JP2019100263A - Thermal energy recovery device - Google Patents

Thermal energy recovery device Download PDF

Info

Publication number
JP2019100263A
JP2019100263A JP2017232463A JP2017232463A JP2019100263A JP 2019100263 A JP2019100263 A JP 2019100263A JP 2017232463 A JP2017232463 A JP 2017232463A JP 2017232463 A JP2017232463 A JP 2017232463A JP 2019100263 A JP2019100263 A JP 2019100263A
Authority
JP
Japan
Prior art keywords
oil
expander
mixed medium
oil cooler
thermal energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017232463A
Other languages
Japanese (ja)
Other versions
JP6763848B2 (en
Inventor
治幸 松田
Haruyuki Matsuda
治幸 松田
高橋 和雄
Kazuo Takahashi
和雄 高橋
泰平 川口
Taihei Kawaguchi
泰平 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017232463A priority Critical patent/JP6763848B2/en
Priority to EP18201705.3A priority patent/EP3492714B1/en
Priority to KR1020180147003A priority patent/KR102090980B1/en
Priority to CN201811474090.2A priority patent/CN109869207B/en
Publication of JP2019100263A publication Critical patent/JP2019100263A/en
Application granted granted Critical
Publication of JP6763848B2 publication Critical patent/JP6763848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/06Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-inlet-pressure type
    • F01K7/08Control means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • F01M2005/004Oil-cooled engines

Abstract

To provide a thermal energy recovery device capable of cooling oil by using a working medium and increasing energy input to an expander.SOLUTION: A thermal energy recovery device includes an evaporator (10), an oil separator (12), an expander (14), a power recovery machine (16), an oil feed flow passage (18), a condenser (20), a pump (22), a circulation flow passage (24), an oil cooler (32), an oil cooling flow passage (40), an expansion valve (V1) provided in a portion upstream of the oil cooler (32) in the oil cooling flow passage (40), and an expansion valve control section (62) for controlling an opening of the expansion valve (V1). The oil cooler (32) evaporates a part of a mixed medium by exchanging heat between oil flowing in the oil feed flow passage (18) and the mixed medium flowing in the oil cooling flow passage (40), and an end at a downstream side of the oil cooling flow passage (40) is connected to an intermediate stage of the expander (14).SELECTED DRAWING: Figure 1

Description

本発明は、熱エネルギー回収装置に関する。   The present invention relates to a thermal energy recovery device.

従来、工場の各種設備等の排熱から動力を回収する熱エネルギー回収装置が知られている。例えば、特許文献1には、蒸発器と、油分離器と、膨張機と、発電機と、凝縮器と、循環ポンプと、循環配管と、潤滑油供給配管と、油冷却用配管と、熱交換器と、を備えるバイナリー発電装置(熱エネルギー回収装置)が開示されている。循環配管は、蒸発器、油分離器、膨張機、凝縮器及び循環ポンプをこの順に直列に接続している。蒸発器は、作動媒体及び油を含む混合媒体を蒸発させる。油分離器は、蒸発器から流出した混合媒体から油を分離する。膨張機は、油分離器から流出した作動媒体を膨張させる。潤滑油供給配管は、油分離器で分離された油を膨張機に供給するための配管である。発電機は、膨張機に接続されており、膨張機での作動媒体の膨張エネルギーから電力を取り出す。凝縮器は、膨張機から流出した混合媒体を冷却水によって凝縮させる。循環ポンプは、凝縮器から流出した混合媒体を蒸発器へ送る。熱交換器は、潤滑油供給配管に設けられており、当該潤滑油供給配管を流れる油を冷却する。油冷却用配管は、循環配管のうち循環ポンプから吐出された混合媒体の一部を熱交換器に導くとともに、熱交換器から流出した混合媒体を循環配管のうち循環ポンプと蒸発器との間の部位に合流させる。つまり、熱交換器は、潤滑油供給配管を流れる油を油冷却用配管を流れる混合媒体によって冷却する。   BACKGROUND Conventionally, a thermal energy recovery device that recovers power from exhaust heat of various facilities in a factory is known. For example, Patent Document 1 includes an evaporator, an oil separator, an expander, a generator, a condenser, a circulation pump, a circulation pipe, a lubricating oil supply pipe, an oil cooling pipe, and a heat. And a exchanger. A binary power generating apparatus (thermal energy recovery apparatus) is disclosed. The circulation pipe connects an evaporator, an oil separator, an expander, a condenser and a circulation pump in series in this order. The evaporator evaporates the mixed medium containing the working medium and the oil. The oil separator separates the oil from the mixed medium flowing out of the evaporator. The expander expands the working medium having flowed out of the oil separator. The lubricating oil supply pipe is a pipe for supplying the oil separated by the oil separator to the expander. The generator is connected to the expander and takes power from the expansion energy of the working medium in the expander. The condenser condenses the mixed medium flowing out of the expander with the cooling water. The circulation pump sends the mixed medium flowing out of the condenser to the evaporator. The heat exchanger is provided in the lubricating oil supply pipe, and cools the oil flowing through the lubricating oil supply pipe. The oil cooling pipe guides a part of the mixed medium discharged from the circulation pump in the circulation pipe to the heat exchanger, and the mixed medium flowing out from the heat exchanger is between the circulation pump and the evaporator in the circulation pipe. Join the site of That is, the heat exchanger cools the oil flowing through the lubricating oil supply pipe by the mixed medium flowing through the oil cooling pipe.

特開2012−97725号公報JP 2012-97725 A

特許文献1に記載される熱エネルギー回収装置では、熱交換器において作動媒体は油から熱を受け取るものの、この熱が有効に回収されない。具体的に、この熱エネルギー回収装置では、作動媒体が蒸発器及び油の双方から熱を受け取るものの、これは、熱交換器が設けられていない場合に作動媒体が蒸発器のみから受け取る熱の一部が熱交換器において受け取られるように作動媒体の受け取る熱の配分が変わっただけであり、膨張機に投入されるエネルギーは、熱交換器が設けられていない場合に比べてほとんど増大しない。   In the thermal energy recovery device described in Patent Document 1, although the working medium receives heat from oil in the heat exchanger, this heat is not recovered effectively. Specifically, in this thermal energy recovery device, although the working medium receives heat from both the evaporator and the oil, this is one of the heat that the working medium receives only from the evaporator when no heat exchanger is provided. Only the distribution of the heat received by the working medium has changed so that the part is received in the heat exchanger, and the energy input to the expander is hardly increased as compared to the case where the heat exchanger is not provided.

本発明の目的は、作動媒体によって油を冷却するとともに、膨張機に投入されるエネルギーを増大させることが可能な熱エネルギー回収装置を提供することである。   An object of the present invention is to provide a thermal energy recovery device capable of cooling oil by a working medium and increasing energy input to an expander.

前記の目的を達成するため、本発明は、作動媒体及び油を含む混合媒体を蒸発させる蒸発器と、前記蒸発器から流出した混合媒体から油を分離する油分離器と、前記油分離器から流出した作動媒体を膨張させる膨張機と、前記膨張機に接続された動力回収機と、前記油分離器から流出した油を前記膨張機に供給する給油流路と、前記膨張機から流出した混合媒体を凝縮させる凝縮器と、前記凝縮器から流出した混合媒体を前記蒸発器へ送るポンプと、前記蒸発器、前記油分離器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、前記給油流路を流れる油を冷却するオイルクーラと、前記循環流路のうち前記ポンプと前記蒸発器との間の部位から分岐しており、前記オイルクーラを通るように構成された油冷却流路と、前記油冷却流路のうち前記オイルクーラの上流側の部位に設けられており開度調整が可能な膨張弁と、前記給油流路のうち前記オイルクーラと前記膨張機との間の部位を流れる油の温度が基準温度未満に維持されるように前記膨張弁の開度を調整する膨張弁調整部と、を備え、前記オイルクーラは、前記給油流路を流れる油と前記油冷却流路を流れる混合媒体とを熱交換させることによって当該混合動媒体の少なくとも一部を蒸発させ、前記油冷却流路の下流側の端部は、前記膨張機の中段部に接続されている、熱エネルギー回収装置を提供する。   In order to achieve the above object, the present invention comprises an evaporator for evaporating a mixed medium containing a working medium and an oil, an oil separator for separating oil from the mixed medium flowing out of the evaporator, and the oil separator An expander for expanding the working medium that has flowed out, a power recovery unit connected to the expander, a feed channel that supplies the oil that has flowed out of the oil separator to the expander, and a mixture that has flowed out of the expander A condenser that condenses the medium, a pump that sends the mixed medium that has flowed out of the condenser to the evaporator, and a circulation that connects the evaporator, the oil separator, the expander, the condenser, and the pump in this order It branches from a portion of the circulation flow passage between the pump and the evaporator, and is configured to pass through the oil cooler. Oil cooling channel, An expansion valve provided on the upstream side of the oil cooler in the oil cooling channel and capable of adjusting the opening degree, and flows in the region between the oil cooler and the expander in the oil feeding channel An expansion valve adjustment unit for adjusting the opening degree of the expansion valve so that the temperature of the oil is maintained below a reference temperature; and the oil cooler includes an oil flowing through the oil supply passage and the oil cooling passage At least a part of the mixed moving medium is evaporated by heat exchange with the flowing mixed medium, and the downstream end of the oil cooling channel is connected to the middle stage of the expander. Provide an apparatus.

本熱エネルギー回収装置では、ポンプから吐出された混合媒体は、膨張弁の通過により減圧されるためにオイルクーラで蒸発しやすくなるので、オイルクーラでの混合媒体の蒸発によって油が有効に冷却される。そして、オイルクーラで蒸発した混合媒体は、油冷却流路を通じて膨張機の中段部(膨張機内のうち膨張弁の通過後の混合媒体の圧力に対応する圧力を有する部位)に導入されるので、その分膨張機に投入されるエネルギー(動力回収機で回収される動力)が増大する。しかも、オイルクーラでは、混合媒体の蒸発現象を伴う熱交換が行われるため、オイルクーラにおいて油と混合媒体との顕熱による熱交換のみが行われる場合に比べ、オイルクーラの小型化が可能となる。   In the thermal energy recovery apparatus, the mixed medium discharged from the pump is easily evaporated by the oil cooler because the pressure is reduced by the passage of the expansion valve, so the oil is effectively cooled by the evaporation of the mixed medium by the oil cooler. Ru. Then, the mixed medium evaporated by the oil cooler is introduced into the middle stage of the expander (a part having a pressure corresponding to the pressure of the mixed medium after passing through the expansion valve in the expander) through the oil cooling channel. The energy (power recovered by the power recovery machine) input to the expander increases accordingly. Moreover, since the oil cooler carries out heat exchange accompanied by the evaporation of the mixed medium, the oil cooler can be made smaller than in the case where only heat exchange due to sensible heat between the oil and the mixed medium is carried out in the oil cooler. Become.

また、前記熱エネルギー回収装置において、前記油冷却流路のうち前記オイルクーラと前記膨張機との間の部位から分岐しており前記循環流路のうち前記膨張機と前記凝縮器との間の部位に接続される分岐流路と、前記オイルクーラから流出した混合媒体が前記膨張機に流入する態様である第1態様と前記オイルクーラから流出した混合媒体が前記分岐流路に流入する態様である第2態様とを切り替える切替部と、前記オイルクーラから流出した混合媒体が気相であると判断されるときに前記切替部を前記第1態様に切り替えるとともに、前記油冷却流路のうち前記オイルクーラと前記切替部との間の部位を流れる混合媒体が液相を含むと判断されるときに前記切替部を前記第2態様に切り替える切替部調整部と、をさらに備えていてもよい。   Further, in the thermal energy recovery apparatus, the oil cooling flow path is branched from a portion between the oil cooler and the expander, and the circulation flow path is between the expander and the condenser. In the first aspect in which the branched flow path connected to the portion and the mixed medium flowing out from the oil cooler flow into the expander, and the mixed medium flowing out from the oil cooler flows into the branched flow path A switching unit for switching to a second embodiment, and the switching unit is switched to the first embodiment when it is determined that the mixed medium flowing out of the oil cooler is in the gas phase, and It may further include a switching unit adjustment unit that switches the switching unit to the second mode when it is determined that the mixed medium flowing in the region between the oil cooler and the switching unit includes a liquid phase.

この態様では、気相の混合媒体が膨張機に流入することによって動力回収機において有効に動力を回収することと、液相の混合媒体の膨張機への流入の抑制と、の双方が達成される。   In this aspect, both recovery of power in the power recovery machine by flowing the mixed medium in the gas phase into the expander and suppression of inflow of the mixed medium in the liquid phase into the expander are achieved. Ru.

あるいは、前記熱エネルギー回収装置において、前記油冷却流路のうち前記オイルクーラと前記膨張機との間の部位に設けられた気液分離器と、前記気液分離器において分離された液相の混合媒体を前記凝縮器へ導く分岐流路と、をさらに備えていてもよい。   Alternatively, in the thermal energy recovery apparatus, a gas-liquid separator provided in a portion between the oil cooler and the expander in the oil cooling channel, and a liquid phase separated in the gas-liquid separator The method may further comprise: a branch flow path leading the mixed medium to the condenser.

この態様では、オイルクーラから気液二相の状態で混合媒体が流出したとしても、その混合媒体は、気液分離器において気相と液相とに分離され、気相の混合媒体のみが膨張機に導かれる。よって、気相の混合媒体が膨張機に流入することによって動力回収機において有効に動力を回収することと、液相の混合媒体の膨張機への流入の抑制と、の双方が達成される。   In this aspect, even if the mixed medium flows out from the oil cooler in the gas-liquid two phase state, the mixed medium is separated into the gas phase and the liquid phase in the gas-liquid separator, and only the gas phase mixed medium is expanded. Led to the machine. Therefore, both the efficient recovery of power in the power recovery machine and the suppression of the inflow of the mixed medium of the liquid phase to the expander are achieved by the mixed medium of the gas phase flowing into the expander.

この場合において、前記熱エネルギー回収装置は、前記油冷却流路のうち前記気液分離器と前記膨張機との間に設けられており、前記気液分離器から前記膨張機への前記混合媒体の通過を許容するとともに前記膨張機から前記気液分離器への混合媒体の通過を禁止する逆止弁をさらに備えることが好ましい。   In this case, the thermal energy recovery device is provided between the gas-liquid separator and the expander in the oil cooling channel, and the mixed medium from the gas-liquid separator to the expander It is preferable to further comprise a check valve which permits the passage of the mixture medium and prohibits the passage of the mixed medium from the expander to the gas-liquid separator.

このようにすれば、膨張機から気液分離器への混合媒体の逆流、すなわち、動力回収機での回収動力の低下が防止される。   In this way, it is possible to prevent the backflow of the mixed medium from the expander to the gas-liquid separator, that is, the reduction of the recovery power in the power recovery machine.

また、前記熱エネルギー回収装置において、前記分岐流路に設けられた遮断弁と、前記油冷却流路のうち前記気液分離器と前記膨張機との間の部位を流れる混合媒体が気相であると判断されるときに前記遮断弁を閉じるとともに、前記油冷却流路のうち前記気液分離器と前記膨張機との間の部位を流れる混合媒体が液相を含むと判断されるときに前記遮断弁を閉じる遮断弁調整部と、をさらに備えることが好ましい。   Further, in the thermal energy recovery apparatus, the mixed medium flowing in a portion between the gas-liquid separator and the expander in the oil cooling flow path in the gas phase is a shutoff valve provided in the branch flow path. When it is determined that the shutoff valve is closed when it is determined that the mixed medium flowing in a portion of the oil cooling flow passage between the gas-liquid separator and the expander includes the liquid phase It is preferable to further have a shutoff valve adjustment unit that closes the shutoff valve.

このようにすれば、気液分離器から分岐流路へ気相の混合媒体が流出すること(動力回収機において回収可能な動力が損失すること)と、気液分離器に液相の混合媒体が過剰に貯留されることと、の双方が抑制される。   In this way, the mixed medium in the gas phase flows out of the gas-liquid separator into the branch flow path (the power recoverable in the power recovery machine is lost), and the mixed medium in the liquid phase in the gas-liquid separator Both being stored excessively and being suppressed.

また、前記熱エネルギー回収装置において、前記油冷却流路のうち前記オイルクーラと前記膨張機との間の部位及び前記循環流路のうち前記膨張機と前記凝縮器との間の部位に設けられた加熱器であって、前記オイルクーラから流出した混合媒体を前記膨張機から流出した混合媒体によって加熱するものをさらに備えることが好ましい。   In the thermal energy recovery device, the oil cooling passage is provided in a portion between the oil cooler and the expander, and in the circulation passage, in a portion between the expander and the condenser. It is preferable that the heater further includes one that heats the mixed medium flowing out of the oil cooler by the mixed medium flowing out of the expander.

このようにすれば、オイルクーラから流出した混合媒体が膨張機から流出した混合媒体から熱を回収するので、動力回収機で回収される動力が増大する。   In this way, since the mixed medium flowing out of the oil cooler recovers heat from the mixed medium flowing out of the expander, the power recovered by the power recovery machine is increased.

また、前記熱エネルギー回収装置において、前記オイルクーラから流出した混合媒体が前記動力回収機によって加熱されるように、前記油冷却流路のうち前記オイルクーラと前記膨張機との間の部位が前記動力回収機に接続されていることが好ましい。   Further, in the thermal energy recovery apparatus, a portion between the oil cooler and the expander in the oil cooling flow path is the one such that the mixed medium flowing out from the oil cooler is heated by the power recovery machine. Preferably, it is connected to a power recovery machine.

このようにすれば、オイルクーラから流出した混合媒体が動力回収機の排熱を回収するので、動力回収機で回収される動力が増大する。   In this way, since the mixed medium that has flowed out of the oil cooler recovers the exhaust heat of the power recovery machine, the power recovered by the power recovery machine is increased.

以上のように、本発明によれば、作動媒体によって油を冷却するとともに、膨張機に投入されるエネルギーを増大させることが可能な熱エネルギー回収装置を提供することができる。   As described above, according to the present invention, it is possible to provide a thermal energy recovery device capable of cooling the oil by the working medium and increasing the energy input to the expander.

本発明の第1実施形態の熱エネルギー回収装置の構成を概略的に示す図である。It is a figure showing roughly the composition of the thermal energy recovery device of a 1st embodiment of the present invention. 制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of a control part. 本発明の第2実施形態の熱エネルギー回収装置の構成を概略的に示す図である。It is a figure showing roughly the composition of the thermal energy recovery equipment of a 2nd embodiment of the present invention. 制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of a control part. 第1実施形態の熱エネルギー回収装置の変形例の構成を概略的に示す図である。It is a figure showing roughly the composition of the modification of the thermal energy recovery device of a 1st embodiment. 第2実施形態の熱エネルギー回収装置の変形例の構成を概略的に示す図である。It is a figure showing roughly the composition of the modification of the thermal energy recovery device of a 2nd embodiment.

以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
本発明の第1実施形態の熱エネルギー回収装置について、図1及び図2を参照しながら説明する。図1に示されるように、この熱エネルギー回収装置は、蒸発器10と、油分離器12と、膨張機14と、動力回収機16と、給油流路18と、凝縮器20と、ポンプ22と、蒸発器10、油分離器12、膨張機14、凝縮器20及びポンプ22をこの順に接続する循環流路24と、オイルクーラ32と、油冷却流路40と、膨張弁V1と、分岐流路42と、切替部50と、制御部60と、を備えている。
First Embodiment
A thermal energy recovery apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, this thermal energy recovery system includes an evaporator 10, an oil separator 12, an expander 14, a power recovery machine 16, a refueling flow path 18, a condenser 20, and a pump 22. , A circulation channel 24 connecting an evaporator 10, an oil separator 12, an expander 14, a condenser 20 and a pump 22 in this order, an oil cooler 32, an oil cooling channel 40, an expansion valve V1, and a branch A flow path 42, a switching unit 50, and a control unit 60 are provided.

蒸発器10は、作動媒体及び油を含む混合媒体と加熱媒体とを熱交換させることによって混合媒体のうち少なくとも作動媒体を蒸発させる。   The evaporator 10 evaporates at least the working medium of the mixed medium by heat exchange between the mixed medium containing the working medium and the oil and the heating medium.

油分離器12は、循環流路24のうち蒸発器10の下流側の部位に設けられている。油分離器12は、蒸発器10から流出した混合媒体から油を分離する。   The oil separator 12 is provided at the downstream side of the evaporator 10 in the circulation flow path 24. The oil separator 12 separates oil from the mixed medium flowing out of the evaporator 10.

膨張機14は、循環流路24のうち油分離器12の下流側の部位に設けられている。膨張機14は、油分離器12から流出した気相の作動媒体を膨張させる。本実施形態では、膨張機14として、気相の作動媒体の膨張エネルギーにより回転駆動されるロータを有する容積式のスクリュ膨張機が用いられている。   The expander 14 is provided at the downstream side of the oil separator 12 in the circulation channel 24. The expander 14 expands the gas phase working medium flowing out of the oil separator 12. In the present embodiment, as the expander 14, a positive displacement screw expander having a rotor that is rotationally driven by the expansion energy of a gas phase working medium is used.

動力回収機16は、膨張機14に接続されている。動力回収機16は、前記ロータに接続されており当該ロータとともに回転する回転軸を有しており、この回転軸の回転により動力を回収する。本実施形態では、動力回収機16として発電機が用いられている。なお、動力回収機16として、圧縮機等が用いられてもよい。   The power recovery machine 16 is connected to the expander 14. The power recovery machine 16 is connected to the rotor and has a rotating shaft that rotates with the rotor, and the power is recovered by the rotation of the rotating shaft. In the present embodiment, a generator is used as the power recovery machine 16. A compressor or the like may be used as the power recovery device 16.

給油流路18は、油分離器12で分離された油を少なくとも膨張機14に供給するための流路である。本実施形態では、給油流路18は、油分離器12で分離された油を膨張機14の軸受及び動力回収器(本実施形態では発電機)16の軸受に供給する。   The oil supply channel 18 is a channel for supplying the oil separated by the oil separator 12 to at least the expander 14. In the present embodiment, the oil supply passage 18 supplies the oil separated by the oil separator 12 to the bearing of the expander 14 and the bearing of the power recovery device (generator in this embodiment) 16.

凝縮器20は、循環流路24のうち膨張機14の下流側の部位に設けられている。凝縮器20は、膨張機14から流出した混合媒体と冷却媒体(冷却水等)とを熱交換させることによって混合媒体を凝縮させる。   The condenser 20 is provided at a portion of the circulation flow path 24 downstream of the expander 14. The condenser 20 condenses the mixed medium by heat exchange between the mixed medium flowing out of the expander 14 and the cooling medium (cooling water or the like).

ポンプ22は、循環流路24における凝縮器20の下流側の部位(凝縮器20と蒸発器10との間の部位)に設けられている。ポンプ22は、凝縮器20から流出した液相の混合媒体を所定の圧力で蒸発器10に送る。   The pump 22 is provided at a portion of the circulation flow path 24 downstream of the condenser 20 (a portion between the condenser 20 and the evaporator 10). The pump 22 sends the mixed medium of the liquid phase flowing out of the condenser 20 to the evaporator 10 at a predetermined pressure.

オイルクーラ32は、給油流路18に設けられており、給油流路18を流れる油を冷却する。   The oil cooler 32 is provided in the oil supply passage 18 and cools the oil flowing through the oil supply passage 18.

油冷却流路40は、循環流路24のうちポンプ22と蒸発器10との間の部位から分岐しており、オイルクーラ32を通るように構成されている。すなわち、オイルクーラ32は、給油流路18を流れる油を油冷却流路40を流れる混合媒体によって冷却する。換言すれば、オイルクーラ32は、給油流路30を流れる油が油冷却流路40を流れる混合媒体によって冷却されるように給油流路30及び油冷却流路40に接続されている。油冷却流路40の下流側の端部は、膨張機14の中段部に接続されている。   The oil cooling channel 40 branches from a portion of the circulation channel 24 between the pump 22 and the evaporator 10, and is configured to pass through the oil cooler 32. That is, the oil cooler 32 cools the oil flowing through the oil supply passage 18 by the mixed medium flowing through the oil cooling passage 40. In other words, the oil cooler 32 is connected to the oil feeding passage 30 and the oil cooling passage 40 so that the oil flowing through the oil feeding passage 30 is cooled by the mixed medium flowing through the oil cooling passage 40. The downstream end of the oil cooling channel 40 is connected to the middle stage of the expander 14.

膨張弁V1は、油冷却流路40のうちオイルクーラ32の上流側の部位に設けられており、開度調整が可能である。膨張弁V1は、ポンプ22から吐出された後に油冷却流路40に流入した混合媒体を減圧することにより、オイルクーラ32での混合媒体の蒸発を促進させる。なお、油冷却流路40の下流側の端部の位置、つまり、膨張機14の中段部は、膨張機14内のうち膨張弁V1の通過後の混合媒体の圧力に対応する圧力を有する部位である。膨張機14として多段式のものが用いられている場合、前記中段部は、各段の膨張行程の途中、あるいは、各段間を連結する連結部(配管や容器)となる。   The expansion valve V1 is provided at a portion of the oil cooling flow path 40 on the upstream side of the oil cooler 32, and the opening degree can be adjusted. The expansion valve V1 promotes evaporation of the mixed medium in the oil cooler 32 by reducing the pressure of the mixed medium that has flowed into the oil cooling channel 40 after being discharged from the pump 22. The position of the downstream end of the oil cooling channel 40, that is, the middle stage portion of the expander 14 is a portion in the expander 14 having a pressure corresponding to the pressure of the mixed medium after passing through the expansion valve V1. It is. When a multi-stage expander is used as the expander 14, the middle stage portion becomes a connection portion (pipe or container) which connects the stages of the expansion strokes of the stages or between stages.

分岐流路42は、油冷却流路40のうちオイルクーラ32と膨張機14との間の部位から分岐している。分岐流路42の下流側の端部は、循環流路24のうち膨張機14と凝縮器20との間の部位に接続されている。   The branch flow channel 42 branches from a portion of the oil cooling flow channel 40 between the oil cooler 32 and the expander 14. The downstream end of the branch flow channel 42 is connected to a portion of the circulation flow channel 24 between the expander 14 and the condenser 20.

切替部50は、オイルクーラ32から流出した混合媒体が膨張機14に流入する態様である第1態様と、オイルクーラ32から流出した混合媒体が分岐流路42に流入する態様である第2態様と、を切り替え可能である。本実施形態では、切替部50は、第1遮断弁V2と、第2遮断弁V3と、を有している。第1遮断弁V2は、油冷却流路40のうち当該油冷却流路40と分岐流路42の上流側の端部との接続部の下流側の部位に設けられている。第2遮断弁V3は、分岐流路42に設けられている。つまり、第1遮断弁V2が開かれかつ第2遮断弁V3が閉じられることにより切替部50が前記第1態様となり、第1遮断弁V2が閉じられかつ第2遮断弁V3が開かれることにより切替部50が前記第2態様となる。   The switching unit 50 is a first mode in which the mixed medium flowing out of the oil cooler 32 flows into the expander 14 and a second mode in which the mixed medium flowing out of the oil cooler 32 flows into the branch flow path 42 And can be switched. In the present embodiment, the switching unit 50 includes a first shutoff valve V2 and a second shutoff valve V3. The first shutoff valve V2 is provided at a portion of the oil cooling flow passage 40 on the downstream side of the connection portion between the oil cooling flow passage 40 and the upstream end of the branch flow passage 42. The second shutoff valve V3 is provided in the branch flow path 42. That is, when the first shutoff valve V2 is opened and the second shutoff valve V3 is closed, the switching unit 50 is in the first mode, the first shutoff valve V2 is closed, and the second shutoff valve V3 is opened. The switching unit 50 is the second aspect.

制御部60は、膨張弁V1及び切替部50を制御する。本実施形態では、制御部60は、膨張弁調整部61と、ガス化判断部62と、切替部調整部63と、を有する。   The control unit 60 controls the expansion valve V1 and the switching unit 50. In the present embodiment, the control unit 60 includes an expansion valve adjustment unit 61, a gasification determination unit 62, and a switching unit adjustment unit 63.

膨張弁調整部61は、給油流路18のうちオイルクーラ32と膨張機14との間の部位の温度(膨張機14に流入する油の温度)が基準温度未満に維持されるように、換言すれば、膨張機14に供給される油の粘度が要求値以上に維持されるように、膨張弁V1の開度を調整する。なお、給油流路18のうちオイルクーラ32と膨張機14との間の部位の温度は、前記部位に設けられた温度センサ71によって検出される。   The expansion valve adjustment unit 61 is configured to maintain the temperature of the portion of the oil supply passage 18 between the oil cooler 32 and the expander 14 (the temperature of the oil flowing into the expander 14) below the reference temperature. If so, the opening degree of the expansion valve V1 is adjusted so that the viscosity of the oil supplied to the expander 14 is maintained at or above the required value. The temperature of a portion of the oil supply passage 18 between the oil cooler 32 and the expander 14 is detected by a temperature sensor 71 provided at the portion.

ガス化判断部62は、オイルクーラ32から流出した混合媒体が気相であるか否かを判断する。本実施形態では、ガス化判断部62は、オイルクーラ32から流出した混合媒体の過熱度を算出するとともに、その過熱度が設定値よりも大きい場合に当該混合媒体が全て気相であると判断する一方、前記過熱度が前記設定値以下である場合に当該混合媒体に液相が含まれると判断する。なお、オイルクーラ32から流出した混合媒体の過熱度は、油冷却流路40のうちオイルクーラ32と第1遮断弁V2との間の部位又は分岐流路42のうち第2遮断弁V3の上流側の部位に設けられた圧力センサ72の検出値及び温度センサ73の検出値に基づいて算出される。   The gasification determination unit 62 determines whether the mixed medium having flowed out of the oil cooler 32 is in the gas phase. In the present embodiment, the gasification determination unit 62 calculates the degree of superheat of the mixed medium that has flowed out of the oil cooler 32, and determines that the mixed medium is all in the gas phase when the degree of superheat is greater than the set value. On the other hand, when the degree of superheat is equal to or less than the set value, it is determined that the mixed medium contains a liquid phase. The degree of superheat of the mixed medium having flowed out of the oil cooler 32 is the portion between the oil cooler 32 and the first shutoff valve V2 in the oil cooling passage 40 or the upstream of the second shutoff valve V3 in the branch passage 42. It is calculated based on the detection value of the pressure sensor 72 and the detection value of the temperature sensor 73 provided at the side part.

切替部調整部63は、オイルクーラ32から流出した混合媒体が全て気相であるとガス化判断部62が判断したとき(本実施形態ではオイルクーラ32から流出した混合媒体の過熱度が設定値よりも大きいとき)に、切替部50を前記第1態様に切り替える(第1遮断弁V2を開き第2遮断弁V3を閉じる)。逆に、オイルクーラ32から流出した混合媒体に液相が含まれるとガス化判断部62が判断したときに、切替部50を前記第2態様に切り替える(第1遮断弁V2を閉じ第2遮断弁V3を開く)。   When the gasification determination unit 62 determines that the mixed medium flowing out of the oil cooler 32 is all in the gas phase (in the present embodiment, the degree of superheat of the mixed medium flowing out of the oil cooler 32 is a set value) Switching the switching unit 50 to the first mode (when the first shutoff valve V2 is opened and the second shutoff valve V3 is closed). Conversely, when the gasification determination unit 62 determines that the mixed medium that has flowed out of the oil cooler 32 contains a liquid phase, the switching unit 50 is switched to the second mode (the first shutoff valve V2 is closed and the second shutoff Open valve V3).

以下、図2を参照しながら、制御部60の具体的な制御内容について説明する。   Hereinafter, specific control contents of the control unit 60 will be described with reference to FIG.

まず、制御部60の切替部調整部63は、第1遮断弁V2を閉じ、第2遮断弁V3を開く(ステップST11)。続いて、制御部60の膨張弁調整部61は、温度センサ71の検出値Toが基準温度T1未満であるか否かを判断する(ステップST12)。この結果、検出値Toが基準温度T1以上であれば、つまり、膨張機14に供給される油の粘度が要求値未満であれば、膨張弁調整部61は、オイルクーラ32での油の冷却量を増やすために膨張弁V1の開度を上げる(ステップST13)。   First, the switching unit adjustment unit 63 of the control unit 60 closes the first shutoff valve V2 and opens the second shutoff valve V3 (step ST11). Subsequently, the expansion valve adjusting unit 61 of the control unit 60 determines whether the detected value To of the temperature sensor 71 is less than the reference temperature T1 (step ST12). As a result, if the detected value To is equal to or higher than the reference temperature T1, that is, if the viscosity of the oil supplied to the expander 14 is less than the required value, the expansion valve adjustment unit 61 cools the oil in the oil cooler 32. In order to increase the amount, the opening degree of the expansion valve V1 is increased (step ST13).

また、制御部60のガス化判断部62は、ステップST12において検出値Toが基準温度T1未満である場合(ステップST12でYESの場合)、あるいは、ステップST13の後、圧力センサ72の検出値及び温度センサ73の検出値に基づいて算出される過熱度Sが設定値αよりも大きいか否かを判断する(ステップST14)。この結果、過熱度Sが設定値αよりも大きい場合、つまり、オイルクーラ32から流出した混合媒体が全て気相であり、混合媒体を膨張機14に導入することによって動力回収機16で動力が回収可能である場合、制御部60の切替部調整部63は、第1遮断弁V2を開くとともに第2遮断弁V3を閉じ(切替部50を第1態様とし)(ステップST15)、ステップST12に戻る。一方、過熱度Sが設定値α以下である場合、つまり、オイルクーラ32から流出した混合媒体に液相が含まれる可能性がある場合、膨張弁調整部61は、混合媒体のオイルクーラ32への流入量を減らすために膨張弁V1の開度を下げる(ステップST16)。そして、ステップST16と同時に、あるいは、ステップST16の後、切替部調整部63は、第1遮断弁V2を閉じるとともに第2遮断弁V3を開き(切替部50を第2態様とし)(ステップST17)、ステップST12に戻る。   Further, if the detected value To is lower than the reference temperature T1 in step ST12 (YES in step ST12), or the gas detection determination unit 62 of the control unit 60 detects the detected value of the pressure sensor 72 after step ST13. It is determined whether the degree of superheat S calculated based on the detection value of the temperature sensor 73 is larger than the set value α (step ST14). As a result, when the degree of superheat S is larger than the set value α, that is, the mixed medium having flowed out of the oil cooler 32 is all in the gas phase, and the mixed medium is introduced into the expander 14 to generate power in the power recovery machine 16. If it can be collected, the switching unit adjustment unit 63 of the control unit 60 opens the first shutoff valve V2 and closes the second shutoff valve V3 (the switching unit 50 is set to the first mode) (step ST15). Return. On the other hand, if the degree of superheat S is equal to or less than the set value α, that is, if there is a possibility that the mixed medium flowing out of the oil cooler 32 contains a liquid phase, the expansion valve adjustment unit 61 sends the oil cooler 32 to the mixed medium. In order to reduce the amount of inflow, the opening degree of the expansion valve V1 is lowered (step ST16). Then, at the same time with step ST16 or after step ST16, the switching unit adjustment unit 63 closes the first shutoff valve V2 and opens the second shutoff valve V3 (the switching unit 50 is set to the second mode) (step ST17) , And return to step ST12.

以上のように、本熱エネルギー回収装置では、ポンプ22から吐出された混合媒体は、膨張弁V1の通過により減圧されるため、オイルクーラ32で蒸発しやすくなり、オイルクーラ32での混合媒体の蒸発によって油が有効に冷却される。そして、オイルクーラ32で蒸発した混合媒体は、油冷却流路40を通じて膨張機14の中段部に導入されるので、その分膨張機14に投入されるエネルギー(動力回収機16で回収される動力)が増大する。しかも、オイルクーラ32では、混合媒体の蒸発現象を伴う熱交換が行われるため、オイルクーラ32において油と混合媒体との顕熱による熱交換のみが行われる場合に比べ、オイルクーラ32の小型化が可能となる。   As described above, in the present thermal energy recovery apparatus, the mixed medium discharged from the pump 22 is decompressed by the passage of the expansion valve V 1, so the oil cooler 32 easily evaporates, and the mixed medium in the oil cooler 32 The evaporation effectively cools the oil. Then, the mixed medium evaporated by the oil cooler 32 is introduced into the middle stage of the expander 14 through the oil cooling channel 40, so the energy input to the expander 14 (the power recovered by the power recovery machine 16) ) Increases. In addition, since the oil cooler 32 performs heat exchange accompanied by the evaporation of the mixed medium, the oil cooler 32 is miniaturized compared to the case where only the heat exchange between the oil and the mixed medium is performed in the oil cooler 32. Is possible.

また、制御部60は、切替部調整部63を有するので、気相の混合媒体が膨張機14に流入することによって動力回収機16において有効に動力を回収することと、液相の混合媒体の膨張機14への流入の抑制と、の双方が達成される。   In addition, since the control unit 60 includes the switching unit adjustment unit 63, the mixed medium of the gas phase flows into the expander 14 to effectively recover the power in the power recovery machine 16, and the mixed medium of the liquid phase. Both suppression of the inflow to the expander 14 is achieved.

(第2実施形態)
次に、図3を参照しながら、本発明の第2実施形態の熱エネルギー回収装置について説明する。なお、第2実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
Second Embodiment
Next, a thermal energy recovery apparatus according to a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, only portions different from the first embodiment will be described, and the description of the same structure, operation and effect as the first embodiment will be omitted.

本実施形態では、切替部50の代わりに、油冷却流路40のうちオイルクーラ32と膨張機14との間の部位に気液分離器44が設けられており、分岐流路42の上流側の端部は、気液分離器44の例えば下部に接続されている。分岐流路42には、遮断弁V4が設けられている。気液分離器44には、液面センサ74が設けられている。また、油冷却流路40のうち気液分離器44の下流側の部位には、気液分離器44から膨張機14への混合媒体の通過を許容するとともに膨張機14から気液分離器44への混合媒体の通過を禁止する逆止弁V5が設けられている。   In the present embodiment, instead of the switching unit 50, a gas-liquid separator 44 is provided in a portion of the oil cooling flow passage 40 between the oil cooler 32 and the expander 14, and the upstream side of the branch flow passage 42. The end portion of is connected to, for example, the lower portion of the gas-liquid separator 44. The branch flow path 42 is provided with a shutoff valve V4. The gas-liquid separator 44 is provided with a liquid level sensor 74. Further, in the portion of the oil cooling flow path 40 on the downstream side of the gas-liquid separator 44, the passage of the mixed medium from the gas-liquid separator 44 to the expander 14 is permitted and the expander 14 to the gas-liquid separator 44. A non-return valve V5 is provided which prohibits the passage of the mixed medium to the same.

また、本実施形態では、制御部60は、切替部調整部63の代わりに遮断弁V4の開閉を調整する遮断弁調整部64を有している。遮断弁調整部64は、気液分離器44から油冷却流路40に流出した混合媒体が全て気相であるとガス化判断部62が判断したとき(本実施形態では気液分離器44から油冷却流路40に流出した混合媒体の過熱度が設定値よりも大きいとき)に遮断弁V4を閉じるとともに、気液分離器44から油冷却流路40に流出した混合媒体に液相が含まれるとガス化判断部62が判断したときに遮断弁V4を閉じる。   Further, in the present embodiment, the control unit 60 includes the shutoff valve adjustment unit 64 that adjusts the opening and closing of the shutoff valve V4 instead of the switching unit adjustment unit 63. When the gasification determination unit 62 determines that the mixed medium having flowed out of the gas-liquid separator 44 into the oil cooling channel 40 is all in the gas phase (in the present embodiment, the shut-off valve adjustment unit 64 The shutoff valve V4 is closed when the degree of superheat of the mixed medium flowing out into the oil cooling flow path 40 is larger than the set value), and the mixed medium flowing out from the gas-liquid separator 44 into the oil cooling flow path 40 contains a liquid phase When it is judged that the gasification judgment unit 62 judges that the shutoff valve V4 is closed.

具体的に、本実施形態の制御部60の制御内容について、図4を参照しながら説明する。   Specifically, control contents of the control unit 60 of the present embodiment will be described with reference to FIG.

まず、制御部60の遮断弁調整部64は、遮断弁V4を開く(ステップST21)。なお、ステップST22〜ステップST24は、ステップST12〜ステップST14と同じであるので、説明を省略する。   First, the shutoff valve adjustment unit 64 of the control unit 60 opens the shutoff valve V4 (step ST21). In addition, since step ST22-step ST24 are the same as step ST12-step ST14, description is abbreviate | omitted.

ステップST24において、過熱度Sが設定値αよりも大きい場合(ステップST24でYESの場合)、遮断弁調整部64は、遮断弁V4を閉じ(ステップST25)、ステップST22に戻る。一方、ステップST24において、過熱度Sが設定値α以下である場合(ステップST24でNOの場合)、膨張弁調整部61は、膨張弁V1の開度を下げる(ステップST26)。そして、ステップST26と同時に、あるいは、ステップST26の後、遮断弁調整部64は、遮断弁V4を開き(ステップST27)、ステップST22に戻る。   In step ST24, if the degree of superheat S is larger than the set value α (YES in step ST24), the shutoff valve adjustment unit 64 closes the shutoff valve V4 (step ST25), and returns to step ST22. On the other hand, when the degree of superheat S is less than or equal to the set value α in step ST24 (in the case of NO in step ST24), the expansion valve adjustment unit 61 lowers the opening degree of the expansion valve V1 (step ST26). Then, simultaneously with step ST26 or after step ST26, the shutoff valve adjustment unit 64 opens the shutoff valve V4 (step ST27), and returns to step ST22.

以上のように、本実施形態の熱エネルギー回収装置は、気液分離器44及び分岐流路42を備えているので、オイルクーラ32から気液二相の状態で混合媒体が流出したとしても、その混合媒体は、気液分離器44において気相と液相とに分離され、気相の混合媒体のみが油冷却流路40を通じて膨張機14に導かれる。よって、気相の混合媒体が膨張機14に流入することによって動力回収機16において有効に動力を回収することと、液相の混合媒体の膨張機14への流入の抑制と、の双方が達成される。   As described above, since the thermal energy recovery apparatus of the present embodiment includes the gas-liquid separator 44 and the branch flow channel 42, even if the mixed medium flows out from the oil cooler 32 in the gas-liquid two-phase state, The mixed medium is separated into a gas phase and a liquid phase in the gas-liquid separator 44, and only the mixed medium in the gas phase is led to the expander 14 through the oil cooling channel 40. Therefore, both the recovery of power in the power recovery machine 16 effectively by the mixed medium of the gas phase flowing into the expander 14 and the suppression of the inflow of the mixed medium of the liquid phase into the expander 14 are achieved. Be done.

また、油冷却流路40のうち気液分離器44の下流側の部位に逆止弁V5が設けられているので、膨張機14から気液分離器44への混合媒体の逆流、すなわち、動力回収機16での回収動力の低下が防止される。   Further, since the check valve V5 is provided in the portion of the oil cooling flow path 40 on the downstream side of the gas-liquid separator 44, the backflow of the mixed medium from the expander 14 to the gas-liquid separator 44, ie, the power A drop in recovery power at the recovery machine 16 is prevented.

さらに、本実施形態の熱エネルギー回収装置は、分岐流路42に設けられた遮断弁V4と、遮断弁調整部64と、を備えるので、気液分離器44から分岐流路42へ気相の混合媒体が流出すること(動力回収機16において回収可能な動力が損失すること)と、気液分離器44に液相の混合媒体が過剰に貯留されることと、の双方が抑制される。   Furthermore, since the thermal energy recovery apparatus of the present embodiment includes the shutoff valve V4 provided in the branch flow path 42 and the shutoff valve adjustment unit 64, the gas-liquid separator 44 to the branch flow path 42 Both the outflow of the mixed medium (loss of the recoverable power in the power recovery machine 16) and the excessive storage of the mixed medium of the liquid phase in the gas-liquid separator 44 are suppressed.

ここで、本実施形態において、遮断弁調整部64は、液面センサ74の検出値が設定値未満である場合に遮断弁V4を閉じ、液面センサ74の検出値が設定値以上である場合に遮断弁V4を開いてもよい。この場合、ステップST21、ステップST25及びステップST27は省略され、制御部60は、ステップST22〜ステップST24、ステップST26の操作と、遮断弁調整部64による操作と、を並列で行う。   Here, in the present embodiment, the shutoff valve adjustment unit 64 closes the shutoff valve V4 when the detection value of the liquid level sensor 74 is less than the set value, and the detection value of the liquid level sensor 74 is greater than the set value. Alternatively, the shutoff valve V4 may be opened. In this case, step ST21, step ST25 and step ST27 are omitted, and the control unit 60 performs the operation of step ST22 to step ST24 and step ST26 and the operation of the shutoff valve adjustment unit 64 in parallel.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is indicated not by the description of the embodiments described above but by the claims, and further includes all modifications within the meaning and scope equivalent to the claims.

例えば、図5及び図6に示されるように、各実施形態において、油冷却流路40のうちオイルクーラ32と膨張機14との間の部位及び循環流路24のうち膨張機14と凝縮器20との間の部位に加熱器26が設けられてもよい。この加熱器26は、オイルクーラ32から流出した混合媒体を膨張機14から流出した混合媒体によって加熱する。これにより、オイルクーラ32から流出した混合媒体の蒸発が促進される。なお、第2実施形態においては、加熱器26は、油冷却流路40のうち気液分離器44と膨張機14との間の部位に設けられることが好ましい。   For example, as shown in FIGS. 5 and 6, in each embodiment, the portion between the oil cooler 32 and the expander 14 in the oil cooling passage 40 and the expander 14 and the condenser in the circulation passage 24. A heater 26 may be provided at a position between 20 and 20. The heater 26 heats the mixed medium flowing out of the oil cooler 32 by the mixed medium flowing out of the expander 14. This promotes the evaporation of the mixed medium that has flowed out of the oil cooler 32. In the second embodiment, the heater 26 is preferably provided in a portion of the oil cooling flow passage 40 between the gas-liquid separator 44 and the expander 14.

また、オイルクーラ32から流出した混合媒体が動力回収機16によって加熱されるように、油冷却流路40のうちオイルクーラ32と膨張機14との間の部位41が動力回収機16に接続されていてもよい。このようにすれば、オイルクーラ32から流出した混合媒体が動力回収機16の排熱を回収するので、動力回収機16で回収される動力が増大する。なお、第2実施形態においては、前記部位41は、油冷却流路40のうち気液分離器44の下流側の部位から選択されることが好ましい。また、前記部位41は、油冷却流路40のうち加熱器26に接続される部位に対して並列に設けられても当該部位と直列に設けられてもよい。また、加熱器26及び前記部位41の少なくとも一方は、油冷却流路40のうちオイルクーラ32の上流側の部位に設けられてもよい。   Further, a portion 41 of the oil cooling flow path 40 between the oil cooler 32 and the expander 14 is connected to the power recovery device 16 so that the mixed medium having flowed out of the oil cooler 32 is heated by the power recovery device 16. It may be In this way, the mixed medium that has flowed out of the oil cooler 32 recovers the exhaust heat of the power recovery machine 16, so the power recovered by the power recovery machine 16 is increased. In the second embodiment, the portion 41 is preferably selected from the portion of the oil cooling channel 40 on the downstream side of the gas-liquid separator 44. Further, the portion 41 may be provided in parallel to a portion of the oil cooling flow passage 40 connected to the heater 26 or may be provided in series with the portion. Further, at least one of the heater 26 and the portion 41 may be provided at a portion of the oil cooling flow passage 40 on the upstream side of the oil cooler 32.

また、第1実施形態において、油冷却流路40のうちオイルクーラ32と第1遮断弁V2との間の部位に、当該部位を流れる混合媒体に液相が含まれるか否かを検出するセンサが設けられ、ガス化判断部62は、そのセンサの検出結果に基づいて前記部位の混合媒体が気相であるか否かを判断してもよい。同様に、第2実施形態において、油冷却流路40のうち気液分離器44と膨張機14との間の部位に、前記センサが設けられ、ガス化判断部62は、そのセンサの検出結果に基づいて前記部位の混合媒体が気相であるか否かを判断してもよい。   Further, in the first embodiment, a sensor for detecting whether or not the mixed medium flowing in the region is contained in the region between the oil cooler 32 and the first shutoff valve V2 in the oil cooling flow passage 40. The gasification determination unit 62 may determine whether the mixed medium in the region is in the gas phase based on the detection result of the sensor. Similarly, in the second embodiment, the sensor is provided in a portion of the oil cooling channel 40 between the gas-liquid separator 44 and the expander 14, and the gasification determination unit 62 detects the detection result of the sensor It may be judged whether the mixed medium of the said part is a gas phase based on.

10 蒸発器
12 油分離器
14 膨張機
16 動力回収機
18 給油流路
20 凝縮器
22 ポンプ
24 循環流路
26 過熱器
32 オイルクーラ
40 油冷却流路
42 分岐流路
44 気液分離器
50 切替部
60 制御部
61 膨張弁調整部
62 ガス化判断部
63 切替部調整部
64 遮断弁調整部
V1 膨張弁
V2 第1遮断弁
V3 第2遮断弁
V4 遮断弁
V5 逆止弁
DESCRIPTION OF SYMBOLS 10 Evaporator 12 Oil separator 14 Expander 16 Power recovery machine 18 Oil supply flow path 20 Condenser 22 Pump 24 Circulation flow path 26 Superheater 32 Oil cooler 40 Oil cooling flow path 42 Branch flow path 44 Gas-liquid separator 50 Switching part 60 control unit 61 expansion valve adjustment unit 62 gasification determination unit 63 switching unit adjustment unit 64 shut off valve adjustment unit V1 expansion valve V2 first shut off valve V3 second shut off valve V4 shut off valve V5 check valve

Claims (7)

作動媒体及び油を含む混合媒体を蒸発させる蒸発器と、
前記蒸発器から流出した混合媒体から油を分離する油分離器と、
前記油分離器から流出した作動媒体を膨張させる膨張機と、
前記膨張機に接続された動力回収機と、
前記油分離器から流出した油を前記膨張機に供給する給油流路と、
前記膨張機から流出した混合媒体を凝縮させる凝縮器と、
前記凝縮器から流出した混合媒体を前記蒸発器へ送るポンプと、
前記蒸発器、前記油分離器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、
前記給油流路を流れる油を冷却するオイルクーラと、
前記循環流路のうち前記ポンプと前記蒸発器との間の部位から分岐しており、前記オイルクーラを通るように構成された油冷却流路と、
前記油冷却流路のうち前記オイルクーラの上流側の部位に設けられており開度調整が可能な膨張弁と、
前記給油流路のうち前記オイルクーラと前記膨張機との間の部位を流れる油の温度が基準温度未満に維持されるように前記膨張弁の開度を調整する膨張弁調整部と、を備え、
前記オイルクーラは、前記給油流路を流れる油と前記油冷却流路を流れる混合媒体とを熱交換させることによって当該混合動媒体の少なくとも一部を蒸発させ、
前記油冷却流路の下流側の端部は、前記膨張機の中段部に接続されている、熱エネルギー回収装置。
An evaporator for evaporating the mixed medium containing the working medium and the oil;
An oil separator for separating oil from the mixed medium flowing out of the evaporator;
An expander for expanding a working medium having flowed out of the oil separator;
A power recovery machine connected to the expander;
A refueling channel for supplying the oil, which has flowed out of the oil separator, to the expander;
A condenser that condenses the mixed medium that has flowed out of the expander;
A pump for sending the mixed medium flowing out of the condenser to the evaporator;
A circulation channel connecting the evaporator, the oil separator, the expander, the condenser, and the pump in this order;
An oil cooler for cooling the oil flowing through the oil supply passage;
An oil cooling channel branched from a portion of the circulation channel between the pump and the evaporator and configured to pass through the oil cooler;
An expansion valve provided at a position upstream of the oil cooler in the oil cooling flow passage, and capable of adjusting the opening degree;
And an expansion valve adjustment unit configured to adjust an opening degree of the expansion valve such that a temperature of oil flowing in a portion between the oil cooler and the expander in the oil supply passage is maintained below a reference temperature. ,
The oil cooler evaporates at least a part of the mixed moving medium by heat exchange between the oil flowing through the oil supply passage and the mixed medium flowing through the oil cooling passage.
The downstream end of the oil cooling channel is connected to the middle stage of the expander.
請求項1に記載の熱エネルギー回収装置において、
前記油冷却流路のうち前記オイルクーラと前記膨張機との間の部位から分岐しており前記循環流路のうち前記膨張機と前記凝縮器との間の部位に接続される分岐流路と、
前記オイルクーラから流出した混合媒体が前記膨張機に流入する態様である第1態様と前記オイルクーラから流出した混合媒体が前記分岐流路に流入する態様である第2態様とを切り替える切替部と、
前記オイルクーラから流出した混合媒体が気相であると判断されるときに前記切替部を前記第1態様に切り替えるとともに、前記油冷却流路のうち前記オイルクーラと前記切替部との間の部位を流れる混合媒体が液相を含むと判断されるときに前記切替部を前記第2態様に切り替える切替部調整部と、をさらに備える、熱エネルギー回収装置。
In the thermal energy recovery device according to claim 1,
A branch channel branched from a portion between the oil cooler and the expander in the oil cooling channel and connected to a portion between the expander and the condenser in the circulation channel; ,
A switching unit for switching between a first mode in which the mixed medium flowing out from the oil cooler flows into the expander, and a second mode in which the mixed medium flowing out from the oil cooler flows into the branch channel ,
The switching unit is switched to the first mode when it is determined that the mixed medium having flowed out of the oil cooler is in the gas phase, and a portion between the oil cooler and the switching unit in the oil cooling channel And a switching unit adjustment unit that switches the switching unit to the second mode when it is determined that the mixed medium flowing through the liquid phase includes a liquid phase.
請求項1に記載の熱エネルギー回収装置において、
前記油冷却流路のうち前記オイルクーラと前記膨張機との間の部位に設けられた気液分離器と、
前記気液分離器において分離された液相の混合媒体を前記凝縮器へ導く分岐流路と、をさらに備える、熱エネルギー回収装置。
In the thermal energy recovery device according to claim 1,
A gas-liquid separator provided in a portion of the oil cooling passage between the oil cooler and the expander;
And a branch channel for introducing a mixed medium of liquid phase separated in the gas-liquid separator to the condenser.
請求項3に記載の熱エネルギー回収装置において、
前記油冷却流路のうち前記気液分離器と前記膨張機との間に設けられており、前記気液分離器から前記膨張機への前記混合媒体の通過を許容するとともに前記膨張機から前記気液分離器への混合媒体の通過を禁止する逆止弁をさらに備える、熱エネルギー回収装置。
In the thermal energy recovery device according to claim 3,
It is provided between the gas-liquid separator and the expander in the oil cooling flow path, and allows passage of the mixed medium from the gas-liquid separator to the expander, and from the expander to the expansion device. The thermal energy recovery device, further comprising a check valve that prohibits the passage of the mixed medium to the gas-liquid separator.
請求項3又は4に記載の熱エネルギー回収装置において、
前記分岐流路に設けられた遮断弁と、
前記油冷却流路のうち前記気液分離器と前記膨張機との間の部位を流れる混合媒体が気相であると判断されるときに前記遮断弁を閉じるとともに、前記油冷却流路のうち前記気液分離器と前記膨張機との間の部位を流れる混合媒体が液相を含むと判断されるときに前記遮断弁を閉じる遮断弁調整部と、をさらに備える、熱エネルギー回収装置。
In the thermal energy recovery device according to claim 3 or 4,
A shutoff valve provided in the branch flow path;
The shutoff valve is closed when it is determined that the mixed medium flowing in a portion between the gas-liquid separator and the expander in the oil cooling flow path is a gas phase, and the oil cooling flow path The heat energy recovery device, further comprising: a shutoff valve adjustment unit that closes the shutoff valve when it is determined that the mixed medium flowing through the portion between the gas-liquid separator and the expander includes the liquid phase.
請求項1ないし5のいずれかに記載の熱エネルギー回収装置において、
前記油冷却流路のうち前記オイルクーラと前記膨張機との間の部位及び前記循環流路のうち前記膨張機と前記凝縮器との間の部位に設けられた加熱器であって、前記オイルクーラから流出した混合媒体を前記膨張機から流出した混合媒体によって加熱するものをさらに備える、熱エネルギー回収装置。
In the thermal energy recovery device according to any one of claims 1 to 5,
It is a heater provided in a part between the oil cooler and the expander in the oil cooling flow path and in a part between the expander and the condenser in the circulation flow path, the oil The thermal energy recovery device, further comprising: heating the mixed medium flowing out of the cooler by the mixed medium flowing out of the expander.
請求項1ないし6のいずれかに記載の熱エネルギー回収装置において、
前記オイルクーラから流出した混合媒体が前記動力回収機によって加熱されるように、前記油冷却流路のうち前記オイルクーラと前記膨張機との間の部位が前記動力回収機に接続されている、熱エネルギー回収装置。
The thermal energy recovery device according to any one of claims 1 to 6.
A portion of the oil cooling passage between the oil cooler and the expander is connected to the power recovery machine so that the mixed medium having flowed out of the oil cooler is heated by the power recovery machine. Thermal energy recovery device.
JP2017232463A 2017-12-04 2017-12-04 Thermal energy recovery device Active JP6763848B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017232463A JP6763848B2 (en) 2017-12-04 2017-12-04 Thermal energy recovery device
EP18201705.3A EP3492714B1 (en) 2017-12-04 2018-10-22 Thermal energy recovery device
KR1020180147003A KR102090980B1 (en) 2017-12-04 2018-11-26 Thermal energy recovery device
CN201811474090.2A CN109869207B (en) 2017-12-04 2018-12-04 Heat energy recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232463A JP6763848B2 (en) 2017-12-04 2017-12-04 Thermal energy recovery device

Publications (2)

Publication Number Publication Date
JP2019100263A true JP2019100263A (en) 2019-06-24
JP6763848B2 JP6763848B2 (en) 2020-09-30

Family

ID=63965224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232463A Active JP6763848B2 (en) 2017-12-04 2017-12-04 Thermal energy recovery device

Country Status (4)

Country Link
EP (1) EP3492714B1 (en)
JP (1) JP6763848B2 (en)
KR (1) KR102090980B1 (en)
CN (1) CN109869207B (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264863A (en) * 2004-03-19 2005-09-29 Ebara Corp Power generating device
JP2006283675A (en) * 2005-03-31 2006-10-19 Ebara Corp Power generating device and lubricating oil recovery method
JP2008542629A (en) * 2005-06-10 2008-11-27 シティ ユニヴァーシティ pump
JP2009191725A (en) * 2008-02-14 2009-08-27 Sanden Corp Waste heat utilization device
US20100034684A1 (en) * 2008-08-07 2010-02-11 General Electric Company Method for lubricating screw expanders and system for controlling lubrication
JP2011122568A (en) * 2009-12-14 2011-06-23 Kobe Steel Ltd Power generator
JP2012097725A (en) * 2010-10-07 2012-05-24 Kobe Steel Ltd Power generation system
JP2012246902A (en) * 2011-05-31 2012-12-13 Kobe Steel Ltd Pump system and binary electrical generator
JP2012255400A (en) * 2011-06-09 2012-12-27 Kobe Steel Ltd Power generation apparatus
JP2014062542A (en) * 2012-08-29 2014-04-10 Kobe Steel Ltd Power generating apparatus and control method for power generating apparatus
WO2014117156A1 (en) * 2013-01-28 2014-07-31 Eaton Corporation Organic rankine cycle system with lubrication circuit
JP2014163608A (en) * 2013-02-26 2014-09-08 Kobe Steel Ltd Binary power generation device and operation method of binary power generation device
JP2014231820A (en) * 2013-05-30 2014-12-11 株式会社神戸製鋼所 Binary driving device
JP2016014329A (en) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 Thermal energy recovery device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514933B1 (en) * 2011-04-19 2017-03-15 Orcan Energy AG High pressure separation of liquid lubricant to lubricate volumetric expansion machines
EP2520771B1 (en) * 2011-05-03 2016-08-10 Orcan Energy AG Method and device for quick oil heating for oil-lubricated expansion machines
CN105673108A (en) * 2016-04-01 2016-06-15 上海开山能源装备有限公司 Oil injection ORC expander system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264863A (en) * 2004-03-19 2005-09-29 Ebara Corp Power generating device
JP2006283675A (en) * 2005-03-31 2006-10-19 Ebara Corp Power generating device and lubricating oil recovery method
JP2008542629A (en) * 2005-06-10 2008-11-27 シティ ユニヴァーシティ pump
JP2009191725A (en) * 2008-02-14 2009-08-27 Sanden Corp Waste heat utilization device
US20100034684A1 (en) * 2008-08-07 2010-02-11 General Electric Company Method for lubricating screw expanders and system for controlling lubrication
JP2011122568A (en) * 2009-12-14 2011-06-23 Kobe Steel Ltd Power generator
JP2012097725A (en) * 2010-10-07 2012-05-24 Kobe Steel Ltd Power generation system
JP2012246902A (en) * 2011-05-31 2012-12-13 Kobe Steel Ltd Pump system and binary electrical generator
JP2012255400A (en) * 2011-06-09 2012-12-27 Kobe Steel Ltd Power generation apparatus
JP2014062542A (en) * 2012-08-29 2014-04-10 Kobe Steel Ltd Power generating apparatus and control method for power generating apparatus
WO2014117156A1 (en) * 2013-01-28 2014-07-31 Eaton Corporation Organic rankine cycle system with lubrication circuit
JP2014163608A (en) * 2013-02-26 2014-09-08 Kobe Steel Ltd Binary power generation device and operation method of binary power generation device
JP2014231820A (en) * 2013-05-30 2014-12-11 株式会社神戸製鋼所 Binary driving device
JP2016014329A (en) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 Thermal energy recovery device

Also Published As

Publication number Publication date
CN109869207A (en) 2019-06-11
CN109869207B (en) 2021-10-15
JP6763848B2 (en) 2020-09-30
KR20190065940A (en) 2019-06-12
EP3492714B1 (en) 2020-12-09
EP3492714A1 (en) 2019-06-05
KR102090980B1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
KR102360509B1 (en) Thermal energy recovery device
KR101789873B1 (en) Energy recovery device and compression device, and energy recovery method
JP6194274B2 (en) Waste heat recovery system and waste heat recovery method
JP6670123B2 (en) Exhaust heat recovery device and binary power generation device
JP5338730B2 (en) Waste heat regeneration system
CN104234762B (en) Heat extraction and recovery device and the method for controlling of operation of heat extraction and recovery device
JP5596606B2 (en) Power generator
KR101708109B1 (en) Waste heat recovery apparatus and waste heat recovery method
JP2011208525A (en) Waste heat regeneration system
JP6188629B2 (en) Binary power generator operation method
JP2019100263A (en) Thermal energy recovery device
KR101639535B1 (en) Thermal energy recovery device
JP6190330B2 (en) Thermal energy recovery device
CN109113819A (en) Heat reclaiming system and the ship for carrying the heat reclaiming system
JP2019183649A (en) Thermal energy recovery device
JP6647922B2 (en) Thermal energy recovery apparatus and start-up method thereof
KR20190059211A (en) Thermal energy recovery system
CN108412561A (en) Heat-energy recovering apparatus
JP6455348B2 (en) Heat pump steam generator and method of operating the heat pump steam generator
KR102179759B1 (en) Heat energy recovery device and operation method thereof
JP6158149B2 (en) Distillation equipment
JP2017203391A (en) Exhaust heat recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200910

R150 Certificate of patent or registration of utility model

Ref document number: 6763848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150