JP2019100732A - Leak inspection method, leak inspection device and program - Google Patents

Leak inspection method, leak inspection device and program Download PDF

Info

Publication number
JP2019100732A
JP2019100732A JP2017228583A JP2017228583A JP2019100732A JP 2019100732 A JP2019100732 A JP 2019100732A JP 2017228583 A JP2017228583 A JP 2017228583A JP 2017228583 A JP2017228583 A JP 2017228583A JP 2019100732 A JP2019100732 A JP 2019100732A
Authority
JP
Japan
Prior art keywords
measurement
time
pressure
sealing
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017228583A
Other languages
Japanese (ja)
Other versions
JP6931596B2 (en
Inventor
暎三 浦田
Eizo Urata
暎三 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Urata Eizo
Gastar Co Ltd
Original Assignee
Urata Eizo
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Urata Eizo, Gastar Co Ltd filed Critical Urata Eizo
Priority to JP2017228583A priority Critical patent/JP6931596B2/en
Publication of JP2019100732A publication Critical patent/JP2019100732A/en
Application granted granted Critical
Publication of JP6931596B2 publication Critical patent/JP6931596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

To provide a leak inspection method allowing determining a leak with high accuracy by removing the influence of temperature while minimizing a measurement period.SOLUTION: After measuring a differential pressure between internal pressures of both containers after sealing a workpiece and a master from an atmospheric pressure Popening for a predetermined period, subsequently, the workpiece and the master are pressurized and a differential pressure after sealing is measured for a predetermined period, a measurement time Twhen the difference of a gradient (rate of change of differential pressure) of a differential pressure curve obtained by atmospheric pressure sealing measurement becomes less than an allowable value, and the rate of change Q of differential pressure at that time are determined, a measurement time Twhen the difference of the gradient of the differential pressure curve obtained by a test pressure sealing measurement becomes below an allowable value, and the rate of change R at that time are determined, a time difference when continuously counting from Tto Tis set to be T, and a leak of the workpiece is determined by an operation of leak L=R-exp (-T/large time constant)×(P/P)×Q. The large time constant is a larger time constant, which is determined in advance, of two time constants that govern a temperature-based change in the pressure difference between the internal pressures after sealing the workpiece and the master from atmospheric pressure Popening.SELECTED DRAWING: Figure 1

Description

本発明は、検査対象容器の漏れを検査するリーク検査方法、リーク検査装置およびそのプログラムに関する。   The present invention relates to a leak inspection method for inspecting a leak of a container to be inspected, a leak inspection apparatus and a program thereof.

容器の漏れを検査する場合、検査対象容器と漏れの無い基準容器とに空気等の気体を高圧に加圧導入した後、これらを封止し、その後の検査対象容器の内圧と基準容器の内圧との差圧の変化を観察することで検査対象容器の漏れの有無を判断する方法が一般的に行われている。検査対象容器に漏れがあれば差圧が生じ、その大きさは時間に比例するというのが基本思想である。   When a leak of a container is inspected, a gas such as air is pressurized and introduced to the container to be inspected and the leak-free reference container at high pressure, and then sealed, and then the internal pressure of the container to be inspected and the internal pressure of the reference container Generally, a method of determining the presence or absence of a leak of a container to be inspected by observing a change in differential pressure between the The basic idea is that if there is a leak in the container to be inspected, a differential pressure will occur, and the magnitude will be proportional to time.

しかし、観察される差圧の変化には、漏れのほかに、温度変動に起因する差圧の変化分が含まれる。すなわち、検査対象容器内の気体温度と基準容器内の気体温度がなんらかの理由で相違しても差圧は発生する。そこで、漏洩検査で測定した差圧の変化から、温度に起因する差圧の影響を除去する技術が各種提案されている。   However, the observed changes in differential pressure include, in addition to leakage, changes in differential pressure due to temperature fluctuations. That is, even if the gas temperature in the container to be inspected and the gas temperature in the reference container differ for some reason, a differential pressure is generated. Therefore, various techniques have been proposed for removing the influence of differential pressure caused by temperature from the change in differential pressure measured in the leak test.

たとえば、下記特許文献1では、検査対象容器であるワークと漏れの無い基準容器であるマスタを同圧の高圧に加圧してから封止した状態で放置したときの差圧の変化を所定時間測定する漏洩検査を行う。さらにこの漏洩検査の前後に、ワークとマスタを大気開放してから封止した状態で放置したときのワーク・マスタ間の差圧の変化を所定時間測定する温度補償用測定工程を行う。そして、前後の温度補償用測定工程で求めた温度補償値(差圧の変化率)の平均値を用いて、漏洩検査時の温度変動に基づく差圧の変化分を推定して、漏洩検査の測定結果を温度補償する。   For example, in Patent Document 1 below, a change in differential pressure is measured for a predetermined time when a work as a container to be inspected and a master that is a leak-free reference container are pressurized to the same pressure and then sealed. Perform a leak inspection. Further, before and after the leak inspection, a temperature compensation measurement step is performed to measure a change in differential pressure between the work and the master when the work and the master are left open to the atmosphere and then sealed, for a predetermined time. Then, using the average value of the temperature compensation values (rate of change in differential pressure) determined in the preceding and subsequent temperature compensation measurement steps, the change in differential pressure based on the temperature fluctuation at the time of leak inspection is estimated to Temperature compensation of measurement results.

また、特許文献1では、漏洩検査前の温度補償用測定工程が行われてから漏洩検査が実施されるまでの第1時間と、漏洩検査後の温度補償用測定工程が実施されるまでの第2時間とに差が生じた場合を考慮して、漏洩検査前の温度補償用測定工程で得た温度補償値と漏洩検査後の温度補償用測定工程で得た温度補償値を、第1時間と第2時間の逆比で加重平均した値で、漏洩検査時の測定結果を温度補償することが開示される。   Further, in Patent Document 1, a first time from when the temperature compensation measurement process before the leakage inspection is performed to the time when the leakage inspection is performed and a first time until the temperature compensation measurement process after the leakage inspection is performed In consideration of the case where a difference occurs between 2 hours, the temperature compensation value obtained in the measurement process for temperature compensation before the leak test and the temperature compensation value obtained in the measurement process for temperature compensation after the leak test are It is disclosed to temperature compensate the measurement result at the time of leak inspection with a value that is weighted and averaged by the inverse ratio of the second time.

特許第4994494号Patent No. 4994494

特許文献1では、漏洩検査の前後の温度補償用測定で得た温度補償値が線形に変化するものと仮定して温度補償を行っている。しかしながら実際には温度の影響は線形に変化するものではないので、正確な温度補正になっていない。そのため、最終的に差圧変化率が検出された場合、それが除去できなかった温度ノイズによるものか、漏れによるものかの区別をつけられない。さらに、適切な測定期間を決めて測定期間を最小化することもできなかった。   In Patent Document 1, temperature compensation is performed on the assumption that the temperature compensation value obtained in the measurement for temperature compensation before and after the leak inspection changes linearly. However, since the temperature effect does not change linearly in practice, the temperature correction is not accurate. Therefore, when the differential pressure change rate is finally detected, it can not be distinguished whether it is due to temperature noise that could not be removed or due to leakage. Furthermore, it was not possible to determine an appropriate measurement period to minimize the measurement period.

本発明は、上記問題の解決を課題とするものであり、測定期間の最小化を図りつつ、温度の影響を除去して高い精度で漏れを判断することのできるリーク検査方法およびリーク検査装置、プログラムを提供することを目的としている。   The present invention is intended to solve the above problems, and a leak inspection method and a leak inspection apparatus capable of judging a leak with high accuracy by removing the influence of temperature while minimizing the measurement period, The purpose is to provide a program.

かかる目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。   The subject matter of the present invention for achieving such an object resides in the inventions of the following items.

[1]検査対象容器と漏れのない基準容器とを大気圧P開放から双方を封止した後の両容器の内圧の差圧を所定期間にわたり繰り返し測定し、測定した各差圧と測定時刻とを対応付けて記録する大気圧封止測定ステップと、
前記大気圧封止測定ステップの終了後に続けて行われ、前記検査対象容器内と基準容器内とに気体を導入して所定の試験圧Pに加圧した後に双方を封止し、封止後の両容器の内圧の差圧を所定期間にわたり繰り返し測定し、測定した各差圧と測定時刻とを対応付けて記録する試験圧封止測定ステップと、
前記大気圧封止測定ステップで記録したデータから、時間の経過に伴う差圧の変化率の差分が一定以下になるときの差圧のデータの前記大気圧封止測定ステップでの測定時刻Tとそのときの差圧の変化率Qを求める第1勾配取得ステップと、
前記試験圧封止測定ステップで測定したデータから、時間の経過に伴う差圧の変化率の差分が一定以下になるときの差圧のデータの前記試験圧封止測定ステップでの測定時刻Tとそのときの差圧の変化率Rを求める第2勾配取得ステップと、
測定時刻Tから測定時刻Tまでを連続して計時した場合の時間差をTとし、
の演算で求めたLの値に基づいて前記検査対象容器の漏れの有無を判断する漏れ判断ステップと、
を有し、
前記大時定数は、前記検査対象容器と前記基準容器とを大気圧P開放から封止した後の両容器の内圧の差圧の温度に基づく変化を支配する二つの時定数のうちの大きい方の時定数である
ことを特徴とするリーク検査方法。
[1] the pressure difference in the internal pressure of both container after sealing of both the inspected container and a leaktight reference container from atmospheric pressure P E opened repeatedly measured over a predetermined period, each differential pressure and the measured time measured And the atmospheric pressure sealing measurement step of correlating and recording;
It continues after the end of the atmospheric pressure sealing measurement step, and after introducing a gas into the inspection object container and the reference container and pressurizing them to a predetermined test pressure PT , both are sealed and sealed. A test pressure sealing measurement step of repeatedly measuring the differential pressure of the internal pressure of both containers after that over a predetermined period, and correlating and recording each measured differential pressure and measurement time;
From the data recorded in the atmospheric pressure sealing measurement step, the measurement time T a in the atmospheric pressure sealing measurement step of the differential pressure data when the difference in the rate of change of the differential pressure with the passage of time becomes less than a certain value. And a first gradient acquisition step for determining a rate of change Q of the differential pressure at that time,
From the data measured in the test pressure sealing measurement step, the measurement time T b in the test pressure sealing measurement step of the differential pressure data when the difference in change rate of the differential pressure with the passage of time becomes less than or equal to a certain value And a second gradient acquisition step of determining a rate of change R of the differential pressure at that time,
Let T S be the time difference when measuring from measurement time T a to measurement time T b continuously.
A leak judgment step of judging presence or absence of a leak of the container to be inspected based on the value of L obtained by the calculation of
Have
The Daitoki constant is greater of the two time constants governing the change based on the temperature of the differential pressure of the internal pressure of both container after sealing the said object container and the reference container from atmospheric pressure P E open Leak check method characterized in that the time constant of the

ワークとマスタを大気圧P開放から封止後の両容器の内圧の差圧の温度に基づく変化を支配する時定数は大時定数と小時定数の2つであり、そのうちの小時定数に係る差圧の変化は短時間で無視できる大きさに減衰する。また、大時定数に係る差圧の変化については、大気圧封止測定で求めた温度に基づく差圧の変化を引き起こした容器の温度変化の作用が、ほぼそのまま試験圧封止測定のときも継続していると考えられる。そこで、大気圧測定の差圧曲線の勾配の変化率が一定以下になったとき(小時定数に係る変化等が無視できるほどに減衰したとき)の差圧データの測定時刻Tとそのときの勾配(差圧の変化率)Qを求める。また試験圧封止測定での差圧曲線の勾配の変化率が一定以下になったとき(小時定数に係る変化等が無視できるほどに減衰したとき)の差圧データの測定時刻Tとそのときの差圧の変化率Rを求める。Rは漏れによる差圧の変化分と温度による差圧の変化分を含む。Rに含まれる温度による差圧の変化分は、大気圧封止測定の測定時刻Tにおける勾配Qが大時定数に従って測定時刻Tまで経過した時の値に対応する。すなわち、測定時刻Tから測定時刻Tまでの時間をTsとし、圧力比を考慮すると、
である。よって、これをRから減算することで漏れLを求めることができる。
The time constant governing the change based on the temperature of the differential pressure of the internal pressure of both the container after sealing work and master from atmospheric pressure P E opening is two of Daitoki constant and small time constant, according to the small time constant of which The change in differential pressure decays to negligible magnitude in a short time. In addition, with regard to the change in differential pressure related to the large time constant, the effect of the change in temperature of the container that caused the change in differential pressure based on the temperature obtained by atmospheric pressure sealing measurement is almost as it is also in the test pressure sealing measurement. It is considered to be continuing. Therefore, the measurement time T a of the differential pressure data when the rate of change of the gradient of the differential pressure curve in atmospheric pressure measurement is below a certain level (when the change related to the small time constant is negligible) and its time The gradient (rate of change of differential pressure) Q is determined. In addition, the measurement time T b of differential pressure data when the rate of change of the gradient of the differential pressure curve in the test pressure sealing measurement becomes lower than a certain level (when the change related to the small time constant is negligible) and the time The rate of change R of the differential pressure is determined. R includes the change in differential pressure due to leakage and the change in differential pressure due to temperature. The change in differential pressure due to the temperature contained in R corresponds to the value when the gradient Q at the measurement time T a of atmospheric pressure sealing measurement has elapsed until the measurement time T b according to the large time constant. That is, the time from the measurement time T a to the measurement time T b and Ts, considering the pressure ratio,
It is. Therefore, the leak L can be obtained by subtracting this from R.

[2]検査対象容器と漏れのない基準容器とを大気圧P開放から双方を封止した後の両容器の内圧の差圧を測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する大気圧封止測定ステップと、
前記大気圧封止測定ステップの終了後に続けて行われ、前記検査対象容器内と基準容器内とに気体を導入して所定の試験圧Pに加圧した後、前記大気圧封止測定ステップでの測定期間Tの終了からインターバル時間Tの経過後に双方が封止された状態となり、封止後の両容器の内圧の差圧を測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する試験圧封止測定ステップと、
前記大気圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号m=1、2、…M)に分け、グループ毎の差圧の平均値PED、m (m=1、2、…M) を求め、
なる差分列を求める第1勾配取得ステップと、
前記試験圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号m=1、2、…M)に分け、グループ毎の差圧の平均値PDD、m (m=1、2、…M) を求め、
なる差分列を求める第2勾配取得ステップと、
測定期間Tとインターバル時間Tの和をTとし、
なる数列においてmの増加に伴ってLの値が一定値に収束する場合にその収束値を漏れと判断する、もしくは、Lの絶対値が所定の許容値以下となるmが存在する場合に漏れ無しと判断する漏れ判断ステップと、
を有し、
前記大時定数は、前記検査対象容器と前記基準容器とを大気圧P開放から封止した後の両容器の内圧の差圧の温度に基づく変化を支配する二つの時定数のうちの大きい方の時定数であり、
前記α
である
ことを特徴とするリーク検査方法。
[2] The pressure difference in the internal pressure of both container after sealing of both the inspected container and a leaktight reference container from atmospheric pressure P E opened repeatedly measuring period T M, each measured pressure difference Atmospheric pressure sealing measurement step which is recorded along with the order from the start of measurement,
The atmospheric pressure sealing measurement step is performed continuously after the atmospheric pressure sealing measurement step, after introducing a gas into the inspection object container and the reference container and pressurizing the gas to a predetermined test pressure PT. After the interval time T I has elapsed since the end of the measurement period T M , both are sealed, and the differential pressure of the internal pressure of both containers after sealing is repeatedly measured over the measurement period T M , and each measured difference Test pressure measurement step which records the pressure with the order from the start of the measurement;
The data recorded in the atmospheric pressure sealing measurement step is divided into groups (group numbers m = 1, 2,... M) for each time T from the sealing time, and the average value P ED, m (m (m Find = 1, 2, ... M),
A first gradient acquisition step for obtaining a differential sequence
The data recorded in the test pressure sealing measurement step is divided into groups (group number m = 1, 2,... M) for each time T from the sealing time, and the average value P DD, m (m (m Find = 1, 2, ... M),
A second gradient acquisition step for obtaining a differential sequence
Let the sum of the measurement period T M and the interval time T I be T S ,
If the value of L m converges to a constant value as m increases, the convergence value is judged as a leak, or if there is m where the absolute value of L m falls below a predetermined allowable value Leak judgment step to judge that there is no leak in the
Have
The Daitoki constant is greater of the two time constants governing the change based on the temperature of the differential pressure of the internal pressure of both container after sealing the said object container and the reference container from atmospheric pressure P E open Time constant of
The α 2 is
A leak inspection method characterized in that

上記発明では、差圧の測定値から漏れを簡単な演算で判定する。すなわち、Qは大気圧封止測定の測定開始から時間T×m後の差圧曲線の勾配に対応する値であり、Rは試験圧封止測定の測定開始から時間T×m後の差圧曲線の勾配に対応する値であり、Lは試験圧封止測定の測定開始から時間T×m後における漏れを表している。時間T毎の平均をとることで、測定のノイズを除去している。mを増加させてLが一定値に収束したとき、小時定数に係る変化などの過渡的な変化が収まったことを示し、このときの収束値が漏れを示すことになる(収束値が0なら漏れ無し)。 In the above invention, the leak is determined from the measured value of the differential pressure by a simple calculation. That is, Q m is a value corresponding to the slope of the differential pressure curve after time T × m from the measurement start of the atmospheric pressure sealing measurement, and R m is after time T × m from the measurement start of the test pressure sealing measurement. L m is a value corresponding to the slope of the differential pressure curve, and L m represents a leak after a time T × m from the start of measurement of the test pressure seal measurement. By averaging every time T, the noise of the measurement is removed. When m is increased and L m converges to a constant value, it indicates that a transient change such as a change related to a small time constant is settled, and the convergence value at this time indicates a leak (the convergence value is 0). No leaks).

[3]前記漏れ判断ステップにおいて、LM−1の絶対値が前記許容値を超える場合は、
なる数列を作成し、Dが0に収束するときは、漏れがあると判断する
ことを特徴とする[2]に記載のリーク検査方法。
[3] In the leak determination step, when the absolute value of LM -1 exceeds the allowable value,
The leak inspection method according to [2], wherein, when D m converges to 0, it is determined that there is a leak.

上記発明では、漏れ判断でLM−1の絶対値が許容値を超える場合、検査対象容器に漏れがあるのか、測定時間Tが不足しているかの区別がつかないので、
なる数列を作成し、Dが0に収束するか否かによりその区別をつける。0に収束しなければ測定期間Tの不足であり、0に収束すればLM−1で漏れを正しく判断できる。すなわち、漏れがある。
In the above invention, when the absolute value of LM -1 in the leak judgment exceeds the allowable value, it can not be distinguished whether there is a leak in the container to be inspected or the measurement time TM is insufficient,
The following sequence is created, and the distinction is made depending on whether D m converges to 0 or not. If it does not converge to 0, it is a shortage of the measurement period T M , and if it converges to 0, the leak can be judged correctly by L M−1 . That is, there is a leak.

[4]Dが0に収束しないときは、測定期間Tを延長し、大気圧封止測定ステップから再度行う
ことを特徴とする[3]に記載のリーク検査方法。
[4] The leak inspection method according to [3], wherein when the D m does not converge to 0, the measurement period T M is extended, and the measurement is performed again from the atmospheric pressure sealing measurement step.

[5]Lが収束する最小のmに基づいて、測定期間Tを設定する
ことを特徴とする[2]乃至[4]のいずれか1つに記載のリーク検査方法。
[5] The leak inspection method according to any one of [2] to [4], wherein the measurement period T M is set based on the minimum m at which L m converges.

上記発明では、Lが収束すれば、検査対象容器に漏れがあるか否かを正しく判別することができる。よって、Lが収束するときの最小のmに基づいて定めた測定期間Tは正しい判定が可能な最小測定期間となる。 In the above invention, if L m converges, it can be correctly determined whether or not there is a leak in the container to be inspected. Therefore, the measurement period T M determined based on the minimum m when L m converges is the minimum measurement period in which correct determination can be made.

[6]検査対象容器と漏れのない基準容器とを大気圧P開放から双方を封止した後の両容器の内圧の差圧を測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する大気圧封止測定ステップと、
前記大気圧封止測定ステップの終了後に続けて行われ、前記検査対象容器内と基準容器内とに気体を導入して所定の試験圧Pに加圧した後、前記大気圧封止測定ステップでの測定期間Tの終了後からインターバル時間Tの経過後に双方が封止された状態となり、封止後の両容器の内圧の差圧を所定期間にわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する試験圧封止測定ステップと、
前記大気圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号k=1、2、…M)に分け、グループ毎の差圧の平均値PED、m (m=1、2、…M) を求め、
として、
の絶対値が所定の許容値以下になるmの値mを求める第1勾配取得ステップと、
前記試験圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号m=1、2、…M)に分け、グループ毎の差圧の平均値PDD、m (m=1、2、…M) を求め、
として、
の絶対値が所定の許容値以下になるmの値mを求め、mとmのうちの小さくない方の値をkとして、QとRを求める第2勾配取得ステップと、
測定期間Tとインターバル時間Tの和をTとし、
の演算で求めたLの値に基づいて前記検査対象容器の漏れの有無を判断する漏れ判断ステップと、
を有し、
前記大時定数は、前記検査対象容器と前記基準容器とを大気圧P開放から封止した後の両容器の内圧の差圧の温度に基づく変化を支配する二つの時定数のうちの大きい方の時定数であり、
前記α
である
ことを特徴とするリーク検査方法。
[6] the pressure difference in the internal pressure of both container after sealing of both the inspected container and a leaktight reference container from atmospheric pressure P E opened repeatedly measuring period T M, each measured pressure difference Atmospheric pressure sealing measurement step which is recorded along with the order from the start of measurement,
The atmospheric pressure sealing measurement step is performed continuously after the atmospheric pressure sealing measurement step, after introducing a gas into the inspection object container and the reference container and pressurizing the gas to a predetermined test pressure PT. After the end of the measurement period T M , both are sealed after the interval time T I elapses, and the differential pressure of the internal pressure of both containers after sealing is repeatedly measured over a predetermined period, and each differential pressure measured Test pressure sealing measurement step which records with the order from the start of measurement,
The data recorded in the atmospheric pressure sealing measurement step is divided into groups (group numbers k = 1, 2,... M) for each time T from the sealing time, and the average value P ED, m (m (m Find = 1, 2, ... M),
As
A first gradient acquisition step of obtaining a value m a of m for which the absolute value of n is less than or equal to a predetermined allowable value;
The data recorded in the test pressure sealing measurement step is divided into groups (group number m = 1, 2,... M) for each time T from the sealing time, and the average value P DD, m (m (m Find = 1, 2, ... M),
As
Absolute value calculated values m b of m becomes less than a predetermined tolerance, the value towards not smaller among the m a and m b as k, and the second gradient acquisition step of obtaining the Q k and R k,
Let the sum of the measurement period T M and the interval time T I be T S ,
A leak judgment step of judging presence or absence of a leak of the container to be inspected based on the value of L obtained by the calculation of
Have
The Daitoki constant is greater of the two time constants governing the change based on the temperature of the differential pressure of the internal pressure of both container after sealing the said object container and the reference container from atmospheric pressure P E open Time constant of
The α 2 is
A leak inspection method characterized in that

前述の[2]に係る発明では、差分列Lを作ったが、[6]に係る発明では、Qm、の段階で小時定数に係る変化を収束させ(許容値以下とし)、収束したQとRを用いてLを演算する。どの段階で収束させるかという点以外は[2]と同様である。 In the invention according to the above [2], the difference string L m is formed, but in the invention according to [6], the change according to the small time constant is converged at the stage of Q m and R m (set to the allowable value or less) Calculate L using the converged Q k and R k . It is the same as [2] except in terms of at which stage the convergence is made.

[7]mとmのいずれかを求めることができない場合は、測定期間Tを延長し、kを決定できた場合はkの値に基づいて測定期間Tを設定する
ことを特徴とする[6]に記載のリーク検査方法。
[7] If either m a or m b can not be determined, the measurement period T M is extended, and if k can be determined, the measurement period T M is set based on the value of k. The leak inspection method according to [6].

上記発明では、mとmのいずれかを求めることができない場合、すなわち、QM−1,RM−1のいずれかが許容値以下にならない(収束しない)ときは測定期間Tを延長し、kが求まる(Q,Rの両方が収束する)場合は、そのkに基づいて測定期間Tを設定する。 In the above invention, when either of m a and m b can not be obtained, that is, when either of Q M-1 and R M -1 does not fall below the allowable value (does not converge), the measurement period T M is If it extends and k is determined (both Q and R converge), the measurement period T M is set based on the k.

[8]検査対象容器と漏れのない基準容器とを大気圧P開放から双方を封止した後の両容器の内圧の差圧を測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する大気圧封止測定ステップと、
前記大気圧封止測定ステップの終了後に続けて行われ、前記検査対象容器内と基準容器内とに気体を導入して所定の試験圧Pに加圧した後、前記大気圧封止測定ステップでの測定期間Tの終了後からインターバル時間Tの経過後に双方が封止された状態となり、封止後の両容器の内圧の差圧を所定期間にわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する試験圧封止測定ステップと、
前記大気圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号k=1、2、…M)に分け、グループ毎の差圧の平均値PED、m (m=1、2、…M)として、
を求める第1勾配取得ステップと、
前記試験圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号m=1、2、…M)に分け、グループ毎の差圧の平均値PDD、m (m=1、2、…M)として、
を求める第2勾配取得ステップと、
測定期間Tとインターバル時間Tの和をTとし、
の演算で求めたLの値に基づいて前記検査対象容器の漏れの有無を判断する漏れ判断ステップと、
を有し、
前記大時定数は、前記検査対象容器と前記基準容器とを大気圧P開放から封止した後の両容器の内圧の差圧の温度に基づく変化を支配する二つの時定数のうちの大きい方の時定数であり、
前記α
である
ことを特徴とするリーク検査方法。
[8] the inspected container and a leaktight reference vessel pressure difference in the internal pressure of both container after sealing both repeatedly measuring period T M from the atmospheric pressure P E opened, each measured pressure difference Atmospheric pressure sealing measurement step which is recorded along with the order from the start of measurement,
The atmospheric pressure sealing measurement step is performed continuously after the atmospheric pressure sealing measurement step, after introducing a gas into the inspection object container and the reference container and pressurizing the gas to a predetermined test pressure PT. After the end of the measurement period T M , both are sealed after the interval time T I elapses, and the differential pressure of the internal pressure of both containers after sealing is repeatedly measured over a predetermined period, and each differential pressure measured Test pressure sealing measurement step which records with the order from the start of measurement,
The data recorded in the atmospheric pressure sealing measurement step is divided into groups (group numbers k = 1, 2,... M) for each time T from the sealing time, and the average value P ED, m (m (m = 1, 2, ... M),
A first gradient acquisition step for determining
The data recorded in the test pressure sealing measurement step is divided into groups (group number m = 1, 2,... M) for each time T from the sealing time, and the average value P DD, m (m (m = 1, 2, ... M),
A second gradient acquisition step for determining
Let the sum of the measurement period T M and the interval time T I be T S ,
A leak judgment step of judging presence or absence of a leak of the container to be inspected based on the value of L obtained by the calculation of
Have
The Daitoki constant is greater of the two time constants governing the change based on the temperature of the differential pressure of the internal pressure of both container after sealing the said object container and the reference container from atmospheric pressure P E open Time constant of
The α 2 is
A leak inspection method characterized in that

上記発明では、適切な測定期間Tが決定された後の測定方法を示す。測定期間Tの最後における差圧曲線の勾配QM−1、RM−1を求め、これらからLを演算すればよい。 The above invention shows a measurement method after the appropriate measurement period T M has been determined. The slopes Q M-1 and R M-1 of the differential pressure curve at the end of the measurement period T M may be determined, and L may be calculated from these.

[9][1]乃至[8]のいずれか1つに記載のリーク検査方法を用いて検査対象容器の漏れの有無を検査するリーク検査装置。 [9] A leak inspection apparatus for inspecting the presence or absence of a leak in a container to be inspected using the leak inspection method according to any one of [1] to [8].

[10][1]乃至[8]のいずれか1つに記載のリーク検査方法のうち、
前記大気圧封止測定ステップで記録されたデータ、および前記試験圧封止測定ステップで記録されたデータの入力を受けて、
前記第1勾配取得ステップと前記第2勾配取得ステップと前記漏れ判断ステップの処理を行って検査対象容器の漏れの有無を判定するリーク検査装置。
[10] Among the leak inspection methods described in any one of [1] to [8],
Receiving the data recorded in the atmospheric pressure sealing measurement step and the data recorded in the test pressure sealing measurement step,
A leak inspection apparatus that performs processing of the first gradient acquisition step, the second gradient acquisition step, and the leak determination step to determine the presence or absence of a leak of a container to be inspected.

上記発明では、差圧の測定は別の装置で行い、測定結果のデータをその別の装置から入力し、入力した測定結果のデータに対する演算、判定のみをリーク検査装置で行う。   In the above invention, measurement of the differential pressure is performed by another device, data of the measurement result is input from the other device, and only calculation and determination on the data of the input measurement result are performed by the leak inspection device.

[11]リーク検査装置に、
[1]乃至[8]のいずれか1つに記載のリーク検査方法の各ステップもしくは前記第1勾配取得ステップと前記第2勾配取得ステップと前記漏れ判断ステップを実行させる
ことを特徴とするプログラム。
[11] In the leak inspection device,
A program comprising: executing each step of the leak inspection method according to any one of [1] to [8] or the first gradient acquisition step, the second gradient acquisition step, and the leak determination step.

本発明に係るリーク検査方法およびリーク検査装置によれば、適切な測定時間を決めることができ、漏れの有無を、必要最小限の時間で、高い精度で判定することができる。   According to the leak inspection method and the leak inspection apparatus according to the present invention, an appropriate measurement time can be determined, and the presence or absence of a leak can be determined with high accuracy with the minimum necessary time.

本発明に係るリーク検査方法を実施するリーク検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the leak test | inspection apparatus which enforces the leak test | inspection method which concerns on this invention. 大気圧封止測定工程で得た測定データに基づく差圧曲線と、試験圧封止測定工程で得た測定データに基づく差圧曲線を連続した時間軸で表したグラフである。It is the graph which represented the differential pressure curve based on the measurement data obtained at the atmospheric pressure sealing measurement process, and the differential pressure curve based on the measurement data obtained at the test pressure sealing measurement process by a continuous time-axis. 大気圧封止測定工程から試験圧封止測定工程におけるワークとマスタ内の気体の温度差の変化を示す図である。It is a figure which shows the change of the temperature difference of the gas in the workpiece | work and a master in a test pressure sealing measurement process from an atmospheric pressure sealing measurement process. 大時定数を求める際に測定した差圧曲線の一例を示す図である。It is a figure which shows an example of the differential pressure curve measured when calculating | requiring a large time constant.

以下、図面に基づき本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described based on the drawings.

図1は、本発明に係るリーク検査方法を実施するリーク検査装置10の概略構成を示している。リーク検査装置10は、検査対象となる容器(例えば、給湯器の熱交換器や貯湯タンク)の漏れを検査する装置である。検査対象容器をワークとする。またワークと同形状、同材料で構成された容器であって漏れのないことが確認されているものをマスタとする。ワークとマスタは同じ力学的および熱力学的パラメータを持った異なる容器である。   FIG. 1 shows a schematic configuration of a leak inspection apparatus 10 that carries out a leak inspection method according to the present invention. The leak inspection apparatus 10 is an apparatus for inspecting a leak of a container to be inspected (for example, a heat exchanger of a water heater or a hot water storage tank). Use the container to be inspected as a work. In addition, a container made of the same material and the same shape as the work, and confirmed to have no leak, is used as a master. The work and the master are different containers with the same mechanical and thermodynamic parameters.

リーク検査装置10は、加圧源接続口11と、ワーク接続口12と、マスタ接続口13を備えている、リーク検査装置10は内部の管路として、加圧源接続口11に一端が接続された第1配管21を有し、該第1配管21は途中で二手に分岐して第2配管22と第3配管23となり、第2配管22の他端はワーク接続口12に、第3配管23の他端はマスタ接続口13にそれぞれ接続されている。   The leak inspection apparatus 10 includes a pressure source connection port 11, a work connection port 12, and a master connection port 13. The leak inspection apparatus 10 has one end connected to the pressure source connection port 11 as an internal conduit. The first pipe 21 is branched on the way to the second pipe 22 and the third pipe 23, and the other end of the second pipe 22 is connected to the work connection port 12 as a third pipe. The other ends of the pipes 23 are connected to the master connection port 13 respectively.

第1配管21には第1開閉弁31が介挿されている。第2配管22には第2開閉弁32が介挿されている。また第3配管23には第3開閉弁33が介挿されている。第2開閉弁32とワーク接続口12との間の第2配管22は途中で分岐して差圧計37の一方の接続口に接続されている。同様に、第3開閉弁33とマスタ接続口13との間の第3配管23は途中で分岐して差圧計37の他方の接続口に接続されている。差圧計はその一方の接続口にかかる圧力と他方の接続口にかかる圧力の差圧を計測する。第1開閉弁31と第3開閉弁33との間の所定箇所で第3配管23から第4管路24が分岐しており、該第4管路24の途中に第4開閉弁34が設けてある。第4管路24の終端は大気開放されている。   A first on-off valve 31 is inserted in the first pipe 21. A second on-off valve 32 is inserted in the second pipe 22. In addition, a third on-off valve 33 is inserted in the third pipe 23. The second pipe 22 between the second on-off valve 32 and the work connection port 12 branches midway and is connected to one connection port of the differential pressure gauge 37. Similarly, the third pipe 23 between the third on-off valve 33 and the master connection port 13 branches halfway and is connected to the other connection port of the differential pressure gauge 37. The differential pressure gauge measures the differential pressure between the pressure applied to one of the connection ports and the pressure applied to the other connection port. The third pipe 23 to the fourth pipe line 24 are branched at a predetermined position between the first on-off valve 31 and the third on-off valve 33, and the fourth on-off valve 34 is provided in the middle of the fourth pipe line 24. It is The end of the fourth conduit 24 is open to the atmosphere.

リーク検査装置10は、検査の流れの制御、差圧の測定、測定結果の記録および記録した測定結果に基づく漏れ判定等を行う検査処理部15を有する。検査処理部15は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を主要部とする回路であり、ROMに格納されたプログラムに従ってCPUが処理を実行することで、リーク検査装置10における検査動作および演算、判定が行われる。   The leak inspection apparatus 10 includes an inspection processing unit 15 which performs control of the flow of inspection, measurement of a differential pressure, recording of a measurement result, and leakage determination based on the recorded measurement result. The inspection processing unit 15 is a circuit mainly including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like, and the CPU executes processing in accordance with a program stored in the ROM. Then, the inspection operation, calculation, and determination in the leak inspection apparatus 10 are performed.

加圧源接続口11には、図示省略の電空レギュレータ等を介して加圧気体の供給元である圧力源が接続される。   A pressure source, which is a supply source of pressurized gas, is connected to the pressure source connection port 11 via an electropneumatic regulator or the like (not shown).

ワーク接続口12にはワーク41が接続され、マスタ接続口13にはマスタ42が接続される。   A work 41 is connected to the work connection 12, and a master 42 is connected to the master connection 13.

次に本発明の概要を説明する。   Next, an outline of the present invention will be described.

本発明に係るリーク検査装置10によるリーク検査では、ワーク41とマスタ42とを大気圧P開放した後に双方を封止し、封止後の両容器の内圧の差圧を差圧計37で所定期間にわたり繰り返し測定し、測定した各差圧と測定時刻(測定時刻に代わり、測定時刻を特定できれば測定順位などでもよい)とを対応付けて記録する大気圧封止測定工程を行う。次に、大気圧封止測定工程の終了後に続けて、ワーク41とマスタ42とに気体を導入して所定の試験圧Pに加圧した後に双方を封止し、封止後の両容器の内圧の差圧を所定期間にわたり繰り返し測定し、測定した各差圧と測定時刻(測定時刻に代わり、測定時刻を特定できれば測定順位などでもよい)とを対応付けて記録する試験圧封止測定工程を行う。 The leak inspection by a leakage inspecting device 10 according to the present invention, sealing both the workpiece 41 and the master 42 after opening the atmospheric pressure P E, a predetermined differential pressure in the internal pressure of both the container after sealing by the differential pressure gauge 37 An atmospheric pressure sealing measurement step is performed in which measurement is repeatedly performed over a period, and each measured differential pressure is recorded in association with measurement time (in place of measurement time, measurement order may be used if measurement time can be specified). Next, subsequently to the end of the atmospheric pressure sealing measurement process, a gas is introduced into the work 41 and the master 42 and pressurized to a predetermined test pressure PT , and then both are sealed to seal both containers after sealing. Test pressure sealing measurement that measures the differential pressure of internal pressure repeatedly for a predetermined period, and associates each measured differential pressure with the measurement time (in place of the measurement time, it may be the measurement order if the measurement time can be specified) Perform the process.

そして、大気圧封止測定工程で記録したデータから、時間の経過に伴う差圧の変化を表したグラフ(差圧曲線)の勾配(差圧の変化率)の差分が一定以下になったときの差圧のデータの大気圧封止測定工程での測定時刻Tとそのときの差圧の変化率(勾配)Qを求める第1勾配取得工程、及び、試験圧封止測定工程で記録したデータから、時間の経過に伴う差圧の勾配(差圧の変化率)の差分が一定以下になったときの差圧のデータの試験圧封止測定工程での測定時刻Tとそのときの差圧の変化率(勾配)Rを求める第2勾配取得工程を行う。 And when the difference of the gradient (rate of change of differential pressure) of the graph (differential pressure curve) representing the change of differential pressure with the passage of time from the data recorded in the atmospheric pressure sealing measurement step becomes less than a certain value Measurement time T a in the atmospheric pressure sealing measurement process of differential pressure data and the first gradient acquisition process for obtaining the rate of change (gradient) Q of the differential pressure at that time, and recorded in the test pressure sealing measurement process from the data, the differential pressure over time gradient of the test圧封stop measurement process data differential pressure difference became constant below (differential pressure rate of change) measurement time T b and at that time A second gradient acquisition step is performed to obtain a rate of change (gradient) R of the differential pressure.

その後、測定時刻Tから測定時刻Tまでを連続して計時した場合の時間差をTとし、ワーク41の漏れLを、
の演算で求める、もしくはLの値に基づいてワーク41の漏れの有無を判断する漏れ判断工程を行う。
Then, a time difference in the case of counting from the measurement time T a to the measurement time T b continuously and T S, leakage L of the workpiece 41,
The leakage determination step of determining the presence or absence of the leakage of the work 41 based on the value of L or the value of L is performed.

図2は、大気圧封止測定工程で得た測定データに基づく時間の経過に伴う差圧変化と、試験圧封止測定工程で得た測定データに基づく差圧変化とを、大気圧封止測定工程の開始時点から連続した時間軸で表したグラフ(差圧曲線)である。試験圧封止測定工程での差圧変化は、ワーク41からの漏れによる差圧変化と、温度に基づく差圧変化の和である。一方、大気圧封止測定工程での差圧変化は、温度に基づく差圧変化のみと考えられる。   FIG. 2 shows atmospheric pressure sealing of differential pressure change over time based on measurement data obtained in the atmospheric pressure sealing measurement process and differential pressure change based on measurement data obtained in the test pressure sealing measurement process. It is the graph (differential pressure curve) represented by the time-axis continuous from the start time of a measurement process. The differential pressure change in the test pressure sealing measurement process is the sum of the differential pressure change due to the leak from the work 41 and the differential pressure change based on the temperature. On the other hand, the differential pressure change in the atmospheric pressure sealing measurement process is considered to be only the differential pressure change based on the temperature.

しかし、同じワーク41について大気圧封止測定工程と試験圧封止測定工程を同時に行うことはできない。そこで、本発明では、試験圧封止測定工程の直前に実施した大気圧封止測定工程で得た差圧曲線の勾配Q(差圧の変化率)から、試験圧封止測定工程での温度による差圧の変化率を推定し、これに試験圧と大気圧の比を乗じた値を、試験圧封止測定工程で得た差圧曲線の勾配Rから減じることで、試験圧封止測定工程での漏れによる差圧の変化率(漏れL)を推定する。   However, the atmospheric pressure sealing measurement process and the test pressure sealing measurement process can not be simultaneously performed on the same work 41. Therefore, in the present invention, the temperature in the test pressure sealing measurement step is determined from the slope Q (rate of change of differential pressure) of the differential pressure curve obtained in the atmospheric pressure sealing measurement step performed immediately before the test pressure sealing measurement step. Test pressure seal measurement by estimating the rate of change of the differential pressure due to and subtracting the ratio of the test pressure and the atmospheric pressure from the gradient R of the differential pressure curve obtained in the test pressure seal measurement process. Estimate the rate of change in differential pressure (leakage L) due to leaks in the process.

ところで、図2と同じ時間軸においてワーク41内の気体温度とマスタ42内の気体温度との温度差の変化を示すと図3のようになる。ワーク41内の気体温度は、大気圧封止測定工程において曲線ABのように変化し、もし大気圧封止測定工程の後に試験圧への加圧を行われなければ、そのまま継続した変化となり、破線BCで示すようになる。実際には、試験圧に加圧されることで容器内の気体が断熱圧縮されて温度上昇するため、BDEのように変化する(グラフは誇張して描いてある)。   Incidentally, the change in the temperature difference between the gas temperature in the work 41 and the gas temperature in the master 42 on the same time axis as FIG. 2 is as shown in FIG. The gas temperature in the work 41 changes as shown by curve AB in the atmospheric pressure sealing measurement process, and if the pressurization to the test pressure is not performed after the atmospheric pressure sealing measurement process, the change continues as it is, As shown by the broken line BC. In practice, the gas inside the container is adiabatically compressed by being pressurized to the test pressure, and the temperature rises, so it changes like BDE (the graph is drawn with exaggeration).

しかし、空気に比べて容器の熱容量が十分大きいこと、加圧による発熱はワーク41とマスタ42の双方でほとんど等しいことなどから、たとえば、容器内の空気を6分の1に断熱圧縮しても、ワーク41とマスタ42の内部の気体温度の差は、加圧しない場合とほとんど変わらない。すなわち、現実には、図3のABD´CのようにABCにほぼ重なる曲線になる。   However, because the heat capacity of the container is sufficiently large compared to air, and the heat generated by pressurization is almost the same for both the work 41 and the master 42, etc. The difference in gas temperature inside the workpiece 41 and the master 42 is almost the same as in the case where no pressure is applied. That is, in reality, it becomes a curve substantially overlapping ABC, as in ABD'C of FIG.

そして、絶対温度と圧力とは比例するので、試験圧での温度による差圧変化は温度差変化と同様になる。すなわち、大気圧封止測定工程での温度による差圧の変化は、その後の試験圧封止測定においては、封止圧力の比をかければそのまま継続していると推定される。   And, since the absolute temperature and the pressure are in proportion, the change in differential pressure due to the temperature at the test pressure is similar to the change in temperature. That is, it is assumed that the change in differential pressure due to temperature in the atmospheric pressure sealing measurement process continues as it is in the subsequent test pressure sealing measurement if the sealing pressure ratio is determined.

そこで、温度差のあるワーク41とマスタ42とを大気圧P開放から封止した後の両容器の内圧の差圧の変化(これは温度に基づく変化)を支配する2つの時定数のうちの大きい方の時定数である大時定数を予め測定して求めておく。そして、漏れ判断工程では、勾配Qの測定時刻Tから勾配Rの測定時刻Tまでの経過時間Tと大時定数とで勾配Qを補正して、勾配Rの測定時刻Tになったときの温度による差圧の変化率を推定する。また大気圧と試験圧の違いをP/Pにより補正する。すなわち、
の演算で漏れLを求めて、漏れの有無を判断する。なお、上記温度による差圧の変化を支配する2つの時定数の内の小さい方を小時定数とする。
Therefore, the differential pressure changes in the inner pressure of both container after sealing the workpiece 41 and the master 42 with a temperature difference from the atmospheric pressure P E open (which varies based on the temperature) of the two time constants governing the The large time constant, which is the larger one of the two, is previously measured and obtained. Then, in the leakage determination process is to correct the elapsed time T S and slope Q between Daitoki constant from measurement time T a gradient Q to the measurement time T b of the gradient R, becomes the measurement time T b of the gradient R Rate of change in differential pressure due to temperature. Also correct the difference between atmospheric pressure and test pressure by P T / P E. That is,
The leakage L is obtained by the calculation of to determine the presence or absence of the leakage. The smaller one of the two time constants that govern the change in differential pressure due to the temperature is taken as the small time constant.

第1勾配取得工程、第2勾配取得工程では、差圧曲線の勾配の変化率が一定以下に収まった後の勾配(差圧の変化率)を取得することで、温度に係る変化のうち小時定数に係る差圧変化等が無視できる程度に十分減衰するのを待っている。   In the first gradient acquisition step and the second gradient acquisition step, by acquiring the gradient (rate of change of differential pressure) after the rate of change of the gradient of the differential pressure curve falls below a certain level, the time related to temperature changes is small. It waits for sufficient attenuation to a negligible extent such as a change in differential pressure related to the constant.

次に、より詳細に、本発明の理論的な説明を行う。   Next, the theoretical explanation of the present invention will be made in more detail.

ここでは計測時間内での周囲温度変化が無視できる場合を扱う。周囲温度が計測時間内に無視できないほど変化する場合には、別の方法を考えるべきである。それは計測時間が長い場合や、換気が速く行われるなどの場合に起こる。本発明は、容器等の環境温度の変化が無視できる程度に短時間で、測定を終了する漏れ試験法に関する。   Here, the case where the ambient temperature change within the measurement time can be ignored is dealt with. If the ambient temperature changes significantly beyond the measurement time, another method should be considered. It occurs when measurement time is long or ventilation is performed fast. The present invention relates to a leak test method which terminates measurement in such a short time that a change in environmental temperature of a container or the like can be ignored.

以下で使用する差圧は、
差圧P=(マスタの内圧)−(ワークの内圧)
とする。
The differential pressure used below is
Differential pressure P D = (master internal pressure)-(work internal pressure)
I assume.

図1において、第2開閉弁32、第3開閉弁33を封止した時刻をt=0とするとき、周囲の温度が変わらないときに生じる差圧は
である。ただしPを封止圧力とするとき
であって、Gは質量流量、Mは封止された空気質量である。この質量流量Gは、Pを環境圧力、Kをリークを生じさせている孔により定まる定数として
である。C及びCは温度の初期条件で決定するので、漏れ測定前に知ることはできない。
In FIG. 1, when the time at which the second on-off valve 32 and the third on-off valve 33 are sealed is t = 0, the differential pressure generated when the ambient temperature does not change is
It is. However, when P C is the sealing pressure
Where G is the mass flow and M C is the sealed air mass. This mass flow rate G is a constant determined by P E as an environmental pressure and K V as a hole causing a leak.
It is. Since C 1 and C 2 is determined by the initial conditions of temperature, it can not be known before the leak measurement.

漏れ測定前に知ることができるパラメータは次のものである。
ガス定数:R
製品によって決定するパラメータ(温度変化の時定数):T1,2,
試験条件により決定する既知の量:PC,E,C,μθ0,
μは空気粘度、θは空気温度である。Tは小時定数、Tは大時定数である。
The parameters that can be known before leak measurement are:
Gas constant: R
Parameters to be determined by the product (time constant of temperature change): T1 , T2 ,
Known quantities determined by test conditions: P C, P E, M C, μ , θ 0,
μ is the air viscosity, and θ 0 is the air temperature. T 1 is a small time constant, and T 2 is a large time constant.

式(1)はPが大気圧のときも試験圧のときも成り立つ。しかし、パラメータはすべて異なり、時間の原点も異なる。 Equation (1) holds true also when the even test pressure when P C is the atmospheric pressure. However, the parameters are all different and the origin of time is also different.

本発明が好適に適用できる容器は、
が成り立つものである。差圧の計測、記録は、測定期間である時間Tにわたって行う。Tの大きさの目安は、
である。なお、大気圧での時間Tにわたる差圧測定と次の試験圧での差圧測定の開始の間には加圧するためにインターバルTが必要である。おおむね
程度のTを選んで
とおく。これらは、差圧の時間的な変化の比較において使用する。
The container to which the present invention can be suitably applied is
Is true. Measurement and recording of the differential pressure are performed over a time period T M which is a measurement period. The standard of the size of T M is
It is. Note that an interval T I is necessary to pressurize between the start of the differential pressure measurement over the time T M at atmospheric pressure and the differential pressure measurement at the next test pressure. Roughly
Choose a degree T
far. These are used in the comparison of temporal changes in differential pressure.

<圧力変化の様子を一つの指数関数で近似する>
さて、式(1)のtにt+Tを代入すると
である。式(9)から式(1)のα倍を引くと、大時定数の指数関数を消去することができる。式(10)の左辺はリークを評価するための関数である。
<Approximate pressure change with one exponential function>
Now, substituting t + T for t in equation (1)
It is. By subtracting α 2 times Expression (1) from Expression (9), the exponential function of the large time constant can be eliminated. The left side of equation (10) is a function for evaluating the leak.

まず、大気圧による1回目の測定について考察する。
容器内を環境圧力P(大気圧)で満たして密閉した後に差圧が発生したならば、その差圧は内部気体温度の変化により生じたと言える。このときには、式(2)において
であるが、式(4)、(3)、(2)により、
である。これを式(10)に代入して、次式を得る
左辺の観測値をプロットすれば、それは定数と指数関数の和となる。式(13)の左辺を測定値から求め、その変化が微小になれば、測定を打ち切る。
First, consider the first measurement by atmospheric pressure.
If a differential pressure is generated after the inside of the container is sealed by being filled with the environmental pressure P E (atmospheric pressure), it can be said that the differential pressure is generated by a change in internal gas temperature. At this time, in equation (2)
However, according to equations (4), (3) and (2),
It is. Substituting this in equation (10), we obtain
If you plot the observation on the left side, it is the sum of a constant and an exponential function. The left side of equation (13) is determined from the measured value, and if the change becomes small, the measurement is aborted.

式(13)は、十分時間が経過して、二つの容器(ワークとマスタ)の温度差が0になっても、差圧は0にならないことを示す。式(13)の値が一定とみなせる程度に収束するまでが、計測に必要な時間である。それゆえ
程度とすれば、式(13)の右辺第2項が微小となり、温度により生じる圧力変化率が
と、求められる。これは、時定数Tが非常に大きいことによる、見せ掛けの質量変化率(偽りの漏れ)である。
Equation (13) indicates that the differential pressure does not become zero even if the temperature difference between the two containers (work and master) becomes zero after a sufficient time has elapsed. The time required for measurement is the time required for the value of equation (13) to converge to such a degree that it can be considered constant. therefore
(13) becomes small, and the pressure change rate caused by temperature becomes
And is required. This is because the time constant T 2 is very large, the mass change ratio of the spurious (false leak).

次に第2回目の測定は、試験圧力Pを両容器に封止して行う。圧力が変わるので、C=0とはいえない。また時間原点が変わるので、温度初期値が変更される。したがって、式(13)に代わり
としなければならない。初期値により定まる定数が前と異なるので、ここではC´、C´と記号を区別してある。大気圧による第1回目の測定と試験圧による第2回目の測定との時間的な関係は図2に示される。
Next, the second measurement is performed by sealing the test pressure PT in both containers. Since the pressure changes, it can not be said that C 0 = 0. Moreover, since the time origin changes, the temperature initial value is changed. Therefore, instead of equation (13)
It must be done. Since the constant determined by the initial value is different from before, the symbols are distinguished from C ' 1 and C' 2 here. The temporal relationship between the first measurement by atmospheric pressure and the second measurement by test pressure is shown in FIG.

容器に試験圧をかけたとき、漏れ孔があれば漏れを生じる。一方、漏れの有無に関わらず、容器内には温度変化による気体圧力の変化が生じる。観測される差圧変化は、漏れによる差圧変化と温度による差圧変化の和である。同じ容器に対して加圧なしと加圧ありの場合の同時測定を行うことは不可能であるから、これらの分離には、なんらかの推論が必要である。そこで、温度による差圧変化を推定し、その推定値と異なる差圧が観測されたならば、その差が「漏れ」による圧力変化であるとみなすものとする。   When test pressure is applied to the container, any leaks will cause a leak. On the other hand, regardless of the presence or absence of a leak, a change in gas pressure occurs due to a temperature change in the container. The observed differential pressure change is the sum of the differential pressure change due to leakage and the differential pressure change due to temperature. Because it is not possible to make simultaneous measurements with and without pressure on the same container, some separation is necessary for these separations. Therefore, a differential pressure change due to temperature is estimated, and if a differential pressure different from the estimated value is observed, it is assumed that the difference is a pressure change due to "leakage".

まず次の量を求める。
これに式(13)、(16)を代入して
First find the next quantity.
Substituting equations (13) and (16) into this

さて、測定の有無に関わらず、容器と外部環境との熱交換は続く。しかし容器を加圧すると、内部にあった気体は圧縮されて、熱が発生する。このことは空気の温度上昇を引き起こすし、容器への熱伝達により容器温度も上昇する。加圧による発熱量はマスタとワークにおいてほとんど等しいから、容器温度差は時定数Tにより定まる連続的な変化で近似され、その状況での容器温度差推定が行える。図3は2つの測定を通じた、容器温度差の変化を説明している。 Now, heat exchange between the container and the external environment continues with or without the measurement. However, when the container is pressurized, the gas inside is compressed and heat is generated. This causes the temperature of the air to rise, and the heat transfer to the vessel also raises the vessel temperature. Since the amount of heat generated by pressurization almost equal in the master and the workpiece, the vessel temperature difference is approximated by continuous change determined by the time constant T 2, allows the container temperature difference estimation in that situation. FIG. 3 illustrates the change in container temperature difference through two measurements.

大気圧封止で計測しているときの容器内空気の温度差が、曲線ABで表されている。加圧がなければ、この曲線は破線BD´Cのように続く。この曲線は、ABの延長であって、数式的には、ABまでの経過により決定されている。BD´は加圧過程であるから、温度差はBDのようになるが、D´とDはほとんど重なる場合が多いので、ここでは、そのような場合を考察する。その後の温度は、DEのような容器の放熱で代表される変化過程をたどるが、その曲線はD´Cとほぼ重なると仮定することができる。この仮定が成り立たないという事例のときはあるが、そういう事例に対して本発明を適用すると不正確な結果を招く。   The temperature difference of the air in the container when measured by atmospheric pressure sealing is represented by curve AB. Without pressurization, this curve continues as a dashed line BD'C. This curve is an extension of AB and is mathematically determined by the progression to AB. Since BD 'is a pressurization process, the temperature difference becomes like BD, but since D' and D often overlap, such a case is considered here. The temperature after that follows a change process represented by heat dissipation of a container such as DE, but it can be assumed that the curve almost overlaps with D'C. Although there are cases where this assumption does not hold, applying the present invention to such cases leads to inaccurate results.

さて、曲線ABCは、
と近似することができて、加圧後の時刻の原点はT+Tだけ、加圧前の大気圧封止測定よりも後である。加圧後の時間、初期値など関係量は、大気圧封止の場合の記号にダッシュ(´)をつけて表す。しからば、BCとDEがほとんど重なっているので、
であるが、T>>Tであるから、通常は第2項は第1項に比べて微小である。
Well, curve ABC is
It can be approximated that the origin of the time after pressurization is T M + T I , which is later than the atmospheric pressure sealing measurement before pressurization. The time after pressurization and the related values such as the initial value are indicated by adding a dash (') to the symbol in the case of atmospheric pressure sealing. Since BC and DE almost overlap each other,
However, since T 2 >> T 1 , the second term is usually smaller than the first term.

それゆえ
と推定できる。それゆえ、漏れによる圧力変化率は
となる。この右辺第2項が減衰するのは、データを観測して待つべき時間を調査する。これはLの経時特性から、減衰の時定数Tを観測すれば、毎度調べる必要はない。式(23)式の右辺の第2項が減衰した後に残る右辺の第1項は漏れを表しているから、測定値から求まる式(17)の演算結果は、漏れを示すことになる。
therefore
It can be estimated. Therefore, the pressure change rate due to leakage is
It becomes. The second term of this right side decays by observing the data and examining the time to wait. This is not necessary to check every time if observing the time constant T 1 of decay from the time-dependent characteristic of L. Since the first term of the right side remaining after the second term of the right side of the formula (23) is attenuated represents a leak, the calculation result of the formula (17) obtained from the measured value indicates the leak.

測定値から求まる式(17)の右辺は、ノイズを含む。また、リークを見るには、左辺(式(23))の指数関数項の減衰を待つ必要がある。ノイズに関しては、Lの時間幅Tにわたる平均値を求めて、近似的に消去する。この平均化は、上記のデータ処理の前で行っても、結果は同じである。   The right side of equation (17) obtained from the measured value contains noise. Also, to see the leak, it is necessary to wait for the decay of the exponential term of the left side (equation (23)). With regard to noise, an average value over a time width T of L is determined and approximately eliminated. Even though this averaging is performed before the above data processing, the results are the same.

漏れ量推定は、式(17)をデータから計算することにより行われる。この計算では、大時定数Tを前もって知っている必要がある。マスタを加熱せず、ワークを加熱して、差圧の時間曲線を一度求めれば、Tの数値は十分正確に知ることができる。 Leakage estimation is performed by calculating Formula (17) from data. In this calculation, it is necessary to have prior knowledge Daitoki constant T 2. If the workpiece is heated and the differential pressure time curve is obtained once without heating the master, the numerical value of T 2 can be known sufficiently accurately.

次に、差圧を測定し、式(17)に対応する演算を行って漏れの有無を判断する検査工程について説明する。   Next, an inspection process of measuring a differential pressure and performing an operation corresponding to Expression (17) to determine the presence or absence of a leak will be described.

漏れ測定に使う時間を1分ないし数分程度とする場合には、0.1秒程度の時間ステップsごとに、差圧の測定及び記録を行う。この時間ステップsのn倍(nは整数で、おおむね10以上)をTとし、TのM倍(Mは整数でおおむね4以上)=Tを差圧記録時間(測定期間T)とする。Tにわたる測定記録の完了から次の差圧測定開始まではTとし、Tはできるだけ短く設定する。漏れ測定に使う時間が長い場合には、それに応じてsも大きく取って良い。 When the time used for leak measurement is about one minute to several minutes, the differential pressure is measured and recorded every time step s of about 0.1 seconds. The n times the time step s (n is an integer, generally 10 or more) as a T, (the M approximately 4 or more integer) M times T and = T M differential pressure recording time (measurement period T M) . From the completion of the measurement recording over T M to the next differential pressure measurement start is set to T I, T I is set as short as possible. If the time used for leak measurement is long, the value of s may be increased accordingly.

測定器は次のように使用する。リーク測定すべき物品(ワーク)が決まったら、まず封止状態の物品の温度による圧力変化を支配する二つの時定数のうちの大きい方の時定数(以下では大時定数と呼ぶ)の測定を行う。次いで、一般の検査プロセスに入る。大時定数の測定は、測定物1種類に対して1回行えば良く、個々のリーク検査においては、一般の検査プロセスを実行するだけで良い。   The measuring instrument is used as follows. Once the item (workpiece) to be leaked is determined, first measure the larger one of the two time constants that govern the pressure change due to the temperature of the sealed item (hereinafter referred to as the large time constant). Do. Then enter the general inspection process. The measurement of the large time constant may be performed once for one type of measurement object, and in the individual leak inspection, only the general inspection process may be performed.

<大時定数(T)の測定>
通常の漏れ測定のように、リーク検査装置10にマスタとワークを接続する。このワークとマスタは、あらかじめ漏れがないことを確認してあるものを用いる。ワークを適当な方法で周囲温度と異なる温度とし、次いでワークとマスタを環境空気に開放してから封止し、差圧計測を始める。この差圧は、時刻t=0において、弁(第2開閉弁32,第3開閉弁33)を遮断して差圧計側を開始し、一定時間T後に弁を開放して、零に戻す操作をする。再度弁封止をするまでの時間をTとする。こうして得る差圧曲線は直線近似できる程度に短いTを取る。
<Measurement of Large Time Constant (T 2 )>
The master and the work are connected to the leak inspection apparatus 10 as in the normal leak measurement. This work and the master use what has been confirmed in advance that there is no leak. The workpiece is brought to a temperature different from the ambient temperature by an appropriate method, and then the workpiece and the master are released to ambient air and then sealed, and differential pressure measurement is started. This differential pressure shuts off the valves (the second on-off valve 32 and the third on-off valve 33) at time t = 0 to start the differential pressure gauge side, opens the valve after a certain time T A , and returns to zero. Do the operation. Let T B be the time taken to seal the valve again. The differential pressure curve thus obtained has a T A that is short enough to be linearly approximated.

このときの差圧曲線の勾配をGとする。同じ操作を繰り返して、数列G、G、…を求める。図4は、このようにして測定した複数の差圧曲線の例である。図4の横軸は時間、縦軸は差圧である。 The gradient of the differential pressure curve at this time is G 1 . The same operation is repeated to obtain number sequences G 1 , G 2 ,. FIG. 4 is an example of a plurality of differential pressure curves measured in this manner. The horizontal axis in FIG. 4 is time, and the vertical axis is differential pressure.

個々の差圧曲線は、ほとんど直線とみなせる程度にTは短い。このとき、
となっているから、両辺の対数を取った形
から、最小二乗法で1/Tを求めれば良い。k=3くらいまでのデータは、もう一つの時定数の影響を受けることがあるので、削除してから、残りのデータを使ってTを求めるほうが、より真値に近くなる。
Individual differences pressure curve, T A is short enough that almost regarded as a straight line. At this time,
Form, taking the logarithm of both sides
From this, 1 / T 2 may be obtained by the least squares method. Since data up to about k = 3 may be affected by another time constant, deleting it and using the remaining data to find T 2 is closer to the true value.

<α及びβの決定>
圧力の過渡応答は一つの線形関数と、二つの一次遅れステップ応答の和で表される。一次遅れステップ応答の時定数で、大きいほうが既述の大時定数であり、それを用いて
である。T、T、Tは試験者が任意に定めることができるが便宜上、Mを正整数としてTはTのM倍に設定する。Tは試験体(ワーク)によって定まる固有値により決定するもので、試験体によって定まる。Tは製品が決まれば決定するので、それを測定しておけば、その後の同じ製品に対して、使い続けることができる。
<Determination of α and β>
The pressure transient response is represented by one linear function and the sum of two first order lag step responses. The time constant of the first-order lag step response, the larger one being the previously described large time constant, and using it
It is. T, T M , and T I can be arbitrarily determined by the tester, but for convenience, M is a positive integer and T M is set to M times T. T 2 are those determined by the eigenvalues determined by the specimen (workpiece), determined by the test body. T 2 because the product to determine if Kimare, if you measure it, it is possible that subsequent to the same product, continue to use.

<一般の検査プロセス>
第1開閉弁31を閉じた状態のリーク検査装置10のワーク接続口12にワーク41をマスタ接続口13にマスタ42を接続し、第2開閉弁32、第3開閉弁33、第4開閉弁34を開いて大気圧P開放とし、その後、第4開閉弁34を閉じ、さらに第2開閉弁32、第3開閉弁33を同時に閉じて、ワーク41とマスタ42を大気圧で封止する。双方を封止したときを測定の開始時点として、両容器の内圧の差圧を時間s毎に、測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に(たとえば測定順に)記録する。前述したように、時間sのn倍がTであり、Tの整数倍(M倍、たとえば10倍)が測定期間Tである。測定の順位に代えて測定の時刻と紐付けて記録してもよい。
<General inspection process>
The work 41 is connected to the work connection port 12 of the leak inspection apparatus 10 in the state where the first on-off valve 31 is closed, and the master 42 is connected to the master connection port 13. The second on-off valve 32, the third on-off valve 33, the fourth on-off valve 34 open to the atmospheric pressure P E open, then close the fourth on-off valve 34, further the second on-off valve 32, closes the third on-off valve 33 at the same time, sealing the workpiece 41 and the master 42 at atmospheric pressure . The differential pressure of the internal pressure of both containers is repeatedly measured over a measurement period T M every time s, with the time when both are sealed as the start time of measurement, and each differential pressure measured together with the order from the start of measurement In order) to record. As described above, n times the time s is T, and an integral multiple of T (M times, for example, 10 times) is the measurement period T M. Instead of the order of measurement, the time of measurement may be linked and recorded.

大気圧封止での測定が終了したら続けて試験圧封止での測定を行う。具体的には、第2開閉弁32、第3開閉弁33を開いた後に第1開閉弁31を開き、ワーク41とマスタ42の双方に圧力源から気体を導入して試験圧に加圧する。試験圧に加圧後、第1開閉弁31を閉じ、さらに第2開閉弁32、第3開閉弁33を同時に閉じることでワーク41とマスタ42を試験圧で封止する。双方を封止したときを測定の開始時点として、両容器の内圧の差圧を時間s毎に、測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に(たとえば測定順に)記録する。大気圧封止での測定終了から試験圧封止での測定開始までの時間(チャージ時間)が予め定めたインターバル時間T以内となるように試験を進めるものとする。差圧測定は、大気圧封止測定とこれに続けて行う試験圧封止測定の2回を一組として行い記録する。なお、検査対象のワークの大時定数Tを前述にようにして予め求め、さらにα、βを式(26)、(27)により予め求めておく。 When the measurement in the atmospheric pressure sealing is completed, the measurement in the test pressure sealing is continuously performed. Specifically, after the second on-off valve 32 and the third on-off valve 33 are opened, the first on-off valve 31 is opened, gas is introduced from both the work 41 and the master 42 from the pressure source and pressurized to the test pressure. After pressurization to the test pressure, the first on-off valve 31 is closed, and the second on-off valve 32 and the third on-off valve 33 are closed simultaneously to seal the work 41 and the master 42 at the test pressure. The differential pressure of the internal pressure of both containers is repeatedly measured over a measurement period T M every time s, with the time when both are sealed as the start time of measurement, and each differential pressure measured together with the order from the start of measurement In order) to record. Shall proceed measurement end from time to the start of measurement in the test圧封stop (charge time) testing such that within a predetermined time interval T I at atmospheric pressure sealing. Differential pressure measurement is performed by recording atmospheric pressure sealing measurement and test pressure sealing measurement performed subsequently as a pair. Note that previously obtained a Daitoki constant T 2 of the inspection target workpiece as the above, further alpha, the β equation (26), obtained in advance by (27).

次に、測定した差圧データに基づいて演算を行う。   Next, calculation is performed based on the measured differential pressure data.

[大気圧封止の差圧データに基づく演算]
記録した差圧を、
とする。これから、n個(時間T)ごとの平均値を作って記録する。この処理は測定中に行って、その結果だけを記録してもよい。
これより次の数列をつくる。
は項数がM−1の数列である。
[Calculation based on differential pressure data of atmospheric pressure sealing]
The differential pressure recorded is
I assume. From this, an average value every n (time T) is made and recorded. This process may be performed during the measurement and only the results may be recorded.
The following sequence is formed from this.
Q m is a sequence of terms whose number of terms is M-1.

[試験圧封止の差圧データに基づく演算]
大気圧封止の場合と同様に差圧をn個ごとに区切って、その平均値を作って記録する。この処理は測定中に行って、その結果だけを記録してもよい。
これより
をつくる。Rは項数がM−1の数列である。
[Calculation based on differential pressure data of test pressure seal]
As in the case of atmospheric pressure sealing, the differential pressure is divided into n pieces, and the average value is made and recorded. This process may be performed during the measurement and only the results may be recorded.
Than this
Make R m is a sequence of which the number of terms is M−1.

[QとRに基づく漏れ判断の演算]
とRから次の数列を作る。
この数列は、漏れにより発生する差圧の変化率の近似値であって、mの増加にともない一定値に近づく。この収束値を用いて、漏れUは次式で表される。
漏れの許容値Uが定めてあるときには、次式が成り立つ場合を漏れ検査合格とする。
[Calculation of leak judgment based on Q m and R m ]
Make the following sequence from Q m and R m .
This series is an approximation of the rate of change of differential pressure caused by leakage, and approaches a constant value as m increases. Leakage U is represented by following Formula using this convergence value.
When the allowable value U C of leakage is determined, the case where the following expression is satisfied is regarded as a leakage inspection pass.

一般の測定では、式(35)が成り立たない場合もある。そのときには漏れを疑うが、漏れでない場合もある。そこで、式(35)が成り立たない場合には次の処理を行う。   In general measurement, formula (35) may not hold. At that time, I suspect the leak, but it may not be the leak. Therefore, if equation (35) does not hold, the following process is performed.

[漏れが疑われる場合の処理]
M−1の値が大きい場合には、漏れを疑う。このときには、記録してある数列{L}を調査する。すなわちLの差分列
をつくり、Dが0に収束するときには、得られているLM−1は漏れを表している。
このとき
ならば、差分列Dは0に収束していない。Dが0に収束していないならば、それは、温度の過渡現象が計測時間内に落ち着いていないことを表している。この場合には、得た結果を破棄し、単に再測定を行うか、Mの値を増やして再計測を行い、式(36)以下の判定を再度行う。これで測定終了となる。
[Process when a leak is suspected]
If the value of L M-1 is large, a leak is suspected. At this time, the recorded number sequence {L M } is examined. Difference column ie L M
When D m converges to 0, L M −1 obtained represents a leak.
At this time
Then, the difference sequence D m does not converge to zero. If D m does not converge to 0, it indicates that the temperature transient has not settled within the measurement time. In this case, the obtained result is discarded, and remeasurement is simply performed, or the value of M is increased and remeasurement is performed, and the determination of the equation (36) or less is performed again. This is the end of the measurement.

この段階でDが0に収束しないならば、測定器あるいは測定システムが不適切、あるいはパラメータの誤入力の疑いがある。 If D m does not converge to 0 at this stage, the measuring instrument or measuring system is inappropriate or there is a suspicion of incorrect input of parameters.

この再計測に関して次の注意が必要である。搬送されてきたワークが環境温度に比べて特に高温、あるいは低温のときには、計測時間が不足になる場合がある。このような場合には、1回目の計測により、温度が環境温度に近づくので、計測時間の延長をしないで、単なる再計測を行っても、LM−1が0に収束し、式(35)が成り立つようになることがある。このときには、2回目の計測値が正しく、最初のLM−1は初期温度差が過大であったことにより、収束に至らなかった値である。 The following cautions need to be made regarding this re-measurement. The measurement time may be insufficient when the conveyed workpiece is particularly high or low compared to the environmental temperature. In such a case, since the temperature approaches the environmental temperature by the first measurement, LM -1 converges to 0 even if mere remeasurement is performed without extending the measurement time, and the equation (35) May become true. At this time, the second measurement value is correct, and the first LM -1 is a value that did not reach convergence because the initial temperature difference was too large.

[最短の測定期間T
M−1以下のmでLが一定値に収束する場合、一定値に収束する最小のm(もしくはこれに少数の余裕量(たとえば1または2)を加えた値)を新たなMとして測定期間Tを定めればよい。同様に式(35)が成立する最小のm(もしくはこれに少数の余裕量(たとえば1または2)を加えた値)を新たなMとして測定期間Tを定めればよい。このようにして最小の測定期間Tを設定することができる。その後の同じ製品に対する試験ではこの測定期間Tを用いればよい。
[Minimum measurement period T M ]
If L m converges to a constant value at m less than M-1, measure the smallest m (or a value obtained by adding a small amount of margin (for example, 1 or 2) to this value) as a new M The period T M may be determined. Similarly, the measurement period T M may be defined as a new M, which is the minimum m (or a value obtained by adding a small allowance (eg, 1 or 2)) to which the equation (35) holds. In this way, the minimum measurement period T M can be set. This measurement period T M may be used in the subsequent test on the same product.

<検査プロセスの変形例>
変形例では、式(30)、式(32)の段階でそれぞれ収束を確認する。すなわち、式(30)の数列を求めた後、
の絶対値が所定の許容値以下になる最小のmの値mを求める。また、式(32)の数列を求めた後、
の絶対値が所定の許容値以下になる最小のmの値mを求める。次にmとmのうちの小さくない方の値をkとして、QとRを求める。ここでは、rについては、最初にm=mでrを求め、その絶対値が所定の許容値以下ならばmをkとする。その絶対値が所定の許容値以下でなければ、mの値をmから+1ずつ増して行き、rの絶対値が所定の許容値以下になる最小のmの値をkとする。
<Modification of inspection process>
In the modification, the convergence is confirmed at the stage of the equation (30) and the equation (32). That is, after obtaining the number sequence of equation (30),
The minimum value m a of m for which the absolute value of x is less than or equal to a predetermined tolerance is determined. Also, after finding the number sequence of equation (32),
The minimum m value m b for which the absolute value of x is less than a predetermined allowable value is determined. Then a small no better value of one of m a and m b as k, determine the Q k and R k. Here, for r m, determine the r m first with m = m a, the absolute value of the k a m a if below a predetermined allowable value. If that be the absolute value is less than a predetermined tolerance value, the value of m gradually increased from m a by +1, the absolute value of the value of the smallest m which falls below a predetermined allowable value of r m and k.

そして、
の演算で求めたLの値に基づいてワークの漏れの有無を判断する。Lの絶対値が所定の許容値以下ならば漏れ無し(合格品)と判定し、Lの絶対値が許容値を超えるならば漏れあり(不合格品)と判定する。
And
Based on the value of L obtained by the calculation in the above, it is determined whether or not there is a workpiece leak. If the absolute value of L is less than a predetermined allowable value, it is determined that there is no leak (acceptable product), and if the absolute value of L exceeds the allowable value, it is determined that there is a leak (rejected product).

とmのいずれかを求めることができない場合、すなわち、q、rの絶対値が許容値以下に収束しない場合は、測定期間Tを延長する。一方、kを決定できた場合はkの値に基づいて以後の測定期間Tを設定する。たとえば、kの値(もしくはこれに少数の余裕量(1または2)を加えた値)を新たなMとして測定期間Tを定めればよい。このようにして最小の測定期間を設定することができる。 If either m a or m b can not be determined, that is, if the absolute values of q m and r m do not converge below the allowable value, the measurement period T M is extended. On the other hand, if k can be determined, the subsequent measurement period T M is set based on the value of k. For example, the measurement period T M may be determined by setting the value of k (or the value obtained by adding this to a small allowance (1 or 2)) as a new M. Thus, the minimum measurement period can be set.

その後の同じ製品の別のワークに対する試験ではこの測定期間Tを用いればよい。また演算では最終の勾配QM−1とRM−1を求め、LM−1から漏れを判断すればよい。 This measurement period T M may be used in a subsequent test on another work of the same product. In the calculation, final gradients Q M-1 and R M-1 may be obtained, and the leak may be determined from L M-1 .

以上のように本発明によれば、大時定数を求めておけば、あとは、最小二乗法や連立方程式を用いることなく、簡単な四則演算で漏れを判定することができる。また、測定期間Tの過不足を判定して、最短の測定期間Tを設定することができる。また、漏れ無し判定の理論的根拠が明確である。 As described above, according to the present invention, if the large time constant is determined, the leak can be determined by simple arithmetic operations without using the least squares method or the simultaneous equations. Further, to determine the excess and deficiency of the measurement period T M, it is possible to set the minimum measurement period T M. Also, the theoretical basis of the leak free judgment is clear.

以上、本発明の実施の形態を図面によって説明してきたが、具体的な構成は実施の形態に示したものに限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   The embodiment of the present invention has been described above with reference to the drawings, but the specific configuration is not limited to that shown in the embodiment, and changes and additions may be made without departing from the scope of the present invention. Also included in the present invention.

本発明は、リーク検査装置に限定されず、リーク検査方法、情報処理装置を本発明のリーク検査装置として機能させるプログラムも含まれる。   The present invention is not limited to the leak inspection apparatus, and includes a leak inspection method and a program that causes the information processing apparatus to function as the leak inspection apparatus of the present invention.

式(30)、式(32)は、時間Tで除したものをQ、Rとしてもよい。 Equations (30) and (32) may be divided by time T to be Q m and R m .

実施の形態で示すリーク検査装置10は一例であり、これに限定されるものではなく、大気圧封止測定に続けて試験圧封止測定を実施可能な検査装置であればよい。   The leak inspection apparatus 10 shown in the embodiment is an example, and the present invention is not limited to this, as long as it is an inspection apparatus capable of performing test pressure seal measurement following atmospheric pressure seal measurement.

実施の形態では、検査処理部15で演算まで行うようにしたが、測定データをパーソナルコンピュータ等に転送し、そこで、本発明のリーク検査方法に係る演算・判定が行われるようにしてもよい。また、その演算やグラフの作成を市販の表計算ソフト等を使って行うような場合も本発明のリーク検査方法に含まれる。また、本発明は、測定されたデータの入力を受け、そのデータに対して本発明のリーク検査装置が行う演算を実行してリークの有無を判定するように情報処理装置を機能させるプログラムであってもよい。   In the embodiment, although the calculation processing is performed by the inspection processing unit 15, measurement data may be transferred to a personal computer or the like, and calculation / determination according to the leak inspection method of the present invention may be performed there. In addition, the case where the calculation and the creation of the graph are performed using commercially available spreadsheet software or the like is also included in the leak inspection method of the present invention. Furthermore, the present invention is a program that causes an information processing apparatus to function so as to receive an input of measured data, execute an operation performed by the leak inspection apparatus of the present invention on the data, and determine the presence or absence of a leak. May be

10…リーク検査装置
11…加圧源接続口
12…ワーク接続口
13…マスタ接続口
15…検査処理部
21…第1配管
22…第2配管
23…第3配管
24…第4管路
31…第1開閉弁
32…第2開閉弁
33…第3開閉弁
34…第4開閉弁
37…差圧計
41…ワーク
42…マスタ

DESCRIPTION OF SYMBOLS 10 ... Leak inspection apparatus 11 ... Pressurization source connection port 12 ... Work connection port 13 ... Master connection port 15 ... Inspection processing part 21 ... 1st piping 22 ... 2nd piping 23 ... 3rd piping 24 ... 4th pipe line 31 ... 1st on-off valve 32 ... 2nd on-off valve 33 ... 3rd on-off valve 34 ... 4th on-off valve 37 ... differential pressure gauge 41 ... work 42 ... master

Claims (11)

検査対象容器と漏れのない基準容器とを大気圧P開放から双方を封止した後の両容器の内圧の差圧を所定期間にわたり繰り返し測定し、測定した各差圧と測定時刻とを対応付けて記録する大気圧封止測定ステップと、
前記大気圧封止測定ステップの終了後に続けて行われ、前記検査対象容器内と基準容器内とに気体を導入して所定の試験圧Pに加圧した後に双方を封止し、封止後の両容器の内圧の差圧を所定期間にわたり繰り返し測定し、測定した各差圧と測定時刻とを対応付けて記録する試験圧封止測定ステップと、
前記大気圧封止測定ステップで記録したデータから、時間の経過に伴う差圧の変化率の変化率が一定以下になるときの差圧のデータの前記大気圧封止測定ステップでの測定時刻Tとそのときの差圧の変化率Qを求める第1勾配取得ステップと、
前記試験圧封止測定ステップで測定したデータから、時間の経過に伴う差圧の変化率の変化率が一定以下になるときの差圧のデータの前記試験圧封止測定ステップでの測定時刻Tとそのときの差圧の変化率Rを求める第2勾配取得ステップと、
測定時刻Tから測定時刻Tまでを連続して計時した場合の時間差をTとし、
の演算で求めたLの値に基づいて前記検査対象容器の漏れの有無を判断する漏れ判断ステップと、
を有し、
前記大時定数は、前記検査対象容器と前記基準容器とを大気圧P開放から封止した後の両容器の内圧の差圧の温度に基づく変化を支配する二つの時定数のうちの大きい方の時定数である
ことを特徴とするリーク検査方法。
The pressure difference in the internal pressure of both container after sealing of both the inspected container and a leak-free reference container from atmospheric pressure P E open repeatedly measured over a predetermined time period, corresponding to the respective pressure difference between the measured time measured Atmospheric pressure sealing measurement step to record
It continues after the end of the atmospheric pressure sealing measurement step, and after introducing a gas into the inspection object container and the reference container and pressurizing them to a predetermined test pressure PT , both are sealed and sealed. A test pressure sealing measurement step of repeatedly measuring the differential pressure of the internal pressure of both containers after that over a predetermined period, and correlating and recording each measured differential pressure and measurement time;
From the data recorded in the atmospheric pressure sealing measurement step, the measurement time T in the atmospheric pressure sealing measurement step of the differential pressure data when the rate of change of the rate of change of the differential pressure over time becomes constant or less a first gradient acquisition step of determining a and a rate of change Q of differential pressure at that time;
From the data measured in the test pressure sealing measurement step, the measurement time T in the test pressure sealing measurement step of the differential pressure data when the rate of change of the rate of change in differential pressure with the passage of time becomes constant or less. a second gradient acquisition step of determining b and a rate of change R of differential pressure at that time;
Let T S be the time difference when measuring from measurement time T a to measurement time T b continuously.
A leak judgment step of judging presence or absence of a leak of the container to be inspected based on the value of L obtained by the calculation of
Have
The Daitoki constant is greater of the two time constants governing the change based on the temperature of the differential pressure of the internal pressure of both container after sealing the said object container and the reference container from atmospheric pressure P E open Leak check method characterized in that the time constant of the
検査対象容器と漏れのない基準容器とを大気圧P開放から双方を封止した後の両容器の内圧の差圧を測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する大気圧封止測定ステップと、
前記大気圧封止測定ステップの終了後に続けて行われ、前記検査対象容器内と基準容器内とに気体を導入して所定の試験圧Pに加圧した後、前記大気圧封止測定ステップでの測定期間Tの終了からインターバル時間Tの経過後に双方が封止された状態となり、封止後の両容器の内圧の差圧を測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する試験圧封止測定ステップと、
前記大気圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号m=1、2、…M)に分け、グループ毎の差圧の平均値PED、m (m=1、2、…M) を求め、
なる差分列を求める第1勾配取得ステップと、
前記試験圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号m=1、2、…M)に分け、グループ毎の差圧の平均値PDD、m (m=1、2、…M) を求め、
なる差分列を求める第2勾配取得ステップと、
測定期間Tとインターバル時間Tの和をTとし、
なる数列においてmの増加に伴ってLの値が一定値に収束する場合にその収束値を漏れと判断する、もしくは、Lの絶対値が所定の許容値以下となるmが存在する場合に漏れ無しと判断する漏れ判断ステップと、
を有し、
前記大時定数は、前記検査対象容器と前記基準容器とを大気圧P開放から封止した後の両容器の内圧の差圧の温度に基づく変化を支配する二つの時定数のうちの大きい方の時定数であり、
前記α
である
ことを特徴とするリーク検査方法。
The pressure difference in the internal pressure of both container after sealing of both the inspected container and a leak-free reference container from atmospheric pressure P E opened repeatedly measuring period T M, each measured pressure difference from the start of measurement Atmospheric pressure seal measurement step which is recorded along with the order of
The atmospheric pressure sealing measurement step is performed continuously after the atmospheric pressure sealing measurement step, after introducing a gas into the inspection object container and the reference container and pressurizing the gas to a predetermined test pressure PT. After the interval time T I has elapsed since the end of the measurement period T M , both are sealed, and the differential pressure of the internal pressure of both containers after sealing is repeatedly measured over the measurement period T M , and each measured difference Test pressure measurement step which records the pressure with the order from the start of the measurement;
The data recorded in the atmospheric pressure sealing measurement step is divided into groups (group numbers m = 1, 2,... M) for each time T from the sealing time, and the average value P ED, m (m (m Find = 1, 2, ... M),
A first gradient acquisition step for obtaining a differential sequence
The data recorded in the test pressure sealing measurement step is divided into groups (group number m = 1, 2,... M) for each time T from the sealing time, and the average value P DD, m (m (m Find = 1, 2, ... M),
A second gradient acquisition step for obtaining a differential sequence
Let the sum of the measurement period T M and the interval time T I be T S ,
If the value of L m converges to a constant value as m increases, the convergence value is judged as a leak, or if there is m where the absolute value of L m falls below a predetermined allowable value Leak judgment step to judge that there is no leak in the
Have
The Daitoki constant is greater of the two time constants governing the change based on the temperature of the differential pressure of the internal pressure of both container after sealing the said object container and the reference container from atmospheric pressure P E open Time constant of
The α 2 is
A leak inspection method characterized in that
前記漏れ判断ステップにおいて、LM−1の絶対値が前記許容値を超える場合は、
なる数列を作成し、Dが0に収束するときは、漏れがあると判断する
ことを特徴とする請求項2に記載のリーク検査方法。
In the leak determination step, when the absolute value of LM -1 exceeds the allowable value,
The leak inspection method according to claim 2, wherein a numerical sequence is generated, and when D m converges to 0, it is determined that there is a leak.
が0に収束しないときは、測定期間Tを延長し、大気圧封止測定ステップから再度行う
ことを特徴とする請求項3に記載のリーク検査方法。
4. The leak inspection method according to claim 3, wherein when the D m does not converge to 0, the measurement period T M is extended and the atmospheric pressure sealing measurement step is performed again.
が収束する最小のmに基づいて、測定期間Tを設定する
ことを特徴とする請求項2乃至4のいずれか1つに記載のリーク検査方法。
The leak check method according to any one of claims 2 to 4, wherein the measurement period T M is set based on the minimum m at which L m converges.
検査対象容器と漏れのない基準容器とを大気圧P開放から双方を封止した後の両容器の内圧の差圧を測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する大気圧封止測定ステップと、
前記大気圧封止測定ステップの終了後に続けて行われ、前記検査対象容器内と基準容器内とに気体を導入して所定の試験圧Pに加圧した後、前記大気圧封止測定ステップでの測定期間Tの終了後からインターバル時間Tの経過後に双方が封止された状態となり、封止後の両容器の内圧の差圧を所定期間にわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する試験圧封止測定ステップと、
前記大気圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号k=1、2、…M)に分け、グループ毎の差圧の平均値PED、m (m=1、2、…M) を求め、
として、
の絶対値が所定の許容値以下になるmの値mを求める第1勾配取得ステップと、
前記試験圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号m=1、2、…M)に分け、グループ毎の差圧の平均値PDD、m (m=1、2、…M) を求め、
として、
の絶対値が所定の許容値以下になるmの値mを求め、mとmのうちの小さくない方の値をkとして、QとRを求める第2勾配取得ステップと、
測定期間Tとインターバル時間Tの和をTとし、
の演算で求めたLの値に基づいて前記検査対象容器の漏れの有無を判断する漏れ判断ステップと、
を有し、
前記大時定数は、前記検査対象容器と前記基準容器とを大気圧P開放から封止した後の両容器の内圧の差圧の温度に基づく変化を支配する二つの時定数のうちの大きい方の時定数であり、
前記α
である
ことを特徴とするリーク検査方法。
The pressure difference in the internal pressure of both container after sealing of both the inspected container and a leak-free reference container from atmospheric pressure P E opened repeatedly measuring period T M, each measured pressure difference from the start of measurement Atmospheric pressure seal measurement step which is recorded along with the order of
The atmospheric pressure sealing measurement step is performed continuously after the atmospheric pressure sealing measurement step, after introducing a gas into the inspection object container and the reference container and pressurizing the gas to a predetermined test pressure PT. After the end of the measurement period T M , both are sealed after the interval time T I elapses, and the differential pressure of the internal pressure of both containers after sealing is repeatedly measured over a predetermined period, and each differential pressure measured Test pressure sealing measurement step which records with the order from the start of measurement,
The data recorded in the atmospheric pressure sealing measurement step is divided into groups (group numbers k = 1, 2,... M) for each time T from the sealing time, and the average value P ED, m (m (m Find = 1, 2, ... M),
As
A first gradient acquisition step of obtaining a value m a of m for which the absolute value of n is less than or equal to a predetermined allowable value;
The data recorded in the test pressure sealing measurement step is divided into groups (group number m = 1, 2,... M) for each time T from the sealing time, and the average value P DD, m (m (m Find = 1, 2, ... M),
As
Absolute value calculated values m b of m becomes less than a predetermined tolerance, the value towards not smaller among the m a and m b as k, and the second gradient acquisition step of obtaining the Q k and R k,
Let the sum of the measurement period T M and the interval time T I be T S ,
A leak judgment step of judging presence or absence of a leak of the container to be inspected based on the value of L obtained by the calculation of
Have
The Daitoki constant is greater of the two time constants governing the change based on the temperature of the differential pressure of the internal pressure of both container after sealing the said object container and the reference container from atmospheric pressure P E open Time constant of
The α 2 is
A leak inspection method characterized in that
とmのいずれかを求めることができない場合は、測定期間Tを延長し、kを決定できた場合はkの値に基づいて以後の測定期間Tを設定する
ことを特徴とする請求項6に記載のリーク検査方法。
When either of m a and m b can not be determined, the measurement period T M is extended, and when k can be determined, the subsequent measurement period T M is set based on the value of k. The leak inspection method according to claim 6.
検査対象容器と漏れのない基準容器とを大気圧P開放から双方を封止した後の両容器の内圧の差圧を測定期間Tにわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する大気圧封止測定ステップと、
前記大気圧封止測定ステップの終了後に続けて行われ、前記検査対象容器内と基準容器内とに気体を導入して所定の試験圧Pに加圧した後、前記大気圧封止測定ステップでの測定期間Tの終了後からインターバル時間Tの経過後に双方が封止された状態となり、封止後の両容器の内圧の差圧を所定期間にわたって繰り返し測定し、測定した各差圧を測定開始からの順位と共に記録する試験圧封止測定ステップと、
前記大気圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号k=1、2、…M)に分け、グループ毎の差圧の平均値PED、m (m=1、2、…M)として、
を求める第1勾配取得ステップと、
前記試験圧封止測定ステップで記録したデータを封止時から時間T毎のグループ(グループ番号m=1、2、…M)に分け、グループ毎の差圧の平均値PDD、m (m=1、2、…M)として、
を求める第2勾配取得ステップと、
測定期間Tとインターバル時間Tの和をTとし、
の演算で求めたLの値に基づいて前記検査対象容器の漏れの有無を判断する漏れ判断ステップと、
を有し、
前記大時定数は、前記検査対象容器と前記基準容器とを大気圧P開放から封止した後の両容器の内圧の差圧の温度に基づく変化を支配する二つの時定数のうちの大きい方の時定数であり、
前記α
である
ことを特徴とするリーク検査方法。
The pressure difference in the internal pressure of both container after sealing of both the inspected container and a leak-free reference container from atmospheric pressure P E opened repeatedly measuring period T M, each measured pressure difference from the start of measurement Atmospheric pressure seal measurement step which is recorded along with the order of
The atmospheric pressure sealing measurement step is performed continuously after the atmospheric pressure sealing measurement step, after introducing a gas into the inspection object container and the reference container and pressurizing the gas to a predetermined test pressure PT. After the end of the measurement period T M , both are sealed after the interval time T I elapses, and the differential pressure of the internal pressure of both containers after sealing is repeatedly measured over a predetermined period, and each differential pressure measured Test pressure sealing measurement step which records with the order from the start of measurement,
The data recorded in the atmospheric pressure sealing measurement step is divided into groups (group numbers k = 1, 2,... M) for each time T from the sealing time, and the average value P ED, m (m (m = 1, 2, ... M),
A first gradient acquisition step for determining
The data recorded in the test pressure sealing measurement step is divided into groups (group number m = 1, 2,... M) for each time T from the sealing time, and the average value P DD, m (m (m = 1, 2, ... M),
A second gradient acquisition step for determining
Let the sum of the measurement period T M and the interval time T I be T S ,
A leak judgment step of judging presence or absence of a leak of the container to be inspected based on the value of L obtained by the calculation of
Have
The Daitoki constant is greater of the two time constants governing the change based on the temperature of the differential pressure of the internal pressure of both container after sealing the said object container and the reference container from atmospheric pressure P E open Time constant of
The α 2 is
A leak inspection method characterized in that
請求項1乃至8のいずれか1つに記載のリーク検査方法を用いて検査対象容器の漏れの有無を検査するリーク検査装置。   A leak inspection apparatus for inspecting the presence or absence of a leak of a container to be inspected using the leak inspection method according to any one of claims 1 to 8. 請求項1乃至8のいずれか1つに記載のリーク検査方法のうち、
前記大気圧封止測定ステップで記録されたデータ、および前記試験圧封止測定ステップで記録されたデータの入力を受けて、
前記第1勾配取得ステップと前記第2勾配取得ステップと前記漏れ判断ステップの処理を行って検査対象容器の漏れの有無を判定するリーク検査装置。
The leak inspection method according to any one of claims 1 to 8,
Receiving the data recorded in the atmospheric pressure sealing measurement step and the data recorded in the test pressure sealing measurement step,
A leak inspection apparatus that performs processing of the first gradient acquisition step, the second gradient acquisition step, and the leak determination step to determine the presence or absence of a leak of a container to be inspected.
リーク検査装置に、
請求項1乃至8のいずれか1つに記載のリーク検査方法の各ステップもしくは前記第1勾配取得ステップと前記第2勾配取得ステップと前記漏れ判断ステップを実行させる
ことを特徴とするプログラム。
In the leak inspection device,
A program comprising: executing each step of the leak inspection method according to any one of claims 1 to 8 or the first gradient acquisition step, the second gradient acquisition step, and the leak determination step.
JP2017228583A 2017-11-29 2017-11-29 Leak inspection method Leak inspection equipment, program Active JP6931596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017228583A JP6931596B2 (en) 2017-11-29 2017-11-29 Leak inspection method Leak inspection equipment, program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017228583A JP6931596B2 (en) 2017-11-29 2017-11-29 Leak inspection method Leak inspection equipment, program

Publications (2)

Publication Number Publication Date
JP2019100732A true JP2019100732A (en) 2019-06-24
JP6931596B2 JP6931596B2 (en) 2021-09-08

Family

ID=66976697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017228583A Active JP6931596B2 (en) 2017-11-29 2017-11-29 Leak inspection method Leak inspection equipment, program

Country Status (1)

Country Link
JP (1) JP6931596B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115655597A (en) * 2022-12-13 2023-01-31 杭州兆华电子股份有限公司 Air tightness detection system and method for microphone

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367797A (en) * 1993-10-25 1994-11-29 Omega Environmental, Inc. Process for testing a vessel
JPH10300623A (en) * 1997-04-30 1998-11-13 Toyota Motor Corp Leakage test method and device
JP2003149076A (en) * 2001-11-09 2003-05-21 Fukuda:Kk Method and device for air leak test
JP2010271231A (en) * 2009-05-22 2010-12-02 Kumamoto Univ Leak inspection method and leak inspection device
JP2013024634A (en) * 2011-07-19 2013-02-04 Aim Tech:Kk Leak testing method, and leak testing apparatus
JP2017116387A (en) * 2015-12-24 2017-06-29 アイシン精機株式会社 Differential pressure change amount calculation device and differential pressure change amount calculation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367797A (en) * 1993-10-25 1994-11-29 Omega Environmental, Inc. Process for testing a vessel
JPH10300623A (en) * 1997-04-30 1998-11-13 Toyota Motor Corp Leakage test method and device
JP2003149076A (en) * 2001-11-09 2003-05-21 Fukuda:Kk Method and device for air leak test
JP2010271231A (en) * 2009-05-22 2010-12-02 Kumamoto Univ Leak inspection method and leak inspection device
JP2013024634A (en) * 2011-07-19 2013-02-04 Aim Tech:Kk Leak testing method, and leak testing apparatus
JP2017116387A (en) * 2015-12-24 2017-06-29 アイシン精機株式会社 Differential pressure change amount calculation device and differential pressure change amount calculation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115655597A (en) * 2022-12-13 2023-01-31 杭州兆华电子股份有限公司 Air tightness detection system and method for microphone
CN115655597B (en) * 2022-12-13 2023-04-14 杭州兆华电子股份有限公司 Air tightness detection system and method for microphone

Also Published As

Publication number Publication date
JP6931596B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
US5792940A (en) Rapid evaluation of thin-film barrier coatings on thick substrates via transient response measurements
US4715214A (en) Leak tester
JP6781063B2 (en) Leak inspection method Leak inspection equipment
US7594424B2 (en) Automated timer and setpoint selection for pneumatic test equipment
CN101371122B (en) Method for detecting fault in leakage inspector, leakage inspector
US9377374B2 (en) Leak testing methods and systems
JPS59206737A (en) Leakage testing device having temperature compensating function
JP6738702B2 (en) Leak inspection method Leak inspection device
JP4056818B2 (en) Leak test method and apparatus
JP7286282B2 (en) Leak inspection system, program
US3893332A (en) Leakage test system
JP2019100732A (en) Leak inspection method, leak inspection device and program
CN112629779A (en) Total air tightness detection method for pressure container
WO2010134622A1 (en) Leak inspection method and leak inspection device
JP2012255687A (en) Pressure leakage measuring method
US9074959B2 (en) Method for evaluating the accuracy and repeatability of leak testing instruments
CN103928066B (en) Nuclear power plant&#39;s condenser heat-transfer pipe leak hunting method and pressure reduction leak detection system
JP2004198396A (en) Method for obtaining drift value of leak detector, method for obtaining zero-point fluctuation value, method for obtaining humidity correction coefficient, and method for calibrating leakage detector and the leakage detector
JP2000162084A (en) Method and apparatus for inspection of leak
CN110044789B (en) Device and method for measuring minimum starting pressure and pressure wave propagation rate
Kim et al. Gas flow method for detecting local preform defects by inverse estimation of space-varying permeability
RU2426080C1 (en) Method of measuring pressure in fluid transfer pipeline and device to this end
US20090165535A1 (en) Leak localization in a cavitated body
RU2805287C1 (en) Method for determining the integral leakage from a closed volume
RU2550698C1 (en) Method to assess air permeability of easily deformed composite materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6931596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250