JP2019098156A - Biomagnetism measurement device, biological information measurement device, and biomagnetism measurement method - Google Patents

Biomagnetism measurement device, biological information measurement device, and biomagnetism measurement method Download PDF

Info

Publication number
JP2019098156A
JP2019098156A JP2018205986A JP2018205986A JP2019098156A JP 2019098156 A JP2019098156 A JP 2019098156A JP 2018205986 A JP2018205986 A JP 2018205986A JP 2018205986 A JP2018205986 A JP 2018205986A JP 2019098156 A JP2019098156 A JP 2019098156A
Authority
JP
Japan
Prior art keywords
biomagnetism
subject
biomagnetic
detection unit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018205986A
Other languages
Japanese (ja)
Other versions
JP7176689B2 (en
Inventor
吉智 岡田
Yoshitomo Okada
吉智 岡田
禎久 内城
Sadahisa Uchijo
禎久 内城
出口 浩司
Koji Deguchi
浩司 出口
泰士 渡部
Yasushi Watabe
泰士 渡部
由貴 長谷川
Yuki Hasegawa
由貴 長谷川
茂徳 川端
Shigenori Kawabata
茂徳 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Tokyo Medical and Dental University NUC
Original Assignee
Ricoh Co Ltd
Tokyo Medical and Dental University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd, Tokyo Medical and Dental University NUC filed Critical Ricoh Co Ltd
Priority to US16/198,962 priority Critical patent/US11375934B2/en
Publication of JP2019098156A publication Critical patent/JP2019098156A/en
Application granted granted Critical
Publication of JP7176689B2 publication Critical patent/JP7176689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a biomagnetism measurement device, a biological information measurement device, and a biomagnetism measurement method which can accurately and easily superimpose an image diagnostic result and a biomagnetism measurement result.SOLUTION: One embodiment of a biomagnetism measurement device 100 comprises: a frame 3 on which a subject S is placed; a biomagnetism detecting unit 2 which can detect biomagnetism of the subject S; a supporting unit 4 which supports a detection target part T of biomagnetism of the subject S; a radiation detecting unit 6 provided below the supporting unit 4; and a position changing unit 7 capable of changing a relative position of the biomagnetism detecting unit 2 and the detection target part T. The supporting unit 4 has a surface shape following the surface of the biomagnetism detecting unit 2.SELECTED DRAWING: Figure 4

Description

本発明は、生体磁気計測装置、生体情報計測装置及び生体磁気計測方法に関する。   The present invention relates to a biomagnetic measurement device, a biological information measurement device, and a biomagnetic measurement method.

被検体の心臓や脊髄、末梢神経等から発生する微弱な生体磁気を計測する生体磁気計測装置は、これら器官を構成する細胞の興奮に伴う微弱電流によって生じる磁気を検出する機能を有しており、心臓病や神経疾患等の診断にとって重要な技術である。生体磁気計測から得られる情報は、画像診断装置により得られる形態画像と重ね合わせて表示される。画像診断装置としては、単純X線装置や磁気共鳴画像法(Magnetic Resonance Imaging:MRI)診断装置等が用いられ、通常、形態画像は生体磁気計測とは別の場所で撮影される。   A biomagnetic measuring device that measures weak biomagnetism generated from the heart, spinal cord, peripheral nerves, etc. of a subject has a function to detect magnetism generated by weak current accompanying excitation of cells constituting these organs. , And is an important technology for diagnosis of heart disease, neurological disease and the like. The information obtained from biomagnetic measurement is displayed superimposed on the morphological image obtained by the image diagnostic apparatus. As an imaging diagnostic apparatus, a simple X-ray apparatus, a magnetic resonance imaging (MRI) diagnostic apparatus, or the like is used. Usually, a morphological image is taken at a place different from biomagnetic measurement.

しかしながら、画像診断装置と生体磁気計測装置との間を被検体が移動するため、それぞれの計測結果を高精度で重ね合わせることが極めて困難である。例えば、被検体が放射線照射装置と生体磁気計測装置との間を移動するに際し、被検体の体幹(脊椎)が前後方向や左右方向に屈んだり反ったり、被検体の四肢の関節が曲がったり伸びたりすることから、画像診断装置による被検体の位置情報と、生体磁気計測装置での検査時の被検体の位置を精度良く一致させることは極めて困難である。   However, since the object moves between the diagnostic imaging apparatus and the biomagnetic measurement apparatus, it is extremely difficult to superimpose the measurement results with high accuracy. For example, when the subject moves between the radiation irradiation apparatus and the biomagnetic measurement apparatus, the trunk (spine) of the subject bends or bends in the front-rear direction or the left-right direction, or the joints of the four limbs of the subject bend Since it is stretched, it is extremely difficult to precisely match the position information of the object by the diagnostic imaging apparatus with the position of the object at the time of examination with the biomagnetic measurement apparatus.

本発明は以上の実情に鑑みてなされたものであり、画像診断結果と生体磁気計測結果を良好な精度、かつ簡便に重ね合わせることができる生体磁気計測装置、生体情報計測装置及び生体磁気計測方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is a biomagnetic measuring device, a biological information measuring device, and a biomagnetic measuring method capable of easily superposing an image diagnostic result and a biomagnetic measurement result with good accuracy. Intended to provide.

生体磁気計測装置の一態様は、被検体が載せられる架台と、前記被検体の生体磁気を検出可能な生体磁気検出部と、前記被検体の生体磁気の検出対象部位を支持する支持部と、前記支持部の下方に設けられる放射線検出部と、前記生体磁気検出部と前記検出対象部位との相対位置を変更可能な位置変更部と、を有し、前記支持部は、前記生体磁気検出部の表面に倣う表面形状を有することを特徴とする。   One aspect of a biomagnetic measurement apparatus includes a gantry on which a subject is mounted, a biomagnetic detection unit capable of detecting biomagnetism of the subject, and a support part for supporting a biomagnetic detection target part of the subject. A radiation detection unit provided below the support unit; and a position change unit capable of changing a relative position between the biomagnetism detection unit and the detection target site, the support unit being the biomagnetism detection unit It has a surface shape that conforms to the surface of.

本発明によれば、画像診断結果と生体磁気計測結果を良好な精度、かつ簡便に重ね合わせることができる。   According to the present invention, the diagnostic imaging result and the biomagnetic measurement result can be superimposed easily with high accuracy.

第1の実施形態に係る生体磁気計測装置の構成を示す構成図(その1)である。It is a block diagram (the 1) which shows the structure of the biomagnetism measuring apparatus which concerns on 1st Embodiment. 第1の実施形態に係る生体磁気計測装置の構成を示す構成図(その2)である。It is a block diagram (the 2) which shows the structure of the biomagnetism measuring apparatus which concerns on 1st Embodiment. 第1の実施形態に係る生体磁気計測装置の構成を示す構成図(その3)である。It is a block diagram (the 3) which shows the structure of the biomagnetism measuring apparatus which concerns on 1st Embodiment. 第1の実施形態に係る生体磁気計測装置の構成を示す構成図(その4)である。It is a block diagram (the 4) which shows the structure of the biomagnetism measuring apparatus which concerns on 1st Embodiment. 生体磁気検出部の構成を示す断面図である。It is a sectional view showing the composition of a biomagnetism detection part. 位置変更部の機能を示す図である。It is a figure which shows the function of a position change part. 第2の実施形態に係る生体磁気計測装置の構成を示す構成図(その1)である。It is a block diagram (the 1) which shows the structure of the biomagnetism measuring apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る生体磁気計測装置の構成を示す構成図(その2)である。It is a block diagram (the 2) which shows the structure of the biomagnetism measuring apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る生体磁気計測装置の構成を示す構成図(その3)である。It is a block diagram (the 3) which shows the structure of the biomagnetism measuring apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る生体磁気計測装置の構成を示す構成図(その4)である。It is a block diagram (the 4) which shows the structure of the biomagnetism measuring apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る生体磁気計測装置の構成を示す構成図(その1)である。It is a block diagram (the 1) which shows the structure of the biomagnetism measuring apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る生体磁気計測装置の構成を示す構成図(その2)である。It is a block diagram (the 2) which shows the structure of the biomagnetism measuring apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る生体磁気計測装置の構成を示す構成図(その3)である。It is a block diagram (the 3) which shows the structure of the biomagnetism measuring apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る生体磁気計測装置の構成を示す構成図(その4)である。It is a block diagram (the 4) which shows the structure of the biomagnetism measuring apparatus which concerns on 3rd Embodiment. 第1の実施形態に係る生体磁気計測装置を用いた生体磁気計測方法を示すフローチャートである。It is a flowchart which shows the biomagnetism measuring method using the biomagnetism measuring device which concerns on 1st Embodiment. 生体情報計測結果と単純X線画像とを重ね合わせた計測結果の例を示す図である。It is a figure which shows the example of the measurement result which piled up the biometric information measurement result and the plain X-ray image. 着脱可能な橋梁部が取り外された状態を示す図である。It is a figure which shows the state from which the detachable bridge part was removed. 第2の実施形態に係る生体磁気計測装置を用いた生体磁気計測方法を示すフローチャートである。It is a flowchart which shows the biomagnetism measuring method using the biomagnetism measuring device which concerns on 2nd Embodiment. 第3の実施形態に係る生体磁気計測装置を用いた生体磁気計測方法を示すフローチャートである。It is a flow chart which shows the biomagnetism measuring method using the biomagnetism measuring device concerning a 3rd embodiment.

以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, the embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments at all, and can be implemented with appropriate modifications within the scope of the object of the present invention. .

<第1の実施形態>
まず、第1の実施形態について説明する。図1〜図4は、第1の実施形態に係る生体磁気計測装置100の構成を示す構成図である。図1及び図2は、生体磁気計測が行われる時の構成を示し、図3及び図4は、放射線撮像が行われる時の構成を示す。図1及び図3は、被検体の頭上側から見た図であり、図2及び図4は被検体の側方から見た図である。図1〜図4に示すように、生体磁気計測装置100は、被検体Sの生体磁気を検出可能な生体磁気検出部2と被検体Sが載せられる架台3とを備える。生体磁気計測装置100は、更に、生体磁気検出部2の上方に橋梁部4を備える。橋梁部4は、例えば着脱可能に架台3に取り付けられる。橋梁部4が架台3に固定されてもよい。また、被検体Sの計測領域Tを照射するように、架台3の上方に放射線照射装置5が設けられる。生体磁気計測装置100は、更に、架台3及び橋梁部4を昇降させる位置変更部7、並びに橋梁部4の下方に設けられる放射線検出器6を備える。橋梁部4は支持部の一例である。例えば、生体磁気検出部2は橋梁部4の下方に設けられた生体磁気検出部2用の装着部12に装着され、放射線検出器6は橋梁部4の下方に設けられた放射線検出器6用の装着部16に装着される。
First Embodiment
First, the first embodiment will be described. 1 to 4 are configuration diagrams showing the configuration of the biomagnetic measurement apparatus 100 according to the first embodiment. 1 and 2 show the configuration when biomagnetic measurement is performed, and FIGS. 3 and 4 show the configuration when radiation imaging is performed. FIG. 1 and FIG. 3 are views seen from above the head of the subject, and FIG. 2 and FIG. 4 are views seen from the side of the subject. As shown in FIGS. 1 to 4, the biomagnetic measurement apparatus 100 includes a biomagnetic detection unit 2 capable of detecting the biomagnetism of the subject S and a gantry 3 on which the subject S is placed. The biomagnetic measurement apparatus 100 further includes a bridge 4 above the biomagnetic detection unit 2. The bridge portion 4 is, for example, detachably attached to the gantry 3. The bridge portion 4 may be fixed to the gantry 3. In addition, a radiation irradiation apparatus 5 is provided above the gantry 3 so as to irradiate the measurement region T of the subject S. The biomagnetic measurement apparatus 100 further includes a position change unit 7 that raises and lowers the gantry 3 and the bridge 4 and a radiation detector 6 provided below the bridge 4. The bridge part 4 is an example of a support part. For example, the biomagnetism detection unit 2 is attached to the mounting unit 12 for the biomagnetism detection unit 2 provided below the bridge portion 4, and the radiation detector 6 is for the radiation detector 6 provided below the bridge portion 4 Is mounted on the mounting portion 16 of the

以下、生体磁気検出部2、架台3、橋梁部4、放射線照射装置5、放射線検出器6及び位置変更部7についてそれぞれ説明する。   Hereinafter, the biomagnetism detection unit 2, the gantry 3, the bridge unit 4, the radiation irradiation apparatus 5, the radiation detector 6 and the position change unit 7 will be respectively described.

[生体磁気検出部2]
図5は、生体磁気検出部2の構成を示す断面図である。図5に示すように、生体磁気検出部2は、生体磁気を検出する複数の磁気センサ21をアレイ状に配列した磁気センサアレイを含む。複数の磁気センサ21は温度調節機構を有する断熱容器22内に保持される。
[Biomagnetic detection unit 2]
FIG. 5 is a cross-sectional view showing the configuration of the biomagnetic detection unit 2. As shown in FIG. 5, the biomagnetism detection unit 2 includes a magnetic sensor array in which a plurality of magnetic sensors 21 for detecting biomagnetism are arranged in an array. The plurality of magnetic sensors 21 are held in an insulating container 22 having a temperature control mechanism.

(磁気センサ21)
磁気センサ21は、被検体から生じる生体磁気を検知する。具体的に、磁気センサ21としては、超伝導量子干渉素子(Superconducting QUantum Interference Device:SQUID)や光ポンピング原子磁気センサ(Optically Pumped Atomic Magnetometer:OPAM)等が挙げられる。これらSQUIDセンサや光ポンピング原子磁気センサは、10−18T程度の極めて弱い生体磁気も検出できるほどの検出感度を有する。
(Magnetic sensor 21)
The magnetic sensor 21 detects biomagnetism generated from the subject. Specifically, examples of the magnetic sensor 21 include a superconducting quantum interference device (SQUID), an optically pumped atomic magnetometer (OPAM), and the like. These SQUID sensors and optically pumped atomic magnetic sensors have detection sensitivities that can detect extremely weak biomagnetism of about 10 -18 T.

磁気センサ21は、通常、図5に示すように、温度調節機構を有する断熱容器22内にアレイ状に複数配列される。それぞれの磁気センサ21の信号は演算部23に送られて生体磁気情報へ変換される。複数の磁気センサ21を有することにより、多くの生体磁気情報を得ることができるだけでなく、計測した磁気情報を2次元マッピングすることなどでさらに詳細な生体情報を得ることが可能である。また、磁気センサ21が常温でも動作する場合は、温度調節機構及び断熱容器22が不要となる。磁気センサ21の個数や配列方法は、特に制限されず、被検体Sの計測領域Tに応じて適宜設定されればよい。   Generally, as shown in FIG. 5, a plurality of magnetic sensors 21 are arranged in an array in a heat insulation container 22 having a temperature control mechanism. The signal of each magnetic sensor 21 is sent to the calculation unit 23 and converted into biomagnetic information. By having a plurality of magnetic sensors 21, it is possible not only to obtain a large amount of biomagnetic information but also to obtain more detailed biological information by two-dimensional mapping of the measured magnetic information. In addition, when the magnetic sensor 21 operates even at normal temperature, the temperature control mechanism and the heat insulating container 22 become unnecessary. The number of magnetic sensors 21 and the arrangement method are not particularly limited, and may be appropriately set according to the measurement area T of the subject S.

上記磁気センサ21で検出された検出信号は、演算部23に送られる。演算部23では、磁気センサ21で検出された信号から生体磁気情報を生成し、画像情報化して表示装置等に表示出力する。   The detection signal detected by the magnetic sensor 21 is sent to the calculation unit 23. The arithmetic unit 23 generates biomagnetic information from the signal detected by the magnetic sensor 21, converts it into image information, and displays and outputs the information to a display device or the like.

(温度調節機構)
温度調節機構は、磁気センサ21が動作するのに適した所定の温度に、磁気センサ21の温度を調整する機構であり、公知の冷却装置又は加熱装置であってよい。例えば、磁気センサ21がSQUIDセンサである場合、磁気センサ21が超伝導状態を実現するためには、磁気センサ21を絶対零度近くで動作させる。本実施形態では、断熱容器22が温度調節機構の機能の一部を果たしている。
(Temperature control mechanism)
The temperature control mechanism is a mechanism for adjusting the temperature of the magnetic sensor 21 to a predetermined temperature suitable for the magnetic sensor 21 to operate, and may be a known cooling device or heating device. For example, in the case where the magnetic sensor 21 is a SQUID sensor, the magnetic sensor 21 is operated near absolute zero in order for the magnetic sensor 21 to realize the superconducting state. In the present embodiment, the heat insulating container 22 plays a part of the function of the temperature control mechanism.

(断熱容器22)
例えば、図5に示すように、断熱容器22は、内槽221及び外槽222を備え、内槽221内に複数の磁気センサ21を収容し、内槽221と外槽222との間の空間が真空となっており、内槽221内に液体ヘリウム等の冷媒が供給される。これにより、生体磁気検出部2では、磁気センサ21が動作するのに適した温度に制御されている。
(Insulated container 22)
For example, as shown in FIG. 5, the heat insulation container 22 includes an inner tank 221 and an outer tank 222, accommodates a plurality of magnetic sensors 21 in the inner tank 221, and a space between the inner tank 221 and the outer tank 222. Is a vacuum, and a refrigerant such as liquid helium is supplied into the inner tank 221. Thereby, in the biomagnetism detection unit 2, the temperature is controlled to a temperature suitable for operating the magnetic sensor 21.

断熱容器22の形状は特に制限されるものではないが、被検体Sと対向する面(以下、先端面22aという)が、被検体Sの計測領域Tの体表面に沿った形状であることが好ましく、平面であっても、曲面状であってもよい。例えば、図1及び図2に示すように、生体磁気検出部2に被検体Sの頸部を当てて生体磁気計測をする場合には、先端面22aの形状は頸髄の円弧に合わせた曲面形状であることが好ましい。   The shape of the heat insulation container 22 is not particularly limited, but the surface facing the subject S (hereinafter, referred to as a tip surface 22a) has a shape along the body surface of the measurement region T of the subject S. Preferably, it may be flat or curved. For example, as shown in FIG. 1 and FIG. 2, when performing biomagnetic measurement by placing the neck of the subject S against the biomagnetic detection unit 2, the shape of the distal end surface 22a is a curved shape according to the arc of the cervical cord Is preferred.

なお、断熱容器22は、図5に示す真空断熱容器に限定されず、発泡材等から構成されていてもよい。断熱容器22は、透磁率の低い非磁性材料で構成されることが好ましい。断熱容器22が非磁性材料で構成されることにより、断熱容器22が振動しても、環境磁気の変動による影響が磁気センサ21に及ぶことを抑制することができる。非磁性材料としては、アクリル樹脂等のプラスチック材料、シリカ及びアルミナ等の無機材料、銅、真鍮、アルミニウム及びチタン等の非鉄金属、並びにそれらの複合材料が挙げられる。   In addition, the heat insulation container 22 is not limited to the vacuum heat insulation container shown in FIG. 5, You may be comprised from a foam material etc. FIG. The heat insulating container 22 is preferably made of a nonmagnetic material having low permeability. By the heat insulation container 22 being comprised by nonmagnetic material, even if the heat insulation container 22 vibrates, it can suppress that the influence by the fluctuation | variation of environmental magnetism reaches the magnetic sensor 21. FIG. Examples of nonmagnetic materials include plastic materials such as acrylic resin, inorganic materials such as silica and alumina, nonferrous metals such as copper, brass, aluminum and titanium, and composite materials thereof.

[架台3]
架台3は、被検体Sを載せて保持することができれば、その形状は特に制限されるものではないが、例えば、図1〜図4に示すように、被検体Sの頭部を位置させる頭部用架台31及び胴部を位置させる胴部用架台32等の複数の部位別架台より架台3が構成される場合もある。生体磁気検出部2は、頭部用架台31と胴部用架台32との間に配置され、被検体Sの計測領域Tに対向するように設けられる。
[Mount 3]
The shape of the gantry 3 is not particularly limited as long as the gantry S can hold and hold the subject S. For example, as shown in FIGS. 1 to 4, a head for positioning the head of the subject S There is also a case where the gantry 3 is configured by a plurality of separate gantrys such as the gantry for division 31 and the gantry for storage 32 for positioning the trunk. The biomagnetic detection unit 2 is disposed between the head mount 31 and the body mount 32 and is provided to face the measurement area T of the subject S.

架台3を構成する部材は透磁率の低い非磁性材料で構成されることが好ましい。架台3が非磁性材料で構成されることにより、被検体Sが振動しても、環境磁気の変動による影響が磁気センサ21に及ぶことを抑制することができる。非磁性材料としては、断熱容器22と同様に、アクリル樹脂等のプラスチック材料、シリカ及びアルミナ等の無機材料、銅、真鍮、アルミニウム及びチタン等の非鉄金属、並びにそれらの複合材料が挙げられる。架台3は被検体Sの一部または全部を支えるため、耐荷重や耐衝撃性などが求められる。そのため、機械的強度の高い金属部品やエンジニアリングプラスチックなどで構成されることが望ましい。   It is preferable that the member which comprises the mount frame 3 be comprised with the nonmagnetic material with low magnetic permeability. Since the gantry 3 is made of a nonmagnetic material, even if the subject S vibrates, it is possible to suppress the influence of the fluctuation of the environmental magnetism on the magnetic sensor 21. Examples of nonmagnetic materials include plastic materials such as acrylic resin, inorganic materials such as silica and alumina, copper, brass, nonferrous metals such as aluminum and titanium, and composite materials thereof, as in the case of the heat insulating container 22. Since the gantry 3 supports a part or all of the subject S, load resistance, impact resistance and the like are required. Therefore, it is desirable to be composed of metal parts or engineering plastics having high mechanical strength.

[橋梁部4]
橋梁部4は生体磁気検出部2の表面に倣う表面形状を有しており、生体磁気検出部2を覆うように設けられる。橋梁部4は生体磁気検出部2の先端面22aの形状に沿って形成されるのがよく、生体磁気検出部2上に密着させて設置したときに橋梁部4との間に隙間ができないよう精度よく作製されるのがよい。生体磁気検出部2の表面の形状に沿って形成されるのがよく、隙間がないように形成されるのがよい理由は、被検体Sと磁気センサ21との間の距離をなるべく短くし、被検体Sからの生体磁気信号をより大きな信号として計測するためである。というのも、生体磁場は信号が非常に弱く、被検体Sと磁気センサ21との間の距離が短くなれば、それだけ大きな信号が期待できるためである。例えば、生体磁場の信号は、距離の2乗又は3乗に反比例して減衰することがある。
[Bridge part 4]
The bridge portion 4 has a surface shape that follows the surface of the biomagnetism detection unit 2, and is provided so as to cover the biomagnetism detection unit 2. The bridge portion 4 is preferably formed along the shape of the distal end surface 22 a of the biomagnetism detection portion 2 so that a gap can not be formed between the bridge portion 4 and the biomagnetism detection portion 2 in close contact therewith. It should be made with high precision. The reason why it is preferable to be formed along the shape of the surface of the biomagnetic detection unit 2 and to be formed without a gap is to shorten the distance between the subject S and the magnetic sensor 21 as much as possible. This is to measure the biomagnetic signal from the subject S as a larger signal. The reason is that the biomagnetic field has a very weak signal, and if the distance between the subject S and the magnetic sensor 21 is short, a larger signal can be expected. For example, the signal of the biomagnetic field may decay in inverse proportion to the square or cube of the distance.

ところで、被検体Sの脊髄(生体磁場源)と磁気センサ21との間の距離は約70mm程度である。このため、多少の偏差があっても、計測への影響はそれほど大きくない。従って、橋梁部4の「表面形状に倣う」形状としては、生体磁気検出部2の表面の形状と完全一致していることに加え、表面形状が概ね一致する場合も含む。なお、形状は完全一致している方がより好ましい。   The distance between the spinal cord (biomagnetic field source) of the subject S and the magnetic sensor 21 is about 70 mm. Therefore, even if there is a slight deviation, the influence on the measurement is not so great. Therefore, the shape "following the surface shape of the bridge portion 4" includes not only the shape of the surface of the biomagnetism detection portion 2 completely matching, but also the case where the surface shape substantially matches. It is more preferable that the shapes completely match.

また、生体磁気検出部2の先端面22aの形状に合わせて平面形状や曲面形状をとることができる。橋梁部4は被検体Sを載せたまま昇降するため、被検体Sの荷重に耐えられるだけの機械的強度を持つことが望ましい。橋梁部4の断面厚さは、素材の構造や強度にもよるが、1mmから20mmとすることが好ましい。一例として、橋梁部4がポリカーボネート製の場合、図2で被検体Sと対向する部分では5mm程度、この被検体Sと対向する部分を支持する両端の部分では20mm程度とすることができる。また、橋梁部4がガラス繊維強化プラスチック(Glass Fiber Reinforced Plastic:GFRP)製の場合、橋梁部4の断面厚さは、図2で被検体Sと対向する部分では1mm〜3mm程度、この被検体Sと対向する部分を支持する両端の部分では5mm〜10mm程度とすることができる。   Moreover, according to the shape of the front end surface 22a of the biomagnetism detection unit 2, a planar shape or a curved shape can be taken. Since the bridge portion 4 moves up and down with the subject S placed thereon, it is desirable that the bridge portion 4 have mechanical strength sufficient to withstand the load of the subject S. The cross-sectional thickness of the bridge portion 4 is preferably 1 mm to 20 mm depending on the structure and strength of the material. As an example, when the bridge portion 4 is made of polycarbonate, it can be about 5 mm in the part facing the subject S in FIG. 2 and about 20 mm in the parts supporting the part facing the subject S. When the bridge portion 4 is made of glass fiber reinforced plastic (GFRP), the cross-sectional thickness of the bridge portion 4 is about 1 mm to 3 mm in a portion facing the subject S in FIG. In the part of the both ends which support the part which opposes S, it can be about 5 mm-10 mm.

橋梁部4を構成する部材は透磁率の低い非磁性材料で構成されることが好ましい。橋梁部4が非磁性材料で構成されることにより、被検体Sが振動しても、環境磁気の変動による影響が磁気センサ21に及ぶことを抑制することができる。非磁性材料としては、断熱容器22及び架台3と同様に、アクリル樹脂等のプラスチック材料、シリカ及びアルミナ等の無機材料、銅、真鍮、アルミニウム及びチタン等の非鉄金属、並びにそれらの複合材料が挙げられる。橋梁部4は、材料の切削加工、曲げ加工、射出成形等により作製することができる。   It is preferable that the member which comprises the bridge part 4 is comprised with a nonmagnetic material with low magnetic permeability. Since the bridge portion 4 is made of a nonmagnetic material, even if the subject S vibrates, it is possible to suppress that the magnetic sensor 21 is affected by the fluctuation of the environmental magnetism. Examples of nonmagnetic materials include plastic materials such as acrylic resin, inorganic materials such as silica and alumina, nonferrous metals such as copper, brass, aluminum and titanium, and composite materials thereof as well as the heat insulating container 22 and the frame 3. Be The bridge portion 4 can be manufactured by cutting, bending, injection molding or the like of a material.

[位置変更部7]
位置変更部7は、架台3及び橋梁部4を同期して昇降させる。昇降機構は手動であっても電動であってもよく、特に油圧シリンダ及び電動ポンプを用いた電動昇降機構が有用である。架台3の昇降に関しては、架台3の全体を昇降させてもよく、架台3の一部、例えば架台3の天板だけを昇降させてもよい。
[Position change unit 7]
The position change unit 7 raises and lowers the gantry 3 and the bridge 4 synchronously. The raising and lowering mechanism may be manual or electric, and in particular, an electric raising and lowering mechanism using a hydraulic cylinder and an electric pump is useful. For raising and lowering the gantry 3, the entire gantry 3 may be raised and lowered, or only a part of the gantry 3, for example, the top plate of the gantry 3 may be raised and lowered.

頭部用架台31及び胴部用架台32は、橋梁部4を介して互いに固定されていてもよい。この場合、位置変更部7は、頭部用架台31及び胴部用架台32を同期して一体として昇降させることができる。橋梁部4が頭部用架台31又は胴部用架台32のいずれか一方と接続されていてもよく、位置変更部7が、橋梁部4、頭部用架台31及び胴部用架台32のそれぞれを独立して昇降させてもよい。橋梁部4、頭部用架台31、胴部用架台32のそれぞれの相対位置が変化する場合、例えば、図6(a)に示すように、胴部用架台32のみを下降させて、図6(b)に示すように、被検体Sの計測領域Tと橋梁部4との密着性を向上させることができる。胴部用架台32のみを下降させた後に、微調整のために、橋梁部4若しくは頭部用架台31又はこれらの両方を昇降させてもよい。   The head mount 31 and the body mount 32 may be fixed to each other via the bridge 4. In this case, the position changing unit 7 can raise and lower the head mount 31 and the body mount 32 in synchronization in an integrated manner. The bridge portion 4 may be connected to any one of the head mount 31 and the body mount 32, and the position change unit 7 may be connected to the bridge 4, the head mount 31, and the body mount 32 respectively. May be raised and lowered independently. When the relative positions of the bridge 4, the head mount 31, and the trunk mount 32 change, for example, as shown in FIG. 6A, only the trunk mount 32 is lowered, as shown in FIG. As shown to (b), the adhesiveness of measurement area | region T of the test object S and the bridge part 4 can be improved. After lowering only the trunk support 32, the bridge 4 or the head support 31 or both of them may be moved up and down for fine adjustment.

[放射線照射装置5]
放射線照射装置5は、生体に放射可能な放射線を照射可能であれば、公知のものを使用することができる。本発明において、「放射線」とは、一般的に用いられる単純X線に限るものでなく、放射性崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線等のほか、これらと同程度以上のエネルギーを有するビーム、例えば、粒子線や宇宙線等も含む包括概念である。汎用性の高さを考慮すると、放射線として、単純X線を用いることが好ましい。
[Irradiation apparatus 5]
The radiation irradiation apparatus 5 can use a well-known thing, as long as it can irradiate the radiation which can be emitted to a biological body. In the present invention, "radiation" is not limited to the simple X-rays generally used, but is a beam generated by particles (including photons) emitted by radioactive decay, such as alpha rays, beta rays, gamma rays, etc. In addition to these, it is a comprehensive concept including beams having the same or higher energy than these, such as particle beams and cosmic rays. In view of the high versatility, it is preferable to use simple X-rays as radiation.

[放射線検出器6]
放射線検出器6は、架台3及び橋梁部4が上昇し、橋梁部4と生体磁気検出部2との間に間隙が形成された状態において装着部16に装着される。放射線検出器6は、被検体Sの計測領域Tを透過した放射線Rをデジタル画像データである形態画像として取得する。
[Radiation detector 6]
The radiation detector 6 is mounted on the mounting unit 16 in a state in which the gantry 3 and the bridge portion 4 are lifted and a gap is formed between the bridge portion 4 and the biomagnetic detection unit 2. The radiation detector 6 acquires the radiation R transmitted through the measurement area T of the subject S as a morphological image which is digital image data.

放射線検出器6で検出された信号は演算部に送られる。演算部では、放射線検出器6で検出された信号から形態画像を生成し、画像情報化して表示装置に表示出力する。   The signal detected by the radiation detector 6 is sent to the calculation unit. The arithmetic unit generates a morphological image from the signal detected by the radiation detector 6, converts it into image information, and displays and outputs it on the display device.

例えば、放射線検出器6には、フラット・パネル・ディテクター(以下、FPDという。)を用いることができる。FPDには、照射された放射線の線量に応じて検出素子で電荷を発生させて電気信号に変換するいわゆる直接変換方式や、照射された放射線をシンチレータ等で可視光等の他の波長の電磁波に変換した後、変換され照射された電磁波のエネルギーに応じてフォトダイオード等の光電変換素子で電荷を発生させて電気信号に変換するいわゆる間接方式がある。   For example, a flat panel detector (hereinafter referred to as FPD) can be used for the radiation detector 6. In FPD, a so-called direct conversion method in which charge is generated by the detection element according to the dose of the irradiated radiation and converted to an electric signal, and the irradiated radiation is converted to electromagnetic waves of other wavelengths such as visible light by a scintillator or the like. After the conversion, there is a so-called indirect method in which a charge is generated by a photoelectric conversion element such as a photodiode according to the energy of the converted and irradiated electromagnetic wave and converted into an electric signal.

また、輝尽性蛍光体粉末を塗布したフィルムをカセッテとよばれる筐体に収めた、いわゆるイメージングプレート(以下IPという。)も好適に用いることができる。被検体Sの計測領域Tを透過した放射線はイメージングプレートに照射され、輝尽性を持つ蛍光体に放射線のエネルギーが蓄えられる。その後、読み取り装置にてイメージングプレートに特定の波長のレーザー光を照射し、スキャナにより光量を読み取ることによってデジタル画像データとして形態画像を取得することができる。   In addition, a so-called imaging plate (hereinafter referred to as IP) in which a film coated with a stimulable phosphor powder is housed in a casing called cassette can be suitably used. The radiation transmitted through the measurement region T of the subject S is irradiated to the imaging plate, and the energy of the radiation is stored in the stimulable phosphor. Thereafter, the imaging plate is irradiated with laser light of a specific wavelength by the reading device, and the light quantity is read by the scanner to obtain a morphological image as digital image data.

このように構成された生体磁気計測装置100では、生体磁気検出部2を用いた生体磁気計測、並びに放射線照射装置5及び放射線検出器6を用いた単純X線画像の撮影が行われる。どちらが先に行われてもよい。図1及び図2に示す状態と図3及び図4に示す状態との間で、架台3及び橋梁部4の高さが異なっているが、架台3及び橋梁部4の移動、ここでは昇降、は位置変更部7により行われる。   In the biomagnetism measuring apparatus 100 configured as described above, biomagnetism measurement using the biomagnetism detection unit 2 and imaging of a simple X-ray image using the radiation irradiation apparatus 5 and the radiation detector 6 are performed. Either may be done first. Although the heights of the gantry 3 and the bridge portion 4 are different between the state shown in FIGS. 1 and 2 and the states shown in FIGS. 3 and 4, the movement of the gantry 3 and the bridge portion 4 is as follows. Is performed by the position change unit 7.

生体磁気計測は図1及び図2に示す状態で行われる。すなわち、生体磁気検出部2上に橋梁部4が密着し、橋梁部4上に被検体Sの計測領域Tが支持され、被検体Sの他の部位が架台3に載せられた状態で、生体磁気検出部2が計測領域Tの生体磁気を計測する。   Biomagnetic measurement is performed in the state shown in FIGS. 1 and 2. That is, in a state where the bridge 4 is in close contact with the biomagnetic detection unit 2, the measurement region T of the subject S is supported on the bridge 4, and the other part of the subject S is mounted on the gantry 3, The magnetic detection unit 2 measures biomagnetism in the measurement area T.

単純X線画像の撮影は図3及び図4に示す状態で行われる。すなわち、位置変更部7が、被検体Sを載せたまま架台3及び橋梁部4を同期して上昇させた状態で、放射線照射装置5から放射線が放出され、計測領域Tを透過した放射線を放射線検出器6が検出する。この状態では、生体磁気検出部2と橋梁部4との間に間隙が存在し、この間隙内で装着部16に放射線検出器6が装着され、橋梁部4上に被検体Sの計測領域Tが支持され、被検体Sの他の部位が架台3に載せられている。単純X線画像の撮影後には、放射線検出器6が装着部16から取り外され、位置変更部7が架台3及び橋梁部4を同期して下降させる。   The imaging of the plain X-ray image is performed in the state shown in FIG. 3 and FIG. That is, in a state where the position change unit 7 raises the gantry 3 and the bridge portion 4 synchronously while the object S is placed, radiation is emitted from the radiation irradiating device 5 and the radiation transmitted through the measurement area T is radiation Detector 6 detects. In this state, a gap exists between the biomagnetism detection unit 2 and the bridge portion 4, the radiation detector 6 is mounted on the mounting portion 16 in the gap, and the measurement region T of the subject S on the bridge portion 4. Is supported, and the other part of the subject S is placed on the gantry 3. After taking a simple X-ray image, the radiation detector 6 is removed from the mounting unit 16 and the position changing unit 7 synchronously lowers the gantry 3 and the bridge unit 4.

本実施形態に係る生体磁気計測装置100によれば、生体磁気検出部2を用いた生体磁気の計測及び放射線検出器6を用いた形態画像の取得を、被検体Sの姿勢を維持したまま行うことができる。このため、生体磁気検出部2から得られる生体磁気検出結果と、放射線検出器6から得られる単純X線画像のデジタル画像データである形態画像とを、精度よく重ね合わせることができる。   According to the biomagnetism measurement apparatus 100 according to the present embodiment, measurement of biomagnetism using the biomagnetism detection unit 2 and acquisition of a morphological image using the radiation detector 6 are performed while maintaining the posture of the subject S. be able to. Therefore, the biomagnetic detection result obtained from the biomagnetic detection unit 2 and the morphological image which is digital image data of the simple X-ray image obtained from the radiation detector 6 can be accurately superimposed.

また、生体磁気計測装置100においては、生体磁気計測に際して放射線検出器6を取り外すことが可能である。このため、放射線検出器6としてFPD又はIPのどちらを用いるとしても、放射線検出器6による生体磁気計測への影響を排除できる。FPDとIPとを比較すると、間接的な読み取り装置が不要なFPDが、処理が容易かつ簡便のため好ましい。市販のFPDは制御電子回路及びバッテリ等に多くの磁性体材料を含むため、生体磁気計測の際には取り外すことが極めて好ましい。また、市販のFPDは平坦であるため、曲面形状の先端面22aを有する生体磁気検出部2と組み合わせて用いると、優れた精度で測定結果を重ね合わせることが困難である。すなわち、被検体Sの計測領域Tの形状が、FPDの平面の上にある場合と生体磁気検出部2の湾曲した先端面22a上にある場合とでは相違するため、FPDで得られる形態画像と先端面22a上にある計測領域Tの形態とは相違する。従って、従来の生体磁気計測装置を用いる場合、FPDを用いて撮影された形態画像と生体磁気検出部2から得られる生体磁気計測結果との間にはずれが生じやすい。これに対し、本実施形態に係る生体磁気計測装置100を用いれば、このようなずれを解消することができる。   In the biomagnetic measurement apparatus 100, the radiation detector 6 can be removed for biomagnetic measurement. Therefore, regardless of whether FPD or IP is used as the radiation detector 6, the influence of the radiation detector 6 on biomagnetic measurement can be eliminated. When comparing FPD and IP, FPD, which does not require an indirect reading device, is preferred because of its ease and simplicity of processing. Since commercially available FPDs contain many magnetic materials in control electronics, batteries and the like, it is extremely preferable to remove them in biomagnetic measurement. Further, since a commercially available FPD is flat, it is difficult to superimpose measurement results with excellent accuracy when used in combination with the biomagnetic detection unit 2 having a curved end surface 22a. That is, since the shape of the measurement area T of the subject S is different between the case where it is on the plane of the FPD and the case where it is on the curved tip surface 22a of the biomagnetic detection unit 2, it is different from the morphological image obtained by the FPD. This is different from the form of the measurement area T on the tip end surface 22a. Therefore, when the conventional biomagnetic measurement apparatus is used, a deviation easily occurs between the morphological image captured using the FPD and the biomagnetic measurement result obtained from the biomagnetic detection unit 2. On the other hand, such deviation can be eliminated by using the biomagnetic measurement device 100 according to the present embodiment.

生体磁気検出部2から得られる生体磁気計測結果と放射線検出器6から得られる形態画像との重ね合わせ精度をより向上するために、放射線検出器6及び生体磁気検出部2の両方で検出可能なマーカーを用いることが好ましい。このようなマーカーの例として電磁石コイルが挙げられる。放射線検出器6には、電磁石コイルに含まれるコイル部のケーブルが写り、生体磁気検出部2には、電磁石コイルに供給した電気信号によって発生した磁場が検出される。このような電磁石コイル等のマーカーの位置が一致するように検出結果を重ね合わせることで、より精度の高い重ね合わせが可能となる。電磁石コイルは橋梁部4に埋め込んでもよい。電磁石コイルを橋梁部4の表面に貼り付けた場合は、電磁石コイルが被検体Sに接触し得るが、橋梁部4に埋め込むことで、被検体Sへの物理的な干渉を抑制することが可能である。   In order to further improve the overlay accuracy of the biomagnetic measurement result obtained from the biomagnetic detection unit 2 and the morphological image obtained from the radiation detector 6, detection is possible with both the radiation detector 6 and the biomagnetic detection unit 2 It is preferred to use a marker. An electromagnetic coil is mentioned as an example of such a marker. The cable of the coil unit included in the electromagnet coil is reflected on the radiation detector 6, and the biomagnetism detection unit 2 detects the magnetic field generated by the electric signal supplied to the electromagnet coil. By superimposing the detection results such that the positions of markers such as the electromagnet coil and the like coincide with each other, more accurate superposition can be performed. The electromagnet coil may be embedded in the bridge portion 4. When the electromagnet coil is attached to the surface of the bridge portion 4, the electromagnet coil may be in contact with the subject S, but by embedding in the bridge portion 4, physical interference with the subject S can be suppressed. It is.

装着部12及び装着部16は生体磁気検出部2と放射線検出器6との間の相対位置の保持に寄与する。生体磁気検出部2と放射線検出器6との相対位置が保持されることで、互いの位置情報を特定するマーカー等の位置特定手段が設けられていない場合でも、生体磁気検出部2から得られる生体磁気検出結果と、放射線検出器6から得られる形態画像とを精度よく重ね合わせることができる。ただし、装着部12、装着部16の一方又は両方が設けられていなくてもよい。   The mounting unit 12 and the mounting unit 16 contribute to holding of the relative position between the biomagnetic detection unit 2 and the radiation detector 6. By holding the relative positions of the biomagnetism detection unit 2 and the radiation detector 6, even if no position specifying means such as markers for specifying mutual position information is provided, the biomagnetism detection unit 2 can obtain the position information. The biomagnetic detection result and the morphological image obtained from the radiation detector 6 can be accurately superimposed. However, one or both of the mounting portion 12 and the mounting portion 16 may not be provided.

放射線検出器6の大きさは特に制限されるものではなく、被検体Sの計測領域Tに対応した大きさであればよい。放射線検出器6は放射線照射装置5から照射される放射線の照射領域よりも小さいことが好ましく、放射線照射装置5と被検体Sとの相対距離も適宜調整することができる。   The size of the radiation detector 6 is not particularly limited, and may be a size corresponding to the measurement area T of the subject S. The radiation detector 6 is preferably smaller than the radiation area of the radiation irradiated from the radiation irradiation device 5, and the relative distance between the radiation irradiation device 5 and the subject S can also be appropriately adjusted.

本実施形態では、放射線検出器6としてFPD及びIPを例示し、放射線照射装置5として単純X線装置を例示しているが、コンピューター断層撮影(Computed Tomography:CT)装置等も好適に用いることができる。CT装置は、被検体に放射線を走査し、透過した放射線量をコンピューター上で画像処理して被検体の内部構造を画像化する装置であり、いわば放射線検出器及び放射線照射装置を兼ね備えた診断装置である。   In the present embodiment, FPD and IP are illustrated as the radiation detector 6 and a simple X-ray apparatus is illustrated as the radiation irradiating apparatus 5, but a computed tomography (CT) apparatus or the like may be suitably used. it can. The CT apparatus is an apparatus for scanning radiation onto a subject, processing the transmitted radiation dose on a computer, and imaging the internal structure of the subject, so to say, a diagnostic apparatus having a so-called radiation detector and a radiation irradiation apparatus. It is.

<第2の実施形態>
次に、第2の実施形態について説明する。図7〜図10は、第2の実施形態に係る生体磁気計測装置200の構成を示す構成図である。図7及び図8は、生体磁気計測が行われる時の構成を示し、図9及び図10は、放射線撮像が行われる時の構成を示す。図7及び図9は、被検体の頭上側から見た図であり、図8及び図10は被検体の側方から見た図である。図7〜図10に示すように、生体磁気計測装置200は、第1の実施形態における位置変更部7に代えて位置変更部207を備える。また、放射線照射装置5が生体磁気検出部2の鉛直方向の直上ではなく、鉛直方向の直上から外れたところに設けられる。他の構成は第1の実施形態と同様である。
Second Embodiment
Next, a second embodiment will be described. 7 to 10 are configuration diagrams showing the configuration of a biomagnetic measurement device 200 according to the second embodiment. 7 and 8 show the configuration when biomagnetic measurement is performed, and FIGS. 9 and 10 show the configuration when radiation imaging is performed. FIGS. 7 and 9 are views from above the head of the subject, and FIGS. 8 and 10 are views from the side of the subject. As shown in FIGS. 7 to 10, the biomagnetic measurement apparatus 200 includes a position change unit 207 in place of the position change unit 7 in the first embodiment. In addition, the radiation irradiating device 5 is provided not right above the biomagnetic detection unit 2 in the vertical direction, but at a position away from immediately above the vertical direction. The other configuration is the same as that of the first embodiment.

位置変更部7が架台3及び橋梁部4を昇降させるのに対し、位置変更部207は架台3及び橋梁部4を同期して水平方向に移動させる。水平移動機構は手動であっても電動であってもよい。例えば、ベアリングやローラー、ベルトコンベア、ガイドレール、スライドレール、直動プッシャー、ボールネジ直動機構、又はそれらの組み合わせなど様々な公知の水平移動機構を用いることができる。架台3の移動に関しては、架台3の全体を移動させてもよく、架台3の一部、例えば架台3の天板だけを移動させてもよい。このように、第2の実施形態では、架台3及び橋梁部4の移動方向が第1の実施形態と相違している。   While the position change unit 7 raises and lowers the gantry 3 and the bridge portion 4, the position change unit 207 synchronously moves the gantry 3 and the bridge portion 4 in the horizontal direction. The horizontal movement mechanism may be manual or motorized. For example, various known horizontal movement mechanisms such as bearings, rollers, belt conveyors, guide rails, slide rails, linear movement pushers, ball screw linear movement mechanisms, or a combination thereof can be used. With respect to the movement of the gantry 3, the entire gantry 3 may be moved, or a part of the gantry 3, for example, only the top plate of the gantry 3 may be moved. Thus, in the second embodiment, the moving directions of the gantry 3 and the bridge portion 4 are different from those of the first embodiment.

このように構成された生体磁気計測装置200では、生体磁気検出部2を用いた生体磁気計測、並びに放射線照射装置5及び放射線検出器6を用いた単純X線画像の撮影が行われる。どちらが先に行われてもよい。図7及び図8に示す状態と図9及び図10に示す状態との間で、架台3及び橋梁部4の位置が異なっているが、架台3及び橋梁部4の移動、ここでは体側面方向への水平移動、は位置変更部207により行われる。   In the biomagnetic measurement apparatus 200 configured as described above, biomagnetic measurement using the biomagnetic detection unit 2 and imaging of a simple X-ray image using the radiation irradiation apparatus 5 and the radiation detector 6 are performed. Either may be done first. Although the positions of the gantry 3 and the bridge portion 4 are different between the state shown in FIGS. 7 and 8 and the states shown in FIGS. 9 and 10, the movement of the gantry 3 and the bridge portion 4 here, the body side direction The horizontal movement is performed by the position change unit 207.

生体磁気計測は図7及び図8に示す状態で行われる。すなわち、第1の実施形態と同様に、生体磁気検出部2上に橋梁部4が密着し、橋梁部4上に被検体Sの計測領域Tが支持され、被検体Sの他の部位が架台3に載せられた状態で、生体磁気検出部2が計測領域Tの生体磁気を計測する。   Biomagnetic measurement is performed in the state shown in FIGS. 7 and 8. That is, as in the first embodiment, the bridge portion 4 is in close contact with the biomagnetic detection portion 2, the measurement region T of the subject S is supported on the bridge portion 4, and the other portion of the subject S is a gantry. The biomagnetism detection unit 2 measures the biomagnetism of the measurement region T in the state of being placed on the surface 3.

単純X線画像の撮影は図9及び図10に示す状態で行われる。すなわち、位置変更部207が、被検体Sを載せたまま架台3及び橋梁部4を同期して放射線照射装置5の直下まで移動させた状態で、放射線照射装置5から放射線が放出され、計測領域Tを透過した放射線を放射線検出器6が検出する。この状態では、橋梁部4の下方に空間が存在し、この空間内で装着部16に放射線検出器6が装着され、橋梁部4上に被検体Sの計測領域Tが支持され、被検体Sの他の部位が架台3に載せられている。単純X線画像の撮影後には、放射線検出器6が装着部16から取り外され、位置変更部207が架台3及び橋梁部4を同期して元の位置まで水平移動させる。   Imaging of a plain X-ray image is performed in the state shown in FIGS. That is, radiation is emitted from the radiation irradiating device 5 in a state in which the position change unit 207 moves the gantry 3 and the bridge portion 4 to the position directly below the radiation irradiating device 5 in synchronization with the object S placed thereon. The radiation detector 6 detects the radiation transmitted through T. In this state, there is a space below the bridge portion 4 in which the radiation detector 6 is mounted on the mounting portion 16 and the measurement region T of the subject S is supported on the bridge portion 4. The other part of is mounted on the gantry 3. After taking a simple X-ray image, the radiation detector 6 is removed from the mounting unit 16, and the position changing unit 207 synchronizes the gantry 3 and the bridge unit 4 and horizontally moves them to their original positions.

位置変更部207が架台3に取り付けられたキャスターを含む場合、被検体の姿勢を維持したまま架台3を生体磁気検出部2から離し、例えばCT装置やMRI診断装置が設置される別室に移動させて、そこで詳細な画像撮影を行ってもよい。また、CT装置やMRI装置を持ち込んでその場で画像撮影を行ってもよい。CT装置を用いる場合、CT装置が放射線照射装置5及び放射線検出器6として機能する。   When the position change unit 207 includes a caster attached to the gantry 3, the gantry 3 is separated from the biomagnetic detection unit 2 while maintaining the posture of the subject, and moved to another room where, for example, a CT apparatus or an MRI diagnostic apparatus is installed. Then, a detailed image may be taken there. In addition, the CT apparatus or the MRI apparatus may be brought in and the image may be taken on the spot. When a CT apparatus is used, the CT apparatus functions as the radiation irradiating apparatus 5 and the radiation detector 6.

<第3の実施形態>
次に、第3の実施形態について説明する。図11〜図14は、第3の実施形態に係る生体磁気計測装置300の構成を示す構成図である。図11及び図12は、生体磁気計測が行われる時の構成を示し、図13及び図14は、放射線撮像が行われる時の構成を示す。図11及び図13は、被検体の頭上側から見た図であり、図12及び図14は被検体の側方から見た図である。図11〜図14に示すように、生体磁気計測装置300は、第1の実施形態における位置変更部7に代えて位置変更部307を備える。また、放射線照射装置5が生体磁気検出部2の鉛直方向の直上ではなく、鉛直方向の直上から外れたところに設けられる。更に、橋梁部4が生体磁気検出部2上ではなく、放射線照射装置5の鉛直方向の下方に設けられている。装着部16及び放射線検出器6も放射線照射装置5の鉛直方向の下方に設けられる。他の構成は第1の実施形態と同様である。
Third Embodiment
Next, a third embodiment will be described. 11 to 14 are configuration diagrams showing the configuration of a biomagnetic measurement apparatus 300 according to the third embodiment. 11 and 12 show the configuration when biomagnetic measurement is performed, and FIGS. 13 and 14 show the configuration when radiation imaging is performed. FIGS. 11 and 13 are views from above the head of the subject, and FIGS. 12 and 14 are views from the side of the subject. As shown in FIGS. 11 to 14, the biomagnetic measurement apparatus 300 includes a position change unit 307 instead of the position change unit 7 in the first embodiment. In addition, the radiation irradiating device 5 is provided not right above the biomagnetic detection unit 2 in the vertical direction, but at a position away from immediately above the vertical direction. Furthermore, the bridge portion 4 is provided not on the biomagnetism detection portion 2 but below the radiation irradiating device 5 in the vertical direction. The mounting unit 16 and the radiation detector 6 are also provided below the radiation irradiating device 5 in the vertical direction. The other configuration is the same as that of the first embodiment.

位置変更部7及び位置変更部207が架台3及び橋梁部4を移動させるのに対し、位置変更部307は被検体Sを水平方向に移動させる。例えば、架台3に可動式の天板が設けられている場合、位置変更部307は架台3の本体を固定したまま被検体Sを載せた天板を移動させることで、被検体Sを水平移動させることができる。また、被検体Sの姿勢を維持したまま水平方向に移動させることが可能であれば、例えば、架台3と被検体Sの間に布やフィルムを位置変更部307として設け、架台3上を滑らせることで被検体Sを移動させてもよい。   While the position change unit 7 and the position change unit 207 move the gantry 3 and the bridge unit 4, the position change unit 307 moves the subject S in the horizontal direction. For example, when the movable top plate is provided on the gantry 3, the position changing unit 307 horizontally moves the subject S by moving the top plate on which the subject S is placed while the main body of the gantry 3 is fixed. It can be done. Moreover, if it is possible to move in the horizontal direction while maintaining the posture of the subject S, for example, a cloth or a film is provided as the position changing unit 307 between the gantry 3 and the subject S, and The subject S may be moved by causing the object S to move.

このように構成された生体磁気計測装置300では、生体磁気検出部2を用いた生体磁気計測、並びに放射線照射装置5及び放射線検出器6を用いた単純X線画像の撮影が行われる。どちらが先に行われてもよい。図11及び図12に示す状態と図13及び図14に示す状態との間で、被検体Sの位置が異なっているが、被検体Sの移動、ここでは体側面方向への水平移動、は位置変更部307により行われる。   In the biomagnetic measurement apparatus 300 configured as described above, biomagnetic measurement using the biomagnetic detection unit 2 and imaging of a simple X-ray image using the radiation irradiation apparatus 5 and the radiation detector 6 are performed. Either may be done first. Although the position of the subject S is different between the state shown in FIGS. 11 and 12 and the states shown in FIGS. 13 and 14, movement of the subject S, here horizontal movement in the lateral direction of the body, This is performed by the position change unit 307.

生体磁気計測は図11及び図12に示す状態で行われる。すなわち、生体磁気検出部2上に被検体Sの計測領域Tが密着し、被検体Sの他の部位が架台3に載せられた状態で、生体磁気検出部2が計測領域Tの生体磁気を計測する。   Biomagnetic measurement is performed in the state shown in FIG. 11 and FIG. That is, the biomagnetic detection unit 2 performs biomagnetism of the measurement region T in a state where the measurement region T of the subject S is in close contact with the biomagnetic detection unit 2 and the other part of the subject S is mounted on the gantry 3. measure.

単純X線画像の撮影は図13及び図14に示す状態で行われる。すなわち、位置変更部307が被検体Sを放射線照射装置5の直下まで移動させた状態で、放射線照射装置5から放射線が放出され、計測領域Tを透過した放射線を放射線検出器6が検出する。この状態では、橋梁部4の下方に空間が存在し、この空間内で装着部16に放射線検出器6が装着され、橋梁部4上に被検体Sの計測領域Tが支持され、被検体Sの他の部位が架台3に載せられている。単純X線画像の撮影後には、放射線検出器6が装着部16から取り外され、位置変更部307が被検体Sを元の位置まで水平移動させる。   The imaging of the plain X-ray image is performed in the state shown in FIGS. 13 and 14. That is, in a state in which the position change unit 307 moves the subject S to the position directly below the radiation irradiating apparatus 5, radiation is emitted from the radiation irradiating apparatus 5, and the radiation detector 6 detects the radiation transmitted through the measurement area T. In this state, there is a space below the bridge portion 4 in which the radiation detector 6 is mounted on the mounting portion 16 and the measurement region T of the subject S is supported on the bridge portion 4. The other part of is mounted on the gantry 3. After the simple X-ray image is taken, the radiation detector 6 is removed from the mounting unit 16, and the position changing unit 307 horizontally moves the subject S to the original position.

第3の実施形態によっても第2の実施形態と同様の効果を得ることができる。また、橋梁部4が生体磁気検出部2の直上からずれて配置されているため、橋梁部4を取り外さなくても、高い精度で生体磁気計測を行うことができる。   Also by the third embodiment, the same effect as that of the second embodiment can be obtained. In addition, since the bridge portion 4 is disposed offset from immediately above the biomagnetic detection portion 2, biomagnetic measurement can be performed with high accuracy without removing the bridge portion 4.

<生体磁気計測装置100を用いた生体磁気計測方法>
次に、生体磁気計測装置100を用いた生体磁気計測方法について説明する。図15は、生体磁気計測装置100を用いた生体磁気計測方法を示すフローチャートである。この生体磁気計測方法では、被検体(ヒト)Sの脊髄の放射線撮影及び生体磁気計測を行う。
<Biomagnetic measurement method using biomagnetic measurement apparatus 100>
Next, a biomagnetic measurement method using the biomagnetic measurement device 100 will be described. FIG. 15 is a flowchart showing a biomagnetic measurement method using the biomagnetic measurement device 100. In this biomagnetic measurement method, radiography and biomagnetic measurement of the spinal cord of the subject (human) S are performed.

まず、被検体Sは、架台3の上に仰臥位(仰向け)になり、生体磁気検出部2の直上に被検体Sの脊髄がくる位置で待機する(ステップS100)。   First, the subject S is placed in a supine position on the gantry 3 and stands by at a position where the spinal cord of the subject S comes directly above the biomagnetic detection unit 2 (step S100).

次いで、放射線画像撮影を行う(ステップS200)。具体的には、診療放射線技師などの検査者は位置変更部7を操作して被検体Sを載せたまま架台3及び橋梁部4を同期して上昇させる(ステップS211)。その後、検査者は、橋梁部4と生体磁気検出部2との間にできた間隙内で装着部16に放射線検出器6を挿入し、放射線照射装置5のための操作部を操作して放射線照射装置5から被検体Sに向けて放射線を照射し、放射線検出器6で被検体Sの単純X線画像を撮影する(ステップS212)。その後、放射線検出器6を装着部16から取り外し、位置変更部7を操作して被検体Sを載せたまま架台3及び橋梁部4を同期して下降させる(ステップS213)。   Next, radiation imaging is performed (step S200). Specifically, an examiner such as a medical radiographer operates the position changing unit 7 to synchronously raise the gantry 3 and the bridge portion 4 with the object S placed thereon (step S211). Thereafter, the examiner inserts the radiation detector 6 into the mounting portion 16 in the gap formed between the bridge portion 4 and the biomagnetic detection portion 2 and operates the operation portion for the radiation irradiating device 5 to perform radiation Radiation is irradiated from the irradiation device 5 toward the subject S, and a simple X-ray image of the subject S is captured by the radiation detector 6 (step S212). Thereafter, the radiation detector 6 is removed from the mounting unit 16, and the position change unit 7 is operated to synchronously lower the gantry 3 and the bridge unit 4 while the object S is placed thereon (step S213).

次いで、生体磁気計測を行う(ステップS300)。具体的には、生体磁気検出部2からの検出結果である脊髄誘発磁場を取得する。   Next, biomagnetic measurement is performed (step S300). Specifically, the spinal cord evoked magnetic field which is the detection result from the biomagnetic detection unit 2 is acquired.

ステップS300で取得した脊髄誘発磁場の測定結果(生体情報計測結果)は、ステップS200で取得した単純X線画像と重ね合わせられて表示装置に表示される。図16に、ヒトの生体情報計測結果と単純X線画像とを重ね合わせた計測結果の例を示す。図16からもわかるように、一度の計測で脊髄の単純X線画像と脊髄誘発磁場図とを良好な精度で重ね合わせた生体情報を得ることができる。   The measurement result (biological information measurement result) of the spinal cord-induced magnetic field acquired in step S300 is superimposed on the simple X-ray image acquired in step S200 and displayed on the display device. FIG. 16 shows an example of the measurement result obtained by superposing the human biological information measurement result and the plain X-ray image. As can be understood from FIG. 16, it is possible to obtain biological information obtained by superimposing the simple X-ray image of the spinal cord and the spinal cord-induced magnetic field map with good accuracy by one measurement.

この方法では、放射線画像撮影を生体磁気計測の前に行っているが、生体磁気計測を放射線画像撮影の前に行ってもよい。ただし、橋梁部4が架台3に着脱可能である場合、放射線画像撮影を行った後には、図17に示すように、橋梁部4を取り外して生体磁気計測を行うことができる。橋梁部4を取り外すことで、計測領域Tと生体磁気検出部2の磁気センサ21との間の距離を短くすることができるため、観測される磁場信号も大きくなり、生体磁気計測の精度を高めることが期待できる。このように、橋梁部4を取り外すことで生体磁気計測の精度が向上することを考慮すると、放射線画像撮影を生体磁気計測の前に行うことが好ましい。   In this method, radiographic imaging is performed before biomagnetic measurement, but biomagnetic measurement may be performed before radiographic imaging. However, when the bridge portion 4 is removable from the gantry 3, after the radiation image photographing, as shown in FIG. 17, the bridge portion 4 can be removed and biomagnetic measurement can be performed. Since the distance between the measurement area T and the magnetic sensor 21 of the biomagnetic detection unit 2 can be shortened by removing the bridge portion 4, the observed magnetic field signal also becomes large, and the accuracy of biomagnetic measurement is enhanced. Can be expected. As described above, in consideration of improvement in the accuracy of biomagnetic measurement by removing the bridge portion 4, it is preferable to perform radiographic imaging before biomagnetic measurement.

<生体磁気計測装置200を用いた生体磁気計測方法>
次に、生体磁気計測装置200を用いた生体磁気計測方法について説明する。図18は、生体磁気計測装置200を用いた生体磁気計測方法を示すフローチャートである。生体磁気計測装置200を用いた生体磁気計測方法では、放射線画像撮影の内容が生体磁気計測装置100を用いた生体磁気計測方法と異なる。すなわち、放射線画像撮影を行う際には(ステップS200)、まず、検査者は、位置変更部207を操作して被検体Sを載せたまま架台3及び橋梁部4を同期して水平方向に移動させる(ステップS221)。その後、検査者は、橋梁部4が生体磁気検出部2の上方から移動することで形成された橋梁部4の下の空間内で装着部16に放射線検出器6を挿入し、放射線照射装置5から被検体Sに向けて放射線を照射し、放射線検出器6で被検体Sの単純X線画像を撮影する(ステップS222)。その後、放射線検出器6を装着部16から取り外し、位置変更部207を操作して架台3及び橋梁部4を同期して元の位置まで水平方向に移動させる(ステップS223)。他の処理は生体磁気計測装置100を用いた生体磁気計測方法と同様である。
<Biomagnetic Measurement Method Using Biomagnetic Measurement Device 200>
Next, a biomagnetic measurement method using the biomagnetic measurement device 200 will be described. FIG. 18 is a flowchart showing a biomagnetic measurement method using the biomagnetic measurement device 200. The biomagnetic measurement method using the biomagnetic measurement apparatus 200 differs from the biomagnetic measurement method using the biomagnetic measurement apparatus 100 in the content of radiation image capturing. That is, when radiation imaging is performed (step S200), first, the examiner operates the position changing unit 207 to move the gantry 3 and the bridge portion 4 in the horizontal direction in synchronization with the object S placed thereon. (Step S221). Thereafter, the examiner inserts the radiation detector 6 into the mounting portion 16 in the space under the bridge portion 4 formed by the bridge portion 4 moving from above the biomagnetic detection portion 2, and the radiation irradiating device 5 Then, radiation is irradiated toward the subject S, and a simple X-ray image of the subject S is taken by the radiation detector 6 (step S222). Thereafter, the radiation detector 6 is removed from the mounting unit 16, and the position changing unit 207 is operated to synchronize the gantry 3 and the bridge unit 4 and move them horizontally to the original position (step S223). The other processing is the same as the biomagnetic measurement method using the biomagnetic measurement device 100.

この方法でも、放射線画像撮影を生体磁気計測の前に行っているが、生体磁気計測を放射線画像撮影の前に行ってもよい。ただし、橋梁部4を取り外すことで生体磁気計測の精度が向上することを考慮すると、放射線画像撮影を生体磁気計測の前に行うことが好ましい。   Also in this method, radiation imaging is performed before biomagnetic measurement, but biomagnetic measurement may be performed before radiation imaging. However, in consideration of improvement of the accuracy of biomagnetic measurement by removing the bridge portion 4, it is preferable to perform radiation image capturing before biomagnetic measurement.

<生体磁気計測装置300を用いた生体磁気計測方法>
次に、生体磁気計測装置300を用いた生体磁気計測方法について説明する。図19は、生体磁気計測装置300を用いた生体磁気計測方法を示すフローチャートである。生体磁気計測装置300を用いた生体磁気計測方法では、放射線画像撮影の内容が生体磁気計測装置100又は200を用いた生体磁気計測方法と異なる。すなわち、放射線画像撮影を行う際には(ステップS200)、まず、検査者は、位置変更部307を操作して被検体Sを水平方向に移動させる(ステップS231)。このとき、橋梁部4に計測領域Tを支持させる。その後、検査者は、橋梁部4の下の空間内で装着部16に放射線検出器6を挿入し、放射線照射装置5から被検体Sに向けて放射線を照射し、放射線検出器6で被検体Sの単純X線画像を撮影する(ステップS232)。その後、放射線検出器6を装着部16から取り外し、位置変更部307を操作して被検体Sを元の位置まで水平方向に移動させる(ステップS233)。他の処理は生体磁気計測装置100を用いた生体磁気計測方法と同様である。
<Biomagnetic measurement method using biomagnetic measurement apparatus 300>
Next, a biomagnetic measurement method using the biomagnetic measurement apparatus 300 will be described. FIG. 19 is a flowchart showing a biomagnetic measurement method using the biomagnetic measurement apparatus 300. The biomagnetic measurement method using the biomagnetic measurement apparatus 300 differs from the biomagnetic measurement method using the biomagnetic measurement apparatus 100 or 200 in the content of radiation image capturing. That is, when radiation imaging is performed (step S200), first, the examiner operates the position changing unit 307 to move the subject S in the horizontal direction (step S231). At this time, the bridge 4 supports the measurement area T. Thereafter, the examiner inserts the radiation detector 6 into the mounting portion 16 in the space under the bridge portion 4 and irradiates radiation from the radiation irradiating device 5 toward the subject S, and the radiation detector 6 The simple X-ray image of S is taken (step S232). Thereafter, the radiation detector 6 is removed from the mounting unit 16, and the position changing unit 307 is operated to move the subject S in the horizontal direction to the original position (step S233). The other processing is the same as the biomagnetic measurement method using the biomagnetic measurement device 100.

この方法でも、放射線画像撮影を生体磁気計測の前に行っているが、生体磁気計測を放射線画像撮影の前に行ってもよい。また、生体磁気計測装置300では、橋梁部4が生体磁気検出部2の直上からずれて配置されているため、橋梁部4を取り外さなくても、高い精度で生体磁気計測を行うことができる。   Also in this method, radiation imaging is performed before biomagnetic measurement, but biomagnetic measurement may be performed before radiation imaging. Further, in the biomagnetic measurement apparatus 300, since the bridge portion 4 is disposed offset from immediately above the biomagnetic detection portion 2, biomagnetic measurement can be performed with high accuracy without removing the bridge portion 4.

被検体Sの計測領域Tは、脊髄、胸部等に制限されず、脳等、他の部位、器官であってもよい。生体磁気検出部2の先端面22aは計測領域Tの体表面に密着する形状を有することが好ましく、橋梁部4はこの先端面22aに倣う表面形状を有する。   The measurement area T of the subject S is not limited to the spinal cord, chest, etc., and may be other parts, organs, etc., such as the brain. The distal end surface 22a of the biomagnetism detection unit 2 preferably has a shape closely attached to the body surface of the measurement region T, and the bridge portion 4 has a surface shape conforming to the distal end surface 22a.

2 生体磁気検出部
3 架台
4 橋梁部
5 放射線照射装置
6 放射線検出器
7、207、307 位置変更部
12 装着部
16 装着部
31 頭部用架台
32 胴部用架台
100、200、300 生体磁気計測装置
S 被検体
R 放射線
T 計測領域
DESCRIPTION OF SYMBOLS 2 biomagnetic detection part 3 mount frame 4 bridge part 5 radiation irradiation apparatus 6 radiation detector 7, 207, 307 position change part 12 mounting part 16 mounting part 31 head mount frame 32 trunk mount frame 100, 200, 300 biomagnetic measurement Device S object R radiation T measurement area

特開2009−172175号公報JP, 2009-172175, A 特開2016−221184号公報JP, 2016-221184, A 国際公開第2017/150207号International Publication No. 2017/150207 国際公開第2007/099697号International Publication No. 2007/099697

Claims (15)

被検体が載せられる架台と、
前記被検体の生体磁気を検出可能な生体磁気検出部と、
前記被検体の生体磁気の検出対象部位を支持する支持部と、
前記支持部の下方に設けられる放射線検出部と、
前記生体磁気検出部と前記検出対象部位との相対位置を変更可能な位置変更部と、
を有し、
前記支持部は、前記生体磁気検出部の表面に倣う表面形状を有することを特徴とする生体磁気計測装置。
A gantry on which the subject is placed;
A biomagnetic detection unit capable of detecting the biomagnetism of the subject;
A support portion for supporting a detection target site of biomagnetism of the subject;
A radiation detection unit provided below the support unit;
A position change unit capable of changing a relative position between the biomagnetism detection unit and the detection target site;
Have
The biomagnetic measurement device according to claim 1, wherein the support portion has a surface shape that follows the surface of the biomagnetic detection portion.
前記位置変更部は、前記生体磁気検出部の位置を固定したまま、前記被検体及び前記架台を移動させることを特徴とする請求項1に記載の生体磁気計測装置。   The biomagnetic measurement apparatus according to claim 1, wherein the position changing unit moves the subject and the gantry while fixing the position of the biomagnetic detection unit. 前記位置変更部は、前記生体磁気検出部の位置を固定したまま、前記被検体及び前記支持部を移動させることを特徴とする請求項1又は2に記載の生体磁気計測装置。   The biomagnetic measurement apparatus according to claim 1, wherein the position changing unit moves the subject and the support while fixing the position of the biomagnetic detection unit. 前記位置変更部は、前記被検体、前記架台及び前記支持部を鉛直上方に移動させ、
前記放射線検出部は、前記生体磁気検出部と前記支持部との間に形成される間隙に配置されることを特徴とする請求項1乃至3のいずれか1項に記載の生体磁気計測装置。
The position changing unit moves the subject, the gantry, and the support vertically upward.
The biomagnetic measurement device according to any one of claims 1 to 3, wherein the radiation detection unit is disposed in a gap formed between the biomagnetic detection unit and the support unit.
前記位置変更部は、前記生体磁気検出部の位置を固定したまま、前記被検体を水平方向に移動させることを特徴とする請求項1乃至3のいずれか1項に記載の生体磁気計測装置。   The biomagnetic measurement device according to any one of claims 1 to 3, wherein the position changing unit moves the subject in the horizontal direction while fixing the position of the biomagnetic detection unit. 前記架台は、複数の部位別架台を含むことを特徴とする請求項1乃至5のいずれかに記載の生体磁気計測装置。   The biomagnetism measurement device according to any one of claims 1 to 5, wherein the gantry includes a plurality of gantrys classified by region. 前記支持部は、前記複数の部位別架台の間に配置されることを特徴とする請求項6に記載の生体磁気計測装置。   The biomagnetism measurement device according to claim 6, wherein the support portion is disposed between the plurality of the part-by-part stand. 前記支持部は、前記架台に着脱可能に保持されることを特徴とする請求項1乃至7のいずれか1項に記載の生体磁気計測装置。   The biomagnetic measurement device according to any one of claims 1 to 7, wherein the support portion is detachably held by the gantry. 被検体の検出対象部位の生体磁気の検出及び放射線画像の撮影を行う生体磁気計測装置であって、
前記生体磁気の検出及び前記放射線画像の撮影は、前記被検体をその姿勢を維持したまま互いに異なる位置に移動させて行うことを特徴とする生体磁気計測装置。
A biomagnetism measuring apparatus for detecting biomagnetism of a detection target site of a subject and capturing a radiation image,
A biomagnetic measurement apparatus characterized in that the detection of the biomagnetism and the imaging of the radiation image are performed by moving the subject to different positions while maintaining its posture.
被検体が載せられる架台と、
前記被検体の第1の生体情報を検出可能な第1の生体情報検出部と、
前記被検体の第1の生体情報の検出対象部位を支持する支持部と、
前記支持部の下方に設けられ、前記第1の生体情報とは異なる第2の生体情報を検出可能な第2の生体情報検出部と、
前記第1の生体情報検出部と前記検出対象部位との相対位置を変更可能な位置変更部と、
を有し、
前記支持部は、前記第1の生体情報検出部の表面に倣う表面形状を有することを特徴とする生体情報計測装置。
A gantry on which the subject is placed;
A first biological information detection unit capable of detecting the first biological information of the subject;
A support portion for supporting a detection target portion of the first biological information of the subject;
A second biological information detection unit provided below the support unit and capable of detecting second biological information different from the first biological information;
A position change unit capable of changing a relative position between the first biological information detection unit and the detection target site;
Have
The biological information measuring device according to claim 1, wherein the support portion has a surface shape that follows the surface of the first biological information detection portion.
前記第1の生体情報は、前記被検体の形態に関する情報を含まず、
前記第2の生体情報は、前記被検体の形態画像を含むことを特徴とする請求項10に記載の生体情報計測装置。
The first biological information does not include information on the form of the subject,
The biological information measuring device according to claim 10, wherein the second biological information includes a morphological image of the subject.
放射線検出部を用いて、被検体の検出対象部位の放射線画像を撮影する工程と、
生体磁気検出部を用いて、前記検出対象部位の生体磁気を検出する工程と、
前記放射線画像の撮影と前記生体磁気の検出との間で、前記被検体の姿勢を維持したまま前記生体磁気検出部と前記検出対象部位との相対位置を変更する工程と、
を有することを特徴とする生体磁気計測方法。
Taking a radiation image of a detection target site of a subject using a radiation detection unit;
Detecting biomagnetism of the detection target site using a biomagnetism detection unit;
Between the imaging of the radiation image and the detection of the biomagnetism, changing the relative position between the biomagnetism detection unit and the detection target site while maintaining the posture of the subject;
A biomagnetism measuring method characterized by having.
前記生体磁気を検出する工程の前に、前記放射線検出部を前記検出対象部位と前記生体磁気検出部との間から取り外す工程を有することを特徴とする請求項12に記載の生体磁気計測方法。   The biomagnetic measurement method according to claim 12, further comprising the step of removing the radiation detection unit from between the detection target site and the biomagnetic detection unit before the step of detecting the biomagnetism. 前記放射線画像の撮影を、前記被検体を架台に載せ、前記検出対象部位を、前記生体磁気検出部の表面に倣う表面形状を有する支持部で支持しながら行うことを特徴とする請求項12又は13に記載の生体磁気計測方法。   13. The apparatus according to claim 12, wherein the radiation image is captured while the subject is placed on a gantry and the detection target portion is supported by a support having a surface shape that follows the surface of the biomagnetic detection unit. The biomagnetism measuring method as described in 13. 前記生体磁気を検出する工程の前に、前記支持部を前記検出対象部位と前記生体磁気検出部との間から取り外す工程を有することを特徴とする請求項14に記載の生体磁気計測方法。   The biomagnetic measurement method according to claim 14, further comprising the step of removing the support portion from between the detection target site and the biomagnetic detection unit before the step of detecting the biomagnetism.
JP2018205986A 2017-12-01 2018-10-31 Biomagnetism measuring device and biomagnetism measuring method Active JP7176689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/198,962 US11375934B2 (en) 2017-12-01 2018-11-23 Biomagnetic measurement apparatus, biological information measurement apparatus, and biomagnetic measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017231571 2017-12-01
JP2017231571 2017-12-01

Publications (2)

Publication Number Publication Date
JP2019098156A true JP2019098156A (en) 2019-06-24
JP7176689B2 JP7176689B2 (en) 2022-11-22

Family

ID=66974911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205986A Active JP7176689B2 (en) 2017-12-01 2018-10-31 Biomagnetism measuring device and biomagnetism measuring method

Country Status (1)

Country Link
JP (1) JP7176689B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006243A (en) * 2019-06-27 2021-01-21 株式会社リコー Radiation source position estimation system, calibration system, and biomagnetism measurement system
US11443717B2 (en) 2019-11-25 2022-09-13 Ricoh Company, Ltd. Biometric information display device, biometric information display method, and computer-readable recording medium, extracting current components at positions along a neural pathway based on current information reconstructed based on magnetic field measurement data generated by subject

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049781A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Apparatus for magnetic measurement of living body, and method of positioning person under examination
WO2007099697A1 (en) * 2006-02-23 2007-09-07 University Corporation, Kanazawa Institute Of Technology Superconducting magnetism measuring device, biomagnetism measuring method, biomagnetism measuring device-use sensor tube cover and sheet
US20090295385A1 (en) * 2005-05-11 2009-12-03 Audrius Brazdeikis Magneto Sensor System and Method of Use
WO2016175020A1 (en) * 2015-04-30 2016-11-03 国立大学法人東京医科歯科大学 Biological information measuring apparatus
WO2017150207A1 (en) * 2016-03-03 2017-09-08 株式会社リコー Magnetic measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049781A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Apparatus for magnetic measurement of living body, and method of positioning person under examination
US20090295385A1 (en) * 2005-05-11 2009-12-03 Audrius Brazdeikis Magneto Sensor System and Method of Use
WO2007099697A1 (en) * 2006-02-23 2007-09-07 University Corporation, Kanazawa Institute Of Technology Superconducting magnetism measuring device, biomagnetism measuring method, biomagnetism measuring device-use sensor tube cover and sheet
WO2016175020A1 (en) * 2015-04-30 2016-11-03 国立大学法人東京医科歯科大学 Biological information measuring apparatus
WO2017150207A1 (en) * 2016-03-03 2017-09-08 株式会社リコー Magnetic measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUMIYA, S. ET AL.: "Magnetospinography visualizes electrophysiological activity in the cervical spinal cord", SCIENTIFIC REPORTS, vol. Vol.7, No.1,2192, JPN6022013078, 19 May 2017 (2017-05-19), pages 1 - 12, ISSN: 0004747805 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006243A (en) * 2019-06-27 2021-01-21 株式会社リコー Radiation source position estimation system, calibration system, and biomagnetism measurement system
JP7358866B2 (en) 2019-06-27 2023-10-11 株式会社リコー Radiation source position estimation system, calibration system, and biomagnetic measurement system
US11443717B2 (en) 2019-11-25 2022-09-13 Ricoh Company, Ltd. Biometric information display device, biometric information display method, and computer-readable recording medium, extracting current components at positions along a neural pathway based on current information reconstructed based on magnetic field measurement data generated by subject

Also Published As

Publication number Publication date
JP7176689B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP6513798B2 (en) Biological information measuring device
JP3454235B2 (en) Biomagnetic field measurement device
CN104983438B (en) Detector head proximity sensing and collision avoidance apparatuses and method
EP2424429B1 (en) Imaging device for three dimensional anatomical and functional imaging and methods thereof
JP6999897B2 (en) Biometric information measuring device
US11076790B2 (en) Biological information measuring apparatus
US20200000426A1 (en) Fiducial marker for geometric calibration of bed-side mobile tomosynthesis system
US20180356536A1 (en) Mobile tof-pet insert
JP7176689B2 (en) Biomagnetism measuring device and biomagnetism measuring method
US11375934B2 (en) Biomagnetic measurement apparatus, biological information measurement apparatus, and biomagnetic measurement method
US7455455B2 (en) Patient barrier for an imaging application
CN206381174U (en) Magnetic induction image device based on laser atom magnetometer
Cox et al. High-resolution three-dimensional microelectrode brain mapping using stereo microfocal X-ray imaging
JP7026356B2 (en) Biometric information measuring device
JP6857345B2 (en) Biological information measuring device
JP3591473B2 (en) Biomagnetic field measurement device
CN213069149U (en) Device for measuring concentration and distribution of boron-containing medicament in human brain
Majewski et al. Compact and mobile high resolution PET brain imager
EP4032476A1 (en) Imaging apparatus for imaging ex-vivo tissue specimens
JP3951624B2 (en) Biomagnetic field measurement device
JP2023135333A (en) Biomagnetism measurement device, biomagnetism measurement system, and method for measuring biomagnetism
JP3603803B2 (en) Biomagnetic field measurement device
JP2024024999A (en) Biometric device, biometric system, and biometric method
JPH08173398A (en) Cerebral function measuring device
JP2021006243A (en) Radiation source position estimation system, calibration system, and biomagnetism measurement system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R150 Certificate of patent or registration of utility model

Ref document number: 7176689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150