JP2019103385A - 電流推定回路を有する直流‐直流変換器回路 - Google Patents

電流推定回路を有する直流‐直流変換器回路 Download PDF

Info

Publication number
JP2019103385A
JP2019103385A JP2018172059A JP2018172059A JP2019103385A JP 2019103385 A JP2019103385 A JP 2019103385A JP 2018172059 A JP2018172059 A JP 2018172059A JP 2018172059 A JP2018172059 A JP 2018172059A JP 2019103385 A JP2019103385 A JP 2019103385A
Authority
JP
Japan
Prior art keywords
converter
current
signal
converter circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018172059A
Other languages
English (en)
Other versions
JP6644120B2 (ja
Inventor
祈陞 ▲呉▼
祈陞 ▲呉▼
qi sheng Wu
國光 任
Guo Guang Ren
國光 任
▲衒▼樟 江
xuan zhang Jiang
▲衒▼樟 江
滄禮 戴
Cang Li Dai
滄禮 戴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Chung Shan Institute of Science and Technology NCSIST
Original Assignee
National Chung Shan Institute of Science and Technology NCSIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Chung Shan Institute of Science and Technology NCSIST filed Critical National Chung Shan Institute of Science and Technology NCSIST
Publication of JP2019103385A publication Critical patent/JP2019103385A/ja
Application granted granted Critical
Publication of JP6644120B2 publication Critical patent/JP6644120B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Abstract

【課題】本発明は、電流推定回路を有する直流-直流変換器回路を提供する。【解決手段】直流-直流変換器回路は、スイッチと制御ユニットを含む直流-直流変換器、及び電流推定回路を有し、電流推定回路は、直流-直流変換器のスイッチの電流を検出し且つ電流値を電圧信号に変換する電流検出ユニット、電流検出ユニットに接続され且つ電圧信号を受けた後にデジタルサンプル信号を生成する信号サンプルユニット、及び信号サンプルユニットに接続され且つ直流-直流変換器のインダクタ電流の推定値を計算する電流推定ユニットを含み、インダクタ電流の推定値は、デジタルサンプル信号、電流検出ユニットのスケール因子、スイッチを制御するスイッチ駆動信号のデューティ比、直流-直流変換器の入力電圧と出力電圧などのパラメータに基づいて、計算により得られる。【選択図】図8

Description

本発明は、回路制御技術に関し、特に、直流-直流変換器のインダクタ電流を推定するための、電流推定回路を有する直流-直流変換器回路に関する。
デジタル切替型直流-直流変換器が平均電流モード制御又は多並列接続分流モード制御を行うときに、しばしば、インダクタ電流を検出(sensing)する必要がある。電流検出信号は、ホール素子、或いは、図1に示すような電流検出用直列接続抵抗及び増幅・ローパスフィルタ回路を使用することにより得ることができる。しかし、ホール素子は、周波数帯域幅が制限されるという問題が存在し、そのため、電流検出用抵抗に大電流を流す必要があり、電力損失の問題を引き起こすことがある。また、図2に示すような変流器(current transformer,CT)を使用すれば、周波数帯域幅への制限、検出用抵抗に大電流を流すなどの問題があまり無いが、変流器は、磁気飽和の問題があり、パルス形式のスイッチング電流の検出にのみ用いられる。デジタル制御及び切替周波数と同期のサンプル方法を採用することで、変換器のスイッチの導通時間の中間点でサンプルしてインダクタ電流の平均値を得ることができるが、このような方法の制限は、連続導通モードでのみ精確であるが、不連続導通モードでインダクタ電流の平均値がスイッチの導通時間の中間点でサンプルした電流値から外れるため、低負荷時に誤差が大きくなることにある。
従来技術の欠点を解決するために、本発明は、直流-直流変換器のインダクタ電流を推定するための、電流推定回路を有する直流-直流変換器回路を提供する。本発明は、複数種のデジタル切替型直流-直流変換器に適用することができ、且つ連続導通モード及び不連続導通モードで全て作動することができる。
本発明は、電流推定回路を有する直流-直流変換器回路であり、それは、直流-直流変換器及び電流推定回路を含み、前記直流-直流変換器は、スイッチ及び制御ユニット含み、前記電流推定回路は、前記直流-直流変換器の前記スイッチの電流を検出し、前記電流を電圧信号に変換する電流検出ユニット;前記電流検出ユニットに接続され、前記電圧信号を受けた後にデジタルサンプル信号を生成する信号サンプルユニット;及び、前記信号サンプルユニットに接続され、前記直流-直流変換器のインダクタ電流の推定値を計算する電流推定ユニットを含み、前記インダクタ電流の推定値は、前記デジタルサンプル信号、前記電流検出ユニットのスケール因子、前記スイッチを制御するスイッチ駆動信号のデューティ比、前記直流-直流変換器の入力電圧と出力電圧などのパラメータに基づいて計算により得られる。
本発明の一実施例では、前記直流-直流変換器は、降圧型直流-直流変換器(buck converter)、昇圧型直流-直流変換器(boost converter)、又は、昇降圧型直流-直流変換器(boost-buck converter)である。
本発明の一実施例では、前記電流検出ユニットは、変流器(current transformer,CT)及び変圧器抵抗を含み、前記変流器の一次巻線は、前記直流-直流変換器の前記スイッチに接続され、前記変圧器抵抗は、前記変流器の二次巻線にカップリングされ、そのうち、前記電流検出ユニットのスケール因子は、前記変圧器抵抗の抵抗値と前記電流電圧器の巻き数との比の逆数である。
本発明の一実施例では、前記信号サンプルユニットは、前記スイッチの導通時間の中間点における電圧の電圧信号をサンプルして、出力するデジタルサンプル信号とする。
本発明の一実施例では、前記直流-直流変換器は、降圧型直流-直流変換器、昇圧型直流-直流変換器、又は、昇降圧型直流-直流変換器である。
本発明の一実施例では、前記電流推定ユニットは、前記デジタルサンプル信号及び前記電流検出ユニットのスケール因子に基づいて、前記直流-直流変換器の連続導通モードでのインダクタ電流の推定値を計算する。
本発明の一実施例では、前記スイッチ駆動信号は、制御信号Vcon及び三角波信号Vtmからなり、前記スイッチ駆動信号のデューティ比は、前記制御信号と前記三角波信号との振幅の比である。
本発明の一実施例では、前記電流推定回路を有する直流-直流変換器回路は、さらに、前記電流推定ユニット及び前記直流-直流変換器の制御ユニットに電気的に接続され、前記電圧信号を前記制御信号にフィルタリングするローパスフィルタ;前記電流推定ユニット及び前記制御ユニットに電気的に接続され、前記直流-直流変換器のインダクタ電流の推定値と電流信号との間の差に基づいて、前記電圧信号を生成する電流制御器;及び、前記電流制御器に電気的に接続され、命令用電圧信号と前記直流-直流変換器の出力信号との間の差に基づいて、前記電流信号を生成する電圧制御器を含む。
本発明の一実施例では、前記制御ユニットは、前記電圧制御信号を受信してパルス幅変調信号を生成するパルス幅変調ユニット;及び、前記パルス幅変調信号に基づいて前記スイッチ駆動信号を出力する駆動ユニットを含む。
以上の概要及び以下の詳細な説明及び図面は、すべて、本発明が所定の目的を達成するために採用する方法、手段、及び機能をさらに説明するためのものである。また、本発明の他の目的及び利点については、後続の説明及び図面において詳細に説明する。
従来技術における直流-直流変換器の構成図である。 従来技術における直流-直流変換器の構成図である。 本発明によるデジタル制御直流-直流変換器のPWM方式の波形図である。 本発明によるデジタル制御直流-直流変換器の平均電流推定の実現例を示す図である。 本発明の電流推定原理が昇圧型直流-直流変換器に適用される回路例を示す図である。 本発明の電流推定原理が昇降圧型直流-直流変換器に適用される回路例を示す図である。 本発明によるデジタル制御降圧型変換器の平均電流制御構造の実施例を示す図である。 本発明の、電流推定回路を有する直流-直流変換器回路の第一実施例の構成図である。 本発明の、電流推定回路を有する直流-直流変換器回路の第二実施例の構成図である。 本発明の、電流推定回路を有する直流-直流変換器回路の第三実施例の構成図である。 本発明の、電流推定回路を有する直流-直流変換器回路の第四実施例の構成図である。
以下、添付した図面を参照しながら、本発明を実施するための好適な形態を詳細に説明する。なお、このような実施形態は、例示に過ぎず、本発明を限定するものでない。
本発明は、デジタル制御直流-直流変換器について、平均電流の推定方法を提案している。図2に示す降圧型変換器を例とし、コストを削減し、電流検出損失を低減すると共に、検出信号の高周波数帯域幅を保つために、電流検出回路は、変流器(current transformer,CT)を採用し、その検出比率は、1/Nであり、変流器の二次側は、整流ダイオード及び抵抗Rsにより、検出された電流信号を電圧信号Vcsに変換し、最後にデジタル制御アナログ/デジタル(Analog to Digital,A/D)変換器によりサンプル・ホールド(Sample and Hold,S/H)されることにより、デジタル信号Vcshを取得する。
デジタルサンプル信号Vcshにより平均インダクタ電流を得るために、本発明によるデジタル制御直流-直流変換器のPWM方式の波形図では、図3に示すように、制御電圧vconと、上がり及び下がりの三角波Vtとが比較され、電流信号サンプル時間は、三角波信号上がりの始点であり、この点でスイッチ導通時間の中間点にあることを確保することができ、連続導通モード(continuous conduction mode,CCM)でこの点においてサンプルした実際の電流値ILSは、インダクタ電流の平均値IL,avgに等しい。ILSとVcshの関係は、次の式1に示す通りである。
Vcsh=RsILs/N (1)
しかし、図3に示すように、不連続導通モード(discontinuous conduction mode,DCM)で、ILSは、インダクタ電流の平均値IL,avgよりも高い。不連続導通モードで精確な平均電流値を得るために、次の式2に示すように、インダクタ電流がスイッチオフしてからゼロまで下がる時間Δを把握しなければ、1周期の三角形インダクタ電流の面積を用いて平均値を求めることができない。
IL,avg=(ILs(ton+Δ))/Ts (2)
ボルト秒平衡(voltage-second balance)原理によれば、時間Δは、安定状態でインダクタ電圧の1切替周期における平均値がゼロになる方法で求めることができる。降圧型変換器について言えば、図3に示すように、面積A=面積Bを用いて、次の式3を得ることができる。
(Vi-Vo)ton+(-Vo)Δ=0 (3)
式3から次の式4のように時間Δを求めることができる。
Δ=((Vi-Vo)/Vo)ton (4)
また、スイッチの導通時間は、次の式5の通りである。
ton=vcon/Vtm (5)
ここで、Vtmは、三角波Vtの振幅である。式4及び式5を式2に代入すると、次の式6を得ることができる。
IL,avg=ILs(ton/Ts)(Vi/Vo)=ILs(vcon/Vtm)(Vi/Vo) (6)
式6は、不連続導通モードでPWMの制御電圧及び入力と出力電圧を用いて正確なインダクタ電流の平均値を得ることを示している。また、式6は、不連続導通モードのみならず、連続導通モードにも適用することができる。その理由は、次の通りである。まず、降圧型変換器について言えば、次の式7がある。
vcon/Vtm=D=Vo/Vi (7)
そして、式7を式6に代入して同様にIL,avg=ILsを得ることができる。よって、式6は、全てのワーキングモードに適用することができる。式6に基づく、本発明によるデジタル制御直流-直流変換器の平均電流推定の実現例は、図4に示すように、式6を用いて、さらに式1の検出比率を用いて、最終推定のインダクタ電流の平均値IL,avgを得ることができる。なお、上述した、スイッチの電流がスイッチのデューティ(duty)周期の中心点で同期してサンプルされること、及び、安定状態でインダクタ電圧の1切替周期における平均値がゼロであることを利用する思想は、他の形式の変換器に流用してインダクタ電流の平均値を推定することもできる。図5は、本発明の電流推定原理が昇圧型直流-直流変換器に適用される回路例を示す図であり、図6は、昇降圧型直流-直流変換器に用いられる回路例を示す図である。
上述にように提案されている平均電流の推定方法は、推定のみに限定される。実際に平均電流モード制御に用いられる場合、PWM制御電圧(vcon)も平均電流計算に用いられるため、電流回路内で無限ゲイン回路が形成され、これにより、電流回路の振盪を来すことがある。このような問題を解決するために、本発明によるデジタル制御降圧型変換器の平均電流制御構造の実施例では、図7に示すように、上述の無限ゲイン回路内にローパスフィルタ11を増設してこの回路のゲインを低減する。図7中の回路Crに示すように、平均電流制御構造は、出力電圧Voをフィードバックし、且つ入力電圧Viを検出し、電圧の検出比率が例えばKvであり、両者は、A/Dを経てデジタル信号Vofb及びVibに変換され、また、Vibと電圧命令Vocとの誤差が電圧制御器12により調整されることにより、電流命令ILcを得ることができる。一方、スイッチの電流がCT及びRsを通過した後にVcsになり、Vcsは、A/Dを経由してデジタル信号Vcshになり、Vcshは、検出された入力電圧及び出力電圧、並びに、PWM制御電圧vconがローパスフィルタ11を通過した後に得られた信号vconfと、前述の平均電流の推定公式を用いて推定電流ILfbを取得し、そして、ILfbとILcとの誤差が電流制御器13により調整されることで、PWM 10の制御電圧vconを取得することができ、vconは、さらに、PWM 10を経由して最終的にスイッチをトリガーする信号になり、前記駆動回路14の動作を制御する。同様の設計を用いることにより、図7に示す平均電流制御方法は、図5及図6に示すような升圧型及び昇降圧型変換器に適用することもできる。
図8は、本発明の、電流推定回路を有する直流-直流変換器回路の第一実施例の構成図である。この図に示すように、第一実施例では、直流-直流変換器(本実施例では、降圧変換器である)を有し、それは、スイッチSW、ダイオードD、インダクタL、出力端コンデンサC(出力負荷Rに並列接続される)を含み、該第一実施例では、さらに、電流推定回路20を有し、それは、前記インダクタLの電流IL(例えば、平均電流)を推定するために用いられ、前記電流推定回路20は、電流検出ユニット21、信号サンプルユニット22、及び電流推定ユニット23を含み、前記電流検出ユニット21は、前記スイッチSWの電流を検出し、そして、該電流を電圧信号Vcsに変換し、前記信号サンプルユニット22は、電圧信号Vcsを受けてデジタルサンプル信号Vcshを生成し、前記電流推定ユニット23は、前記直流-直流変換器のインダクタLの電流の推定値を算出し、前記インダクタLの電流の推定値は、前記デジタルサンプル信号Vcsh、前記電流検出ユニット21のスケール因子、前記スイッチSWを制御するスイッチ駆動信号SDRのデューティ比、前記直流-直流変換器の入力電圧Viと出力電圧Voなどのパラメータに基づいて計算により得られる。
さらに図9を参照する。図9は、本発明の、電流推定回路を有する直流-直流変換器回路の第二実施例の構成図である。該実施例では、直流-直流変換器は、降圧型直流-直流変換器であり、第一実施例中の素子以外に、前記電流検出ユニット21は、変流器211及び変圧器抵抗212を含み、前記変流器211の一次巻線は、前記スイッチSW(例えば、トランジスタQ)に接続され、二次巻線は、前記変圧器抵抗212に電気的に接続され、前記変流器211は、巻き数比1/Nを有し、前記変圧器抵抗の抵抗値は、RSであり、前記電流検出ユニット21は、さらに、前記変圧器抵抗212に接続される変圧器ダイオード213を含んでも良い。該実施例では、前記電流検出ユニットは、前記スイッチSWに流れる電流を検出し、そして、該電流を前記電圧信号Vcsに変換するために用いられる。前記電流推定ユニット23は、さらに、中央処理装置(CPU)、マイクロ制御器、デジタル信号処理器、システムチップ、FPGA(field programmable gate array)、ASIC(application-specific integrated circuit)などを、前記直流-直流変換器のインダクタ電流IL(又は、インダクタ平均電流IL,avg)の信号SLEを生成するために含んでも良く、その計算方法及び原理は、前述の内容を参照することができる。本実施例では、前記直流-直流変換器の連続導通モード及び不連続導通モードでのインダクタ電流の推定値IL,avgを計算する。その計算公式は、次の式8に示す通りである。
IL,avg=Vcsh(N/Rs)D(Vi/Vo) (8)
ここで、Dは、前記スイッチ駆動信号SDRのデューティ比であり、即ち、(制御信号Vcon/三角波信号Vtm)である。
図10は、本発明の、電流推定回路を有する直流-直流変換器回路の第三実施例の構成図である。該実施例では、直流-直流変換器は、昇圧型直流-直流変換器であり、前記電流推定ユニット23は、前記デジタルサンプル信号Vcsh、前記電流検出ユニット21のスケール因子、前記スイッチSWを制御するスイッチ制御信号SDRのデューティ比、前記直流-直流変換器の出力電圧Voと(出力電圧Vo-入力電圧Vi)との比などのこれらのパラメータの乗積に基づいて、前記直流-直流変換器の連続導通モード及び不連続導通モードでのインダクタ電流の推定値を計算する。その計算公式は、次の通りである。
IL,avg=Vcsh(N/Rs)D(Vo/(Vo-Vi)) (9)
ここで、Dの定義は、式7に示す通りであり、前記スイッチ駆動信号SDRのデューティ比である。
図11は、本発明の、電流推定回路を有する直流-直流変換器回路の第四実施例の構成図である。該実施例では、直流-直流変換器は、昇降圧型直流-直流変換器であり、前記電流推定ユニット23は、前記デジタルサンプル信号、前記電流検出ユニット21のスケール因子、前記スイッチSWを制御するスイッチ制御信号SDRのデューティ比、前記直流-直流変換器の入力電圧と出力電圧などのこれらのパラメータに基づいて、前記直流-直流変換器の連続導通モード及び不連続導通モードでのインダクタ電流の推定値IL,avgを計算する。その計算公式は、次の式10に示す通りである。
IL,avg=Vcsh(N/Rs)D((Vo+Vi)/Vo) (10)
これにより、本発明は、電流推定回路を有する直流-直流変換器回路を提供し、それは、直流-直流変換器のインダクタ電流を推定するためのものである。本発明は、複数種のデジタル切替型直流-直流変換器に適用することができ、且つ連続導通モード及び不連続導通モードで全て作動することができる。
以上、本発明の好ましい実施形態を説明したが、本発明はこの実施形態に限定されず、本発明の趣旨を離脱しない限り、本発明に対するあらゆる変更は本発明の技術的範囲に属する。
11 ローパスフィルタ
12 電圧制御器
13 電流制御器
14 駆動回路
21 電流検出ユニット
22 電流検出ユニット
23 電流推定ユニット
SW スイッチ
D ダイオード
L インダクタ
C 出力端コンデンサ
R 出力負荷
Q トランジスタ
211 変流器
212 変圧器抵抗
213 変圧器ダイオード

Claims (10)

  1. 電流推定回路を有する直流-直流変換器回路であって、
    スイッチ及び制御ユニットを含む直流-直流変換器;及び
    電流推定回路を含み、
    前記電流推定回路は、
    前記直流-直流変換器の前記スイッチの電流を検出し、前記電流を電圧信号に変換する電流検出ユニット;
    前記電流検出ユニットに接続され、前記電圧信号を受信した後にデジタルサンプル信号を生成する信号サンプルユニット;
    前記信号サンプルユニットに接続され、前記直流-直流変換器のインダクタ電流の推定値を計算する電流推定ユニットを含み、
    前記インダクタ電流の推定値は、前記デジタルサンプル信号、前記電流検出ユニットのスケール因子、前記スイッチを制御するスイッチ駆動信号のデューティ比、及び前記直流-直流変換器の入力電圧と出力電圧に基づいて、計算により得られる、直流-直流変換器回路。
  2. 請求項1に記載の直流-直流変換器回路であって、
    前記電流検出ユニットは、変流器及び変圧器抵抗を含み、
    前記変流器の一次巻線は、前記直流-直流変換器の前記スイッチに接続され、
    前記変圧器抵抗は、前記変流器の二次巻線にカップリングされ、
    前記電流検出ユニットのスケール因子は、前記変圧器抵抗の抵抗値と前記電流電圧器の巻き数との比の逆数である、直流-直流変換器回路。
  3. 請求項2に記載の直流-直流変換器回路であって、
    前記信号サンプルユニットは、前記スイッチの導通時間の中間点における電圧の電圧信号をサンプルして、生成するデジタルサンプル信号とする、直流-直流変換器回路。
  4. 請求項3に記載の直流-直流変換器回路であって、
    前記スイッチ駆動信号は、制御信号及び三角波信号からなり、前記スイッチ駆動信号のデューティ比は、前記制御信号と前記三角波信号との振幅の比である、直流-直流変換器回路。
  5. 請求項4に記載の直流-直流変換器回路であって、
    前記直流-直流変換器は、降圧型直流-直流変換器であり、前記直流-直流変換器の連続導通モード及び不連続導通モードでのインダクタ電流の推定値IL,avgの計算公式は、
    IL,avg=Vcsh(N/Rs)D(Vi/Vo)
    であり、
    ここで、Vcshは、デジタルサンプル信号であり、Dは、前記スイッチ駆動信号のデューティ比であり、Nは、前記変流器の巻き数比の逆数であり、Rsは、前記変圧器抵抗の抵抗値であり、Viは、前記直流-直流変換器の入力電圧であり、Voは、前記直流-直流変換器の出力電圧である、直流-直流変換器回路。
  6. 請求項4に記載の直流-直流変換器回路であって、
    前記直流-直流変換器は、昇圧型直流-直流変換器であり、前記直流-直流変換器の連続導通モード及び不連続導通モードでのインダクタ電流の推定値IL,avgの計算公式は、
    IL,avg=Vcsh(N/Rs)D(Vo/(Vo-Vi))
    であり、
    ここで、Vcshは、デジタルサンプル信号であり、Dは、前記スイッチ駆動信号のデューティ比であり、Nは、前記変流器の巻き数比の逆数であり、Rsは、前記変圧器抵抗の抵抗値であり、Viは、前記直流-直流変換器の入力電圧であり、Voは、前記直流-直流変換器の出力電圧である、直流-直流変換器回路。
  7. 請求項4に記載の直流-直流変換器回路であって、
    前記直流-直流変換器係は、昇降圧型直流-直流変換器であり、前記直流-直流変換器の連続導通モード及び不連続導通モードでのインダクタ電流の推定値IL,avgの計算公式は、
    IL,avg=Vcsh(N/Rs)D((Vo+Vi)/Vo)
    であり、
    ここで、Vcshは、デジタルサンプル信号であり、Dは、前記スイッチ駆動信号のデューティ比であり、Nは、前記変流器の巻き数比の逆数であり、Rsは、前記変圧器抵抗の抵抗値であり、Viは、前記直流-直流変換器の入力電圧であり、Voは、前記直流-直流変換器の出力電圧である、直流-直流変換器回路。
  8. 請求項4に記載の直流-直流変換器回路であって、
    前記電流推定ユニットは、前記デジタルサンプル信号及び前記電流検出ユニットのスケール因子に基づいて、前記直流-直流変換器の連続導通モードでのインダクタ電流の推定値を計算する、直流-直流変換器回路。
  9. 請求項4に記載の直流-直流変換器回路であって、
    前記電流推定ユニット及び前記直流-直流変換器の制御ユニットに電気的に接続されるローパスフィルタ;
    前記電流推定ユニット及び前記制御ユニットに電気的に接続される電流制御器;及び
    前記電流制御器に電気的に接続される電圧制御器をさらに含む、直流-直流変換器回路。
  10. 請求項9に記載の直流-直流変換器回路であって、
    前記制御ユニットは、
    前記電圧信号を受信してパルス幅変調信号を生成するパルス幅変調ユニット;及び
    前記パルス幅変調信号に基づいて前記スイッチ駆動信号を出力する駆動ユニットを含む、直流-直流変換器回路。
JP2018172059A 2017-12-06 2018-09-14 電流推定回路を有する直流‐直流変換器回路 Active JP6644120B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/833,263 US10170985B1 (en) 2017-12-06 2017-12-06 Apparatus for current estimation of DC/DC converter and DC/DC converter assembly
US15/833,263 2017-12-06

Publications (2)

Publication Number Publication Date
JP2019103385A true JP2019103385A (ja) 2019-06-24
JP6644120B2 JP6644120B2 (ja) 2020-02-12

Family

ID=64736650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172059A Active JP6644120B2 (ja) 2017-12-06 2018-09-14 電流推定回路を有する直流‐直流変換器回路

Country Status (2)

Country Link
US (1) US10170985B1 (ja)
JP (1) JP6644120B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177142B1 (ko) * 2020-01-09 2020-11-10 주식회사 효성 절연형 양방향 dc-dc 컨버터에서 센서리스 과전류 예측방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10462861B2 (en) * 2018-04-20 2019-10-29 Advanced Regulated Power Technology, Inc. Adaptive power regulation of LED driver module for emergency lighting
US11581795B2 (en) * 2020-07-22 2023-02-14 Mediatek Inc. Current sensing circuit for generating sensed current signal with average value being constant under different input voltages of direct current to direct current converter and associated current-mode control circuit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW512578B (en) * 2000-03-21 2002-12-01 Int Rectifier Corp Inductor current synthesizer for switching power supplies
US8670255B2 (en) * 2008-09-12 2014-03-11 Infineon Technologies Austria Ag Utilization of a multifunctional pin combining voltage sensing and zero current detection to control a switched-mode power converter
US8787043B2 (en) * 2010-01-22 2014-07-22 Power Systems Technologies, Ltd. Controller for a power converter and method of operating the same
CN102594118B (zh) * 2012-02-29 2014-06-25 矽力杰半导体技术(杭州)有限公司 一种升压型pfc控制器
US8780590B2 (en) * 2012-05-03 2014-07-15 Hong Kong Applied Science & Technology Research Institute Company, Ltd. Output current estimation for an isolated flyback converter with variable switching frequency control and duty cycle adjustment for both PWM and PFM modes
CN102969927A (zh) * 2012-12-10 2013-03-13 成都芯源系统有限公司 降压开关电源及其控制方法
US9455623B2 (en) * 2013-08-19 2016-09-27 Infineon Technologies Austria Ag Power factor correction circuit and method
US9596724B2 (en) * 2013-08-27 2017-03-14 Texas Instruments Incorporated Method and apparatus for calculating an average value of an inaccessible current from an accessible current
US9819274B2 (en) * 2014-11-20 2017-11-14 Microchip Technology Incorporated Start-up controller for a power converter
US9632120B2 (en) * 2014-12-24 2017-04-25 Infineon Technologies Austria Ag System and method for measuring power in a power factor converter
US20170141684A1 (en) * 2015-11-18 2017-05-18 Intersil Americas LLC Method and System for DC-DC Voltage Converters
US20170346405A1 (en) * 2016-05-26 2017-11-30 Inno-Tech Co., Ltd. Dual-mode operation controller for flyback converter with primary-side regulation
US10135345B2 (en) * 2016-08-31 2018-11-20 Infineon Technologies Austria Ag Current sensing in an electromagnetic component using an auxiliary winding stub

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177142B1 (ko) * 2020-01-09 2020-11-10 주식회사 효성 절연형 양방향 dc-dc 컨버터에서 센서리스 과전류 예측방법
WO2021141321A1 (ko) * 2020-01-09 2021-07-15 주식회사 효성 절연형 양방향 dc-dc 컨버터에서 센서리스 과전류 예측방법

Also Published As

Publication number Publication date
US10170985B1 (en) 2019-01-01
JP6644120B2 (ja) 2020-02-12

Similar Documents

Publication Publication Date Title
US11303212B2 (en) Peak-buck peak-boost current-mode control for switched step-up step-down regulators
US8773097B2 (en) Digital peak current mode control for switch-mode power converters
US8564992B2 (en) Power factor correction device and method with off time prediction for critical mode operation
US9379621B1 (en) Digital slope compensation for peak current controlled converters
CN107302310B (zh) 具有稳健电流感测及共享放大器的多相切换电力供应器
EP3066535B1 (en) Method and apparatus for calculating an average value of an inaccessible current from an acessible current
US6377032B1 (en) Method and apparatus for virtual current sensing in DC-DC switched mode power supplies
US10135330B2 (en) Control circuit and control method for a power converter
JP6040565B2 (ja) 多相の電力変換回路
TW201742360A (zh) 具有斜坡補償的升降壓變換器及其控制器和控制方法
US20060055385A1 (en) Switching power supply control
JP6644120B2 (ja) 電流推定回路を有する直流‐直流変換器回路
CN110622097A (zh) 具有不连续导电模式控制的多相功率调节器
WO2012161837A2 (en) Control for switching between pwm and pfm operation in buck converter
KR20120020080A (ko) 브리지리스 역률 보상을 위한 방법 및 장치
EP3002860B1 (en) Peak-buck peak-boost current-mode control for switched step-up step-down regulators
JP2015177613A5 (ja)
US11264908B1 (en) Multi-phase switched-mode power supplies
JP5587260B2 (ja) スイッチング電源装置
US20180166988A1 (en) Power supply device, control circuit for power supply device, and control method for power supply device
US9634569B1 (en) DC-to-DC output current sensing
Channappanavar et al. A novel bidirectional current estimator for digital controlled DC-DC converters
TWI667873B (zh) DC-DC converter circuit architecture with current estimation circuit
Biswas et al. Switched-resistance method for estimation of inductor ESR in DC-DC converters: Theory and design challenges
Alghaythi et al. The analysis of modeling small signal and adding a current sensing resistor of 0.1 ohm for a boost converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200107

R150 Certificate of patent or registration of utility model

Ref document number: 6644120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250