temperature of the area irradiated with sunlight, the temperature of the heat exchange medium passing through the first heat exchange medium flow path, or the heat exchange passing through the first heat exchange medium flow path Second temperature detecting means for detecting the temperature of the medium, the temperature in the underground heat collecting section, the temperature of the heat exchange medium passing through the underground heat collecting section, or the heat passed through the underground heat collecting section A heat collection temperature detection means for detecting the temperature of the exchange medium, and the underground heat collection section is connected to a bypass flow path downstream of the electromagnetic on-off valve in the medium conveyance direction, and the control means is a second temperature detection The detection temperature from the means and the detection temperature from the heat collection temperature detection means are compared to determine the heat collection temperature detection. When the detected temperature from the means is higher than the detected temperature from the second temperature detecting means, the solenoid on-off valve is controlled to open, and the detected temperature from the heat collection temperature detecting means is higher than the detected temperature from the second temperature detecting means. If it is lower, the electromagnetic on-off valve is controlled to be closed.

請求項5の発明は、請求項1ないし4の何れかに記載のロードヒーティングシステムにおいて、第3の熱交換媒体流路と接続して設けられ、循環する熱交換媒体の一部を貯める貯留部と、貯留部に貯められた熱交換媒体を加熱して、加熱後の熱交換媒体を貯留部に戻す補助熱源供給手段とを有することを特徴としている。
請求項6の発明は、請求項5記載のロードヒーティングシステムにおいて、補助熱源供給手段は、貯留部と流路を介して接続された加熱器と、流路に設けられ貯留部内の熱交換媒体を加熱器に対して送圧する補助熱源用駆動ポンプとを有し、制御手段が、少なくとも媒体送圧ポンプが駆動状態において、温度検出手段からの検出温度が予め設定された所定温度に満たない場合、補助熱源用駆動ポンプを駆動することを特徴としている。
A fifth aspect of the present invention is the load heating system according to any one of the first to fourth aspects, wherein the storage is provided in connection with the third heat exchange medium flow path and stores a part of the circulating heat exchange medium. And an auxiliary heat source supply means for heating the heat exchange medium stored in the storage unit and returning the heated heat exchange medium to the storage unit.
A sixth aspect of the present invention is the road heating system according to the fifth aspect, wherein the auxiliary heat source supply means includes a heater connected to the storage section via the flow path, and a heat exchange medium in the storage section provided in the flow path. And an auxiliary heat source drive pump for supplying pressure to the heater, and the control means is at least in a state where the medium pressure pump is in a drive state, and the detected temperature from the temperature detecting means is less than a preset predetermined temperature. The driving pump for the auxiliary heat source is driven.

本発明によれば、太陽光が照射される領域に配設された第1の熱交換媒体流路の一端が、太陽光が照射されない領域の地中内に埋設された第2の熱交換媒体流路の一端と接続し、第1の熱交換媒体流路の他端と第2の熱交換媒体流路の他端とが第3の熱交換媒体流路で連結されるので、熱交換媒体が媒体送圧ポンプにより循環すると、第1の熱交換媒体流路内を通過する熱交換媒体が太陽光で温められた地表面の熱と当該領域内の地中熱を吸収して温まり、この温められた熱交換媒体が直接第2の熱交換媒体流路へと供給される。このため、従来のようにヒートポンプを用いる必要がないので、コスト上昇を抑えつつも、効率よく第2の熱交換媒体流路内へ熱交換媒体を供給することができ、環境負荷を低減しつつ地表面の凍結防止や凍結解消、融雪を行える。  According to the present invention, the second heat exchange medium in which one end of the first heat exchange medium flow path disposed in the area irradiated with sunlight is embedded in the ground of the area not irradiated with sunlight. The heat exchange medium is connected to one end of the flow path, and the other end of the first heat exchange medium flow path and the other end of the second heat exchange medium flow path are connected by the third heat exchange medium flow path. Is circulated by the medium pressure pump, the heat exchange medium passing through the first heat exchange medium flow path absorbs the heat of the ground surface heated by sunlight and the underground heat in the area, The warmed heat exchange medium is supplied directly to the second heat exchange medium flow path. For this reason, since it is not necessary to use a heat pump as in the prior art, the heat exchange medium can be efficiently supplied into the second heat exchange medium flow path while suppressing an increase in cost, while reducing the environmental load. Prevents freezing of the ground surface, freezing and snow melting.

本発明によれば、太陽光が照射されない領域の地表面温度または、その温度に相関する第2の熱交換媒体流路を通過している、あるいは第2の熱交換媒体流路を通過した熱交換媒体の温度が第1温度検出手段で検出され、その検出温度が予め設定された所定温度になると媒体送圧ポンプが制御手段によって駆動されるので、無駄な媒体送圧ポンプの駆動を抑えつつも、必要なときに第1の熱交換媒体流路から第2の熱交換媒体流路へ温かい熱交換媒体を供給することができ、ランニングコストの低減を図りながら効率的な熱交換媒体の循環を行え、より環境負荷を低減しつつ地表面の凍結防止や凍結解消、融雪を行える。  According to the present invention, the ground surface temperature of the region not irradiated with sunlight or the heat that has passed through the second heat exchange medium flow path correlated with the temperature or passed through the second heat exchange medium flow path. When the temperature of the exchange medium is detected by the first temperature detecting means and the detected temperature reaches a predetermined temperature, the medium pressure pump is driven by the control means, so that the useless driving of the medium pressure pump is suppressed. However, when necessary, a warm heat exchange medium can be supplied from the first heat exchange medium flow path to the second heat exchange medium flow path, and efficient circulation of the heat exchange medium while reducing running costs. It is possible to prevent or freeze the ground surface and to melt snow while further reducing the environmental burden.

本発明によれば、第3の熱交換媒体流路の途中に地中内採熱部を設けたので、第3の熱交換媒体流路を流れる熱交換媒体が、地中内採熱部で採熱した熱により温められる。このため、第3の熱交換媒体流路における熱交換媒体の温度低減を抑制でき、媒体温度を維持した状態で第2の熱交換媒体流路へ熱交換媒体を供給することができ、より環境負荷を低減しつつ安定して地表面の凍結防止や凍結解消、融雪を行える。  According to the present invention, since the underground heat collection section is provided in the middle of the third heat exchange medium flow path, the heat exchange medium flowing through the third heat exchange medium flow path is the underground heat collection section. Heated by the collected heat. For this reason, the temperature reduction of the heat exchange medium in the third heat exchange medium flow path can be suppressed, and the heat exchange medium can be supplied to the second heat exchange medium flow path while maintaining the medium temperature. While reducing the load, it can stably prevent freezing of the ground surface, freezing, and melting snow.

本発明によれば、太陽光が照射される領域の温度または、その温度に相関する第1の熱交換媒体流路を通過している熱交換媒体の温度、あるいは第1の熱交換媒体流路を通過した熱交換媒体の温度を検出する第2温度検出手段からの検出温度と、地中内採熱部内の温度またはその温度に相関する地中内採熱部を通過している熱交換媒体の温度、あるいは地中内採熱部を通過した熱交換媒体の温度を検出する採熱温度検出手段からの検出温度とを比較し、採熱温度検出手段からの検出温度が第2温度検出手段からの検出温度よりも高い場合には、地中内採熱部の上流側と下流側の第3の熱交換媒体流路を連結するバイパス流路に設けた電磁開閉弁を開弁制御し、採熱温度検出手段からの検出温度が第2温度検出手段からの検出温度よりも低い場合には電磁開閉弁を閉弁制御する切替制御を行うので、太陽光が照射される領域の温度が低下して第1の熱交換媒体流路内の循環時に熱交換媒体が吸熱する熱量が低減しても、電磁開閉弁が開かれることで太陽光が照射される領域の温度よりも高温な地中内採熱部内へ熱交換媒体が案内され、熱交換媒体の温度低下が抑制される。このため、第1の熱交換媒体流路が設けられた領域において温度変動があった場合でも熱交換媒体が地中から吸熱を行えるので、より安定して地表面の凍結防止や凍結解消、融雪を行える。  According to the present invention, the temperature of the region irradiated with sunlight, the temperature of the heat exchange medium passing through the first heat exchange medium flow path correlated with the temperature, or the first heat exchange medium flow path Exchange temperature detected by the second temperature detecting means for detecting the temperature of the heat exchange medium that has passed through, and the temperature in the underground heat collecting section or the underground heat collecting section correlated with the temperature. Or the detected temperature from the heat collecting temperature detecting means for detecting the temperature of the heat exchange medium that has passed through the underground heat collecting section, and the detected temperature from the heat collecting temperature detecting means is the second temperature detecting means. When the temperature is higher than the detected temperature from, the electromagnetic on-off valve provided in the bypass flow path connecting the upstream side and downstream side third heat exchange medium flow path of the underground heat collection unit is controlled to open, When the detected temperature from the heat collection temperature detecting means is lower than the detected temperature from the second temperature detecting means Since the switching control for closing the electromagnetic on-off valve is performed, the temperature of the area irradiated with sunlight decreases, and the amount of heat absorbed by the heat exchange medium during circulation in the first heat exchange medium flow path is reduced. Even if the electromagnetic on-off valve is opened, the heat exchange medium is guided into the underground heat collecting section that is higher than the temperature of the region irradiated with sunlight, and the temperature drop of the heat exchange medium is suppressed. For this reason, since the heat exchange medium can absorb heat from the ground even when there is a temperature fluctuation in the region where the first heat exchange medium flow path is provided, the ground surface can be prevented from freezing and freezing, and snow melting more stably. Can be done.

本発明によれば、第3の熱交換媒体流路と接続して設けられ、循環する熱交換媒体の一部を貯める貯留部と、貯留部内の熱交換媒体を加熱して、加熱後の熱交換媒体を貯留部に戻す補助熱源供給手段とを有するので、第1の熱交換媒体流路内での循環時や地中内採熱部での循環時、あるいはこれら両者を経た循環時に熱交換媒体が吸収する熱量が低減しても、補助熱源供給手段を通過する際に熱交換媒体が加熱される。このため、太陽光が照射される領域や地中内の温度に変動があった場合でも熱交換媒体を安定して温められ、より安定して地表面の凍結防止や凍結解消、融雪を行える。  According to the present invention, the storage section provided in connection with the third heat exchange medium flow path and storing a part of the circulating heat exchange medium, the heat exchange medium in the storage section is heated, and the heat after the heating Since there is an auxiliary heat source supply means for returning the exchange medium to the storage section, heat exchange is performed during circulation in the first heat exchange medium flow path, circulation in the underground heat collection section, or circulation through both. Even if the amount of heat absorbed by the medium is reduced, the heat exchange medium is heated when passing through the auxiliary heat source supply means. For this reason, even when there is a change in the area irradiated with sunlight or the temperature in the ground, the heat exchange medium can be warmed stably, and the ground surface can be prevented from freezing, freezing and snow melting more stably.

本発明によれば、補助熱源供給手段が、貯留部と流路を介して接続された加熱器と、流路に設けられ貯留部内の熱交換媒体を加熱器に対して送圧する補助熱源用駆動ポンプとを有し、制御手段が、少なくとも媒体送圧ポンプの駆動状態において、第1温度検出手段からの検出温度が予め設定された所定温度に満たない場合には補助熱源用駆動ポンプを駆動するので、第1の熱交換媒体流路内での循環時や地中内採熱部での循環時、あるいはこれら両者を経た循環時に熱交換媒体が吸収する熱量が低減した場合にのみ加熱器へと熱交換媒体が供給されるので、加熱器の利用頻度を極力低減しながらも、必要な熱量を熱交換媒体に対して与えることができ、ランニングコストや環境負荷をより低減しながら安定した地表面の凍結防止や凍結解消、融雪を行える。  According to the present invention, the auxiliary heat source supply means includes a heater connected to the storage section via the flow path, and an auxiliary heat source drive that supplies the heat exchange medium provided in the flow path to the heater. And the control means drives the auxiliary heat source drive pump when the detected temperature from the first temperature detection means does not reach a predetermined temperature at least in the drive state of the medium pressure pump. Therefore, only when the amount of heat absorbed by the heat exchange medium is reduced during circulation in the first heat exchange medium flow path, circulation in the underground heat collecting section, or circulation through both of them, to the heater The heat exchange medium is supplied to the heat exchange medium while reducing the frequency of use of the heater as much as possible. Antifreeze and freezing of the surface, Perform the snow.

以下、本発明の実施の形態について図面を用いて説明する。各実施の形態に亘り、同一の機能および形状等を有する部材や構成部品等については、同一符号を付すに留め、その説明はできるだけ省略する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment, members, components, and the like having the same function and shape are given the same reference numerals, and description thereof is omitted as much as possible.

(第1の実施形態)
図1において、符号1は、本発明が適用されたロードヒーティングシステムを示す。このロードヒーティングシステムは、太陽光15が照射される領域としての日照地2内に埋設されることで領域内に配設された第1の熱交換媒体流路3と、太陽光15が照射されない領域であり、凍結や積雪のある日陰地4の地中内に埋設された第2の熱交換媒体流路5と、第1の熱交換媒体流路3の一端3bと第2の熱交換媒体流路5の一端5bとを連結する連結流路6と、第1の熱交換媒体流路3の他端3aと第2の熱交換媒体流路5の他端5aとを連結する第3の熱交換媒体流路7と、第3の熱交換媒体流路7に配設され、この流路7を介して第1の熱交換媒体流路3から連結流路6を経て第2の熱交換媒体流路5へと熱交換媒体としてのブライン水を循環させる媒体送圧ポンプ8と、日陰地4の地表面温度t1を検出する第1温度検出手段としての温度センサ9と、媒体送圧ポンプ8の駆動を制御する制御手段20とを備えている。
(First embodiment)
In FIG. 1, reference numeral 1 denotes a load heating system to which the present invention is applied. In this load heating system, the first heat exchange medium flow path 3 disposed in the region by being embedded in the sunshine 2 as the region to which the sunlight 15 is irradiated, and the sunlight 15 are irradiated. The second heat exchange medium flow path 5 embedded in the ground of the shaded area 4 that is not frozen and has snow and snow, and the second heat exchange with one end 3b of the first heat exchange medium flow path 3 A connection flow path 6 that connects one end 5 b of the medium flow path 5, and a third connection that connects the other end 3 a of the first heat exchange medium flow path 3 and the other end 5 a of the second heat exchange medium flow path 5. The heat exchange medium flow path 7 and the third heat exchange medium flow path 7 are connected to the first heat exchange medium flow path 3 through the connection flow path 6 and the second heat exchange medium flow path 7. A medium pressure pump 8 that circulates brine water as a heat exchange medium to the exchange medium flow path 5 and a first temperature detection that detects the ground surface temperature t1 of the shaded area 4. A temperature sensor 9 as a means, and a control unit 20 for controlling the driving of the medium feeding pressure pump 8.

本形態において、日陰地4は建物16の日陰部分として説明するが、このような場所に限定されるものではなく、例えば傾斜地の北側斜面や、同一路面や敷地内において日中日差しが差し込まない領域等が挙げられる。太陽光15が照射される領域としては、日照地2に限定されるものではなく、例えば、建物16の屋根17や屋上、壁面等が挙げられる。  In the present embodiment, the shaded area 4 is described as a shaded part of the building 16, but is not limited to such a place. For example, the northern slope of the sloped area, the area where the sunlight during the day is not inserted on the same road surface or site Etc. The region irradiated with the sunlight 15 is not limited to the sunshine 2 and includes, for example, the roof 17 of the building 16, the rooftop, the wall surface, and the like.

第1の熱交換媒体流路3は、耐寒性に優れる架橋ポリエチレン製の管材で、この管材を等間隔ピッチで連続して日照地2内の略全域に渡って配設することで構成されている。第2の熱交換媒体流路5は、管材を等間隔ピッチで連続して日陰地4内の略全域に渡って配設している。連結流路6及び第3の熱交換媒体流路7も上記と同様管材で構成されている。本形態において、管材には三菱化学産資株式会社製・エクセルパイプを用いるが、これに限定されるものではない。  The first heat exchange medium flow path 3 is a tube made of crosslinked polyethylene excellent in cold resistance, and is configured by arranging this tube continuously over substantially the entire area of the sunshine 2 at an equal interval pitch. Yes. In the second heat exchange medium flow path 5, the pipe material is arranged continuously over the substantially whole area in the shaded area 4 at an equal interval pitch. The connection flow path 6 and the third heat exchange medium flow path 7 are also made of a tube material as described above. In this embodiment, an Excel pipe manufactured by Mitsubishi Chemical Corporation is used as the pipe material, but the present invention is not limited to this.

第1の熱交換媒体流路3の他端3a及び第2の熱交換媒体流路5の他端5aは、それぞれ集管連結部として機能する周知のヘッダ10,11に接続されている。ヘッダ10,11には、連結流路6の両端6a,6bがそれぞれ連結されていて、第1の熱交換媒体流路3と第2の熱交換媒体流路5の他端側を連通させている。第1の熱交換媒体流路3の他端3a及び第2の熱交換媒体流路5の他端5aは、それぞれ集管連結部として機能する周知のヘッダ12,13に接続されている。ヘッダ12,13には、第3の熱交換媒体流路7の両端7a,7bがそれぞれ連結されていて、第1の熱交換媒体流路3と第2の熱交換媒体流路5の他端側を連通させている。  The other end 3a of the first heat exchange medium flow path 3 and the other end 5a of the second heat exchange medium flow path 5 are connected to well-known headers 10 and 11 that function as a collecting pipe connecting portion, respectively. Both ends 6a and 6b of the connection flow path 6 are connected to the headers 10 and 11, respectively, and the other end sides of the first heat exchange medium flow path 3 and the second heat exchange medium flow path 5 are communicated. Yes. The other end 3a of the first heat exchange medium flow path 3 and the other end 5a of the second heat exchange medium flow path 5 are connected to well-known headers 12 and 13, respectively, which function as a collecting pipe connecting portion. Both ends 7a and 7b of the third heat exchange medium flow path 7 are connected to the headers 12 and 13, respectively, and the other ends of the first heat exchange medium flow path 3 and the second heat exchange medium flow path 5 are connected. The side is in communication.

媒体送圧ポンプ8は電動駆動ポンプであって、その吸入側を第1の熱交換媒体流路3の他端3aとつながる流路71と、その吐出側を第2の熱交換媒体流路5の他端5aとつながる流路72に接続されていて、ブライン水を第1の熱交換媒体流路3の他端5aから第2の熱交換媒体流路5へと流入する方向に循環させている。図中矢印aは、ブライン水の循環方向を示す。ブライン水は、媒体送圧ポンプ8の吐出側を流路71に接続する前に、ブライン水を溜めた容器内にポンプ吸入側を挿入して駆動することで予め流路内に充填されている。あるいは、流路71に密閉可能な補給口を設け、そこから流路71内に充填させても良い。  The medium pressure pump 8 is an electrically driven pump, and has a flow path 71 connecting the suction side to the other end 3a of the first heat exchange medium flow path 3, and a discharge side of the second heat exchange medium flow path 5. The brine water is connected to the flow path 72 connected to the other end 5a of the first heat exchange medium flow path 3 so that the brine water is circulated in the direction of flowing from the other end 5a of the first heat exchange medium flow path 3 into the second heat exchange medium flow path 5. Yes. Arrow a in the figure indicates the circulation direction of brine water. Before connecting the discharge side of the medium pressure pump 8 to the flow path 71, the brine water is filled in the flow path in advance by inserting and driving the pump suction side into a container in which brine water is stored. . Alternatively, a replenishment port that can be sealed is provided in the flow path 71, and the flow path 71 may be filled from there.

制御手段20は、図示を省略した、CPU(中央処理装置)、I/O(入出力)ポート、ROM(読み出し専用記憶装置)、RAM(読み書き可能な記憶装置)およびタイマー等をそれぞれ備え、それらが信号バスによって接続された構成を有する周知のコンピュータで構成されている。制御手段20の入力側には温度センサ9と、制御手段20をオン/オフするためのメインスイッチ21が、出力側には媒体送圧ポンプ8が電気的に接続されている。制御手段20のROMには、媒体送圧ポンプ8の駆動をオン/オフするためのパラメータとなる所定温度tが予め設定されている。この所定温度tは、1℃〜5℃の範囲を許容設定温度とする。所定温度tの設定としては、システムの設置条件などを考慮して適宜上記範囲より設定するのが好ましい。制御手段20は、温度センサ9が検出する現地温度(地表面温度)t1に基づき媒体送圧ポンプ8の駆動をオン/オフ制御する。  The control means 20 includes a CPU (central processing unit), an I / O (input / output) port, a ROM (read-only storage device), a RAM (read / write storage device), a timer, and the like, which are not shown. Are configured by a well-known computer having a configuration connected by a signal bus. A temperature sensor 9 and a main switch 21 for turning on / off the control means 20 are electrically connected to the input side of the control means 20, and a medium pressure pump 8 is electrically connected to the output side. In the ROM of the control means 20, a predetermined temperature t that is a parameter for turning on / off the drive of the medium pressure pump 8 is set in advance. The predetermined temperature t is set to an allowable set temperature in a range of 1 ° C to 5 ° C. The predetermined temperature t is preferably set from the above range as appropriate in consideration of the installation conditions of the system. The control means 20 performs on / off control of driving of the medium pressure pump 8 based on the local temperature (ground surface temperature) t1 detected by the temperature sensor 9.

このような構成のロードヒーティングの動作について、図3に示すフローチャートに沿って説明する。このシステムは、図3のステップC1において、メインスイッチ21が投入されることで機能する。ステップC1において、メインスイッチ21がオン(投入)されると、ステップC2に進んで温度センサ9からの地表面温度t1が所定温度tよりも低いか否かが判断される。地表面温度t1が所定温度tより低い場合には、日陰地4の表面温度が低く、凍結あるいは凍結の恐れ、あるいは積雪状態にあるものとしてステップC3に進んで媒体送圧ポンプ8をオンする。媒体送圧ポンプ8がオンすると、各流路内のブライン水が管内循環を開始する。  The operation of the load heating having such a configuration will be described with reference to the flowchart shown in FIG. This system functions by turning on the main switch 21 in step C1 of FIG. In step C1, when the main switch 21 is turned on (turned on), the process proceeds to step C2, and it is determined whether or not the ground surface temperature t1 from the temperature sensor 9 is lower than the predetermined temperature t. When the ground surface temperature t1 is lower than the predetermined temperature t, the surface temperature of the shaded ground 4 is low, and the medium pressure pump 8 is turned on by proceeding to step C3 assuming that the surface of the shaded ground 4 is low, freezing or freezing, or in a snowy state. When the medium pressure pump 8 is turned on, the brine water in each flow path starts circulating in the pipe.

そして、第1の熱交換媒体流路3の一端3bから同流路内にブライン水が流れ込むと、太陽光によって温められている日照地2の表面の熱と地中熱を吸熱し、第1の熱交換媒体流路3の他端3aから第3の熱交換媒体流路7を介して第2の熱交換媒体流路5の他端5aへと搬送されて第2の熱交換媒体流路5内に導入される。導入されたブライン水は、第2の熱交換媒体流路5内を一端5bに向かって移動するが、この移動中にブライン水の熱が日陰地4表面に伝達されて日陰地4を温める。第2の熱交換媒体流路5内を移動したブライン水は、第2の熱交換媒体流路5内の一端5bから抜けて連結流路6を介し再び第1の熱交換媒体流路3へと戻される。  And if brine water flows in into the flow path from the one end 3b of the 1st heat exchange medium flow path 3, it will absorb the heat of the surface of the sunshine 2 heated by sunlight, and underground heat, and will 1st The second heat exchange medium flow path is conveyed from the other end 3a of the heat exchange medium flow path 3 to the other end 5a of the second heat exchange medium flow path 5 via the third heat exchange medium flow path 7. 5 is introduced. The introduced brine water moves in the second heat exchange medium flow path 5 toward the one end 5b. During this movement, the heat of the brine water is transmitted to the surface of the shaded area 4 to warm the shaded area 4. The brine water that has moved in the second heat exchange medium flow path 5 escapes from the one end 5b in the second heat exchange medium flow path 5 and returns to the first heat exchange medium flow path 3 through the connection flow path 6. Is returned.

媒体送圧ポンプ8がオンした後、制御手段20は定期的に温度センサ9からの情報を取込んでいて、ステップC4において、温度センサ9からの検出温度となる地表面温度t1が所定温度tよりも高いか否かが判断される。地表面温度t1が所定温度tより高い場合には、ブライン水の熱によって日陰地4が温められたものとして、ステップC5に進み、媒体送圧ポンプ8の駆動をオフしてステップC6に進む。ステップC6ではメインスイッチ21のオフ状態が判断され、オフされていなければステップC2に戻り、ステップC2からステップC6までの一連の動作と判断を繰り返す。ステップC6においてメインスイッチ21がオフ状態であると、当該システムを利用しないものとしてこの制御を終える。  After the medium pressure pump 8 is turned on, the control means 20 periodically takes in information from the temperature sensor 9, and in step C4, the ground surface temperature t1 that is the detected temperature from the temperature sensor 9 is a predetermined temperature t. It is judged whether it is higher. When the ground surface temperature t1 is higher than the predetermined temperature t, it is assumed that the shaded ground 4 has been warmed by the heat of the brine water, the process proceeds to Step C5, the drive of the medium pressure pump 8 is turned off, and the process proceeds to Step C6. In step C6, the OFF state of the main switch 21 is determined. If it is not OFF, the process returns to step C2, and the series of operations from step C2 to step C6 and determination are repeated. If the main switch 21 is off in step C6, the control is terminated assuming that the system is not used.

このように、媒体送圧ポンプ8がオンされてブライン水が循環すると、第1の熱交換媒体流路3内を通過する際に、太陽光で温められた地表面の熱と当該領域内の地中熱をブライン水が吸収して温まり、この温められたブライン水が第2の熱交換媒体流路5へと供給される。このため、従来のように高価なヒートポンプを用いる必要がなく、コスト上昇を抑えられるとともに、効率よく第2の熱交換媒体流路5内へブライン水を供給することができ、日陰地の凍結解消や防止と共に融雪を行える。また、日陰地4の地表面温度t1を温度センサ9で検出し、その温度が予め設定された所定温度tよりも低い場合に媒体送圧ポンプ8をオンし、地表面温度t1が所定温度tよりも高くなると媒体送圧ポンプ8をオフするので、必要な時期にだけ第1の熱交換媒体流路3から第2の熱交換媒体流路5へ温かいブライン水を供給することができ、効率的なブライン水の循環を行えるとともに、無駄なポンプ駆動を低減することができ、ロードヒーティングシステムでの消費エネルギーを低減でき、環境負荷を軽減しつつもランニングコストを低減することができる。  Thus, when the medium pressure pump 8 is turned on and the brine water circulates, when passing through the first heat exchange medium flow path 3, the heat of the ground surface heated by sunlight and The brine heat is absorbed by the brine water and warmed, and the warmed brine water is supplied to the second heat exchange medium flow path 5. For this reason, it is not necessary to use an expensive heat pump as in the prior art, and the increase in cost can be suppressed, and brine water can be efficiently supplied into the second heat exchange medium flow path 5 and freezing of shaded areas can be eliminated. It can melt snow together with prevention. Further, the surface temperature t1 of the shaded area 4 is detected by the temperature sensor 9, and when the temperature is lower than the predetermined temperature t set in advance, the medium pressure pump 8 is turned on, and the ground surface temperature t1 becomes the predetermined temperature t. Since the medium pressure pump 8 is turned off at a higher temperature, warm brine water can be supplied from the first heat exchange medium flow path 3 to the second heat exchange medium flow path 5 only when necessary, Thus, it is possible to circulate the brine water, reduce unnecessary pump driving, reduce energy consumption in the road heating system, and reduce running costs while reducing environmental load.

本形態では、日陰地4の地表面温度t1を検出する第1温度検出手段としての温度センサ9を日陰地4に設置したが、このような形態に限定されるものではなく、例えば、連結流路6の一端6a側に設け、第2の熱交換媒体流路5を通過したブライン水の温度を検出し、その温度情報に基づき媒体送圧ポンプ8のオンオフ制御を制御手段20で行うようにしてもよいし、あるいは第2の熱交換媒体流路5内に温度センサ9を設け、第2の熱交換媒体流路5内を通過しているブライン水の温度を検出し、その温度情報に基づき媒体送圧ポンプ8のオンオフ制御を制御手段20で行うようにしてもよい。  In the present embodiment, the temperature sensor 9 as the first temperature detecting means for detecting the ground surface temperature t1 of the shaded area 4 is installed in the shaded area 4. However, the present invention is not limited to such a form. The temperature of the brine water that is provided on one end 6a side of the path 6 and passes through the second heat exchange medium flow path 5 is detected, and the control means 20 performs on / off control of the medium pressure pump 8 based on the temperature information. Alternatively, a temperature sensor 9 is provided in the second heat exchange medium flow path 5, and the temperature of the brine water passing through the second heat exchange medium flow path 5 is detected, and the temperature information is On the basis of this, on / off control of the medium pressure pump 8 may be performed by the control means 20.

(第2の実施形態)
この実施形態は、第1の実施形態の構成に地中内採熱部30の構成を追加したものである。地中内採熱部30は、第3の熱交換媒体流路7の途中に設けられられている。地中内採熱部30は、地中に略垂直に設けられた地中熱交換井31と、管材で構成されていて、地中熱交換井31の内部に挿入されたU字状流路32とを有している。地中熱交換井31の内部には地中熱交換井31の温度(地中内温度)t2を検出する採熱温度検出手段としての温度センサ37が設けられている。
(Second Embodiment)
In this embodiment, the structure of the underground heat collecting unit 30 is added to the structure of the first embodiment. The underground heat collection unit 30 is provided in the middle of the third heat exchange medium flow path 7. The underground heat collection unit 30 is composed of a ground heat exchange well 31 provided substantially vertically in the ground, and a pipe, and is a U-shaped channel inserted into the underground heat exchange well 31. 32. Inside the underground heat exchanging well 31, a temperature sensor 37 is provided as a heat collection temperature detecting means for detecting the temperature (underground temperature) t2 of the underground heat exchanging well 31.

第3の熱交換媒体流路7には、地中内採熱部30の上流側と下流側を繋ぐバイパス流路73が、媒体送圧ポンプ8よりも媒体搬送方向上流側の流路71に設けられている。バイパス流路73には、電磁開閉弁35が設けられている。電磁開閉弁35よりも媒体搬送方向下流には、U字状流路32の両端がヘッダ33,34を介して接続されていて、電磁開閉弁35が開弁している際に、ブライン水がU字状流路32を循環するように構成されている。日照地2には、その地表面温度t3を検出する第2温度検出手段としての温度センサ36が配設されている。  In the third heat exchange medium flow path 7, a bypass flow path 73 that connects the upstream side and the downstream side of the underground heat collecting unit 30 is connected to the flow path 71 upstream of the medium feed pump 8 in the medium conveyance direction. Is provided. The bypass channel 73 is provided with an electromagnetic open / close valve 35. Downstream of the electromagnetic on-off valve 35 in the medium conveyance direction, both ends of the U-shaped flow path 32 are connected via headers 33 and 34, and when the electromagnetic on-off valve 35 is opened, brine water is generated. It is configured to circulate through the U-shaped channel 32. The sunshine 2 is provided with a temperature sensor 36 as second temperature detecting means for detecting the ground surface temperature t3.

本形態で用いる制御手段40は、CPU、I/O(入出力)ポート、ROM、RAMおよびタイマー等をそれぞれ備えた周知のコンピュータで構成されている。制御手段40の入力側には温度センサ9,36,37と、制御手段40をオン/オフするためのメインスイッチ21が、出力側には媒体送圧ポンプ8と電磁開閉弁35がそれぞれ電気的に接続されている。制御手段40のROMには、媒体送圧ポンプ8の駆動をオン/オフするためのパラメータとなる所定温度tが予め設定されている。  The control means 40 used in this embodiment is composed of a known computer having a CPU, an I / O (input / output) port, a ROM, a RAM, a timer, and the like. The temperature sensor 9, 36, 37 and the main switch 21 for turning on / off the control means 40 are electrically connected to the input side of the control means 40, and the medium pressure pump 8 and the electromagnetic on-off valve 35 are electrically connected to the output side, respectively. It is connected to the. In the ROM of the control means 40, a predetermined temperature t, which is a parameter for turning on / off the drive of the medium pressure pump 8, is preset.

制御手段40は、温度センサ9が検出する現地温度(地表面温度)t1に基づき媒体送圧ポンプ8の駆動をオン/オフ制御すると共に、温度センサ36,37が検出する検出温度t3、t2基づき、開閉電磁弁35の開閉を制御する。  The control means 40 performs on / off control of the drive of the medium pressure pump 8 based on the local temperature (ground surface temperature) t1 detected by the temperature sensor 9, and based on the detected temperatures t3 and t2 detected by the temperature sensors 36 and 37. The opening / closing of the opening / closing electromagnetic valve 35 is controlled.

本形態においては、図5のステップD1において、メインスイッチ21が投入されることで機能する。ステップD1において、メインスイッチ21がオン(投入)されると、ステップD2に進んで温度センサ9からの地表面温度t1が所定温度tよりも低いか否かが判断される。地表面温度t1が所定温度tより低い場合には、日陰地4の表面温度が低く、凍結あるいは凍結の恐れ、または積雪状態にあるものとしてステップD3に進んで媒体送圧ポンプ8をオンする。媒体送圧ポンプ8がオンすると、各流路内のブライン水が管内循環を開始する。  In this embodiment, it functions by turning on the main switch 21 in step D1 of FIG. In step D1, when the main switch 21 is turned on (turned on), the routine proceeds to step D2, where it is determined whether or not the ground surface temperature t1 from the temperature sensor 9 is lower than the predetermined temperature t. When the ground surface temperature t1 is lower than the predetermined temperature t, the surface temperature of the shaded ground 4 is low, and the medium pressure pump 8 is turned on by proceeding to step D3 assuming that the surface temperature of the shaded ground 4 is low, freezing or freezing, or snowy. When the medium pressure pump 8 is turned on, the brine water in each flow path starts circulating in the pipe.

第1の熱交換媒体流路3の一端3bから同流路内にブライン水が流れ込むと、太陽光によって温められている地表面の熱と地中熱を吸熱し、第1の熱交換媒体流路3の他端3aから第3の熱交換媒体流路7を介して第2の熱交換媒体流路5の他端5aへと搬送されて、第2の熱交換媒体流路5内に導入される。導入されたブライン水は、第2の熱交換媒体流路5内を一端5bに向かって移動するが、この移動中にブライン水の熱が日陰地4に伝達されて日陰地4を温める。第2の熱交換媒体流路5内を移動したブライン水は、第2の熱交換媒体流路5内の一端5aから抜けて連結流路6を介して再び第1の熱交換媒体流路3へと戻される。  When brine water flows from one end 3b of the first heat exchange medium flow path 3 into the flow path, the heat of the ground surface heated by sunlight and the underground heat are absorbed, and the first heat exchange medium flow It is conveyed from the other end 3a of the path 3 to the other end 5a of the second heat exchange medium flow path 5 via the third heat exchange medium flow path 7 and introduced into the second heat exchange medium flow path 5. Is done. The introduced brine water moves in the second heat exchange medium flow path 5 toward the one end 5b. During this movement, the heat of the brine water is transmitted to the shaded area 4 to warm the shaded area 4. The brine water that has moved in the second heat exchange medium flow path 5 escapes from one end 5a in the second heat exchange medium flow path 5 and again passes through the connection flow path 6 to the first heat exchange medium flow path 3. Returned to.

ステップD4では、温度センサ36からの検出温度となる地表面温度t3と温度センサ37からの検出温度となる地中内温度t2とを比較し、温度センサ37からの地中内温度t2が温度センサ36からの地表面温度t3よりも高い場合には、ステップD5に進んで電磁開閉弁35をオンして開く。電磁開閉弁35が開くと、ブライン水が流路71からパイパス流路73を経てU字状流路32へと導入される。導入されたブライン水は、U字状流路32内を通過中に地中熱を吸収するので、夜間等において第1の熱交換媒体流路3において十分な熱を吸熱できない場合でも十分に温められてパイパス流路73から流路72を経て第2の熱交換媒体流路5へと流れる。このため、第1の熱交換媒体流路3側で温度変動があるような環境下においても、ブライン水の温度低下が抑制され、より安定して地表面の凍結防止や凍結解消と共に融雪を行える。  In step D4, the ground surface temperature t3 that is the detected temperature from the temperature sensor 36 is compared with the underground temperature t2 that is the detected temperature from the temperature sensor 37, and the underground temperature t2 from the temperature sensor 37 is the temperature sensor. When it is higher than the ground surface temperature t3 from 36, the routine proceeds to step D5, where the electromagnetic on-off valve 35 is turned on and opened. When the electromagnetic opening / closing valve 35 is opened, brine water is introduced from the flow path 71 through the bypass flow path 73 into the U-shaped flow path 32. The introduced brine water absorbs geothermal heat while passing through the U-shaped channel 32, so that it can be sufficiently warmed even when the first heat exchange medium channel 3 cannot absorb sufficient heat at night or the like. Then, it flows from the bypass flow path 73 to the second heat exchange medium flow path 5 via the flow path 72. For this reason, even in an environment where there is a temperature fluctuation on the first heat exchange medium flow path 3 side, the temperature drop of the brine water is suppressed, and snow melting can be performed more stably while preventing freezing of the ground surface and freezing. .

ステップD6においては、温度センサ37からの地中内温度t2が温度センサ36からの地表面温度t3よりも低いか否かが判断され、低い場合にはステップD7に進んで電磁開閉弁35をオフして閉じる。つまり、地中内温度t2よりも地表面温度t3が高い場合には、第1の熱交換媒体流路3を通過して温められたブライン水をU字状流路32へ導入すると、温度を奪われてしまう事が想定されるので、このような状態においては、あえてU字状流路32へは導入せず、直接第2の熱交換媒体流路5へ流した方が熱効率の点で好ましい。  In step D6, it is determined whether or not the underground temperature t2 from the temperature sensor 37 is lower than the ground surface temperature t3 from the temperature sensor 36. If the underground temperature t2 is lower, the process proceeds to step D7 and the electromagnetic on-off valve 35 is turned off. Then close it. That is, when the ground surface temperature t3 is higher than the underground temperature t2, when the brine water heated through the first heat exchange medium flow path 3 is introduced into the U-shaped flow path 32, the temperature is reduced. In such a state, it is assumed that it is not introduced into the U-shaped flow path 32 but directly flows into the second heat exchange medium flow path 5 in terms of thermal efficiency. preferable.

電磁開閉弁35が閉じられると、ステップD8に進んで、温度センサ9からの地表面温度t1が所定温度tよりも高いか否かが判断される。地表面温度t1が所定温度tより高い場合には、ブライン水の熱によって日陰地4が温められたものとして、ステップD9に進み媒体送圧ポンプ8の駆動をオフしてステップD10に進む。ステップD10ではメインスイッチ21のオフ状態が判断され、オフされていなければステップD2に戻り、ステップD2からステップD10までの一連の動作と判断を繰り返す。ステップD10においてメインスイッチ21がオフ状態であると、当該システムを利用しないものとしてこの制御を終える。  When the electromagnetic opening / closing valve 35 is closed, the routine proceeds to step D8, where it is determined whether or not the ground surface temperature t1 from the temperature sensor 9 is higher than the predetermined temperature t. When the ground surface temperature t1 is higher than the predetermined temperature t, it is assumed that the shaded ground 4 has been warmed by the heat of the brine water, the process proceeds to Step D9, the drive of the medium pressure pump 8 is turned off, and the process proceeds to Step D10. In step D10, the OFF state of the main switch 21 is determined. If it is not OFF, the process returns to step D2, and the series of operations from step D2 to step D10 and determination are repeated. If the main switch 21 is off in step D10, the control is terminated assuming that the system is not used.

本形態において、地中内温度を検出する採熱温度検出手段としての温度センサ37を地中熱交換井31内に設けているが、このような形態に限定されるものではない。例えば、ヘッダ34やヘッダ34と媒体送圧ポンプ8とをつなぐパイパス流路上に設けてもよい。  In the present embodiment, the temperature sensor 37 as a heat collection temperature detecting means for detecting the underground temperature is provided in the underground heat exchange well 31, but is not limited to such a configuration. For example, the header 34 or the header 34 may be provided on a bypass flow path that connects the medium pressure pump 8.

日照地2の地表面温度を検出する第2温度検出手段として温度センサ36を日照地2に設けているが、第1の熱交換媒体流路3内に設けて同流路内を通過しているブライン水の温度、あるいは流路71に設けて第1の熱交換媒体流路3を通過したブライン水の温度、すなわち、第3の熱交換媒体流路7内のブライン水温度を検出してもよい。  A temperature sensor 36 is provided in the sunshine 2 as the second temperature detecting means for detecting the ground surface temperature of the sunshine 2, but is provided in the first heat exchange medium flow path 3 and passes through the flow path. The temperature of the brine water that has passed through the first heat exchange medium flow path 3 provided in the flow path 71, that is, the temperature of the brine water in the third heat exchange medium flow path 7 is detected. Also good.

すなわち、温度センサ37の機能としては、地中内温度あるいはそれに相関する地中熱交換井31の採熱管としてのU字状流路32内あるいはU字状流路32内を通過したブライン水の温度を検出できればよく、温度センサ36の機能としては、日照地2の地表面温度あるいは第1の熱交換媒体流路3を通過しているあるいは通過したブライン水の温度を検出できればよい。  That is, as a function of the temperature sensor 37, the brine water that has passed through the U-shaped flow path 32 or the U-shaped flow path 32 as the heat collecting pipe of the underground heat exchange well 31 correlated with the underground temperature. The temperature sensor 36 only needs to be able to detect the temperature. The temperature sensor 36 only needs to be able to detect the surface temperature of the sunshine 2 or the temperature of the brine water passing through or passing through the first heat exchange medium flow path 3.

本形態では、地中内温度t2と地表面温度t3とを比較して、その結果に応じて電磁弁35の開閉を制御しているが、別な制御形態としても良い。例えば、温度センサ36を流路71に設けて第1の熱交換媒体流路3を通過して暖められたブライン水の温度を検出するようにし、温度センサ37をヘッダ34と媒体送圧ポンプ8とをつなぐ流路に設けて地中熱によって暖められたブライン水の温度を検出する場合においては、両センサからの温度情報(検出温度)を比較し、温度センサ37からの温度情報が温度センサ36からの温度情報よりも高い場合には、電磁下開閉弁35を開き、温度センサ37からの温度情報が温度センサ36からの温度情報よりも低い場合には電磁下開閉弁35を閉じるように制御手段40で制御するようにしても良い。  In this embodiment, the underground temperature t2 and the ground surface temperature t3 are compared, and the opening and closing of the electromagnetic valve 35 is controlled according to the result. However, another control form may be used. For example, the temperature sensor 36 is provided in the flow path 71 so as to detect the temperature of the brine water heated through the first heat exchange medium flow path 3, and the temperature sensor 37 is connected to the header 34 and the medium pressure pump 8. In the case of detecting the temperature of the brine water that is provided in the flow path connecting the two and heated by the underground heat, the temperature information (detected temperature) from both sensors is compared, and the temperature information from the temperature sensor 37 is the temperature sensor. When the temperature information from the temperature sensor 37 is lower than the temperature information from the temperature sensor 36, the electromagnetic lower on-off valve 35 is opened. You may make it control by the control means 40. FIG.

(第3の実施形態)
この実施形態は、図6に示すように、第2の実施形態の構成に、ブライン水の一部を貯める貯留部51と、貯留部51に貯められたブライン水を加熱して、加熱後のブライン水を貯留部51に戻す補助熱源供給手段50の構成を追加したものである。
(Third embodiment)
In this embodiment, as shown in FIG. 6, in the configuration of the second embodiment, the storage unit 51 that stores a part of brine water and the brine water stored in the storage unit 51 are heated, The configuration of the auxiliary heat source supply means 50 for returning the brine water to the storage unit 51 is added.

貯留部51は、第3の熱交換媒体流路7の一部を構成する流路72に設けられていて、媒体送圧ポンプ8から吐出されたブライン水を溜めている。補助熱源供給手段50は、貯留部51と流路52,53を介して接続された加熱器の一形態であるガス給湯器54と、流路52に設けられ貯留部51内のブライン水をガス給湯器54に対して送圧する補助熱源用駆動ポンプ55とを備えている。流路52はガス給湯器54に対する導入路を構成し、流路53は給湯器54からの排出路を構成する。加熱器としてガス給湯器54を用いるのは汎用性が高く、低コストなためである。このため、本形態ではガス給湯器54へブライン水を導入するのに、媒体送圧ポンプ8と個別に、媒体送圧ポンプ8よりも吐出圧の高いポンプを補助熱源用駆動ポンプ55として用いている。加熱器としてはガス給湯器54に限定されるものではなく、例えばヒートポンプチラー、電気温水器、灯油等ボイラーが挙げられる。  The storage unit 51 is provided in a flow path 72 that constitutes a part of the third heat exchange medium flow path 7 and stores brine water discharged from the medium pressure pump 8. The auxiliary heat source supply means 50 gasses the brine water in the reservoir 51 provided in the channel 52 and a gas water heater 54 that is one form of a heater connected to the reservoir 51 via the channels 52 and 53. And an auxiliary heat source drive pump 55 for supplying pressure to the water heater 54. The flow path 52 constitutes an introduction path for the gas water heater 54, and the flow path 53 constitutes a discharge path from the hot water heater 54. The reason why the gas water heater 54 is used as the heater is because of its high versatility and low cost. Therefore, in this embodiment, in order to introduce the brine water to the gas water heater 54, a pump having a discharge pressure higher than that of the medium pressure pump 8 is used as the auxiliary heat source drive pump 55 separately from the medium pressure pump 8. Yes. The heater is not limited to the gas water heater 54, and examples thereof include a heat pump chiller, an electric water heater, and a boiler such as kerosene.

加熱されたブライン水の排出路となる流路53を直接流路72に接続しないのは、ガス給湯器54によって加熱されたブライン水を、温度の低い第2の熱交換媒体流路5へ直接流してしまうと、第2の熱交換媒体流路5が埋設されている日陰地4に対する熱負荷が大きくなり過ぎるおそれがあるからである。例えば、日陰地4がコンクリートであって、その表面が凍結しているような場合、ガス給湯器54によって加熱されたブライン水の温度は約60℃程度になるので、これをそのまま第2の熱交換媒体流路5へ導入してしまうと、コンクリートとの温度差によりクラック等の発生が考えられる。このような現象が発生しないように、本形態では、給湯器54で加熱されたブライン水を貯留部51内へ戻し、媒体送圧ポンプ8から吐出されたブライン水と混ぜることで温度調整を図っている。また、貯留部51は、各ポンプの吐出圧の差を吸収する機能を備えている。貯留部51には、好ましくは貯留部51内に圧力を少なくとも媒体送圧ポンプ8による送圧と一定に保持するための圧力調整弁を設けるのが好ましい。S  The reason why the flow path 53 serving as a discharge path for the heated brine water is not directly connected to the flow path 72 is that the brine water heated by the gas water heater 54 is directly connected to the second heat exchange medium flow path 5 having a low temperature. This is because if it flows, the heat load on the shaded area 4 in which the second heat exchange medium flow path 5 is embedded may become too large. For example, when the shaded ground 4 is concrete and the surface is frozen, the temperature of the brine water heated by the gas water heater 54 is about 60 ° C., and this is used as the second heat. If it is introduced into the exchange medium flow path 5, the occurrence of cracks or the like can be considered due to the temperature difference from the concrete. In order to prevent such a phenomenon from occurring, in this embodiment, the brine water heated by the water heater 54 is returned into the storage unit 51 and mixed with the brine water discharged from the medium pressure pump 8 to adjust the temperature. ing. Moreover, the storage part 51 is provided with the function which absorbs the difference of the discharge pressure of each pump. The reservoir 51 is preferably provided with a pressure adjusting valve for keeping the pressure at least constant with the pressure supplied by the medium pressure pump 8 in the reservoir 51. S

本形態で用いる制御手段60は、CPU、I/O(入出力)ポート、ROM、RAMおよびタイマー等をそれぞれ備えた周知のコンピュータで構成されている。図7に示すように、制御手段60の入力側には温度センサ9,36,37と、制御手段60をオン/オフするためのメインスイッチ21が、出力側には媒体送圧ポンプ8、電磁開閉弁35、ガス給湯器54の点火スイッチ、補助熱源用駆動ポンプ55がそれぞれ電気的に接続されている。制御手段60のROMには、媒体送圧ポンプ8の駆動をオン/オフするためのパラメータとなる所定温度tが予め設定されている。  The control means 60 used in this embodiment is composed of a known computer having a CPU, an I / O (input / output) port, a ROM, a RAM, a timer, and the like. As shown in FIG. 7, the temperature sensors 9, 36, 37 and the main switch 21 for turning on / off the control means 60 are provided on the input side of the control means 60, and the medium pressure pump 8, electromagnetics are provided on the output side. The on-off valve 35, the ignition switch of the gas water heater 54, and the auxiliary heat source drive pump 55 are electrically connected to each other. In the ROM of the control means 60, a predetermined temperature t that is a parameter for turning on / off the drive of the medium pressure pump 8 is preset.

制御手段60は、温度センサ9が検出する現地温度(地表面温度)t1に基づく媒体送圧ポンプ8の駆動のオン/オフ制御、温度センサ36,37が検出する検出温度t3、t2基づき開閉電磁弁35の開閉制御、及び少なくとも媒体送圧ポンプ8が駆動状態において、温度センサ9からの検出温度t1が所定温度tに満たない場合に補助熱源用駆動ポンプ55を駆動するように制御する。  The control means 60 controls on / off of driving of the medium pressure pump 8 based on the local temperature (ground surface temperature) t1 detected by the temperature sensor 9, and opens and closes electromagnetic waves based on the detected temperatures t3 and t2 detected by the temperature sensors 36 and 37. Control is performed so that the auxiliary heat source drive pump 55 is driven when the detected temperature t1 from the temperature sensor 9 is less than the predetermined temperature t in the open / close control of the valve 35 and at least the medium pressure pump 8 is in the drive state.

このシステムは、図8のステップE1において、メインスイッチ21が投入されることで機能する。ステップE1において、メインスイッチ21がオン(投入)されると、ステップE2に進んで温度センサ9からの地表面温度t1が所定温度tよりも低いか否かが判断される。地表面温度t1が所定温度tより低い場合には、日陰地4の表面温度が低く、凍結あるいは凍結の恐れ、または積雪状態にあるものとしてステップE3に進んで媒体送圧ポンプ8をオンする。媒体送圧ポンプ8がオンすると、各流路内のブライン水が管内循環を開始する。  This system functions by turning on the main switch 21 in step E1 of FIG. In step E1, when the main switch 21 is turned on (turned on), the process proceeds to step E2 where it is determined whether or not the ground surface temperature t1 from the temperature sensor 9 is lower than the predetermined temperature t. When the ground surface temperature t1 is lower than the predetermined temperature t, the surface temperature of the shaded ground 4 is low, and the medium pressure pump 8 is turned on by proceeding to step E3 assuming that the surface of the shaded ground 4 is low, freezing or freezing, or in a snowy state. When the medium pressure pump 8 is turned on, the brine water in each flow path starts circulating in the pipe.

第1の熱交換媒体流路3の一端3bから同流路内にブライン水が流れ込むと、太陽光によって温められている地表面の熱と地中熱を吸熱し、第1の熱交換媒体流路3の他端3aから第3の熱交換媒体流路7を介して第2の熱交換媒体流路5の他端5aへと搬送されて、第2の熱交換媒体流路5内に導入される。導入されたブライン水は、第2の熱交換媒体流路5内を一端5bに向かって移動するが、この移動中にブライン水の熱が日陰地4に伝達されて日陰地4を温める。第2の熱交換媒体流路5内を移動したブライン水は、第2の熱交換媒体流路5内の一端5aから抜けて連結流路6を介して再び第1の熱交換媒体流路3へと戻される。  When brine water flows from one end 3b of the first heat exchange medium flow path 3 into the flow path, the heat of the ground surface heated by sunlight and the underground heat are absorbed, and the first heat exchange medium flow It is conveyed from the other end 3a of the path 3 to the other end 5a of the second heat exchange medium flow path 5 via the third heat exchange medium flow path 7 and introduced into the second heat exchange medium flow path 5. Is done. The introduced brine water moves in the second heat exchange medium flow path 5 toward the one end 5b. During this movement, the heat of the brine water is transmitted to the shaded area 4 to warm the shaded area 4. The brine water that has moved in the second heat exchange medium flow path 5 escapes from one end 5a in the second heat exchange medium flow path 5 and again passes through the connection flow path 6 to the first heat exchange medium flow path 3. Returned to.

ステップE4では、温度センサ36からの検出温度となる地表面温度t3と温度センサ37からの検出温度となる地中内温度t2とを比較し、温度センサ37からの地中内温度t2が温度センサ36からの地表面温度t3よりも高い場合には、ステップD5に進んで、電磁開閉弁35をオンして開く。電磁開閉弁35が開かれると、ブライン水が流路71からパイパス流路73を経てU字状流路32へと導入される。導入されたブライン水は、U字状流路32内を通過中に地中熱を吸収するので、夜間等において第1の熱交換媒体流路3において十分な熱を吸熱できない場合でも十分に温められてパイパス流路73から貯留部51、流路72を経て第2の熱交換媒体流路5へと流れる。このため、第1の熱交換媒体流路3側で温度変動があってもブライン水の温度低下が抑制され、より安定して地表面の凍結解消や融雪を行える。  In step E4, the ground surface temperature t3 that is the detected temperature from the temperature sensor 36 is compared with the underground temperature t2 that is the detected temperature from the temperature sensor 37, and the underground temperature t2 from the temperature sensor 37 is the temperature sensor. When it is higher than the ground surface temperature t3 from 36, the routine proceeds to step D5, where the electromagnetic on-off valve 35 is turned on and opened. When the electromagnetic opening / closing valve 35 is opened, brine water is introduced from the flow path 71 through the bypass flow path 73 into the U-shaped flow path 32. The introduced brine water absorbs geothermal heat while passing through the U-shaped channel 32, so that it can be sufficiently warmed even when the first heat exchange medium channel 3 cannot absorb sufficient heat at night or the like. Then, it flows from the bypass flow path 73 to the second heat exchange medium flow path 5 through the storage portion 51 and the flow path 72. For this reason, even if there is a temperature fluctuation on the first heat exchange medium flow path 3 side, the temperature drop of the brine water is suppressed, and the freezing of the ground surface and snow melting can be performed more stably.

電磁開閉弁35がオンされると、ステップE6に進んで温度センサ9からの地表面温度t1が所定温度tよりも低いか否かが再度判断される。地表面温度t1が所定温度tより低い場合には、地中内採熱部30へブライン水を導入して採熱しても、日陰地4の表面温度が低く、ブライン水から日陰地4へと供給される熱量が不足しているものとして、ステップE7に進んで補助熱源用駆動ポンプ55をオンすると共に点火スイッチがオンしてガス給湯器54を作動する。補助熱源用駆動ポンプ55が作動すると、貯留部51に溜まっているブライン水が流路52からガス給湯器54内へと供給され、作動しているガス給湯器54内を通過することで過熱され、流路53を介して貯留部51へ戻れる。ガス給湯器54によって温められたきブライン水は、貯留部51内において溜まっているブライン水と混合されて温度調整をされて流路72を経て第2の熱交換媒体流路5へと流れる。このため、ブライン水は日陰地4に対する熱負荷を抑えられた状態で第2の熱交換媒体流路5へ供給されるので、熱負荷による不具合を発生することなく無く日陰地4を温める。  When the electromagnetic opening / closing valve 35 is turned on, the routine proceeds to step E6, where it is determined again whether or not the ground surface temperature t1 from the temperature sensor 9 is lower than the predetermined temperature t. When the ground surface temperature t1 is lower than the predetermined temperature t, the surface temperature of the shaded ground 4 is low even if the brine water is introduced into the underground heat collecting unit 30 and collected, and the brine water moves to the shaded ground 4 from the brine water. Assuming that the amount of heat supplied is insufficient, the routine proceeds to step E7 where the auxiliary heat source drive pump 55 is turned on and the ignition switch is turned on to operate the gas water heater 54. When the auxiliary heat source drive pump 55 is activated, the brine water accumulated in the reservoir 51 is supplied from the flow path 52 into the gas water heater 54 and is overheated by passing through the activated gas water heater 54. Then, it can return to the reservoir 51 via the flow path 53. The brine water heated by the gas water heater 54 is mixed with the brine water accumulated in the reservoir 51, adjusted in temperature, and flows to the second heat exchange medium channel 5 via the channel 72. For this reason, since brine water is supplied to the 2nd heat exchange medium flow path 5 in the state in which the heat load with respect to the shaded area 4 was suppressed, the shaded area 4 is warmed without generating the malfunction by a heat load.

ステップE8では、温度センサ9からの地表面温度t1が所定温度tよりも高いか否かが判断される。地表面温度t1が所定温度tより高い場合には、給湯器54により加熱されたブライン水の熱によって日陰地4が温められたものとして、ステップE9に進み補助熱源用駆動ポンプ55をオフすると共に給湯器54を停止してステップE10に進む。  In step E8, it is determined whether or not the ground surface temperature t1 from the temperature sensor 9 is higher than a predetermined temperature t. When the ground surface temperature t1 is higher than the predetermined temperature t, the shaded ground 4 is assumed to have been heated by the heat of the brine water heated by the water heater 54, and the process proceeds to Step E9 to turn off the auxiliary heat source drive pump 55. The water heater 54 is stopped and the process proceeds to Step E10.

このように、給湯器54は、日照地2や地中内採熱部30からの採熱量が低減した場合や、日陰地4の地表面温度が極めて低い場合に作動するので、給湯器54の利用頻度を極力低減しながらも、必要な熱量をブライン水に対して与えることができ、ランニングコストや環境負荷をより低減しながら安定した日陰地4の凍結防止や凍結解消、融雪を行える。  As described above, the water heater 54 operates when the amount of heat collected from the sunshine 2 and the underground heat collecting unit 30 is reduced, or when the ground surface temperature of the shaded ground 4 is extremely low. While reducing the frequency of use as much as possible, the necessary amount of heat can be given to the brine water, and the shaded area 4 can be stably prevented from freezing, defrosting, and melting snow while further reducing running costs and environmental loads.

ステップE10においては、温度センサ37からの地中内温度t2が温度センサ36からの地表面温度t3よりも低いか否かが判断され、低い場合にはステップE11に進んで電磁開閉弁35をオフして閉じる。つまり、地中内温度t2よりも地表面温度t3が高い場合には、第1の熱交換媒体流路3を通過して温められたブライン水をU字状流路32へ導入すると、温度を奪われてしまう場合が想定されるので、このような状態においては、あえてU字状流路32へは導入せず、直接第2の熱交換媒体流路5へ流した方が熱効率の点で好ましい。  In step E10, it is determined whether or not the underground temperature t2 from the temperature sensor 37 is lower than the ground surface temperature t3 from the temperature sensor 36. If lower, the process proceeds to step E11 and the electromagnetic on-off valve 35 is turned off. And close. That is, when the ground surface temperature t3 is higher than the underground temperature t2, when the brine water heated through the first heat exchange medium flow path 3 is introduced into the U-shaped flow path 32, the temperature is reduced. In such a state, it is assumed that it is not introduced into the U-shaped flow path 32 but directly flows into the second heat exchange medium flow path 5 in terms of thermal efficiency. preferable.

電磁開閉弁35が閉じられると、ステップE12に進んで、温度センサ9からの地表面温度t1が所定温度tよりも高いか否かが判断される。地表面温度t1が所定温度tより高い場合には、ブライン水の熱によって日陰地4が温められたものとして、ステップE13に進み媒体送圧ポンプ8の駆動をオフしてステップE14に進む。ステップE14ではメインスイッチ21のオフ状態が判断され、オフされていなければステップE2に戻り、ステップE2〜E14までの一連の動作と判断を繰り返す。ステップE14においてメインスイッチ21がオフ状態であると、当該システムを利用しないものとしてこの制御を終える。  When the electromagnetic opening / closing valve 35 is closed, the routine proceeds to step E12, where it is determined whether or not the ground surface temperature t1 from the temperature sensor 9 is higher than the predetermined temperature t. When the ground surface temperature t1 is higher than the predetermined temperature t, it is assumed that the shaded ground 4 has been warmed by the heat of the brine water, the process proceeds to Step E13, the drive of the medium pressure pump 8 is turned off, and the process proceeds to Step E14. In step E14, the OFF state of the main switch 21 is determined. If it is not OFF, the process returns to step E2, and the series of operations and determinations from steps E2 to E14 are repeated. If the main switch 21 is off in step E14, the control is terminated assuming that the system is not used.

本形態では、補助熱源用駆動ポンプ55のオフとガス給湯器54の停止を、温度センサ9からの地表面温度t1に応じて行っているが、貯留部51内あるいは貯留部51から第2の熱交換媒体流路5との間をつなぐ流路72内に、同貯留部内のブライン水の温度を検出する媒体温度検出手段としての温度センサ38を設けると共に、制御手段60のROMに媒体設定温度を設定し、温度センサ38で検出されるブライン水の温度(検出温度)が媒体設定温度となったときに、補助熱源用駆動ポンプ55をオフ、給湯器54の停止する制御形態であっても良い。  In this embodiment, the auxiliary heat source drive pump 55 is turned off and the gas water heater 54 is stopped according to the ground surface temperature t1 from the temperature sensor 9. A temperature sensor 38 serving as a medium temperature detecting means for detecting the temperature of the brine water in the storage section is provided in the flow path 72 connecting to the heat exchange medium flow path 5, and the medium set temperature is stored in the ROM of the control means 60. Even when the temperature of the brine water (detected temperature) detected by the temperature sensor 38 reaches the medium set temperature, the auxiliary heat source drive pump 55 is turned off and the water heater 54 is stopped. good.

本形態においても、第1及び第2の実施形態で説明したように、各温度センサの位置を変更して、それら設置位置や検出対象を変更した温度センサからの検出温度(温度情報)に基づき各駆動部を制御手段60で制御しても良い。  Also in the present embodiment, as described in the first and second embodiments, the position of each temperature sensor is changed, and based on the detected temperature (temperature information) from the temperature sensor whose installation position or detection target is changed. Each drive unit may be controlled by the control means 60.

(第4の実施形態)
図9は、第1の実施形態に対して媒体送圧ホンプ8に対する制御が異なる形態を示すものである。この形態では、第2の熱交換媒体流路5内または第2の熱交換媒体流路5を通過した熱交換媒体の温度を検出する第1温度検出手段として温度センサ9を用い、第1の熱交換媒体流路3を通過して第2の熱交換媒体流路5へ搬送される熱交換媒体の温度を検出する第2温度検出手段として温度センサ36を用いている。本形態において、温度センサ9は連結流路6の一端6aに、温度センサ36は第3の熱交換媒体流路7の流路72にそれぞれ設けている。
(Fourth embodiment)
FIG. 9 shows a mode in which the control for the medium pressure pump 8 is different from that in the first embodiment. In this embodiment, the temperature sensor 9 is used as the first temperature detecting means for detecting the temperature of the heat exchange medium in the second heat exchange medium flow path 5 or passed through the second heat exchange medium flow path 5, and the first A temperature sensor 36 is used as second temperature detection means for detecting the temperature of the heat exchange medium that passes through the heat exchange medium flow path 3 and is conveyed to the second heat exchange medium flow path 5. In this embodiment, the temperature sensor 9 is provided at one end 6 a of the connection flow path 6, and the temperature sensor 36 is provided at the flow path 72 of the third heat exchange medium flow path 7.

図9において、符号70は媒体送圧ポンプ8の駆動を制御する制御手段を示す。この制御手段70は、上述の制御手段同様、周知のコンピュータで構成されている。制御手段70の入力側には温度センサ9、36とメインスイッチ21が接続され、出力側には媒体送圧ポンプ8が接続されている。制御手段70のROMには、媒体送圧ポンプ8の駆動をオフするためのパラメータとなる所定温度差Δtが予め設定されている。  In FIG. 9, reference numeral 70 indicates control means for controlling the drive of the medium pressure pump 8. The control means 70 is constituted by a known computer, like the above-described control means. Temperature sensors 9 and 36 and the main switch 21 are connected to the input side of the control means 70, and the medium pressure pump 8 is connected to the output side. In the ROM of the control means 70, a predetermined temperature difference Δt that is a parameter for turning off the drive of the medium pressure pump 8 is set in advance.

制御手段70は、メインスイッチ21が操作されると、媒体送圧ポンプ8を駆動すると共に、温度センサ9と温度センサ36との温度差Δt1を算出し、この算出温度差Δt1に基づき媒体送圧ポンプ8の駆動をオフ制御する。  When the main switch 21 is operated, the control means 70 drives the medium pressure pump 8 and calculates the temperature difference Δt1 between the temperature sensor 9 and the temperature sensor 36. Based on this calculated temperature difference Δt1, the medium pressure is supplied. The drive of the pump 8 is turned off.

このような構成のロードヒーティングの動作について、図10に示すフローチャートに沿って説明する。このシステムは、図10のステップF1において、メインスイッチ21がオンされることで機能し、ステップF2に進んで媒体送圧ポンプ8の駆動をオンする。媒体送圧ポンプ8がオンすると、各流路内のブライン水が管内循環を開始する。そして第1の熱交換媒体流路3の一端3bから同流路内にブライン水が流れ込むと、太陽光によって温められている日照地2の表面の熱と地中熱を吸熱し、第1の熱交換媒体流路3の他端3aから第3の熱交換媒体流路7を介して第2の熱交換媒体流路5の他端5aへと搬送されて第2の熱交換媒体流路5内に導入される。導入されたブライン水は、第2の熱交換媒体流路5内を一端5bに向かって移動するが、この移動中にブライン水の熱が日陰地4表面に伝達されて日陰地4を温める。第2の熱交換媒体流路5内を移動したブライン水は、第2の熱交換媒体流路5内の一端5bから抜けて連結流路6を介し再び第1の熱交換媒体流路3へと戻される。  The operation of the load heating having such a configuration will be described with reference to the flowchart shown in FIG. This system functions when the main switch 21 is turned on in step F1 of FIG. 10, and proceeds to step F2 to turn on the driving of the medium pressure pump 8. When the medium pressure pump 8 is turned on, the brine water in each flow path starts circulating in the pipe. When brine water flows into the first heat exchange medium flow path 3 from the one end 3b of the first heat exchange medium flow path 3, the surface heat and underground heat of the sunshine 2 heated by sunlight are absorbed. The second heat exchange medium flow path 5 is transported from the other end 3a of the heat exchange medium flow path 3 to the other end 5a of the second heat exchange medium flow path 5 through the third heat exchange medium flow path 7. Introduced in. The introduced brine water moves in the second heat exchange medium flow path 5 toward the one end 5b. During this movement, the heat of the brine water is transmitted to the surface of the shaded area 4 to warm the shaded area 4. The brine water that has moved in the second heat exchange medium flow path 5 escapes from the one end 5b in the second heat exchange medium flow path 5 and returns to the first heat exchange medium flow path 3 through the connection flow path 6. Is returned.

媒体送圧ポンプ8がオンした後、制御手段70は、ステップF3に進んで、温度センサ9、36から温度情報t4、t5を取り込んで温度差Δt1を算出し、ステップF4に進む。ステップF4では、算出温度差Δt1と所定温度差Δtとを比較して、算出温度差Δt1が所定温度差Δt以下となったか否かが判断される。算出温度差Δt1が所定温度差Δt以下となった場合には、ブライン水の熱によって日陰地4が温められてブライン水の温度差がなくなったものとしてステップF4に進み、媒体送圧ポンプ8の駆動をオフし、この制御を終える。算出温度差Δt1が所定温度差Δt以下となるまでは、媒体送圧ポンプ8のオン状態とする。  After the medium pressure pump 8 is turned on, the control means 70 proceeds to step F3, takes temperature information t4, t5 from the temperature sensors 9, 36, calculates the temperature difference Δt1, and proceeds to step F4. In step F4, the calculated temperature difference Δt1 is compared with the predetermined temperature difference Δt to determine whether or not the calculated temperature difference Δt1 is equal to or less than the predetermined temperature difference Δt. If the calculated temperature difference Δt1 is equal to or less than the predetermined temperature difference Δt, the shaded ground 4 is warmed by the heat of the brine water and the temperature difference of the brine water disappears, and the process proceeds to step F4. The drive is turned off and this control is finished. Until the calculated temperature difference Δt1 becomes equal to or smaller than the predetermined temperature difference Δt, the medium pressure pump 8 is kept on.

このように、媒体送圧ポンプ8のオンオフ制御を行っても、必要な時期にだけ第1の熱交換媒体流路3から第2の熱交換媒体流路5へ温かいブライン水を供給することができ、効率的なブライン水の循環を行えるとともに、無駄なポンプ駆動を低減することができ、ロードヒーティングシステムでの消費エネルギーを低減でき、環境負荷を軽減しつつもランニングコストを低減することができる。  As described above, even if the on / off control of the medium pressure pump 8 is performed, the warm brine water can be supplied from the first heat exchange medium flow path 3 to the second heat exchange medium flow path 5 only when necessary. It is possible to efficiently circulate brine water, reduce unnecessary pump drive, reduce energy consumption in the road heating system, and reduce running costs while reducing environmental load. it can.

本実施形態のように、温度センサ9,36から温度情報t4,t5を取り込んで温度差Δt1を算出し、この算出温度差Δt1と所定温度差Δtとの比較結果に基づき、第2、第3の実施形態を実行するようにしても良い。また、媒体送圧モータ8の駆動形態としては、メインスイッチ21の操作によるものではなく、周知のタイマーを各制御手段と接続し、タイマーによるオンオフ制御するようにしても良い。  As in the present embodiment, the temperature information t4, t5 is taken from the temperature sensors 9, 36 to calculate the temperature difference Δt1, and based on the comparison result between the calculated temperature difference Δt1 and the predetermined temperature difference Δt, the second and third The embodiment may be executed. Further, the driving mode of the medium pressure supply motor 8 is not based on the operation of the main switch 21, but a known timer may be connected to each control means so as to perform on / off control by the timer.

各実施形態において、第1の熱交換媒体流路3は、日照地2に埋設した形態としたが、例えば、建物16の屋根17や壁に設置しても良い。このような場所に第1の熱交換媒体流路を設置するにはケーシング内に流路が形成されている周知の集熱器を用いてもよい。  In each embodiment, although the 1st heat exchange medium flow path 3 was set as the form embed | buried under the sunlight place 2, you may install in the roof 17 and wall of the building 16, for example. In order to install the first heat exchange medium flow path in such a place, a known heat collector in which a flow path is formed in the casing may be used.

各実施形態においては、様々な地形や建物の条件を考慮して日照地2の領域を日陰部4の領域よりも小さくし、第1の熱交換媒体流路3の全長を第2の熱交換媒体流路5の全長よりも短くした。しかし、日照地2の領域が日陰部4の領域を広く取れる場合には、第1の熱交換媒体流路3の全長を長くして採熱効率を高めることができるため、より効率的なシステム構成となり、第3の実施形態においてはガス給湯器54の使用損度を極めて少なくできると推定される。  In each embodiment, in consideration of various terrain and building conditions, the area of the sunshine 2 is made smaller than the area of the shaded portion 4, and the total length of the first heat exchange medium flow path 3 is changed to the second heat exchange. It was made shorter than the full length of the medium flow path 5. However, when the area of the sunshine 2 can cover the area of the shaded part 4, the overall length of the first heat exchange medium flow path 3 can be increased to increase the heat collection efficiency. Thus, in the third embodiment, it is estimated that the use loss degree of the gas water heater 54 can be extremely reduced.

本発明の第1の実施形態を示すロードヒーティングシステムの全体構成を示す斜視図である。  1 is a perspective view showing an overall configuration of a road heating system showing a first embodiment of the present invention. 図1に示すロードヒーティングシステムの平面視図でする。  It is a top view of the road heating system shown in FIG. 第1の実施形態の制御動作を示すフローチャートである。  It is a flowchart which shows the control operation of 1st Embodiment. 本発明の第2の実施形態を示すロードヒーティングシステムの全体構成を示す斜視図である。  It is a perspective view which shows the whole structure of the road heating system which shows the 2nd Embodiment of this invention. 第2の実施形態の制御動作を示すフローチャートである。  It is a flowchart which shows the control action of 2nd Embodiment. 本発明の第3の実施形態を示すロードヒーティングシステムの全体構成を示す斜視図である。  It is a perspective view which shows the whole structure of the road heating system which shows the 3rd Embodiment of this invention. 第3の実施形態における制御手段とそれにつながる構成要素のブロック図である。  It is a block diagram of the control means in the 3rd Embodiment, and the component connected to it. 第3の実施形態の制御動作を示すフローチャートである。  It is a flowchart which shows the control action of 3rd Embodiment. 第3の実施形態における制御手段とそれにつながる構成要素のブロック図である。  It is a block diagram of the control means in the 3rd Embodiment, and the component connected to it. 第4の実施形態の制御動作を示すフローチャートである。  It is a flowchart which shows the control operation of 4th Embodiment.

符号の説明Explanation of symbols

1 ロードヒーティングシステム
2 太陽光が照射される領域
3 第1の熱交換媒体流路
3a 第1の熱交換媒体流路の他端
3b 第1の熱交換媒体流路の一端
4 太陽光が照射されない領域
5 第2の熱交換媒体流路
5a 第2の熱交換媒体流路の他端
5b 第2の熱交換媒体流路の一端
7 第3の熱交換媒体流路
8 媒体送圧ポンプ
9 第1温度検出手段
20 制御手段
30 地中内採熱部
35 電磁開閉弁
36 第2温度検出手段
37 採熱温度検出手段
50 補助熱源供給手段
51 貯留部
52,53 流路
54 加熱器
55 補助熱源用駆動ポンプ
73 バイパス流路
t 所定温度
t1 検出温度
t2 検出温度
t3 検出温度
DESCRIPTION OF SYMBOLS 1 Road heating system 2 Area | region 3 irradiated with sunlight 3rd 1st heat exchange medium flow path 3a The other end 3b of the 1st heat exchange medium flow path 4 One end of the 1st heat exchange medium flow path 4 Sunlight irradiation Region 5 not to be processed Second heat exchange medium flow path 5a Second heat exchange medium flow path other end 5b Second heat exchange medium flow path one end 7 Third heat exchange medium flow path 8 Medium pressure pump 9 1 temperature detection means 20 control means 30 underground heat collection part 35 electromagnetic on-off valve 36 second temperature detection means 37 heat collection temperature detection means 50 auxiliary heat source supply means 51 storage parts 52, 53 channel 54 heater 55 for auxiliary heat source Drive pump 73 Bypass flow path t Predetermined temperature t1 Detection temperature t2 Detection temperature t3 Detection temperature

Claims (6)

太陽光が照射される領域に配設された第1の熱交換媒体流路と、
太陽光が照射されない領域の地中内に埋設され、その一端が第1の熱交換媒体流路の一端に接続された第2の熱交換媒体流路と、
第1の熱交換媒体流路の他端と第2の熱交換媒体流路の他端とを連結する第3の熱交換媒体流路と、
第3の熱交換媒体流路に配設され、第3の熱交換媒体流路を介して第1の熱交換媒体流路から第2の熱交換媒体流路へと熱交換媒体を循環させる媒体送圧ポンプとを有することを特徴とするロードヒーティングシステム。
A first heat exchange medium flow path disposed in a region irradiated with sunlight;
A second heat exchange medium flow path embedded in the ground of a region not irradiated with sunlight, one end of which is connected to one end of the first heat exchange medium flow path,
A third heat exchange medium flow path connecting the other end of the first heat exchange medium flow path and the other end of the second heat exchange medium flow path;
A medium that is disposed in the third heat exchange medium flow path and circulates the heat exchange medium from the first heat exchange medium flow path to the second heat exchange medium flow path via the third heat exchange medium flow path. A load heating system comprising a pressure pump.
請求項1記載のロードヒーティングシステムにおいて、
前記太陽光が照射されない領域の地表面温度または第2の熱交換媒体流路を通過している熱交換媒体の温度、あるいは第2の熱交換媒体流路を通過した熱交換媒体の温度を検出する第1温度検出手段と、
前記媒体送圧ポンプの駆動を制御する制御手段とを有し、
前記制御手段は、第1温度検出手段からの検出温度が予め設定された所定温度になると、前記媒体送圧ポンプを駆動することを特徴とするロードヒーティングシステム。
The road heating system according to claim 1, wherein
Detecting the surface temperature of the area not irradiated with sunlight, the temperature of the heat exchange medium passing through the second heat exchange medium flow path, or the temperature of the heat exchange medium passing through the second heat exchange medium flow path First temperature detecting means for
Control means for controlling the drive of the medium pressure pump,
The load heating system, wherein the control means drives the medium pressure pump when the temperature detected by the first temperature detection means reaches a predetermined temperature set in advance.
請求項1または2記載のロードヒーティングシステムにおいて、
第3の熱交換媒体流路の途中に、地中内採熱部を設けたことを特徴とするロードヒーティングシステム。
The road heating system according to claim 1 or 2,
A road heating system comprising an underground heat collecting section in the middle of the third heat exchange medium flow path.
請求項3記載のロードヒーティングシステムにおいて、
前記地中内採熱部の上流側と下流側に位置する第3の熱交換媒体流路を連結するバイパス流路と、
前記バイパス流路に設けられた電磁開閉弁と、
前記太陽光が照射される領域の温度または第1の熱交換媒体流路を通過している熱交換媒体の温度、あるいは第1の熱交換媒体流路を通過した熱交換媒体の温度を検出する第2温度検出手段と、
前記地中内採熱部内の温度または前記地中内採熱部を通過している熱交換媒体の温度、あるいは前記地中内採熱部を通過した熱交換媒体の温度を検出する採熱温度検出手段とを有し、
前記地中内採熱部を前記電磁開閉弁よりも媒体搬送方向下流側の位置でバイパス流路に接続し、
前記制御手段は、第2温度検出手段からの検出温度と前記採熱温度検出手段からの検出温度とを比較し、前記採熱温度検出手段からの検出温度が第2温度検出手段からの検出温度よりも高い場合には前記電磁開閉弁を開弁制御し、前記採熱温度検出手段からの検出温度が第2温度検出手段からの検出温度よりも低い場合には前記電磁開閉弁を閉弁制御することを特徴とするロードヒーティングシステム。
The road heating system according to claim 3,
A bypass flow path connecting a third heat exchange medium flow path located upstream and downstream of the underground heat collection unit;
An electromagnetic on-off valve provided in the bypass flow path;
The temperature of the region irradiated with sunlight, the temperature of the heat exchange medium passing through the first heat exchange medium flow path, or the temperature of the heat exchange medium passing through the first heat exchange medium flow path is detected. Second temperature detecting means;
The heat collection temperature for detecting the temperature in the underground heat collection unit, the temperature of the heat exchange medium passing through the underground heat collection unit, or the temperature of the heat exchange medium passing through the underground heat collection unit Detecting means,
Connecting the underground heat collection section to the bypass flow path at a position downstream of the electromagnetic on-off valve in the medium conveyance direction,
The control means compares the detection temperature from the second temperature detection means with the detection temperature from the heat collection temperature detection means, and the detection temperature from the heat collection temperature detection means is the detection temperature from the second temperature detection means. If the detected temperature from the heat collection temperature detecting means is lower than the detected temperature from the second temperature detecting means, the electromagnetic on / off valve is controlled to close. A road heating system characterized by
請求項1ないし4の何れかに記載のロードヒーティングシステムにおいて、
第3の熱交換媒体流路と接続して設けられ、循環する熱交換媒体の一部を貯める貯留部と、
前記貯留部に貯められた熱交換媒体を加熱して、加熱後の熱交換媒体を前記貯留部に戻す補助熱源供給手段とを有することを特徴とするロードヒーティングシステム。
The road heating system according to any one of claims 1 to 4,
A storage section that is provided in connection with the third heat exchange medium flow path and stores a part of the circulating heat exchange medium;
A load heating system comprising: an auxiliary heat source supply unit that heats the heat exchange medium stored in the storage unit and returns the heated heat exchange medium to the storage unit.
請求項5記載のロードヒーティングシステムにおいて、
前記補助熱源供給手段は、前記貯留部と流路を介して接続された加熱器と、前記流路に設けられ前記貯留部内の熱交換媒体を前記加熱器に対して送圧する補助熱源用駆動ポンプとを有し、
前記制御手段は、少なくとも前記媒体送圧ポンプが駆動状態において、第1温度検出手段からの検出温度が予め設定された所定温度に満たない場合、前記補助熱源用駆動ポンプを駆動することを特徴とするロードヒーティングシステム。
The road heating system according to claim 5,
The auxiliary heat source supply means includes a heater connected to the reservoir through a flow path, and an auxiliary heat source drive pump that is provided in the flow path and feeds a heat exchange medium in the reservoir to the heater. And
The control means drives the auxiliary heat source drive pump when at least the medium pressure pump is in a driving state and the detected temperature from the first temperature detecting means is less than a predetermined temperature set in advance. Load heating system.
JP2004093720A 2004-03-02 2004-03-02 Road heating system Pending JP2005248673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093720A JP2005248673A (en) 2004-03-02 2004-03-02 Road heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093720A JP2005248673A (en) 2004-03-02 2004-03-02 Road heating system

Publications (1)

Publication Number Publication Date
JP2005248673A true JP2005248673A (en) 2005-09-15

Family

ID=35029413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093720A Pending JP2005248673A (en) 2004-03-02 2004-03-02 Road heating system

Country Status (1)

Country Link
JP (1) JP2005248673A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025984A (en) * 2006-04-28 2008-02-07 Misawa Kankyo Gijutsu Kk Facility for storing and supplying solar/geothermal heat and method for supplying the same
US20120195002A1 (en) * 2011-01-31 2012-08-02 Sanyo Electric Co., Ltd. Outdoor Display Apparatus
KR20160148424A (en) * 2015-06-16 2016-12-26 유인환 Building Cooling and Heating System
JP2017015364A (en) * 2015-07-06 2017-01-19 株式会社 トラストプラン Solar heat underground heat storage snow-melting system and its control method
CN109489150A (en) * 2017-09-13 2019-03-19 矢崎能源系统公司 Geothermal air conditioning system
JP7023694B2 (en) 2017-12-11 2022-02-22 三菱電機ビルテクノサービス株式会社 Heat source system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025984A (en) * 2006-04-28 2008-02-07 Misawa Kankyo Gijutsu Kk Facility for storing and supplying solar/geothermal heat and method for supplying the same
US20120195002A1 (en) * 2011-01-31 2012-08-02 Sanyo Electric Co., Ltd. Outdoor Display Apparatus
US8605436B2 (en) * 2011-01-31 2013-12-10 Sanyo Electric Co., Ltd Outdoor display apparatus
KR20160148424A (en) * 2015-06-16 2016-12-26 유인환 Building Cooling and Heating System
KR101711639B1 (en) * 2015-06-16 2017-03-02 유인환 Building Cooling and Heating System
JP2017015364A (en) * 2015-07-06 2017-01-19 株式会社 トラストプラン Solar heat underground heat storage snow-melting system and its control method
CN109489150A (en) * 2017-09-13 2019-03-19 矢崎能源系统公司 Geothermal air conditioning system
JP7023694B2 (en) 2017-12-11 2022-02-22 三菱電機ビルテクノサービス株式会社 Heat source system

Similar Documents

Publication Publication Date Title
EP2213949B1 (en) Liquid circulation heating system
EP1403598B1 (en) Heat pump
US20110083462A1 (en) Device for obtaining heat
JP6207476B2 (en) Geothermal heat pump system
US20080127965A1 (en) Method and apparatus for solar heating air in a forced draft heating system
EP1941211A1 (en) Improved energy storage system
JP4036851B2 (en) Solar power generation system
KR20180126941A (en) Control system for a solar assisted heat pump system with hybrid solar collectors
US20100038052A1 (en) Geothermal hybrid heat exchange system
JP2005248673A (en) Road heating system
JP6524571B2 (en) Control method of heat exchange device, heat exchange device, water-cooled heat pump cooling and heating device, water-cooled heat pump device
KR101045005B1 (en) Solar heatimg complex apparatus
CN105247293A (en) Heat pump system
KR101734996B1 (en) Heat pump system driven by gas engine
JP5329289B2 (en) Solar-powered heat pump hot water supply system
JP2009250555A (en) Hybrid air conditioning system using underground heat
KR200422676Y1 (en) The solar collector winter damage prevention structure of solar energy heating syste
JPH11159891A (en) Geothermal heat pump system
AU2008221225B2 (en) A system and method for inhibiting freezing in a solar hot water system
KR20110105419A (en) Warm water heating equipment having two-stage heating structure
JP2004361074A (en) Boiler system for heating and hot water supply using solar heat
JP2005344953A (en) Hybrid type geothermal heat utilization system
JP2019052799A (en) Solar heat collecting system
US20140251309A1 (en) Method and configuration for heating buildings with an infrared heater
EP0051069B1 (en) Device for the recovery of heat

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070920