JP2019099453A - Tantalum carbide coating carbon material and method of manufacturing the same, and member for semiconductor single-crystal manufacturing apparatus - Google Patents

Tantalum carbide coating carbon material and method of manufacturing the same, and member for semiconductor single-crystal manufacturing apparatus Download PDF

Info

Publication number
JP2019099453A
JP2019099453A JP2018191578A JP2018191578A JP2019099453A JP 2019099453 A JP2019099453 A JP 2019099453A JP 2018191578 A JP2018191578 A JP 2018191578A JP 2018191578 A JP2018191578 A JP 2018191578A JP 2019099453 A JP2019099453 A JP 2019099453A
Authority
JP
Japan
Prior art keywords
tantalum carbide
coating film
tantalum
single crystal
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018191578A
Other languages
Japanese (ja)
Other versions
JP7083732B2 (en
Inventor
力 森
Tsutomu Mori
力 森
山村 和市
Kazuichi Yamamura
和市 山村
狩野 正樹
Masaki Kano
正樹 狩野
暁大 平手
Akihiro Hirate
暁大 平手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to KR1020180147098A priority Critical patent/KR20190065941A/en
Priority to TW107142853A priority patent/TWI801457B/en
Priority to US16/208,482 priority patent/US20190169768A1/en
Priority to DE102018009473.2A priority patent/DE102018009473A1/en
Priority to CN201811468226.9A priority patent/CN109896515B/en
Publication of JP2019099453A publication Critical patent/JP2019099453A/en
Priority to US17/149,733 priority patent/US11555255B2/en
Application granted granted Critical
Publication of JP7083732B2 publication Critical patent/JP7083732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To provide a member for semiconductor single-crystal manufacturing apparatus which has a long product lifetime, and a tantalum carbide coating carbon material.SOLUTION: A tantalum carbide coating carbon material according to the present invention is characterized in that: at least a part of a carbon base material surface is coated with a tantalum carbide coating film consisting principally of tantalum carbide; and the tantalum carbide coating film has an intensity of X-ray diffracted rays, corresponding to a (200) plane in a plane outward direction larger than intensities of X-ray diffracted rays corresponding to other crystal planes; and the intensity ratio thereof is 60% or larger of the sum of intensities of X-ray diffracted rays corresponding to the entire crystal plane.SELECTED DRAWING: Figure 4

Description

本発明は、炭素基材表面に炭化タンタル膜を被覆した炭化タンタル被覆炭素材料、及び、この材料を用いた半導体単結晶製造装置用部材に関する。   The present invention relates to a tantalum carbide-coated carbon material in which a tantalum carbide film is coated on the surface of a carbon substrate, and a member for a semiconductor single crystal production apparatus using this material.

炭化タンタルは、遷移金属炭化物の中で最も融点が高く(約3900℃)、化学的安定性、強度、靭性、耐食性にも優れている。このため、炭素基材表面に炭化タンタル膜を被覆した炭化タンタル被覆炭素材料は、Si(シリコン)、SiC(炭化ケイ素)、GaN(窒化ガリウム)などの半導体単結晶製造装置に部材として用いられている。   Tantalum carbide has the highest melting point (about 3900 ° C.) among transition metal carbides, and is also excellent in chemical stability, strength, toughness, and corrosion resistance. Therefore, a tantalum carbide-coated carbon material in which a tantalum carbide film is coated on the surface of a carbon substrate is used as a member in a semiconductor single crystal manufacturing apparatus such as Si (silicon), SiC (silicon carbide), GaN (gallium nitride) There is.

SiCのバルク単結晶を製造する方法としては、昇華再結晶法(改良レーリー法)が広く知られている。昇華再結晶法では、ルツボ内部にSiC原料を充填し、その上部にSiC種結晶が配置される。また、SiC種結晶の周囲には筒状のガイド部材が設置される。SiC原料の加熱によって発生した昇華ガスは、ガイド部材の内壁に沿って上昇し、SiC種結晶でSiC単結晶が成長していく。   A sublimation recrystallization method (modified Lely method) is widely known as a method of producing a bulk single crystal of SiC. In the sublimation recrystallization method, the inside of a crucible is filled with a SiC raw material, and a SiC seed crystal is disposed on the upper part thereof. In addition, a cylindrical guide member is installed around the SiC seed crystal. The sublimation gas generated by the heating of the SiC raw material rises along the inner wall of the guide member, and the SiC single crystal grows with the SiC seed crystal.

また、半導体デバイスなど用いられるSiC単結晶基板は、バルク単結晶から成るSiC基板上に、SiC単結晶をエピタキシャル成長させることによって、製造されている。SiC単結晶をエピタキシャル成長させる方法は、液相エピタキシー(LPE)法、気相エピタキシー(VPE)法、化学気相堆積(CVD)法などが知られている。通常、SiC単結晶をエピタキシャル成長させる方法は、CVD法である。CVD法によるエピタキシャル成長方法は、装置内のサセプタ上にSiC基板を載置し、1500℃以上の高温下で原料ガスを供給することで、SiC単結晶へ成長させている。   In addition, a SiC single crystal substrate used for semiconductor devices and the like is manufactured by epitaxially growing a SiC single crystal on a bulk single crystal SiC substrate. As a method of epitaxially growing a SiC single crystal, a liquid phase epitaxy (LPE) method, a vapor phase epitaxy (VPE) method, a chemical vapor deposition (CVD) method and the like are known. In general, the method of epitaxially growing a SiC single crystal is the CVD method. In the epitaxial growth method by the CVD method, the SiC substrate is mounted on a susceptor in the apparatus, and the raw material gas is supplied at a high temperature of 1500 ° C. or more to grow the SiC single crystal.

このようなSiC単結晶の製造方法において、より高品質な結晶を得るために、特許文献1には、黒鉛基材の内面を炭化タンタルで被覆したルツボを用いる方法が開示されている。また、特許文献2には、内壁を炭化タンタルで被覆したガイド部材を用いる方法が開示されている。   In such a method of producing a SiC single crystal, in order to obtain higher quality crystals, Patent Document 1 discloses a method of using a crucible in which the inner surface of a graphite base is coated with tantalum carbide. Further, Patent Document 2 discloses a method using a guide member whose inner wall is coated with tantalum carbide.

また、炭化タンタル被覆炭素材料における炭化タンタル被覆膜は、その配向性を制御することによって、特性の向上が試みられている。例えば、特許文献3では、炭化タンタルの(220)面を他の結晶面に対して特異的に発達させることによって耐食性や耐熱衝撃性の向上を図っている。   In addition, the tantalum carbide-coated film in the tantalum carbide-coated carbon material is attempted to improve the characteristics by controlling its orientation. For example, in Patent Document 3, the corrosion resistance and the thermal shock resistance are improved by specifically developing the (220) plane of tantalum carbide with respect to other crystal planes.

特開平11−116398号公報Unexamined-Japanese-Patent No. 11-116398 特開2005−225710号公報JP 2005-225710 A 特開2008−308701号公報JP 2008-308701 A

金属炭化物は、その結晶面によって化学的活性(反応性)が異なることが知られている。炭化タンタルの(111)面、(220)面、(311)面、(222)面では、タンタル(Ta)と炭素(C)の原子密度が同等でないために、反応性が高くなると考えられる。   It is known that metal carbides differ in chemical activity (reactivity) depending on their crystal faces. The reactivity is considered to be high on the (111) plane, the (220) plane, the (311) plane, and the (222) plane of tantalum carbide because the atomic densities of tantalum (Ta) and carbon (C) are not equal.

したがって、特許文献3に示されるような炭化タンタル被覆炭素材料を、半導体単結晶製造装置用部材として用いた場合には、炭化タンタル被覆膜の反応性が高いため、製品寿命が短くなることが懸念される。   Therefore, when the tantalum carbide-coated carbon material as shown in Patent Document 3 is used as a member for a semiconductor single crystal production apparatus, the product life is shortened because the reactivity of the tantalum carbide coating film is high. I am concerned.

そこで、本発明は、製品寿命の長い半導体単結晶製造装置用部材及び炭化タンタル被覆炭素材料を提供することを目的とする。   Then, an object of this invention is to provide the member for semiconductor single crystal manufacturing apparatuses with a long product life, and a tantalum carbide covering carbon material.

上記問題を解決するため、本発明に係る炭化タンタル被覆炭素材料は、炭素基材表面の少なくとも一部を、炭化タンタルを主成分とした炭化タンタル被覆膜で被覆した炭化タンタル被覆炭素材料である。この炭化タンタル被覆炭素材料は、面外方向について(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きく、その強度比は全結晶面に対応するX線回折線の強度の和に対して60%以上であることを特徴とする。   In order to solve the above problems, the tantalum carbide-coated carbon material according to the present invention is a tantalum carbide-coated carbon material in which at least a part of the surface of a carbon substrate is coated with a tantalum carbide coating film containing tantalum carbide as a main component. . In this tantalum carbide-coated carbon material, the intensity of the X-ray diffraction line corresponding to the (200) plane in the out-of-plane direction is greater than the intensity of the X-ray diffraction line corresponding to the other crystal planes It is characterized by being 60% or more with respect to the sum of the intensities of the X-ray diffraction lines corresponding to the surface.

このような構成によれば、炭化タンタル被覆炭素材料の製品寿命を長くすることができる。   According to such a configuration, the product life of the tantalum carbide-coated carbon material can be extended.

本発明に係る炭化タンタル被覆炭素材料では、炭化タンタル被覆膜表面の算術平均粗さRaを3.5μm以下にするとよい。   In the tantalum carbide coated carbon material according to the present invention, the arithmetic average roughness Ra of the surface of the tantalum carbide coating film may be 3.5 μm or less.

本発明に係る炭化タンタル被覆炭素材料では、炭素基材表面の算術平均粗さRaを4.0μm以下にするとよい。   In the tantalum carbide coated carbon material according to the present invention, the arithmetic mean roughness Ra of the surface of the carbon substrate may be 4.0 μm or less.

本発明に係る炭化タンタル被覆炭素材料では、炭化タンタル被覆膜中に含まれるタンタル原子数を、炭素原子数よりも多く、かつ炭素原子数の1.2倍以下にするとよい。   In the tantalum carbide-coated carbon material according to the present invention, the number of tantalum atoms contained in the tantalum carbide coating film may be greater than the number of carbon atoms and 1.2 times or less the number of carbon atoms.

本発明に係る炭化タンタル被覆炭素材料では、炭化タンタル被覆膜は、塩素原子を0.01atm%以上、1.00atm%以下の原子濃度で含有するとよい。   In the tantalum carbide coated carbon material according to the present invention, the tantalum carbide coating film preferably contains chlorine atoms at an atomic concentration of 0.01 atm% or more and 1.00 atm% or less.

本発明に係る半導体単結晶製造装置用部材は、炭化タンタル被覆炭素材料から構成される。この半導体単結晶製造装置用部材は、炭素基材表面の少なくとも一部を、炭化タンタルを主成分とした炭化タンタル被覆膜で被覆した部材であって、面外方向について(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きく、その強度比は全結晶面に対応するX線回折線の強度の和に対して60%以上であることを特徴とする。   The member for a semiconductor single crystal production device according to the present invention is made of a tantalum carbide coated carbon material. This member for manufacturing a semiconductor single crystal is a member in which at least a part of the surface of the carbon base material is covered with a tantalum carbide coating film mainly composed of tantalum carbide, and corresponds to the (200) plane in the out-of-plane direction The intensity of the X-ray diffraction line is greater than the intensity of X-ray diffraction lines corresponding to other crystal planes, and the intensity ratio is 60% or more with respect to the sum of the intensities of X-ray diffraction lines corresponding to all crystal planes It is characterized by being.

このような構成によれば、炭化タンタル被覆炭素材料から構成される半導体単結晶製造装置用部材の製品寿命を長くすることができる。その結果、半導体単結晶の製造コストを低減することができる。   According to such a configuration, it is possible to prolong the product life of the member for a semiconductor single crystal manufacturing device configured from the tantalum carbide coated carbon material. As a result, the manufacturing cost of the semiconductor single crystal can be reduced.

本発明に係る半導体単結晶製造装置用部材は、SiC単結晶の製造装置に用いられるとよい。   The member for a semiconductor single crystal manufacturing apparatus according to the present invention may be used in a manufacturing apparatus of a SiC single crystal.

本発明に係る半導体単結晶製造装置用部材は、SiC単結晶を昇華再結晶法により製造するための装置に用いられるルツボ又はガイド部材であるとよい。   The member for a semiconductor single crystal production apparatus according to the present invention is preferably a crucible or a guide member used in an apparatus for producing a SiC single crystal by a sublimation recrystallization method.

本発明に係る半導体単結晶製造装置用部材は、SiC単結晶を化学気相堆積法によりエピタキシャル成長させて製造するための装置に用いられるサセプタ又は内壁部材であってもよい。   The member for a semiconductor single crystal production apparatus according to the present invention may be a susceptor or an inner wall member used for a device for epitaxially growing a SiC single crystal by a chemical vapor deposition method.

本発明に係る半導体単結晶製造装置用部材は、炭化タンタル被覆膜表面にタンタル原子濃度の低い箇所を2箇所以上有していてもよい。   The member for a semiconductor single crystal production device according to the present invention may have two or more locations with a low tantalum atom concentration on the surface of the tantalum carbide coating film.

本発明に係る炭化タンタル被覆炭素材料の製造方法は、算術表面粗さRaが4.0μm以下である炭素基材を準備する工程と、炭化タンタル被覆膜で炭素基材の表面の少なくとも一部を被覆する工程とを備える。   The method for producing a tantalum carbide-coated carbon material according to the present invention comprises the steps of preparing a carbon substrate having an arithmetic surface roughness Ra of 4.0 μm or less, and at least a part of the surface of the carbon substrate with a tantalum carbide coating film. And covering the

このような構成によれば、炭素基材と炭化タンタル被覆膜との剥離強度を1MPa以上、かつ炭化タンタル被覆膜の(200)面に対応するX線回折線の強度比が、全体のX線回折線の強度和の60%以上である特徴を備えた、炭化タンタル被覆炭素材料を製造することができる。   According to such a configuration, the strength ratio of the X-ray diffraction line corresponding to the peeling strength between the carbon base material and the tantalum carbide coating film of 1 MPa or more and the (200) plane of the tantalum carbide coating film is the entire A tantalum carbide coated carbon material can be produced with features that are at least 60% of the intensity sum of the x-ray diffraction lines.

本発明に係る炭化タンタル被覆炭素材料の製造方法では、準備する工程は、反応室内で炭素基材を支持する工程を有し、被覆する工程は、炭素原子を含む化合物及びハロゲン化タンタルを含む原料ガスを反応室内に供給する工程と、供給した原料ガスを熱CVD法で反応させて炭化タンタル被覆膜を形成する工程とを有するとよい。   In the method for producing a tantalum carbide-coated carbon material according to the present invention, the preparing step includes a step of supporting a carbon substrate in a reaction chamber, and the coating step is a raw material including a compound containing carbon atoms and tantalum halide. It is preferable to have the steps of: supplying a gas into the reaction chamber; and reacting the supplied source gas by a thermal CVD method to form a tantalum carbide coated film.

本発明に係る炭化タンタル被覆炭素材料の製造方法では、炭素基材を、自転軸を中心に回転させながら炭化タンタル被覆膜を被覆するとよい。この方法において、自転軸を、公転軸を中心に公転させながら炭化タンタル皮膜を被覆してもよい。   In the method for producing a tantalum carbide-coated carbon material according to the present invention, the carbon substrate may be coated with a tantalum carbide coating while rotating about a rotation axis. In this method, the rotation axis may be coated with the tantalum carbide film while revolving around the revolution axis.

本発明に係る炭化タンタル被覆炭素材料の製造方法では、原料ガスを供給する工程において、反応室内の温度を850℃以上、1200℃以下とするとよい。   In the method for producing a tantalum carbide-coated carbon material according to the present invention, the temperature in the reaction chamber may be set to 850 ° C. or more and 1200 ° C. or less in the step of supplying the source gas.

本発明に係る炭化タンタル被覆炭素材料の製造方法では、原料ガスを供給する工程において、炭素原子を含む化合物をメタン(CH)とするとよく、ハロゲン化タンタルを五塩化タンタル(TaCl)とするとよい。そして、供給するメタンと五塩化タンタルの流量比を、2以上20以下とするとよい。 In the method for producing a tantalum carbide-coated carbon material according to the present invention, in the step of supplying the raw material gas, the compound containing carbon atoms is preferably methane (CH 4 ), and the halogenated tantalum is tantalum pentachloride (TaCl 5 ). Good. The flow ratio of methane and tantalum pentachloride to be supplied may be 2 or more and 20 or less.

本発明に係る炭化タンタル被覆炭素材料の製造方法では、被覆する工程の後に、炭化タンタル被覆膜が形成された炭素基材をアニール処理する工程をさらに備えるとよい。   The method for producing a tantalum carbide-coated carbon material according to the present invention may further include a step of annealing the carbon substrate on which the tantalum carbide coating film is formed after the step of coating.

外熱型減圧CVD装置1の概略図を示す。FIG. 1 shows a schematic view of an external heating type low pressure CVD apparatus 1; SiC単結晶を昇華再結晶法により成長させるための減圧加熱炉8の概略図を示す。The schematic of the pressure-reduction heating furnace 8 for making a SiC single crystal grow by the sublimation recrystallization method is shown. SiC単結晶をエピタキシャル成長させるためのCVD装置1の概略図を示す。FIG. 1 shows a schematic view of a CVD apparatus 1 for epitaxially growing a SiC single crystal. 実施例1の炭化タンタル被覆膜のXRDパターンを示す。1 shows the XRD pattern of the tantalum carbide coated film of Example 1. FIG. 実施例3の炭化タンタル被覆膜のXRDパターンを示す。18 shows an XRD pattern of the tantalum carbide coated film of Example 3. 比較例1の炭化タンタル被覆膜のXRDパターンを示す。The XRD pattern of the tantalum carbide coating film of the comparative example 1 is shown. 比較例3の炭化タンタル被覆膜のXRDパターンを示す。The XRD pattern of the tantalum carbide coating film of the comparative example 3 is shown. 比較例4の炭化タンタル被覆膜のXRDパターンを示す。The XRD pattern of the tantalum carbide coating film of the comparative example 4 is shown. 炭素基材を自転させながら炭化タンタル被覆膜を形成する外熱型減圧CVD装置の構成を示す概略図である。It is the schematic which shows the structure of an external heating type | mold low pressure CVD apparatus which forms a tantalum carbide coating film, rotating a carbon base material. 図10(a)は、炭素基材を自転及び公転させながら炭化タンタル被覆膜を形成する外熱型減圧CVD装置の構成を示す概略図である。図10(b)は、自転及び公転の様子を示す平面図である。FIG. 10A is a schematic view showing the configuration of an external heating type low pressure CVD apparatus for forming a tantalum carbide coating film while rotating and revolving a carbon substrate. FIG. 10 (b) is a plan view showing rotation and revolution.

以下、本発明の実施形態について詳述するが、本発明はこれに限定されるものではない。   Hereinafter, although an embodiment of the present invention is explained in full detail, the present invention is not limited to this.

本発明の炭化タンタル被覆炭素材料は、炭素基材と炭化タンタルを主成分とした炭化タンタル被覆膜から成り、炭素基材表面の少なくとも一部を炭化タンタル被覆膜で被覆したものである。   The tantalum carbide-coated carbon material of the present invention is composed of a carbon substrate and a tantalum carbide coating film containing tantalum carbide as a main component, and at least a part of the surface of the carbon substrate is coated with the tantalum carbide coating film.

炭素基材4としては、等方性黒鉛、押出成形黒鉛、熱分解黒鉛、炭素繊維強化炭素複合材料(C/Cコンポジット)などの炭素材料を用いることができる。その形状や特性は特に限定されず、用途などに応じた任意形状に加工して用いることができる。   As the carbon substrate 4, carbon materials such as isotropic graphite, extruded graphite, pyrolytic graphite, and a carbon fiber reinforced carbon composite material (C / C composite) can be used. The shape and characteristics thereof are not particularly limited, and can be processed into any shape according to the application and the like.

炭化タンタルを主成分とした炭化タンタル被覆膜は、化学気相堆積(CVD)法、焼結法、炭化法などの方法により形成することができる。なかでも、CVD法は均一で緻密な膜を形成することができるため、炭化タンタル被覆膜の形成方法として好ましい。   The tantalum carbide coating film containing tantalum carbide as a main component can be formed by a method such as a chemical vapor deposition (CVD) method, a sintering method, and a carbonization method. Among them, the CVD method is preferable as a method for forming a tantalum carbide coating film because a uniform and dense film can be formed.

さらに、CVD法には、熱CVD法や、光CVD法、プラズマCVD法などがあり、例えば熱CVD法を用いることができる。熱CVD法は、装置構成が比較的簡易で、プラズマによる損傷がないなどの利点がある。熱CVD法による炭化タンタル被覆膜の形成は、例えば、図1に示すような外熱型減圧CVD装置1を用いて行うことができる。   Further, the CVD method includes a thermal CVD method, a photo CVD method, a plasma CVD method and the like, and for example, the thermal CVD method can be used. The thermal CVD method has advantages such as relatively simple apparatus configuration and no damage by plasma. The formation of the tantalum carbide coating film by the thermal CVD method can be performed using, for example, an external heating type low pressure CVD apparatus 1 as shown in FIG.

外熱型減圧CVD装置1では、ヒータ3、原料供給部6、排気部7などを備えた反応室2内で、炭素基材4は支持手段5によって支持される。そして、原料ガスとして、原料供給部6からメタン(CH)のような炭素原子を含む化合物と、五塩化タンタル(TaCl)のようなハロゲン化タンタルを供給する。ハロゲン化タンタルガスは、例えば、ハロゲン化タンタルを加熱気化させる方法、タンタル金属とハロゲンガスとを反応させる方法等により発生させることができる。続いて、原料供給部6から供給される原料ガスを900〜1200℃、1〜100Paの高温減圧下で熱CVD反応させ、炭素基材4上に炭化タンタル被覆膜を形成する。 In the external heating type low pressure CVD apparatus 1, the carbon substrate 4 is supported by the support means 5 in the reaction chamber 2 provided with the heater 3, the raw material supply unit 6, the exhaust unit 7 and the like. Then, as a raw material gas, a raw material supply unit 6 supplies a compound containing a carbon atom such as methane (CH 4 ) and a halogenated tantalum such as tantalum pentachloride (TaCl 5 ). The halogenated tantalum gas can be generated, for example, by a method of heating and vaporizing a halogenated tantalum, a method of reacting tantalum metal and a halogen gas, or the like. Subsequently, the raw material gas supplied from the raw material supply unit 6 is subjected to a thermal CVD reaction under reduced pressure at a high temperature of 900 to 1200 ° C. and 1 to 100 Pa to form a tantalum carbide coating film on the carbon substrate 4.

炭化タンタル被覆膜は、炭化タンタルを主成分とするが、炭素、タンタル以外の原子を微少量含有していても構わない。具体的には、炭化タンタル被覆膜は、不純物元素やドーピング元素を1.0atm%以下含有していてもよい。   The tantalum carbide coating film contains tantalum carbide as a main component, but may contain a small amount of atoms other than carbon and tantalum. Specifically, the tantalum carbide coating film may contain 1.0 atm% or less of an impurity element or a doping element.

炭化タンタル被覆膜は、その用途や使用形態に応じて、炭素基材4表面の全部を被覆してもよいし、一部のみを被覆してもよい。また、炭化タンタル被覆膜は、複数回に分けて形成され、積層されていてもよい。1回目と2回目とで炭素基材4を支持する箇所を変えて成膜することにより、炭素基材4が露出した箇所やタンタル原子濃度の低い箇所を確実になくすことができるが、製造コストは増加する。   The tantalum carbide coating film may coat the entire surface of the carbon substrate 4 or may cover only a part of the surface, depending on the use and the form of use. In addition, the tantalum carbide coating film may be formed in plural times and laminated. By changing the portion supporting the carbon substrate 4 in the first and second times to form a film, it is possible to surely eliminate the exposed portion of the carbon substrate 4 and the portion having a low tantalum atom concentration, but the manufacturing cost Will increase.

炭化タンタル被覆膜を形成するときに、炭素基材4を載置する位置がヒータ3の中心からずれていたり、ヒータ3が経時劣化などでその周方向の発熱分布が不均一になったりして、炭素基材4の表面温度が周方向に不均一になって成膜の不均一が生じることがある。この様な成膜量の分布を成膜中に平均化するために、炭素基材4をその自転軸を中心に自転させながら被覆してもよい。例えば、図9に示すように、鉛直軸を中心に支持手段5を回転させることが可能な構成とし、炭素基材4をその自転軸が支持手段5の回転軸と一致するように支持させる。そして、支持手段5を回転させながら炭化タンタル被覆膜を形成する。このようにすれば、炭素基材4の自転軸の周方向に均一な被覆膜を形成することができる。このように自転させながら被覆する手法は、炭素基材4の形状が回転体もしくは回転対称体のときに特に有効である。なお、炭素基材4が回転体もしくは回転対称体である場合には、炭素基材4の対称軸と自転軸とが一致するように配置することが好ましい。また更に、炭素基材4の形状や支持方法によって原料供給部6から噴出して排気部7で排出されるまでの反応室2内のガスの流れが異なる。このため、反応室2内に成膜物質の濃度分布が生じて、(自転によって成膜量を平均化しても)炭素基材4の成膜対象面の中に成膜しない位置が生じる事がある。そこで、炭素基材4の成膜対象面に余すところなく成膜物質が行き渡るようにするために、反応室2内の自転する炭素基材4に対するガスの流れを意図的に非対称(回転非対称または面非対称)としてもよい。これには、原料供給部6や排気部7を炭素基材4の自転軸の延長線上からずらした位置に設置するとよく、原料供給部6から噴出するガスが自転軸に対して傾斜θを持つ構成にしておき、角度θを調節してもよい。   When forming a tantalum carbide coating film, the position at which the carbon substrate 4 is mounted is shifted from the center of the heater 3, or the heater 3 is deteriorated with time, and the heat generation distribution in the circumferential direction becomes uneven. As a result, the surface temperature of the carbon substrate 4 may become uneven in the circumferential direction, which may cause uneven film formation. In order to average the distribution of such film formation amount during film formation, the carbon substrate 4 may be coated while rotating about its rotation axis. For example, as shown in FIG. 9, the support means 5 can be rotated about the vertical axis, and the carbon base 4 is supported so that its rotation axis coincides with the rotation axis of the support means 5. Then, a tantalum carbide coating film is formed while rotating the support means 5. In this way, a uniform coating film can be formed in the circumferential direction of the rotation axis of the carbon base 4. The method of coating while rotating in this manner is particularly effective when the shape of the carbon substrate 4 is a rotating body or a rotationally symmetric body. In addition, when the carbon base material 4 is a rotary body or rotational symmetry, it is preferable to arrange | position so that the symmetry axis of the carbon base material 4 and a rotation axis may correspond. Furthermore, the flow of gas in the reaction chamber 2 until it ejects from the raw material supply unit 6 and is discharged by the exhaust unit 7 differs depending on the shape of the carbon substrate 4 and the supporting method. For this reason, the concentration distribution of the film forming substance is generated in the reaction chamber 2, and the film forming target surface of the carbon substrate 4 has a position not to form a film (even if the film forming amount is averaged by rotation). is there. Therefore, the flow of gas relative to the autorotating carbon base material 4 in the reaction chamber 2 is intentionally asymmetric (rotational asymmetry or rotational It may be plane asymmetry. For this purpose, the raw material supply unit 6 and the exhaust unit 7 may be installed at a position shifted from the extension of the rotation axis of the carbon substrate 4, and the gas ejected from the raw material supply unit 6 has an inclination θ with respect to the rotation axis. Alternatively, the angle θ may be adjusted.

また、炭素基材4をその自転軸を中心に自転させながら被覆する構成において、自転軸を別の公転軸を中心に公転させながら被覆膜を形成してもよい。例えば、図10(a)に示すように、鉛直軸を中心に回転可能な支持手段5を複数用意し、これらが共通の公転軸を中心に公転する構成としておき、炭素基材4を各支持手段5に支持させる。このようにして公転軌道上に自転する炭素基材4を複数配置し、図10(b)に示すようにそれぞれの炭素基材4を自転させつつ公転させながら炭化タンタル被覆膜を形成する。このようにすれば、各炭素基材に形成される被覆膜を均一に揃えることができる。このとき、炭素基材4の自転の回転速度が、公転の回転速度の整数倍ではない回転速度とするとよい(例えば、2.1倍、2.3倍など。)。このようにすると、炭素基材4の自転軸が1回公転して同じ公転角度位置になる毎に、炭素基材4の自転角度(要するに、ヒータ3に最接近する炭素基材の位置角度)を異ならせることができる。これにより、炭素基材4の成膜対称面における成膜の偏りを低減させることができる。ただし、自転の回転速度を公転の回転速度の非整数倍にする場合であっても、1回公転して炭素基材4の向きがちょうど180°ずれる回転比(例えば2.5倍)は2回公転すると炭素基材4の向きが元の位置(0°)に戻ってしまい、楕円形状の偏りが生じやすいので避ける方が好ましい。同様の理由で、1回公転したときの炭素基材4の向きが120°、90°、72°(または144°)、60°ずれる回転比も避ける方が好ましい。また、このとき、各炭素基材の成膜対称面に余すところなく成膜物質が行き渡るようにするべく、公転する炭素基材4に対するガスの流れを意図的に非対称としてもよい。これには、原料供給部6を公転軸に対してずらして、オフセットtを持つ構成にしておき、炭素基材4の形状や公転半径に応じて所望の被覆膜を形成するようにオフセットtを調整してもよい。また、公転軸や自転軸に対して傾斜を持たせてもよい。複数の炭素基材4のそれぞれ一部のみに被覆を施したい場合には、炭素基材4を自転させずに、公転のみを行って被覆することもできる。   Further, in the configuration in which the carbon base material 4 is coated while rotating around its rotation axis, the coating film may be formed while revolving around the rotation axis of another rotation axis. For example, as shown in FIG. 10 (a), a plurality of support means 5 rotatable around the vertical axis are prepared, and they are arranged to revolve around the common revolution axis, and the carbon base 4 is supported It is supported by the means 5. In this manner, a plurality of carbon substrates 4 rotating on a revolving track are arranged, and as shown in FIG. 10B, a tantalum carbide coating film is formed while rotating each carbon substrate 4 while rotating. In this way, the coating film formed on each carbon substrate can be uniformly aligned. At this time, it is preferable that the rotational speed of the carbon substrate 4 is not an integral multiple of the rotational speed of revolution (for example, 2.1 times, 2.3 times, etc.). In this way, the rotation angle of the carbon substrate 4 (in other words, the position angle of the carbon substrate closest to the heater 3) every time the rotation axis of the carbon substrate 4 revolves once and reaches the same rotation angle position. Can be different. Thereby, it is possible to reduce the unevenness of film formation on the film formation symmetrical surface of the carbon substrate 4. However, even if the rotation speed of the rotation is a non-integral multiple of the rotation speed of revolution, the rotation ratio (for example, 2.5 times) at which the orientation of the carbon substrate 4 deviates by 180 ° once is 2 When it is reciprocated, the orientation of the carbon base material 4 returns to the original position (0 °), and the elliptical shape is easily deviated, so it is preferable to avoid this. For the same reason, it is preferable to avoid a rotational ratio at which the orientation of the carbon substrate 4 deviates by 120 °, 90 °, 72 ° (or 144 °) and 60 ° when reciprocated once. At this time, the flow of the gas to the revolving carbon substrate 4 may be intentionally made asymmetric so that the film-forming substance is completely spread on the film formation symmetry plane of each carbon substrate. For this purpose, the raw material supply unit 6 is offset with respect to the revolution axis to have an offset t, and the offset t is formed so as to form a desired coating film according to the shape of the carbon substrate 4 and the revolution radius. You may adjust the Moreover, you may make it incline with respect to a revolution axis or a rotation axis. When it is desired to apply a coating to only a part of each of the plurality of carbon substrates 4, the carbon substrate 4 can be coated only by revolution without being rotated.

本発明において、炭化タンタル被覆膜は、面外方向について(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きく、その強度比は全結晶面に対応するX線回折線の強度の和に対して60%以上である。   In the present invention, in the tantalum carbide-coated film, the intensity of the X-ray diffraction line corresponding to the (200) plane in the out-of-plane direction is larger than the intensity of the X-ray diffraction line corresponding to other crystal planes, and the intensity ratio Is 60% or more with respect to the sum of the intensities of X-ray diffraction lines corresponding to all crystal planes.

炭化タンタル被覆膜のX線回折線の強度は、X線回折装置(XRD)を用いた2θ/θ測定(アウトオブプレーン)によって、得られる。炭化タンタル結晶の(200)面に対応するピークは、2θ=40°付近に観測される。   The intensity of the X-ray diffraction line of the tantalum carbide coating is obtained by 2θ / θ measurement (out-of-plane) using an X-ray diffractometer (XRD). The peak corresponding to the (200) plane of the tantalum carbide crystal is observed around 2θ = 40 °.

この(200)面に対応するピーク強度が、他の結晶面に対応するピークよりも大きく、全結晶面に対応するピーク強度の和に対して60%以上の強度比であれば、炭化タンタル被覆炭素材料を用いた半導体単結晶製造装置用部材の製品寿命を長くすることができる。これは、炭化タンタルの(200)面では、炭素とタンタルの原子密度が同等であり、炭化タンタル被覆膜表面での反応性が低くなるためであると考えられる。   If the peak intensity corresponding to this (200) plane is larger than the peaks corresponding to other crystal planes, and the intensity ratio is 60% or more with respect to the sum of peak intensities corresponding to all crystal planes, tantalum carbide coating The product life of a member for a semiconductor single crystal production apparatus using a carbon material can be extended. This is considered to be due to the fact that the atomic density of carbon and tantalum is equivalent in the (200) plane of tantalum carbide, and the reactivity on the surface of the tantalum carbide coating becomes low.

炭化タンタル被覆膜の(200)面に対応するX線回折線の強度や強度比は、種々の成膜条件によって決定される。熱CVD法を用いて炭化タンタル被覆膜を形成する場合は、反応室2内の反応温度を1000℃以上1200℃以下にすれば、(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きくなる傾向がある。また、成膜後に約2000〜2500℃でアニール処理することによって(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きくなる傾向がある。さらに、反応室2内に供給される原料ガス(メタンと五塩化タンタル)の流量比が、(200)面に対応するX線回折線の強度に影響を与える。例えば、反応室2内に供給される原料ガスの流量比(CH/TaCl)を4.0〜6.0とすると(200)面に対応するX線回折線の強度が大きくなる傾向がある。 The intensity and intensity ratio of the X-ray diffraction line corresponding to the (200) plane of the tantalum carbide coating film are determined by various film forming conditions. When a tantalum carbide coating film is formed using a thermal CVD method, if the reaction temperature in the reaction chamber 2 is set to 1000 ° C. or more and 1200 ° C. or less, the intensity of the X-ray diffraction line corresponding to the (200) plane is It tends to be greater than the intensity of X-ray diffraction lines corresponding to other crystal planes. In addition, by annealing at about 2000-2500 ° C. after film formation, the intensity of the X-ray diffraction line corresponding to the (200) plane tends to be greater than the intensity of the X-ray diffraction line corresponding to other crystal planes. is there. Furthermore, the flow ratio of the source gas (methane and tantalum pentachloride) supplied into the reaction chamber 2 affects the intensity of the X-ray diffraction line corresponding to the (200) plane. For example, when the flow ratio (CH 4 / TaCl 5 ) of the source gas supplied into the reaction chamber 2 is 4.0 to 6.0, the intensity of the X-ray diffraction line corresponding to the (200) plane tends to increase. is there.

炭素基材表面の算術平均粗さRaも、炭化タンタル被覆膜の(200)面に対応するX線回折線の強度や強度比に影響を与える。炭素基材表面の算術平均粗さRaは、その値が大きいほど、炭素基材4と炭化タンタル被覆膜との剥離強度が、大きくなる傾向があり好ましいが、一方で、(200)面に対応するX線回折線の強度比が小さくなる傾向がある。したがって、(200)面に対応するX線回折線の強度比の観点から、炭素基材表面の算術平均粗さRaは4.0μm以下であることが好ましい。   The arithmetic mean roughness Ra of the surface of the carbon substrate also affects the intensity and intensity ratio of the X-ray diffraction line corresponding to the (200) plane of the tantalum carbide coating film. The larger the value of the arithmetic mean roughness Ra of the surface of the carbon substrate, the greater the peel strength between the carbon substrate 4 and the tantalum carbide coating film, which is preferable, but on the other hand, the (200) plane There is a tendency that the intensity ratio of the corresponding X-ray diffraction line becomes smaller. Therefore, from the viewpoint of the intensity ratio of X-ray diffraction lines corresponding to the (200) plane, the arithmetic mean roughness Ra of the surface of the carbon substrate is preferably 4.0 μm or less.

炭素基材4と炭化タンタル被覆膜との剥離強度及び炭化タンタル被覆膜の(200)面に対応するX線回折線の強度比をあわせて考慮すると、炭素基材4表面の算術平均粗さRaは、0.5μm以上4.0μm以下であることが好ましく、1.0μm以上3.0μm以下であることがより好ましい。このようにすれば、炭素基材4と炭化タンタル被覆膜との剥離強度を1MPa以上で、炭化タンタル被覆膜の(200)面に対応するX線回折線の強度比を60%以上に容易にすることが可能である。   The arithmetic mean roughness of the surface of the carbon substrate 4 is considered in consideration of the peel strength between the carbon substrate 4 and the tantalum carbide coating and the intensity ratio of X-ray diffraction lines corresponding to the (200) plane of the tantalum carbide coating. The thickness Ra is preferably 0.5 μm or more and 4.0 μm or less, and more preferably 1.0 μm or more and 3.0 μm or less. In this way, the peel strength between the carbon substrate 4 and the tantalum carbide coating film is 1 MPa or more, and the intensity ratio of the X-ray diffraction line corresponding to the (200) plane of the tantalum carbide coating film is 60% or more. It is possible to make it easy.

さらに、炭化タンタル被覆膜表面の算術平均粗さRaは3.5μm以下であることが好ましく、3.0μm以下であることがより好ましい。炭化タンタル被覆膜表面の算術平均粗さRaの値が大きいと、半導体単結晶製造装置用部材としたときの製品寿命が短くなる場合がある。これは、炭化タンタル被覆膜表面の凹凸が少ない方が、表面積が小さく反応性が低いためであると考えられる。   Furthermore, arithmetic mean roughness Ra of the tantalum carbide coating film surface is preferably 3.5 μm or less, and more preferably 3.0 μm or less. If the value of the arithmetic average roughness Ra on the surface of the tantalum carbide coating film is large, the product life when used as a member for a semiconductor single crystal production apparatus may be shortened. It is considered that this is because the surface area is smaller and the reactivity is lower as the unevenness on the surface of the tantalum carbide coating film is smaller.

成膜直後の炭化タンタル被覆膜表面の算術平均粗さRaは、炭素基材表面の算術平均粗さRaに応じて変動し、炭素基材表面の算術平均粗さRaよりもわずかに小さくなる傾向がある。炭化タンタル被覆膜表面の算術平均粗さRaは、研磨などを施すことによっても制御できるが、製造工程が増えるため、所望の炭化タンタル被覆膜表面の算術平均粗さRaに応じて、炭素基材4表面の算術平均粗さRaを選択することが好ましい。   Arithmetic mean roughness Ra of the tantalum carbide coating film surface immediately after film formation fluctuates according to arithmetic mean roughness Ra of the carbon base material surface, is slightly smaller than arithmetic mean roughness Ra of the carbon base material surface Tend. Arithmetic mean roughness Ra of the tantalum carbide coating film surface can be controlled by polishing or the like, but since the number of manufacturing steps is increased, carbon is selected according to the desired arithmetic mean roughness Ra of the tantalum carbide coating film surface. It is preferable to select the arithmetic mean roughness Ra of the surface of the substrate 4.

上述したように、炭素基材4表面の算術平均粗さRaは、炭素基材4と炭化タンタル被覆膜との剥離強度に影響し、その値が小さすぎることは、好ましくない。そのため、炭化タンタル被覆膜表面の算術平均粗さRaは、炭素基材4表面の算術平均粗さRaに応じて、0.4μm以上であることが好ましく、0.8μm以上であることがより好ましい。   As described above, the arithmetic mean roughness Ra of the surface of the carbon base 4 affects the peel strength between the carbon base 4 and the tantalum carbide coating, and it is not preferable that the value is too small. Therefore, the arithmetic average roughness Ra of the tantalum carbide coating film surface is preferably 0.4 μm or more, more preferably 0.8 μm or more, in accordance with the arithmetic average roughness Ra of the surface of the carbon base 4 preferable.

なお、ここでの算術平均粗さRaはJIS B 0633:2001(ISO 4288:1996)に基づいて測定した値である。   In addition, arithmetic mean roughness Ra here is the value measured based on JIS B 0633: 2001 (ISO 4288: 1996).

炭化タンタル被覆膜中に含まれるタンタル原子数は、炭素原子数よりも多く、炭素原子数の1.2倍以下であることが好ましく、1.05〜1.15倍であることがより好ましい。すなわち、TaC(1.0<x≦1.2)で表される。 The number of tantalum atoms contained in the tantalum carbide coating film is preferably greater than the number of carbon atoms and not more than 1.2 times the number of carbon atoms, and more preferably 1.05 to 1.15. . That is, it is represented by Ta x C (1.0 <x ≦ 1.2).

炭素原子数が多いと、炭化タンタル被覆膜中に炭素原子が多く存在することになる。炭素の方がタンタルよりも反応性が高いため、炭化タンタル被覆膜の反応性が高くなり、半導体単結晶製造装置用部材としたときの製品寿命が短くなってしまう。一方、タンタル原子数を多くすれば、炭素原子が減り、炭化タンタル被覆膜の反応性を低くすることができ、半導体単結晶製造装置用部材としたときの製品寿命も長くなる。   If the number of carbon atoms is large, many carbon atoms will be present in the tantalum carbide coating. Since carbon has higher reactivity than tantalum, the reactivity of the tantalum carbide coating film is increased, and the product life when used as a member for a semiconductor single crystal production apparatus is shortened. On the other hand, if the number of tantalum atoms is increased, carbon atoms are reduced, the reactivity of the tantalum carbide coating film can be lowered, and the product life when used as a member for a semiconductor single crystal production apparatus is also extended.

また、炭化タンタル被覆膜中に含まれる塩素原子の原子濃度が、0.01atm%以上1.00atm%以下であることが好ましく、0.02atm%以上0.06atm%以下であることがさらに好ましい。塩素原子の原子濃度が高すぎると炭化タンタル被覆膜の特性に影響を与えるため好ましくないが、ある程度塩素原子の原子濃度を含有させることによって、被覆膜中の鉄などの不純物金属濃度を低下させることが可能となる。   Further, the atomic concentration of chlorine atoms contained in the tantalum carbide coating film is preferably 0.01 atm% or more and 1.00 atm% or less, and more preferably 0.02 atm% or more and 0.06 atm% or less . An excessively high atomic concentration of chlorine atoms is not preferable because it affects the characteristics of the tantalum carbide coating film, but by including an atomic concentration of chlorine atoms to some extent, the concentration of impurity metals such as iron in the coating film is lowered It is possible to

また、本発明の半導体単結晶製造装置用部材は、炭素基材4表面の少なくとも一部が、炭化タンタルを主成分とした炭化タンタル被覆膜で被覆した炭化タンタル被覆炭素材料から構成される。この炭化タンタル被覆膜は、面外方向について(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きく、その強度比は全結晶面に対応するX線回折線の強度の和に対して60%以上である。   In the member for a semiconductor single crystal production apparatus of the present invention, at least a part of the surface of the carbon base 4 is made of a tantalum carbide coated carbon material coated with a tantalum carbide coating film containing tantalum carbide as a main component. In this tantalum carbide coating film, the intensity of the X-ray diffraction line corresponding to the (200) plane in the out-of-plane direction is larger than the intensity of the X-ray diffraction line corresponding to other crystal planes, and the intensity ratio is the entire crystal It is 60% or more with respect to the sum of the intensities of the X-ray diffraction lines corresponding to the surface.

このような半導体単結晶製造装置用部材であれば、半導体単結晶の成長過程において、部材に半導体単結晶が付着することを抑制し、製品寿命を長くすることができる。これは、炭化タンタルの(200)面では、炭素とタンタルの原子密度が同等であり、他の結晶面よりも反応性が低くなるためであると考えられ、この効果は成長させる半導体単結晶の種類や製造方法に限定されない。   If it is a member for such a semiconductor single crystal manufacturing apparatus, it can suppress that a semiconductor single crystal adheres to a member in the growth process of a semiconductor single crystal, and can extend product life. This is considered to be due to the fact that the atomic density of carbon and tantalum is equal in the (200) plane of tantalum carbide, and the reactivity is lower than in other crystal planes. It is not limited to the type or manufacturing method.

一方で、炭化タンタルは、炭化ケイ素(SiC)への濡れ性が低く、部材の長寿命化が期待できることから、従来から、炭化タンタル被覆炭素材料は、SiC単結晶の製造装置用部材として用いられている。したがって、SiC単結晶を昇華再結晶法により製造するための装置に用いられるルツボ12やガイド部材9、SiC単結晶をCVD法によりエピタキシャル成長させて製造するための装置に用いられるサセプタ21や内壁部材18として特に有用である。   On the other hand, tantalum carbide is low in wettability to silicon carbide (SiC), and it can be expected to prolong the life of the member. Therefore, conventionally, a tantalum carbide-coated carbon material is used as a member for a SiC single crystal manufacturing apparatus ing. Therefore, susceptor 21 and inner wall member 18 used in an apparatus for epitaxially growing SiC single crystal by CVD method, which is used in an apparatus for producing a SiC single crystal by a sublimation recrystallization method. Especially useful as

半導体単結晶製造装置用部材は、例えば、その部材形状に加工した炭素材料を炭素基材4として、その表面に炭化タンタルを主成分とした炭化タンタル被覆膜で被覆することによって得られる。必要に応じて、さらなる加工を施したり、他の材料などを組み合わせたりして用いてもよい。   A member for a semiconductor single crystal production apparatus can be obtained, for example, by using a carbon material processed into the shape of the member as the carbon base 4 and covering the surface with a tantalum carbide coating film containing tantalum carbide as a main component. If necessary, further processing may be performed, or other materials may be used in combination.

炭化タンタル被覆膜を炭素基材4に被覆する際には、前述したような方法を用いることができ、例えば熱CVD法を用いることができる。   When the tantalum carbide coating film is coated on the carbon substrate 4, the method described above can be used, and for example, a thermal CVD method can be used.

このとき、炭素基材4を支持するための支持手段5は、先端が尖った形状の支持部を有し、この支持部の先端で炭素基材4を2箇所以上で支持することが好ましく、3箇所で支持することがより好ましい。このようにすれば、支持部先端と、炭素基材4との接触面積を最小にすることができ、炭素基材4全面を炭化タンタル被覆膜で被覆する場合も1回の被覆工程で済み、製造コストを低減することができる。   At this time, it is preferable that the support means 5 for supporting the carbon substrate 4 have a support portion with a pointed tip, and the tip of the support portion support the carbon substrate 4 at two or more places. It is more preferable to support at three places. In this way, the contact area between the tip of the support portion and the carbon substrate 4 can be minimized, and even when the entire surface of the carbon substrate 4 is coated with a tantalum carbide coating film, only one coating step is required. , The manufacturing cost can be reduced.

しかしながら、このような支持箇所付近は、炭化タンタル被覆膜で被覆はされるもののタンタル原子濃度は低くなってしまう。このような箇所がルツボ12又はガイド部材9の内側にある場合、成長させるSiC単結晶の品質に影響を及ぼす懸念がある。そのため、このようなタンタル原子濃度の低い支持箇所をルツボ12又はガイド部材9の外側に設けることが好ましい。このようにすれば、成長させるSiC単結晶の品質に影響を与えない。   However, in the vicinity of such a supporting point, although the tantalum carbide coating film is coated, the tantalum atom concentration becomes low. If such a location is inside the crucible 12 or the guide member 9, there is a concern that the quality of the SiC single crystal to be grown may be affected. Therefore, it is preferable to provide such a support location with a low concentration of tantalum atoms outside the crucible 12 or the guide member 9. In this way, the quality of the SiC single crystal to be grown is not affected.

また、半導体単結晶製造装置用部材は複数回にわたって繰り返し用いられることから、炭化タンタル被覆膜の結晶性は、半導体単結晶の成長過程で変異しないことが好ましい。例えば、昇華再結晶法によりSiC単結晶を成長させる場合は、1.0×10Pa以下の不活性雰囲気下で2500℃に加熱した場合も、炭化タンタル被覆膜は、(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きく、その強度比は全結晶面に対応するX線回折線の強度の和に対して60%以上であることが好ましい。 Moreover, since the member for a semiconductor single crystal manufacturing apparatus is used repeatedly several times, it is preferable that the crystallinity of a tantalum carbide coating film does not mutate in the growth process of a semiconductor single crystal. For example, when growing a SiC single crystal by a sublimation recrystallization method, the tantalum carbide-coated film has a (200) plane even when heated to 2500 ° C. in an inert atmosphere of 1.0 × 10 3 Pa or less. The intensity of the corresponding X-ray diffraction line is greater than the intensity of the X-ray diffraction lines corresponding to the other crystal planes, and the intensity ratio is 60% of the sum of the intensities of the X-ray diffraction lines corresponding to all crystal planes It is preferable that it is more than.

以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited thereto.

〈実施例1〉
まず、等方性黒鉛を、円錐台筒形状(ガイド部材9)、有底円筒形状(ルツボ12)、円盤形状(サセプタ21)、及び円筒形状(内壁部材18)に加工し、それらを炭素基材4とした。これらの炭素基材4表面の算術平均粗さRaは、0.5μmとした。
Example 1
First, isotropic graphite is processed into a conical cylindrical shape (guide member 9), a bottomed cylindrical shape (crucible 12), a disk shape (susceptor 21), and a cylindrical shape (inner wall member 18), and these are carbon-based It was set as material 4. Arithmetic mean roughness Ra of the surface of these carbon base materials 4 was 0.5 micrometer.

次に、炭素基材4を外熱型減圧CVD装置1の反応室2内に載置した。炭素基材4は、先端が尖った形状の支持部を3つ有する支持手段5によって支持された。このとき、支持部の先端は、円錐台筒状の炭素基材4については外側表面、有底円筒形状については炭素基材4の外側表面、円盤形状については下側表面、円筒形状については外側表面に接触していた。   Next, the carbon substrate 4 was placed in the reaction chamber 2 of the external heating type low pressure CVD apparatus 1. The carbon substrate 4 was supported by a support means 5 having three supports with a pointed tip. At this time, the tip of the support portion is the outer surface of the truncated conical cylindrical carbon substrate 4, the outer surface of the carbon substrate 4 of the bottomed cylindrical shape, the lower surface of the disk shape, and the outer surface of the cylindrical shape. It was in contact with the surface.

続いて、原料供給部6から、メタン(CH)ガスを0.5SLM、キャリヤーガスとして、アルゴン(Ar)ガスを1.5SLM、温度120〜220℃に加熱して気化させた五塩化タンタル(TaCl)を0.1SLM供給し、気圧10〜100Pa、反応室2内温度1100℃で反応させて、炭素基材4全面に膜厚30μmの炭化タンタル被覆膜を形成した。 Subsequently, tantalum pentachloride gasified by heating methane (CH 4 ) gas to 0.5 SLM, raw material supply unit 6 as carrier gas, argon (Ar) gas to 1.5 SLM at a temperature of 120 to 220 ° C. TaCl 5 ) was supplied at 0.1 SLM and reacted at a pressure of 10 to 100 Pa and at a temperature of 1100 ° C. in the reaction chamber 2 to form a tantalum carbide coating film with a film thickness of 30 μm on the entire surface of the carbon substrate 4.

反応室2から、炭化タンタル被覆膜で被覆された炭素基材4を取出し、炭化タンタル被覆炭素材料からなるルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を完成させた。   The carbon substrate 4 coated with the tantalum carbide coating film was taken out from the reaction chamber 2, and the crucible 12 made of the tantalum carbide coated carbon material, the guide member 9, the susceptor 21, and the inner wall member 18 were completed.

作製したルツボ12とガイド部材9について、XRD装置(株式会社リガク製RINT−2500VHF)を用いて、2θ/θ測定(アウトオブプレーン)を行った。その結果、炭化タンタル被覆膜の(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きく、その強度比は全結晶面に対応するX線回折線の強度の和に対して96.4%であることがわかった。   About the produced crucible 12 and the guide member 9, 2 (theta) / (theta) measurement (out-of-plane) was performed using the XRD apparatus (RINT-2500VHF made from RIGAKU). As a result, the intensity of the X-ray diffraction line corresponding to the (200) plane of the tantalum carbide coating film is larger than the intensity of the X-ray diffraction line corresponding to other crystal planes, and the intensity ratio corresponds to all crystal planes It was found to be 96.4% with respect to the sum of the intensities of the X-ray diffraction lines.

また、炭化タンタル被覆膜表面について、株式会社ミツトヨ製サーフテストSJ−210を用いて、算術平均粗さRaを測定した。この結果、炭化タンタル被覆膜表面の算術平均粗さRaは、0.4μmであった。   Moreover, arithmetic mean roughness Ra was measured about the tantalum carbide coating film surface using Mitsutoyo Co., Ltd. make surf test SJ-210. As a result, the arithmetic mean roughness Ra of the tantalum carbide coating film surface was 0.4 μm.

さらに、グロー放電質量分析法(GDMS)により、炭化タンタル被覆膜中の不純物濃度を評価した。その結果、炭化タンタル被覆膜中に塩素が0.050atm%、鉄が0.02atm%含有されていることがわかった。この分析は、V.G.Scientific社製VG9000、Element GD、Astrumを用いて行なった。なお、支持部先端と接触していた3箇所の周辺は、タンタル原子濃度が低くなっていることを確認した。   Furthermore, the impurity concentration in the tantalum carbide coating film was evaluated by glow discharge mass spectrometry (GDMS). As a result, it was found that the tantalum carbide coating film contained 0.050 atm% of chlorine and 0.02 atm% of iron. This analysis is described in V.I. G. It carried out using Scientific VG9000, Element GD, Astrum. In addition, it was confirmed that the tantalum atom concentration was low around the three places in contact with the tip of the support portion.

図2に示すような減圧加熱炉8内に作製したルツボ12とガイド部材9を設置して、昇華再結晶法によりSiC単結晶を成長させた。ルツボ12内にはSiC原料15を入れ、その上部には直径2インチのSiC種結晶16を設置した。減圧加熱炉8内にアルゴンガスを10〜30slmで流入させ、気圧500〜1000Pa、温度2000〜2500℃とし、SiC原料15を昇華させて、SiC種結晶16上に厚さ5mmのSiC単結晶を成長させた。   The crucible 12 and the guide member 9 which were produced in the decompression heating furnace 8 as shown in FIG. 2 were installed, and the SiC single crystal was grown by the sublimation recrystallization method. The SiC raw material 15 was placed in the crucible 12, and the SiC seed crystal 16 with a diameter of 2 inches was placed on the top of the raw material. Argon gas is introduced into the reduced pressure heating furnace 8 at 10 to 30 slm, the pressure is 500 to 1000 Pa, the temperature is 2000 to 2500 ° C., the SiC raw material 15 is sublimated, and a 5 mm thick SiC single crystal is formed on the SiC seed crystal 16 I grew up.

SiC単結晶の製造を複数回繰り返して、ルツボ12とガイド部材9にSiC結晶が付着する回数を確認した。その結果、23回使用後にSiC結晶の付着が確認され、新しい部材に取り換える必要性が生じた。   The production of the SiC single crystal was repeated a plurality of times, and the number of times the SiC crystal adhered to the crucible 12 and the guide member 9 was confirmed. As a result, adhesion of the SiC crystal was confirmed after 23 times use, and the necessity of replacing with a new member arose.

図3に示すようなCVD装置17に、作製したサセプタ21と内壁部材18を設置して、CVD法によりSiC単結晶をエピタキシャル成長させた。サセプタ21上にバルク単結晶から基板形状に加工したSiC単結晶基板24を載置した。CVD装置内にモノシラン(SiH)を30sccm、プロパン(C)を70sccmで流入させ、気圧45Torr、温度1550℃とし、基板上にSiC単結晶をエピタキシャル成長させた。 The manufactured susceptor 21 and the inner wall member 18 were placed in a CVD apparatus 17 as shown in FIG. 3, and an SiC single crystal was epitaxially grown by the CVD method. An SiC single crystal substrate 24 processed into a substrate shape from a bulk single crystal was placed on the susceptor 21. Into the CVD apparatus, 30 sccm of monosilane (SiH 4 ) and 70 sccm of propane (C 3 H 8 ) were introduced, and the pressure was 45 Torr and the temperature was 1550 ° C., and an SiC single crystal was epitaxially grown on the substrate.

SiC単結晶の製造を複数回繰り返して、サセプタ21と内壁部材18にSiC結晶が付着する回数を確認した。その結果、94回使用後にSiC結晶の付着が確認され、新しい部材に取り換える必要性が生じた。これらの条件及び結果を表1に示す。   The production of the SiC single crystal was repeated a plurality of times, and the number of times that the SiC crystal adhered to the susceptor 21 and the inner wall member 18 was confirmed. As a result, adhesion of the SiC crystal was confirmed after 94 times of use, and it became necessary to replace with a new member. These conditions and results are shown in Table 1.

〈実施例2〉
炭素基材4表面の算術平均粗さRaを1.0μmとした以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 2
The crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 are manufactured by the same method as in Example 1 except that the arithmetic mean roughness Ra of the surface of the carbon base 4 is 1.0 μm, and the evaluation is performed. The The results are shown in Table 1.

〈実施例3〉
炭素基材表面の算術平均粗さRaを2.0μmとした以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 3
The crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 were produced and evaluated in the same manner as in Example 1 except that the arithmetic mean roughness Ra of the surface of the carbon substrate was 2.0 μm. . The results are shown in Table 1.

〈実施例4〉
炭素基材4表面の算術平均粗さRaを3.0μmとした以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 4
A crucible 12, a guide member 9, a susceptor 21, and an inner wall member 18 are produced by the same method as in Example 1 except that the arithmetic mean roughness Ra of the surface of the carbon base 4 is 3.0 μm, and the evaluation is performed. The The results are shown in Table 1.

〈実施例5〉
炭素基材4表面の算術平均粗さRaを4.0μmとした以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 5
The crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 are manufactured by the same method as in Example 1 except that the arithmetic mean roughness Ra of the surface of the carbon base 4 is 4.0 μm, and the evaluation is performed. The The results are shown in Table 1.

〈実施例6〉
まず、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製した。これらのルツボ12、ガイド部材9、サセプタ21、及び内壁部材18の炭化タンタル被覆膜表面を荒らして、その算術平均粗さRaを3.8μmとした。評価は実施例1と同様に行なった。その結果を表1に示す。
Example 6
First, the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 were manufactured by the same method as in the third embodiment. The surface of the tantalum carbide coating film of the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 was roughened to have an arithmetic average roughness Ra of 3.8 μm. The evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

〈実施例7〉
まず、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製した。これらのルツボ12、ガイド部材9、サセプタ21、及び内壁部材18の炭化タンタル被覆膜表面を荒らして、その算術平均粗さRaを3.4μmとした。評価は実施例1と同様に行なった。その結果を表1に示す。
Example 7
First, the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 were manufactured by the same method as in the third embodiment. The surface of the tantalum carbide coating film of the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 was roughened to have an arithmetic average roughness Ra of 3.4 μm. The evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

〈実施例8〉
まず、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製した。これらのルツボ12、ガイド部材9、サセプタ21、及び内壁部材18の炭化タンタル被覆膜表面を荒らして、その算術平均粗さRaを2.8μmとした。評価は実施例1と同様に行なった。その結果を表1に示す。
Example 8
First, the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 were manufactured by the same method as in the third embodiment. The surface of the tantalum carbide coating film of the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 was roughened to have an arithmetic average roughness Ra of 2.8 μm. The evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

〈実施例9〉
まず、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製した。これらのルツボ12、ガイド部材9、サセプタ21、及び内壁部材18の炭化タンタル被覆膜表面を荒らして、その算術平均粗さRaを2.2μmとした。評価は実施例1と同様に行なった。その結果を表1に示す。
Example 9
First, the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 were manufactured by the same method as in the third embodiment. The surface of the tantalum carbide coating film of the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 was roughened to have an arithmetic average roughness Ra of 2.2 μm. The evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

〈実施例10〉
まず、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製した。その後、2500℃でアニール処理を行なった。評価は実施例1と同様に行なった。その結果を表1に示す。
Example 10
First, the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 were manufactured by the same method as in the third embodiment. Thereafter, annealing was performed at 2500 ° C. The evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

実施例10の炭化タンタル被覆膜中の塩素原子の濃度は0.009atm%で、鉄原子の濃度は0.10atm%であり、実施例3と比較して鉄の含有量が多いことがわかった。   It was found that the concentration of chlorine atoms in the tantalum carbide coating film of Example 10 was 0.009 atm%, the concentration of iron atoms was 0.10 atm%, and the iron content was higher compared to Example 3. The

〈実施例11〉
炭化タンタル被覆膜の成膜温度を950℃とした以外は、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製した。その後、2500℃でアニール処理を行なった。評価は実施例1と同様に行なった。その結果を表1に示す。
Example 11
The crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 were produced in the same manner as in Example 3 except that the film formation temperature of the tantalum carbide coating film was changed to 950 ° C. Thereafter, annealing was performed at 2500 ° C. The evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

実施例11の炭化タンタル被覆膜は、アニール処理前は(220)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きかったが、アニール処理後には(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きくなり、その強度比は全結晶面に対応するX線回折線の強度の和に対して65.4%であった。また、アニール処理によって、炭化タンタル被覆膜中の塩素原子の濃度は0.009atm%で、鉄濃度は0.10atm%であり、実施例3と比較して鉄の含有量が多いことがわかった。   The tantalum carbide coated film of Example 11 had the intensity of the X-ray diffraction line corresponding to the (220) plane before the annealing treatment greater than the intensity of the X-ray diffraction line corresponding to the other crystal planes, but After treatment, the intensity of the X-ray diffraction line corresponding to the (200) plane becomes greater than the intensity of the X-ray diffraction line corresponding to the other crystal planes, and the intensity ratio is the X-ray diffraction line corresponding to the entire crystal plane It was 65.4% with respect to the sum of the intensity of. In addition, it was found that the annealing treatment showed that the concentration of chlorine atoms in the tantalum carbide coating was 0.009 atm%, the concentration of iron was 0.10 atm%, and the content of iron was larger than that in Example 3. The

〈実施例12〉
炭化タンタル被覆膜の成膜回数を2回にした以外は、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 12
The crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were produced by the same method as in Example 3 except that the number of times of forming the tantalum carbide coating film was two, and the evaluation was performed. The results are shown in Table 1.

このとき、1回目と2回目とでは炭素基材4の支持箇所を変えて成膜を行った。1回目の成膜時に支持部先端と接触していた3箇所の周辺では、タンタル原子濃度は低くなっていなかった。また、2回目の成膜時に支持部先端と接触していた3箇所の周辺では、表面近傍のタンタル原子濃度は低くなっていたが、炭素基材4近傍の炭化タンタル被覆膜のタンタル原子濃度は低くなっていなかった。   At this time, film formation was performed while changing the support location of the carbon base material 4 between the first and second times. The tantalum atom concentration was not low around the three locations that were in contact with the tip of the support during the first deposition. In addition, although the concentration of tantalum atoms near the surface was low around the three locations that were in contact with the tip of the support during the second deposition, the concentration of tantalum atoms in the tantalum carbide coating film near the carbon substrate 4 was low. Was not getting lower.

〈実施例13〉
基材の回転対称軸を自転軸として基材を自転できる構成とし、自転軸の延長線上に原料供給部を配置した。そして、CH流量を0.2SLMかつ成膜温度を1200℃にして基材を自転させながら成膜した。それ以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 13
It was set as the structure which can rotate a base material by setting the rotational symmetry axis of a base material as a rotation axis, and the materials supply part was arranged on the extension of a rotation axis. Then, the film was formed while the substrate was rotated at a CH 4 flow rate of 0.2 SLM and a film formation temperature of 1200 ° C. Except for this point, the crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured in the same manner as in Example 1 and evaluated. The results are shown in Table 1.

〈実施例14〉
基材の回転対称軸を自転軸として自転させるようにした基材を2組用意した。それぞれの基材の自転軸が公転半径180mmの公転軌道上に互いの自転軸が公転軸に対して対称の位置になるように配置し、公転軸の延長線上に原料供給部を配置した。そして、CH流量を0.75SLMにして各基材を自転させつつ公転させながら成膜した。それ以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 14
Two sets of substrates were prepared in which the rotational symmetry axis of the substrate was made to rotate as a rotation axis. The rotation axes of the respective base materials were arranged on a revolving track with a rotation radius of 180 mm so that the rotation axes were at symmetrical positions with respect to the rotation axis, and the raw material supply portion was arranged on the extension of the rotation axis. Then, the film was formed while revolving each substrate while rotating at a CH 4 flow rate of 0.75 SLM. Except for this point, the crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured in the same manner as in Example 1 and evaluated. The results are shown in Table 1.

〈実施例15〉
基材の回転対称軸を自転軸として自転させるようにした基材を2組用意した。それぞれの基材の自転軸が公転半径180mmの公転軌道上に互いの自転軸が公転軸に対して対称の位置になるように配置し、公転軸の延長線上に原料供給部を配置した。そして、CH流量を1.0SLMにして各基材を自転させつつ公転させながら成膜した。それ以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 15
Two sets of substrates were prepared in which the rotational symmetry axis of the substrate was made to rotate as a rotation axis. The rotation axes of the respective base materials were arranged on a revolving track with a rotation radius of 180 mm so that the rotation axes were at symmetrical positions with respect to the rotation axis, and the raw material supply portion was arranged on the extension of the rotation axis. Then, the film was formed while making each substrate rotate while rotating at a CH 4 flow rate of 1.0 SLM. Except for this point, the crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured in the same manner as in Example 1 and evaluated. The results are shown in Table 1.

〈実施例16〉
基材の回転対称軸を自転軸として自転させるようにした基材を2組用意した。それぞれの基材の自転軸が公転半径180mmの公転軌道上に互いの自転軸が公転軸に対して対称の位置になるように配置した。そして、CH流量を1.25SLMにして各基材を自転させつつ公転させながら成膜した。それ以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 16
Two sets of substrates were prepared in which the rotational symmetry axis of the substrate was made to rotate as a rotation axis. The rotation axes of the respective substrates were disposed on a revolving track with a rotation radius of 180 mm so that the rotation axes of the respective substrates were at symmetrical positions with respect to the rotation axis. Then, the film was formed while revolving while rotating each substrate at a CH 4 flow rate of 1.25 SLM. Except for this point, the crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured in the same manner as in Example 1 and evaluated. The results are shown in Table 1.

〈実施例17〉
基材の回転対称軸を自転軸として自転させるようにした基材を3組用意した。それぞれの基材の自転軸が公転半径180mmの公転軌道上に等間隔に(すなわち公転軸に対して120°間隔に)配置し、公転軸の延長線上に原料供給部を配置した。そして、CH流量を2.0SLMかつ成膜温度を850℃にして各基材を自転させつつ公転させながら成膜した。それ以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 17
Three sets of substrates were prepared in which the rotation symmetry axis of the substrate was made to rotate as a rotation axis. The rotation axes of the respective base materials were disposed at equal intervals (that is, at 120 ° intervals with respect to the revolution axis) on the orbit of 180 mm of revolution radius, and the raw material supply portion was disposed on the extension of the revolution axis. Then, the film was formed while revolving each substrate while rotating the flow rate of the CH 4 at 2.0 SLM and the film forming temperature at 850 ° C. Except for this point, the crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured in the same manner as in Example 1 and evaluated. The results are shown in Table 1.

〈実施例18〉
基材の回転対称軸を自転軸として自転させるようにした基材を2組用意した。それぞれの基材の自転軸が公転半径180mmの公転軌道上に互いの自転軸が公転軸に対して対称の位置になるように配置し、原料供給部が公転軸に対して20°の角度をなしかつ原料供給部の噴出口が公転軸の延長線上に開口するように配置した。そして、CH流量を0.1SLMにして各基材を自転させつつ公転させながら成膜した。それ以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Example 18
Two sets of substrates were prepared in which the rotational symmetry axis of the substrate was made to rotate as a rotation axis. The rotation axes of the respective base materials are arranged on a revolving track with a rotation radius of 180 mm so that the rotation axes are symmetrical with respect to the rotation axis, and the material supply unit has an angle of 20 ° to the rotation axis It arranges so that the spout of a none and a raw material supply part may open on the extension of a revolution axis. Then, the film was formed while revolving while rotating each substrate with a CH 4 flow rate of 0.1 SLM. Except for this point, the crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured in the same manner as in Example 1 and evaluated. The results are shown in Table 1.

〈実施例19〉
基材の回転対称軸を自転軸として自転させるようにした基材を3組用意した。それぞれの基材の自転軸が公転半径180mmの公転軌道上に等間隔に(すなわち公転軸に対して120°間隔に)配置し、原料供給部が公転軸に対して20°の角度をなしかつ原料供給部の噴出口が公転軸の延長線上から180mm離れた位置に開口するように配置した。CH流量を4.0 SLMにして各基材を自転させつつ公転させながら成膜した。それ以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Embodiment 19
Three sets of substrates were prepared in which the rotation symmetry axis of the substrate was made to rotate as a rotation axis. The rotation axis of each base material is equally spaced on the orbit of 180 mm of revolution radius (that is, at an interval of 120 ° with respect to the revolution axis), and the material supply unit makes an angle of 20 ° with the revolution axis and It arrange | positioned so that the jet nozzle of the raw material supply part might open 180 mm from the extension of the revolution axis. The film was formed while revolving each substrate while rotating at a CH 4 flow rate of 4.0 SLM. Except for this point, the crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured in the same manner as in Example 1 and evaluated. The results are shown in Table 1.

〈比較例1〉
炭素基材4表面の算術平均粗さRaを4.5μmとした以外は、実施例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Comparative Example 1
The crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 are manufactured by the same method as in Example 1 except that the arithmetic mean roughness Ra of the surface of the carbon base 4 is 4.5 μm, and the evaluation is performed. The The results are shown in Table 1.

〈比較例2〉
まず、比較例1と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製した。これらのルツボ12、ガイド部材9、サセプタ21、内壁部材18の炭化タンタル被覆膜表面を研磨して、その算術平均粗さRaを1.8μmとした。評価は実施例1と同様に行ない、その結果を表1に示す。
Comparative Example 2
First, the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 were manufactured in the same manner as in Comparative Example 1. The surface of the tantalum carbide coating film of the crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 was polished to have an arithmetic average roughness Ra of 1.8 μm. The evaluation was carried out in the same manner as in Example 1, and the results are shown in Table 1.

〈比較例3〉
CHガスの流量を5SLMとした以外は、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Comparative Example 3
The crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured in the same manner as in Example 3 except that the flow rate of CH 4 gas was changed to 5 SLM, and the evaluation was performed. The results are shown in Table 1.

〈比較例4〉
炭化タンタル被覆膜の成膜温度を950℃とした以外は、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Comparative Example 4
The crucible 12, the guide member 9, the susceptor 21, and the inner wall member 18 were produced by the same method as in Example 3 except that the film formation temperature of the tantalum carbide coating film was changed to 950 ° C., and the evaluation was performed. The results are shown in Table 1.

〈比較例5〉
炭化タンタル被覆膜の成膜温度を750℃とした以外は、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。
Comparative Example 5
The crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured by the same method as in Example 3 except that the film formation temperature of the tantalum carbide coating film was changed to 750 ° C., and the evaluation was performed. The results are shown in Table 1.

〈比較例6〉
成膜時のCH流量を0.09SLMにした以外は、実施例3と同様の方法でルツボ12、ガイド部材9、サセプタ21、及び内壁部材18を作製し、その評価を行なった。その結果を表1に示す。

Figure 2019099453
Comparative Example 6
The crucible 12, the guide member 9, the susceptor 21 and the inner wall member 18 were manufactured and evaluated in the same manner as in Example 3 except that the flow rate of CH 4 during film formation was changed to 0.09 SLM. The results are shown in Table 1.
Figure 2019099453

実施例1から実施例12までの結果と、比較例1から比較例4までの結果とを比較すると、炭化タンタル被覆膜の(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きく、その強度が全結晶面に対応するX線回折線の強度の和に対して60%以上である場合、炭化タンタル被覆炭素材料の製品寿命が、長くなることが分かった。   When the results of Examples 1 to 12 are compared with the results of Comparative Examples 1 to 4, the intensity of the X-ray diffraction line corresponding to the (200) plane of the tantalum carbide coating film is another The product life of the tantalum carbide-coated carbon material if the intensity is greater than or equal to 60% of the sum of the intensities of the X-ray diffraction lines corresponding to all crystal planes, which is greater than the intensity of the X-ray diffraction lines corresponding to crystal planes But it turned out to be long.

実施例1から実施例5までの結果から、炭素基材4表面の算術平均粗さRaを4.0μm以下にすることによって、炭化タンタル被覆膜の(200)面に対応するX線回折線の強度が、全結晶面に対応するX線回折線の強度の和に対して60%以上になり、炭化タンタル被覆炭素材料の製品寿命が長くできることが分かった。   From the results of Examples 1 to 5, by setting the arithmetic average roughness Ra of the surface of the carbon base 4 to 4.0 μm or less, the X-ray diffraction line corresponding to the (200) plane of the tantalum carbide coating film It has been found that the strength of is 60% or more of the sum of the strengths of X-ray diffraction lines corresponding to all crystal planes, and the product life of the tantalum carbide-coated carbon material can be extended.

一方で、実施例1から実施例5までの結果から、炭素基材4表面の算術平均粗さRaが大きくなると、炭素基材4と炭化タンタル被覆膜との剥離強度も大きくなることが分かった。炭素基材4と炭化タンタル被覆膜との剥離強度が1MPaよりも小さい場合、被覆膜が剥離しやすく、炭化タンタル被覆炭素材料を半導体単結晶製造装置用部材として適用するには好ましくない。炭素基材4と炭化タンタル被覆膜との剥離強度が1MPa以上にするためには、炭素基材4表面の算術平均粗さRaを、0.4μm以上にすることが好ましく、0.8μm以上とすることがより好ましい。   On the other hand, it is understood from the results of Examples 1 to 5 that the peel strength between the carbon substrate 4 and the tantalum carbide coating film also increases as the arithmetic mean roughness Ra of the surface of the carbon substrate 4 increases. The When the peel strength between the carbon base 4 and the tantalum carbide coating film is smaller than 1 MPa, the coating film is easily peeled off, which is not preferable for applying the tantalum carbide coated carbon material as a member for a semiconductor single crystal production device. In order to make the peel strength between the carbon substrate 4 and the tantalum carbide coating film 1 MPa or more, the arithmetic average roughness Ra of the surface of the carbon substrate 4 is preferably 0.4 μm or more, and 0.8 μm or more It is more preferable to

実施例6から実施例9までの結果から、半導体単結晶製造装置に用いる炭化タンタル被覆炭素材料の製品寿命を長くするには、炭化タンタル被覆膜のRaが小さい方が好ましく、Raを3.5μm以下とするのがより好ましいといえる。   From the results of Example 6 to Example 9, in order to prolong the product life of the tantalum carbide-coated carbon material used in the semiconductor single crystal production apparatus, it is preferable that Ra of the tantalum carbide coating film is smaller, and Ra should be 3. It can be said that it is more preferable to set it as 5 micrometers or less.

比較例1と、比較例2とを比較すると、炭化タンタル被覆膜の(200)面に対応するX線回折線の強度が同一の場合でも、タンタル被覆膜を研磨するなどして、炭化タンタル被覆膜の算術平均粗さRaを小さくすることで、製品寿命が長くなることが分かった。   Comparison of Comparative Example 1 and Comparative Example 2 shows that even if the intensity of the X-ray diffraction line corresponding to the (200) plane of the tantalum carbide coating film is the same, the tantalum coating film is polished, etc. It has been found that the product life is extended by reducing the arithmetic mean roughness Ra of the tantalum coating film.

実施例3と比較例4とを比較すると、炭化タンタルを炭素基材4に被覆する工程で、反応室2内の温度を1000℃よりも大きくすることによって、その上に被覆する、炭化タンタル結晶の(200)面に対応するX線回折線の強度が大きくなり、それに応じて、製品寿命が長くなることが分かった。また、実施例17と比較例5とを比較すると、メタンの五塩化タンタルに対する流量比を20倍に高めると、反応室2内の温度が850℃以上であれば(200)面のピーク強度を大きくできることが分かった。一方、反応温度を高くし過ぎると、炭化タンタルの結晶系が針状結晶に変化して、(200)面のピーク強度が低下するため、反応温度は1200℃以下とするのが好ましい。以上の結果から、炭化タンタル被覆炭素材料の製品寿命を向上させるためには、温度を850℃以上1200℃以下にするとよいことが分かった。   Comparing Example 3 and Comparative Example 4, in the step of coating tantalum carbide on the carbon substrate 4, tantalum carbide crystal coated thereon by making the temperature in the reaction chamber 2 larger than 1000 ° C. It has been found that the intensity of the X-ray diffraction line corresponding to the (200) plane of is increased, and the product life is accordingly extended. Further, comparing Example 17 and Comparative Example 5, when the flow ratio of methane to tantalum pentachloride is increased 20 times, the peak intensity of the (200) plane is obtained if the temperature in the reaction chamber 2 is 850 ° C. or higher. It turned out that it can be enlarged. On the other hand, if the reaction temperature is too high, the crystal system of tantalum carbide changes to needle crystals, and the peak intensity of the (200) plane decreases, so the reaction temperature is preferably 1200 ° C. or less. From the above results, in order to improve the product life of the tantalum carbide-coated carbon material, it was found that the temperature is preferably 850 ° C. or more and 1200 ° C. or less.

実施例11と比較例4とを比較すると、炭化タンタルを被覆した炭素基材4をアニール処理する工程で、アニール処理の温度を2500℃にすることによって、炭化タンタル結晶の(200)面に対応するX線回折線の強度が大きくなり、製品寿命が長くなることが分かった。
以上の結果から、炭化タンタル被覆炭素材料の製品寿命を向上させるためには、アニール処理の温度を2500℃にするとよいことが分かった。
Comparing Example 11 with Comparative Example 4, in the step of annealing the tantalum carbide-coated carbon substrate 4, the temperature of the annealing is set to 2500 ° C. to cope with the (200) plane of tantalum carbide crystal. It was found that the intensity of the X-ray diffraction line increases and the product life becomes longer.
From the above results, it has been found that the annealing temperature is preferably 2500 ° C. in order to improve the product life of the tantalum carbide-coated carbon material.

実施例3と、比較例3とを比較すると、原料ガスに占める五塩化タンタルの割合が少ないと(200)面のピーク強度が低下する傾向があり、原料ガスにおけるメタンと五塩化タンタルの流量比(CH/TaCl)を5程度とするとよいことが分かった。また、実施例13〜19及び比較例6の結果から、原料ガスにおけるメタンと五塩化タンタルの流量比(CH/TaCl)は2以上20以下とするとよいことが分かった。 Comparing Example 3 and Comparative Example 3, when the proportion of tantalum pentachloride in the source gas is low, the peak intensity of the (200) plane tends to decrease, and the flow ratio of methane to tantalum pentachloride in the source gas It was found that (CH 4 / TaCl 5 ) should be about 5. Further, from the results of Examples 13 to 19 and Comparative Example 6, the flow rate ratio of methane and tantalum pentachloride in the raw material gas (CH 4 / TaCl 5) it was found that or equal to 2 or more and 20 or less.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has the substantially same constitution as the technical idea described in the claims of the present invention, and the same effects can be exhibited by any invention. It is included in the technical scope of

1 外熱型減圧CVD装置
2 反応室
3 ヒータ
4 炭素基材
5 支持手段
6 原料供給部
7 排気部
8 減圧加熱炉
9 ガイド部材
10 ガイド部材内側表面
11 ガイド部材外側表面
12 ルツボ
13 ルツボ内側表面
14 ルツボ外側表面
15 SiC原料
16 SiC種結晶
17 外熱型減圧CVD装置
18 内壁部材
19 内壁部材内側表面
20 内壁部材外側表面
21 サセプタ
22 サセプタ内側表面
23 サセプタ外側表面
24 SiC単結晶基板
DESCRIPTION OF SYMBOLS 1 External heating type low pressure CVD apparatus 2 Reaction chamber 3 Heater 4 Carbon substrate 5 Support means 6 Raw material supply part 7 Exhaust part 8 Reduced pressure heating furnace 9 Guide member 10 Guide member inner surface 11 Guide member outer surface 12 crucible 13 crucible inner surface 14 Crucible outer surface 15 SiC raw material 16 SiC seed crystal 17 external heat type low pressure CVD apparatus 18 inner wall member 19 inner wall member inner surface 20 inner wall member outer surface 21 susceptor 22 susceptor inner surface 23 susceptor outer surface 24 SiC single crystal substrate

Claims (17)

炭素基材表面の少なくとも一部を、炭化タンタルを主成分とした炭化タンタル被覆膜で被覆した炭化タンタル被覆炭素材料であって、
炭化タンタル被覆膜は、面外方向について(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きく、その強度比は全結晶面に対応するX線回折線の強度の和に対して60%以上であることを特徴とする炭化タンタル被覆炭素材料。
A tantalum carbide-coated carbon material, wherein at least a part of the surface of a carbon substrate is coated with a tantalum carbide-based coating film containing tantalum carbide as a main component,
In the tantalum carbide coating film, the intensity of the X-ray diffraction line corresponding to the (200) plane in the out-of-plane direction is larger than the intensity of the X-ray diffraction line corresponding to the other crystal planes. A tantalum carbide-coated carbon material, which is 60% or more of the sum of the intensities of X-ray diffraction lines corresponding to.
前記炭化タンタル被覆膜表面の算術平均粗さRaが3.5μm以下であることを特徴とする請求項1に記載の炭化タンタル被覆炭素材料。   Arithmetic mean roughness Ra of the said tantalum carbide coating film surface is 3.5 micrometers or less, The tantalum carbide coated carbon material of Claim 1 characterized by the above-mentioned. 前記炭素基材表面の算術平均粗さRaが4.0μm以下であることを特徴とする請求項1又は2に記載の炭化タンタル被覆炭素材料。   Arithmetic mean roughness Ra of the said carbon base-material surface is 4.0 micrometers or less, The tantalum carbide coated carbon material of Claim 1 or 2 characterized by the above-mentioned. 前記炭化タンタル被覆膜中に含まれるタンタル原子数は、炭素原子数よりも多く、炭素原子数の1.2倍以下であることを特徴とする請求項1から3の何れかに記載の炭化タンタル被覆炭素材料。   The carbonization according to any one of claims 1 to 3, wherein the number of tantalum atoms contained in the tantalum carbide coating film is greater than the number of carbon atoms and 1.2 times or less the number of carbon atoms. Tantalum-coated carbon material. 前記炭化タンタル被覆膜は、塩素原子を0.01atm%以上1.00atm%以下の原子濃度で含有することを特徴とする請求項1又は2に記載の炭化タンタル被覆炭素材料。   The tantalum carbide-coated carbon material according to claim 1, wherein the tantalum carbide coating film contains chlorine atoms at an atomic concentration of 0.01 atm% or more and 1.00 atm% or less. 炭素基材表面の少なくとも一部を、炭化タンタルを主成分とした炭化タンタル被覆膜で被覆した炭化タンタル被覆炭素材料から構成される半導体単結晶製造装置用部材であって、
前記炭化タンタル被覆膜は、面外方向について(200)面に対応するX線回折線の強度が、他の結晶面に対応するX線回折線の強度よりも大きく、その強度比は全結晶面に対応するX線回折線の強度の和に対して60%以上であることを特徴とする半導体単結晶製造装置用部材。
A member for a semiconductor single crystal production apparatus, comprising a tantalum carbide-coated carbon material coated with a tantalum carbide-based coating film containing tantalum carbide as a main component of at least a part of a carbon substrate surface,
In the tantalum carbide coating film, the intensity of the X-ray diffraction line corresponding to the (200) plane in the out-of-plane direction is larger than the intensity of the X-ray diffraction line corresponding to the other crystal plane A member for a semiconductor single crystal production apparatus, characterized in that it is 60% or more with respect to the sum of the intensities of X-ray diffraction lines corresponding to the surface.
前記半導体単結晶製造装置用部材は、SiC単結晶の製造装置に用いられることを特徴とする請求項6に記載の半導体単結晶製造装置用部材。   The member for a semiconductor single crystal production device according to claim 6, wherein the member for a semiconductor single crystal production device is used for a production device of SiC single crystal. 前記半導体単結晶製造装置用部材は、SiC単結晶を昇華再結晶法により製造するための装置に用いられるルツボ又はガイド部材であることを特徴とする請求項7に記載の半導体単結晶製造装置用部材。   The said semiconductor single crystal manufacturing apparatus member is a crucible or a guide member used for an apparatus for manufacturing a SiC single crystal by a sublimation recrystallization method, for a semiconductor single crystal manufacturing apparatus according to claim 7, Element. 前記半導体単結晶製造装置用部材は、SiC単結晶を化学気相堆積法によりエピタキシャル成長させて製造するための装置に用いられるサセプタ又は内壁部材であることを特徴とする請求項7に記載の半導体単結晶製造装置用部材。   The semiconductor single crystal according to claim 7, wherein the member for a semiconductor single crystal manufacturing device is a susceptor or an inner wall member used for a device for epitaxially growing a SiC single crystal by a chemical vapor deposition method. A member for a crystal manufacturing apparatus. 前記半導体単結晶製造装置用部材は、前記炭化タンタル被覆膜表面にタンタル原子濃度の低い箇所を2箇所以上有していることを特徴とする請求項6から9の何れかに記載の半導体単結晶製造装置用部材。   The semiconductor single crystal manufacturing apparatus according to any one of claims 6 to 9, wherein the member for manufacturing a semiconductor single crystal has two or more locations having a low concentration of tantalum atoms on the surface of the tantalum carbide coating film. A member for a crystal manufacturing apparatus. 算術表面粗さRaが4.0μm以下である炭素基材を準備する工程と、
炭化タンタル被覆膜で前記炭素基材の表面の少なくとも一部を被覆する工程と
を含む、炭化タンタル被覆炭素材料の製造方法。
Preparing a carbon substrate having an arithmetic surface roughness Ra of 4.0 μm or less;
Coating at least a part of the surface of the carbon substrate with a tantalum carbide coating film.
前記炭素基材を、自転軸を中心に回転させながら前記炭化タンタル被覆膜を被覆することを特徴とする請求項11に記載の炭化タンタル被覆炭素材料の製造方法。   The method for producing a tantalum carbide-coated carbon material according to claim 11, wherein the tantalum carbide coating film is coated while the carbon base material is rotated about a rotation axis. 前記自転軸を、公転軸を中心に公転させながら前記炭化タンタル皮膜を被覆することを特徴とする請求項12に記載の炭化タンタル被覆炭素材料の製造方法。   The method for producing a tantalum carbide-coated carbon material according to claim 12, wherein the tantalum carbide film is coated while revolving the revolving shaft around a revolving shaft. 前記準備する工程は、
反応室内で前記炭素基材を支持する工程を有し、
前記被覆する工程は、
炭素原子を含む化合物及びハロゲン化タンタルを含む原料ガスを前記反応室内に供給する工程と、
供給した前記原料ガスを熱CVD法で反応させて前記炭化タンタル被覆膜を形成する工程と
を有することを特徴とする、請求項11から13の何れかに記載の炭化タンタル被覆炭素材料の製造方法。
The step of preparing is
Supporting the carbon substrate in a reaction chamber,
The coating step is
Supplying a source gas containing a compound containing a carbon atom and tantalum halide into the reaction chamber;
14. A process for producing a tantalum carbide-coated carbon material according to any one of claims 11 to 13, comprising the step of reacting the supplied source gas by a thermal CVD method to form the tantalum carbide coating film. Method.
前記原料ガスを供給する工程において、反応室内の温度を850℃以上、1200℃以下とする、ことを特徴とする請求項14に記載の炭化タンタル被覆炭素材料の製造方法。   The method for producing a tantalum carbide-coated carbon material according to claim 14, wherein the temperature in the reaction chamber is set to 850 ° C. or more and 1200 ° C. or less in the step of supplying the raw material gas. 前記原料ガスを供給する工程において、炭素原子を含む化合物がメタン(CH)であり、ハロゲン化タンタルが五塩化タンタル(TaCl)であり、供給するメタンと五塩化タンタルの流量比が、2以上20以下であることを特徴とする請求項14または15に記載の炭化タンタル被覆炭素材料の製造方法。 In the step of supplying the source gas, the compound containing carbon atoms is methane (CH 4 ), and the halogenated tantalum is tantalum pentachloride (TaCl 5 ), and the flow ratio of methane to tantalum pentachloride supplied is 2 The method for producing a tantalum carbide-coated carbon material according to claim 14 or 15, characterized in that it is not less than 20 and not more than 20. 前記被覆する工程の後に、前記炭化タンタル被覆膜が形成された前記炭素基材をアニール処理する工程をさらに備えることを特徴とする請求項11から16の何れかに記載の炭化タンタル被覆炭素材料の製造方法。   The tantalum carbide-coated carbon material according to any one of claims 11 to 16, further comprising a step of annealing the carbon substrate on which the tantalum carbide coating film is formed after the coating step. Manufacturing method.
JP2018191578A 2017-12-04 2018-10-10 Tantalum Carbide Coated Carbon Material and Parts for Semiconductor Single Crystal Manufacturing Equipment Active JP7083732B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020180147098A KR20190065941A (en) 2017-12-04 2018-11-26 Tantalum carbide-coated carbon material, method for manufacturing thereof, and member for semiconductor single crystal manufacturing apparatus
TW107142853A TWI801457B (en) 2017-12-04 2018-11-30 Tantalum carbide coated carbon material, manufacturing method thereof, and member for apparatus for manufacturing semiconductor single crystal
US16/208,482 US20190169768A1 (en) 2017-12-04 2018-12-03 Tantalum carbide coated carbon material, manufacturing method thereof, and member for apparatus for manufacturing semiconductor single crystal
DE102018009473.2A DE102018009473A1 (en) 2017-12-04 2018-12-03 Tantalum carbide-coated carbon material, process for its preparation and part for an apparatus for producing semiconductor single crystals
CN201811468226.9A CN109896515B (en) 2017-12-04 2018-12-03 Tantalum carbide-coated carbon material, method for producing same, and member for semiconductor single crystal production device
US17/149,733 US11555255B2 (en) 2017-12-04 2021-01-15 Tantalum carbide coated carbon material, manufacturing method thereof, and member for apparatus for manufacturing semiconductor single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017232383 2017-12-04
JP2017232383 2017-12-04

Publications (2)

Publication Number Publication Date
JP2019099453A true JP2019099453A (en) 2019-06-24
JP7083732B2 JP7083732B2 (en) 2022-06-13

Family

ID=66975843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018191578A Active JP7083732B2 (en) 2017-12-04 2018-10-10 Tantalum Carbide Coated Carbon Material and Parts for Semiconductor Single Crystal Manufacturing Equipment

Country Status (2)

Country Link
JP (1) JP7083732B2 (en)
TW (1) TWI801457B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088493A (en) * 2019-12-06 2021-06-10 國家中山科學研究院 Method for forming tantalum carbide on graphite substrate
US11130152B2 (en) 2019-11-28 2021-09-28 National Chung-Shan Institute Of Science And Technology Method for the formation of tantalum carbides on graphite substrate
WO2022009580A1 (en) * 2020-07-07 2022-01-13 信越化学工業株式会社 Carbide-coated carbon material
JP2022087844A (en) * 2020-12-01 2022-06-13 トカイ カーボン コリア カンパニー,リミティド Tantalum carbide composite material
KR20230058629A (en) 2020-09-01 2023-05-03 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-resistant coating member packaging body and heat-resistant coating member packaging method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134663A (en) * 1986-11-25 1988-06-07 Tokai Carbon Co Ltd Formation of film on carbon base material surface
JP2004084057A (en) * 2002-06-28 2004-03-18 Ibiden Co Ltd Carbon composite material
JP2008308701A (en) * 2005-02-14 2008-12-25 Toyo Tanso Kk Tantalum carbide-covered carbon material and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134663A (en) * 1986-11-25 1988-06-07 Tokai Carbon Co Ltd Formation of film on carbon base material surface
JP2004084057A (en) * 2002-06-28 2004-03-18 Ibiden Co Ltd Carbon composite material
JP2008308701A (en) * 2005-02-14 2008-12-25 Toyo Tanso Kk Tantalum carbide-covered carbon material and process for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED SURFACE SCIENCE, vol. 257, JPN6021032472, 2010, pages 656 - 661, ISSN: 0004721213 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130152B2 (en) 2019-11-28 2021-09-28 National Chung-Shan Institute Of Science And Technology Method for the formation of tantalum carbides on graphite substrate
JP2021088493A (en) * 2019-12-06 2021-06-10 國家中山科學研究院 Method for forming tantalum carbide on graphite substrate
WO2022009580A1 (en) * 2020-07-07 2022-01-13 信越化学工業株式会社 Carbide-coated carbon material
KR20230034976A (en) 2020-07-07 2023-03-10 신에쓰 가가꾸 고교 가부시끼가이샤 Carbide-clad carbon materials
US11897773B2 (en) 2020-07-07 2024-02-13 Shin-Etsu Chemical Co., Ltd. Carbide-coated carbon material
KR20230058629A (en) 2020-09-01 2023-05-03 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-resistant coating member packaging body and heat-resistant coating member packaging method
JP2022087844A (en) * 2020-12-01 2022-06-13 トカイ カーボン コリア カンパニー,リミティド Tantalum carbide composite material
US11697874B2 (en) 2020-12-01 2023-07-11 Tokai Carbon Korea Co., Ltd Tantalum carbide coated carbon material
JP7382377B2 (en) 2020-12-01 2023-11-16 トカイ カーボン コリア カンパニー,リミティド tantalum carbide composite

Also Published As

Publication number Publication date
TW201930659A (en) 2019-08-01
JP7083732B2 (en) 2022-06-13
TWI801457B (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP7083732B2 (en) Tantalum Carbide Coated Carbon Material and Parts for Semiconductor Single Crystal Manufacturing Equipment
US11555255B2 (en) Tantalum carbide coated carbon material, manufacturing method thereof, and member for apparatus for manufacturing semiconductor single crystal
TW552325B (en) Method and apparatus for growing silicon carbide crystals
JP4547031B2 (en) Crucible for producing silicon carbide single crystal, and apparatus and method for producing silicon carbide single crystal
JP2004526324A (en) Apparatus or method for depositing a particularly crystalline layer from a gas phase on a particularly crystalline substrate
JP2011153375A (en) Method for producing carbon material coated with tantalum carbide
CN111424319B (en) Preparation method of large-size kilogram-level silicon carbide single crystal
JPH09268096A (en) Production of single crystal and seed crystal
JP2019515128A (en) Tantalum carbide coated carbon material
KR101458183B1 (en) An apparatus and method for growing silicon carbide single crystal
JP2011011926A (en) Apparatus for producing silicon carbide single crystal
WO2019044392A1 (en) Vapor-phase deposition method
EP2465980B1 (en) Apparatus and method for manufacturing silicon carbide single crystal
JPS6090894A (en) Vapor phase growing apparatus
JP7242987B2 (en) SiC single crystal manufacturing equipment
JP3725268B2 (en) Single crystal manufacturing method
CN114086247B (en) Silicon carbide single crystal, and growth device and production method thereof
JP6785545B2 (en) Graphite crucible for manufacturing silicon carbide single crystal
US11846040B2 (en) Silicon carbide single crystal
JP5831339B2 (en) Method for producing silicon carbide single crystal
JP6335683B2 (en) SiC epitaxial wafer manufacturing equipment
KR102479334B1 (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP6300990B1 (en) Aluminum nitride single crystal production equipment
CN112166210B (en) Silicon carbide single crystal production apparatus and method for producing silicon carbide single crystal
CN220812699U (en) Silicon carbide crystal growing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220426

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220601

R150 Certificate of patent or registration of utility model

Ref document number: 7083732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150