JP2019095601A - Phosphor member and light source device - Google Patents

Phosphor member and light source device Download PDF

Info

Publication number
JP2019095601A
JP2019095601A JP2017224959A JP2017224959A JP2019095601A JP 2019095601 A JP2019095601 A JP 2019095601A JP 2017224959 A JP2017224959 A JP 2017224959A JP 2017224959 A JP2017224959 A JP 2017224959A JP 2019095601 A JP2019095601 A JP 2019095601A
Authority
JP
Japan
Prior art keywords
phosphor
light
layer
substrate
phosphor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017224959A
Other languages
Japanese (ja)
Inventor
涼 野村
Ryo Nomura
涼 野村
剛志 神
Tsuyoshi Jin
剛志 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2017224959A priority Critical patent/JP2019095601A/en
Publication of JP2019095601A publication Critical patent/JP2019095601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

To efficiently output fluorescent light from a phosphor film.SOLUTION: A phosphor member (200) includes: a substrate (210); and a phosphor layer (220) disposed on the substrate. The phosphor layer includes: a phosphor film (222) including phosphor particles for converting the excitation light into the fluorescent light; a first light reflection layer (223) for reflecting, toward the phosphor film, the excitation light and fluorescent light emitted from a substrate side-surface in the phosphor film; and second light reflection layers (224 and 225) that are disposed to cover the side surface of the phosphor film, and reflect, toward the phosphor film, the excitation light or fluorescent light emitted from the side-surface of the phosphor film through the phosphor film.SELECTED DRAWING: Figure 3

Description

本発明は、蛍光体部材及びそれを用いた光源装置に関する。   The present invention relates to a phosphor member and a light source device using the same.

当該技術分野において、固体光源から出射する励起光を蛍光体により可視光に変換して効率良く発光する光源装置が提案されている。特許文献1には、光源から出射した励起光(青色レーザ光)を、蛍光体が形成された円板(蛍光体ホイール)に照射し、複数の蛍光光(赤色光、緑色光)を発光させて照明光として用いる構成が開示されている。   In the relevant technical field, a light source device has been proposed which converts excitation light emitted from a solid state light source into visible light by a phosphor and emits light efficiently. In Patent Document 1, excitation light (blue laser light) emitted from a light source is irradiated to a disk (phosphor wheel) on which a phosphor is formed to emit plural fluorescent lights (red light and green light). A configuration for use as illumination light is disclosed.

特開2011−13313号公報JP, 2011-13313, A

蛍光体膜に含まれる蛍光体粒子が励起光を蛍光光に変換すると、蛍光光は蛍光体膜の全方向に向かって出射する。これに対し、蛍光体膜から蛍光光を取りだす面は蛍光光の出射面に限られるので、出射面とは異なる方向に向かって出射した蛍光光は、出射面からは出力されない。これは蛍光光の損失につながっている。よって、蛍光光の損失を防ぎ、蛍光光の出力をより向上させる工夫が求められている。   When phosphor particles contained in the phosphor film convert excitation light into fluorescence light, the fluorescence light is emitted in all directions of the phosphor film. On the other hand, since the surface from which the fluorescent light is extracted from the phosphor film is limited to the emitting surface of the fluorescent light, the fluorescent light emitted in the direction different from the emitting surface is not output from the emitting surface. This leads to the loss of fluorescent light. Therefore, a device for preventing the loss of fluorescent light and further improving the output of fluorescent light is required.

本発明の目的は、上記実情に鑑みてなされたものであり、蛍光体膜から蛍光光をより効率よく出力させることを目的とする。   The object of the present invention is made in view of the above-mentioned situation, and aims at outputting fluorescent light more efficiently from a phosphor film.

上記課題を解決するため、本発明は特許請求の範囲に記載の構成を備える。その一例を挙げるならば、基板と、前記基板の上に配置された蛍光体層と、を含む蛍光体部材であって、前記蛍光体層は、励起光を蛍光光に変換する蛍光体粒子を含む蛍光体膜と、前記蛍光体膜における基板側面に接して配置され、前記基板側面から出射する前記励起光及び前記蛍光光を、前記蛍光体膜に向けて反射する第1光反射層と、前記蛍光体膜の側面を囲んで配置され、前記側面から出射する前記励起光又は前記蛍光光を前記蛍光体膜に向けて反射する第2光反射層と、を含んで構成される、ことを特徴とする。   In order to solve the above-mentioned subject, the present invention comprises composition indicated in a claim. One example thereof is a phosphor member including a substrate and a phosphor layer disposed on the substrate, wherein the phosphor layer converts phosphor particles for converting excitation light into fluorescence light. And a first light reflecting layer disposed in contact with the side surface of the substrate in the phosphor film and reflecting the excitation light and the fluorescent light emitted from the side surface of the substrate toward the phosphor film. And a second light reflecting layer disposed so as to surround the side surface of the phosphor film and reflecting the excitation light or the fluorescent light emitted from the side surface toward the phosphor film. It features.

本発明によれば、蛍光体膜の発光効率を向上させることができる。上記以外の本発明の目的・構成・効果については以下の実施形態で明らかにされる。   According to the present invention, the luminous efficiency of the phosphor film can be improved. The objects, configurations and effects of the present invention other than the above will be clarified in the following embodiments.

プロジェクタの内部構成を説明する斜視図A perspective view for explaining the internal configuration of the projector 光源装置の概略構成図Schematic diagram of light source device 蛍光体部材の一例を示す断面図Cross-sectional view showing an example of a phosphor member 蛍光体部材の他例を示す断面図Cross section showing another example of phosphor member 蛍光光の出力に関する光反射層の作用効果を示す図Diagram showing the effect of the light reflection layer on the output of fluorescent light レーザスポット径に対する蛍光体膜サイズを示す図Diagram showing phosphor film size against laser spot diameter 蛍光体膜に励起光を照射した際の輝度計撮影図Luminometer photogram when the phosphor film is irradiated with excitation light

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

以下、本実施形態に係る蛍光体部材及びそれを用いた光源装置を搭載したプロジェクタについて図1を参照して説明する。図1はプロジェクタの内部構成を説明する斜視図である。   Hereinafter, a phosphor member according to the present embodiment and a projector mounted with a light source device using the same will be described with reference to FIG. FIG. 1 is a perspective view for explaining the internal configuration of the projector.

図1に示す通り、プロジェクタ1では、箱状の下側筐体5の図1中における左側面の前側に配置された電源ユニット2からの電源供給を受けて、左側面の奥側に配置された光源ユニット3より光が出射し、図中の背面後部に配置された光学ユニット4に入射する。冷却ファン10は光源ユニット3に隣接して配置され、光源ユニット3と電源ユニット2との間に配置されている。   As shown in FIG. 1, in the projector 1, the power is supplied from the power supply unit 2 disposed on the front side of the left side of the box-like lower housing 5 in FIG. Light is emitted from the light source unit 3 and is incident on an optical unit 4 disposed at the rear on the back of the figure. The cooling fan 10 is disposed adjacent to the light source unit 3 and disposed between the light source unit 3 and the power supply unit 2.

冷却ファン10を駆動する駆動回路は、電源ユニット2内に設けても良いし、下側筐体5内の空きスペースに設けても良い。   The drive circuit for driving the cooling fan 10 may be provided in the power supply unit 2 or may be provided in an empty space in the lower housing 5.

光学ユニット4に入射した光、即ち光源ユニット3からの出射光は、最終的に投影レンズ9の投射レンズ出射部9bより拡大され図示していないスクリーンに投影される。   The light incident on the optical unit 4, that is, the light emitted from the light source unit 3 is finally enlarged by the projection lens emission unit 9 b of the projection lens 9 and projected on a screen (not shown).

下側筐体5の側面には通風ダクト吸気口71aが設けられている。通風ダクト71は、光学部品冷却風に光学系以外の冷却風が混入しないように設置され、内部に設置されたパネル冷却ファンを用いて通風ダクト吸気口71aより外気を取り入れている。   A ventilation duct inlet port 71 a is provided on the side surface of the lower housing 5. The ventilation duct 71 is installed so that cooling air other than the optical system does not enter the cooling air of the optical components, and outside air is taken in from the ventilation duct inlet 71a using a panel cooling fan installed inside.

通風ダクト吸気口71aから取り込まれた冷却風は、通風ダクト71により整流され、下側筐体5に収容された各部品周囲を通過し、これらを冷却する。   The cooling air taken in from the ventilation duct inlet 71a is rectified by the ventilation duct 71, passes around the respective components contained in the lower housing 5, and cools them.

図2は、図1の光源ユニット3を構成する光源装置の概略構成図である。光源装置100は、主な構成要素として励起光源105、ミラー104、蛍光体部材200を有する。   FIG. 2 is a schematic configuration diagram of a light source device that constitutes the light source unit 3 of FIG. The light source device 100 has an excitation light source 105, a mirror 104, and a phosphor member 200 as main components.

蛍光体部材200は、大きくは基板210と、基板210の光出射方向側の面(表面)に積層された蛍光体層220とを含む。   The phosphor member 200 mainly includes a substrate 210 and a phosphor layer 220 laminated on a surface (surface) on the light emission direction side of the substrate 210.

励起光源105はレーザ発光素子などの固体発光素子を1個以上配置し、励起光として例えば青色レーザ光を出射する。   The excitation light source 105 includes one or more solid light emitting elements such as laser light emitting elements, and emits, for example, blue laser light as excitation light.

励起光源105から出射された励起光110(実線で示す)は、コリメートレンズ106により略平行光となり、波長板107を通過してミラー104に入射する。   The excitation light 110 (shown by a solid line) emitted from the excitation light source 105 becomes substantially parallel light by the collimator lens 106, passes through the wavelength plate 107, and is incident on the mirror 104.

ミラー104は励起光(青色)の波長域を反射し、蛍光光の波長域(黄色)を透過する特性を有するダイクロイックコートがされており、また合わせて偏光状態により青色光の反射波長が異なるように設計されている。   The mirror 104 reflects a wavelength range of excitation light (blue) and has a dichroic coating having a characteristic of transmitting the wavelength range (yellow) of fluorescent light, and the reflection wavelength of blue light is different depending on the polarization state. It is designed.

励起光源105から入射した励起光110の一部はミラー104にて反射し、集光レンズ103aで集光されて、基板210に入射する。また励起光110の一部はミラー104を透過し集光レンズ103bにより集光されて拡散板108に入射する。   A part of the excitation light 110 incident from the excitation light source 105 is reflected by the mirror 104, condensed by the condensing lens 103 a, and is incident on the substrate 210. Further, part of the excitation light 110 passes through the mirror 104 and is condensed by the condensing lens 103 b and enters the diffusion plate 108.

この際のミラー104における反射光と透過光との比率は、拡散板108の角度により調整することができる。   The ratio of the reflected light to the transmitted light at the mirror 104 at this time can be adjusted by the angle of the diffusion plate 108.

蛍光体層220に励起光が入射すると蛍光光が発生する。蛍光光は集光レンズ103aで略平行光となりミラー104に入射する。入射した蛍光光はミラー104の分光特性によりミラー104を透過する。   When excitation light is incident on the phosphor layer 220, fluorescent light is generated. The fluorescent light becomes substantially parallel light by the condenser lens 103 a and is incident on the mirror 104. The incident fluorescent light passes through the mirror 104 due to the spectral characteristics of the mirror 104.

また拡散板108に入射した励起光110は、拡散板108で拡散反射したのちにミラー104で一部の光が反射されて、前述の蛍光光と混色されて白色光111として放射される。   Further, the excitation light 110 incident on the diffusion plate 108 is diffused and reflected by the diffusion plate 108, then a part of the light is reflected by the mirror 104, mixed with the above-described fluorescent light, and emitted as white light 111.

この際、拡散板108で拡散反射されることで、蛍光光と混色されるレーザ光は基板210から発生する蛍光光と同一の分布となり、混色ムラを抑制することができる。   At this time, the laser beam mixed with the fluorescent light has the same distribution as the fluorescent light generated from the substrate 210 by being diffused and reflected by the diffusion plate 108, and the color mixing unevenness can be suppressed.

また図2のように蛍光体層220へ入射する励起光を集光する集光レンズ103aの周囲を、励起光が通過するようにレーザを配置することで、蛍光体層220に対しての入射角を大きくすることが可能となる。この構成により、蛍光体層220から効率良く蛍光光を発生させることで、励起光源105の省電力化や装置の小型化を実現できる。   Further, as shown in FIG. 2, by disposing the laser so that the excitation light passes around the condensing lens 103 a that condenses the excitation light to be incident on the phosphor layer 220, the incident light to the phosphor layer 220 It is possible to make the corner larger. With this configuration, by efficiently generating fluorescent light from the phosphor layer 220, power saving of the excitation light source 105 and downsizing of the device can be realized.

図3、図4を参照して蛍光体部材の構成について説明する。図3は蛍光体部材の一例を示す断面図である。図4は蛍光体部材の他例を示す断面図である。   The configuration of the phosphor member will be described with reference to FIGS. 3 and 4. FIG. 3 is a cross-sectional view showing an example of a phosphor member. FIG. 4 is a cross-sectional view showing another example of the phosphor member.

図3の蛍光体部材200は、基板210における励起光入射面側(表面)210aに接着層230を介して蛍光体層220を積層して構成される。   The phosphor member 200 in FIG. 3 is configured by laminating the phosphor layer 220 on the excitation light incident surface side (surface) 210 a of the substrate 210 via the adhesive layer 230.

(基板210)
蛍光体部材200は、基板210として蛍光体ホイールを用いる。蛍光体ホイールは、円板状の蛍光体層保持部211と、蛍光体層保持部211を中心に回転させるモータに連結される回転中心軸212とを含んで構成する。
(Substrate 210)
The phosphor member 200 uses a phosphor wheel as the substrate 210. The phosphor wheel includes a disk-shaped phosphor layer holding portion 211 and a rotation center shaft 212 connected to a motor rotating about the phosphor layer holding portion 211.

そして、回転中心軸212を中心に蛍光体層保持部211が回転させることで、励起光が蛍光体層220に局所的に入射し、局所的に高温になることを抑止する。   Then, by rotating the phosphor layer holding part 211 around the rotation center axis 212, the excitation light is locally incident on the phosphor layer 220, and it is suppressed that the temperature is locally high.

蛍光体層220は、回転中心軸212を中心とするリング状に形成され、基板210に接着層230を介して固定される。   The phosphor layer 220 is formed in a ring shape centering on the central axis of rotation 212, and is fixed to the substrate 210 via the adhesive layer 230.

蛍光体層220は、蛍光体膜222と、蛍光体膜222における基板側面(裏面)に第1光反射層223とを備える。更に、蛍光体膜222における基板側面とは反対側の面(表面)にPVDにより一体的に形成された反射防止層221を含んで構成される。   The phosphor layer 220 includes a phosphor film 222 and a first light reflection layer 223 on the side surface (back surface) of the phosphor film 222. Furthermore, the phosphor film 222 is configured to include an anti-reflection layer 221 integrally formed on the surface (surface) opposite to the side surface of the substrate by PVD.

更に蛍光体層220は、蛍光体層220の径方向内側面を覆う内側光反射層224、及び径方向外側面を覆う外側光反射層225を備えている。つまり、蛍光体層220の反射防止層221及び蛍光体膜222の側面は内側光反射層224及び外側光反射層225で囲まれて形成される。よって、内側光反射層224及び外側光反射層225は蛍光体膜222の側面を囲む第2光反射層に相当する。   The phosphor layer 220 further includes an inner light reflecting layer 224 covering the radially inner side of the phosphor layer 220 and an outer light reflecting layer 225 covering the radially outer side. That is, the side surfaces of the reflection preventing layer 221 and the phosphor film 222 of the phosphor layer 220 are formed so as to be surrounded by the inner light reflecting layer 224 and the outer light reflecting layer 225. Therefore, the inner light reflection layer 224 and the outer light reflection layer 225 correspond to a second light reflection layer surrounding the side surface of the phosphor film 222.

上記「PVD」にはスパッタリングや蒸着法等が含まれるものとし、一つの蒸着法に限定されない。なお、PVDによる蒸着順序も限定されない。すなわち、蛍光体膜222に対して反射防止層221又は第1光反射層223のどちらを先に行ってもよい。   The above “PVD” includes sputtering, vapor deposition, and the like, and is not limited to one vapor deposition. In addition, the deposition order by PVD is not limited, either. That is, either the antireflection layer 221 or the first light reflecting layer 223 may be performed first on the phosphor film 222.

(第1光反射層223、内側光反射層224、外側光反射層225)
第1光反射層223、内側光反射層224、及び外側光反射層225は励起光及び蛍光光の其々に対する反射率が95%以上であって、反射率は高ければ高いほどよく、材質は限定されない。例えば、Ag膜を第1光反射層223、内側光反射層224、外側光反射層225として用い、蛍光体膜222の裏面及び蛍光体膜222及び反射防止層221の側面にAg膜を直接形成してもよい。
(First light reflecting layer 223, inner light reflecting layer 224, outer light reflecting layer 225)
The first light reflection layer 223, the inner light reflection layer 224, and the outer light reflection layer 225 have a reflectance of 95% or more for excitation light and fluorescence light, respectively, and the higher the reflectance, the better. It is not limited. For example, an Ag film is used as the first light reflection layer 223, the inner light reflection layer 224, and the outer light reflection layer 225, and an Ag film is directly formed on the back surface of the phosphor film 222 and the side surfaces of the phosphor film 222 and the antireflective layer 221. You may

(蛍光体膜222)
蛍光体膜222は蛍光体膜222内に入射した励起光を蛍光光に変換し、蛍光光を蛍光体膜222の外に出射される機能性膜であって、材質は特に限定されない。例えば、蛍光体膜222は蛍光体粒子と酸化アルミニウム(アルミナ)とを含む焼結体相と空気相とから構成されてもよい。蛍光体粒子はYAG、又はLAGであって、焼結体相に含まれるアルミナの平均粒子径が1μm以上50μm以下であり、蛍光体膜に占める空気相が5vol.%以下であって、蛍光体膜の膜厚が50μm以上200μm以下である蛍光体膜を用いてもよい。
(Phosphor film 222)
The phosphor film 222 is a functional film that converts excitation light incident into the phosphor film 222 into fluorescence light and emits the fluorescence light to the outside of the phosphor film 222, and the material is not particularly limited. For example, the phosphor film 222 may be composed of a sintered phase containing phosphor particles and aluminum oxide (alumina) and an air phase. The phosphor particles are YAG or LAG, and the average particle diameter of alumina contained in the sintered phase is 1 μm to 50 μm, and the air phase occupied in the phosphor film is 5 vol. It is also possible to use a phosphor film having a thickness of 50 μm or more and 200 μm or less.

(反射防止層221)
励起光が蛍光体膜222の表面に入射するとき、蛍光体膜222の表面と空気層の屈折率差が大きく、励起光の蛍光体膜222の表面での反射率が大きいことで十分に励起光を蛍光体膜222の内部に透過することができず、蛍光光出力が低くなる。
(Antireflection layer 221)
When the excitation light is incident on the surface of the phosphor film 222, the difference in refractive index between the surface of the phosphor film 222 and the air layer is large, and the reflectance of the excitation light on the surface of the phosphor film 222 is large. Light can not be transmitted to the inside of the phosphor film 222, and the fluorescent light output is low.

そこで、蛍光体膜222の表面に励起光の反射率を1%以下にする機能を有する反射防止層221を設けることで、励起光の反射率は小さくなり、蛍光光出力は高くなる。反射防止層221は励起光の垂直入射光に対して表面反射率が1%以下になる構成であれば良く、単層又は複数層から構成しても良い。   Therefore, by providing the reflection preventing layer 221 having the function of reducing the reflectance of excitation light to 1% or less on the surface of the phosphor film 222, the reflectance of the excitation light becomes smaller and the fluorescent light output becomes higher. The antireflection layer 221 may have a surface reflectance of 1% or less with respect to vertical incident light of excitation light, and may be formed of a single layer or a plurality of layers.

(接着層230)
接着層230は、材質、膜厚等は特に限定されないが、蛍光体層220内で生じた励起光を蛍光光に変換する際に生じる熱を基板210に伝熱する際に妨げにならなないように、放熱性を有することが望ましい。例えば図3のように第1光反射層223と基板210との間に位置する接着層230は、透光性が不要であるので金属成分を含むハンダやシリコン樹脂などの有機物を含む接着剤を使用した接着層230を使用してもよい。
(Adhesive layer 230)
The adhesive layer 230 is not particularly limited in its material, film thickness, etc., but it does not interfere with the heat generated when converting the excitation light generated in the phosphor layer 220 to fluorescent light to the substrate 210. Thus, it is desirable to have heat dissipation. For example, as shown in FIG. 3, since the adhesive layer 230 located between the first light reflection layer 223 and the substrate 210 does not require light transmission, an adhesive containing an organic component such as a solder containing a metal component or a silicon resin is used. The adhesive layer 230 used may be used.

他例として、図4に示すように、蛍光体部材200aは、蛍光体層保持部211の蛍光体層側面(表面)210aに光反射層を塗布して第1光反射層223aを蛍光体層保持部211と一体に形成してもよい。この場合、蛍光体層220aは、第1光反射層223a上に配置された接着層230aと、その上に順に積層された蛍光体膜222及び反射防止層221を含んで形成される。更に蛍光体層220aは、接着層230a、蛍光体膜222、及び反射防止層221の径方向内側面を覆う内側光反射層224aと、接着層230a、蛍光体膜222、及び反射防止層221の径方向外側面を覆う外側光反射層225aとを含む。蛍光体層220aに含まれる接着層230aは、透光性を有する部材、例えばシリコンを用いて構成される。   As another example, as shown in FIG. 4, the phosphor member 200 a applies a light reflection layer to the phosphor layer side surface (surface) 210 a of the phosphor layer holding portion 211 and makes the first light reflection layer 223 a a phosphor layer You may form integrally with the holding part 211. FIG. In this case, the phosphor layer 220a is formed to include the adhesive layer 230a disposed on the first light reflection layer 223a, and the phosphor film 222 and the anti-reflection layer 221 sequentially stacked thereon. Furthermore, the phosphor layer 220 a includes the inner light reflection layer 224 a covering the adhesion layer 230 a, the phosphor film 222, and the radially inner side surface of the antireflection layer 221, the adhesive layer 230 a, the phosphor film 222, and the antireflection layer 221. And an outer light reflecting layer 225a covering the radially outer surface. The adhesive layer 230a included in the phosphor layer 220a is configured using a light transmitting member such as silicon.

図5、図6、図7を参照して、本実施形態に係る蛍光体部材200、200aの作用効果について説明する。図5は蛍光光の出力に関する光反射層の作用効果を示す図である。図6はレーザスポット径に対する蛍光体膜サイズを示す図である。図7は蛍光体膜に励起光を照射した際の輝度計撮影図である。   With reference to FIG.5, FIG.6, FIG.7, the effect of the fluorescent substance member 200,200a which concerns on this embodiment is demonstrated. FIG. 5 is a figure which shows the effect of the light reflection layer regarding the output of fluorescence light. FIG. 6 is a view showing the phosphor film size with respect to the laser spot diameter. FIG. 7 is a view taken by a luminance meter when the phosphor film is irradiated with excitation light.

図5の左図は、蛍光体膜222の裏面及び側面が露出している例を示す。本例では蛍光体膜222を配置し、光反射層は備えない。   The left view of FIG. 5 shows an example in which the back surface and the side surface of the phosphor film 222 are exposed. In this example, the phosphor film 222 is disposed, and the light reflection layer is not provided.

図5の左例に示すように、蛍光体膜222の蛍光体粒子から出射した蛍光光は全方向に出射されるため、出射された蛍光光の一部が蛍光体膜222の裏面や側面、また蛍光光の出射面(励起光の入射面を兼ねる)222aから外へ出力されるが、残りは蛍光体膜222内の蛍光体粒子とバインダ゛の界面との間で透過と反射を繰り返し減衰することで損失する。よって、図5の左例では、蛍光体粒子から出射した蛍光光のうちの一部しか蛍光体膜222の出射面222aから出射されない。   As shown in the left example of FIG. 5, since the fluorescent light emitted from the phosphor particles of the phosphor film 222 is emitted in all directions, part of the emitted fluorescent light is on the back surface or side surface of the phosphor film 222, In addition, the light is output from the emission surface (which also serves as the incident surface of the excitation light) 222a of the fluorescent light, but the rest is repeatedly attenuated in transmission and reflection between the phosphor particles in the phosphor film 222 and the binder. To lose money. Therefore, in the left example of FIG. 5, only a part of the fluorescent light emitted from the phosphor particles is emitted from the emission surface 222 a of the phosphor film 222.

これに対し、図5の右例は、蛍光体膜222の裏面及び側面が第1光反射層223、内側光反射層224、及び外側光反射層225で覆われる。   On the other hand, in the right example of FIG. 5, the back surface and the side surface of the phosphor film 222 are covered with the first light reflection layer 223, the inner light reflection layer 224, and the outer light reflection layer 225.

更に図5の右例では、左例に比べて蛍光体膜サイズが小さい。具体的には図6に示すようにレーザスポットの径方向幅に対して、蛍光体膜サイズの径方向幅が1〜3倍の範囲内に形成される。   Furthermore, in the right example of FIG. 5, the phosphor film size is smaller than that of the left example. Specifically, as shown in FIG. 6, the radial width of the phosphor film size is formed within a range of 1 to 3 times the radial width of the laser spot.

これにより、蛍光体膜222内で蛍光体粒子から照射された蛍光光のうち、蛍光体膜222の側面方向に照射される蛍光光は、従来例に比べて短い光路長で蛍光体膜222の径方向内側面、又は径方向外側面に到達する。そして、これらの蛍光光、及び蛍光体膜222を透過した励起光は、内側光反射層224、及び外側光反射層225により蛍光体膜222の内側に向かて反射される。その結果、蛍光光が蛍光体膜222の裏面、又は側面から出力することによる損失を防ぎ、蛍光体膜の出射面(励起光の入射面を兼ねる)からより高出力で取りだせる。また、蛍光体膜222を透過した励起光も蛍光体膜222に向かって反射されるので、蛍光光に変換されて蛍光光出力を増加させることができる。   Thus, among the fluorescent light irradiated from the phosphor particles in the fluorescent substance film 222, the fluorescent light irradiated to the side direction of the fluorescent substance film 222 has an optical path length shorter than that of the conventional example. The radially inner surface or the radially outer surface is reached. Then, the fluorescence light and the excitation light transmitted through the phosphor film 222 are reflected toward the inside of the phosphor film 222 by the inner light reflection layer 224 and the outer light reflection layer 225. As a result, the loss due to the fluorescent light being output from the back surface or the side surface of the phosphor film 222 is prevented, and the output surface of the phosphor film (which also serves as the incident surface of excitation light) can be taken out with higher output. Further, since the excitation light transmitted through the phosphor film 222 is also reflected toward the phosphor film 222, it can be converted into fluorescence light to increase the fluorescence light output.

図7に示すように、励起光が蛍光体膜222に入射すると、蛍光体膜222内でレーザスポット400を中心とする発光点が生じる。発光点の周囲では蛍光光が透過と反射を繰り返して損失が生じている。拡散領域の大きさは、発光点の大きさに対して3〜5倍大きい。よって、蛍光体膜222のサイズ、具体的には径方向幅をレーザスポットの入射径に対して1〜3倍とすることで、拡散領域をより狭くすることができる。その結果、蛍光体膜222内における蛍光光の損失を低減し、蛍光の出力を高くすることができる。   As shown in FIG. 7, when excitation light is incident on the phosphor film 222, a light emission point centered on the laser spot 400 is generated in the phosphor film 222. Around the light emitting point, fluorescence light is repeatedly transmitted and reflected to cause loss. The size of the diffusion region is three to five times larger than the size of the light emitting point. Therefore, the diffusion region can be further narrowed by setting the size of the phosphor film 222, specifically, the radial width to 1 to 3 times the incident diameter of the laser spot. As a result, the loss of fluorescent light in the phosphor film 222 can be reduced, and the output of fluorescence can be increased.

このように本実施形態によれば、蛍光体膜222の裏面及び側面に第1光反射層223及び第2光反射層(上記例における内側光反射層224及び外側光反射層225)を配置することで、蛍光光及び励起光が蛍光体膜222の裏面及び側面から出射することによる損失を防ぐ。   As described above, according to the present embodiment, the first light reflection layer 223 and the second light reflection layer (the inner light reflection layer 224 and the outer light reflection layer 225 in the above example) are disposed on the back surface and the side surface of the phosphor film 222 Thus, the loss due to the fluorescence light and the excitation light being emitted from the back surface and the side surface of the phosphor film 222 is prevented.

加えて蛍光体膜サイズをレーザスポット400の入射径に連動させることで、蛍光体膜内での蛍光光の減衰を抑制し、蛍光光の損失を防ぐ。   In addition, by making the phosphor film size interlock with the incident diameter of the laser spot 400, the attenuation of the fluorescent light in the fluorescent film is suppressed, and the loss of the fluorescent light is prevented.

本実施形態は、本発明を限定するものではない。例えば、上記では基板として蛍光体ホイールを用いたが、回転体の基板に限定されず、板状の固定体からなる基板を用いてもよい。回転体の基板は、固定体の基板を用いる場合よりもより蛍光体膜の放熱性を高め、ひいては蛍光光の取り出し効率を向上させることができる。一方、固定体の基板は、基板の形成が回転体に比べてより容易に行える。固定体の基板に配置した蛍光体部材においても、蛍光体膜のサイズをレーザスポットの入射径に連動して形成する。   This embodiment does not limit the present invention. For example, although the phosphor wheel is used as the substrate in the above, the invention is not limited to the substrate of the rotating body, and a substrate made of a plate-like fixed body may be used. The substrate of the rotating body can improve the heat dissipation of the phosphor film more than the case of using the substrate of the fixed body, and thus can improve the efficiency of taking out fluorescent light. On the other hand, in the substrate of the fixed body, the formation of the substrate can be performed more easily than the rotating body. Also in the phosphor member disposed on the substrate of the fixed body, the size of the phosphor film is formed in conjunction with the incident diameter of the laser spot.

また上記実施形態では、本発明に係る蛍光体部材を用いた光源装置の使用例としてプロジェクタを例に挙げたが、ヘッドライトに用いてもよい。   Moreover, in the said embodiment, although the projector was mentioned as an example as a usage example of the light source device using the fluorescent substance member which concerns on this invention, you may use for a headlight.

1:プロジェクタ
100:光源装置
200、200a:蛍光体部材
210:基板
220、220a:蛍光体層
221:反射防止層
222:蛍光体膜
223:第1光反射層
224:内側光反射層
225:外側光反射層
230、230a:接着層
1: Projector 100: light source device 200, 200a: phosphor member 210: substrate 220, 220a: phosphor layer 221: antireflection layer 222: phosphor film 223: first light reflection layer 224: inner light reflection layer 225: outside Light reflective layer 230, 230a: Adhesive layer

Claims (6)

基板と、
前記基板の上に配置された蛍光体層と、を含む蛍光体部材であって、
前記蛍光体層は、
励起光を蛍光光に変換する蛍光体粒子を含む蛍光体膜と、
前記蛍光体膜における基板側面に接して配置され、前記基板側面から出射する前記励起光及び前記蛍光光を、前記蛍光体膜に向けて反射する第1光反射層と、
前記蛍光体膜の側面を囲んで配置され、前記側面から出射する前記励起光又は前記蛍光光を前記蛍光体膜に向けて反射する第2光反射層と、を含んで構成される、
ことを特徴とする蛍光体部材。
A substrate,
And a phosphor layer disposed on the substrate.
The phosphor layer is
A phosphor film including phosphor particles for converting excitation light into fluorescence light;
A first light reflecting layer disposed in contact with the side surface of the substrate in the phosphor film and reflecting the excitation light and the fluorescent light emitted from the side surface of the substrate toward the phosphor film;
And a second light reflecting layer disposed so as to surround a side surface of the phosphor film and reflecting the excitation light or the fluorescent light emitted from the side surface toward the phosphor film.
A phosphor member characterized by
請求項1に記載の蛍光体部材であって、
前記第1光反射層は、前記基板側面に一体的に形成され、
前記基板における蛍光体層側面、及び前記第1光反射層における前記基板側面を接着する接着層を更に含む、
ことを特徴とする蛍光体部材。
The phosphor member according to claim 1, wherein
The first light reflecting layer is integrally formed on the side surface of the substrate,
It further includes an adhesive layer adhering the phosphor layer side surface of the substrate and the substrate side surface of the first light reflecting layer.
A phosphor member characterized by
請求項1に記載の蛍光体部材であって、
前記第1光反射層は前記基板における蛍光体層側面に一体的に形成され、
前記第1光反射層における前記蛍光体層側面及び前記蛍光体膜における前記基板側面を接着し、透光性を有する接着層を更に含み、
前記第2光反射層は、前記接着層の側面を更に囲んで配置される、
ことを特徴とする蛍光体部材。
The phosphor member according to claim 1, wherein
The first light reflecting layer is integrally formed on the side surface of the phosphor layer on the substrate,
It further includes an adhesive layer having a light transmitting property, which adheres the side surface of the phosphor layer in the first light reflecting layer and the side surface of the substrate in the phosphor film,
The second light reflecting layer is disposed to further surround the side surface of the adhesive layer.
A phosphor member characterized by
請求項1、2、又は3のいずれか一つに記載の蛍光体部材であって、
前記蛍光体層は、
前記蛍光体膜における前記基板側面とは反対側に位置する前記励起光の入射面に、空気層から前記蛍光体膜に前記励起光が入射する際の反射率よりも低い反射率で前記蛍光体膜に前記励起光を入射させるための反射防止層を更に含み、
前記第2光反射層は、前記反射防止層の側面を更に囲んで配置される、
ことを特徴とする蛍光体部材。
A phosphor member according to any one of claims 1, 2, or 3.
The phosphor layer is
The phosphor with a reflectance lower than the reflectance when the excitation light is incident from the air layer to the phosphor film on the incident surface of the excitation light located on the opposite side to the side surface of the substrate in the phosphor film Further comprising an antireflective layer for causing the excitation light to enter the film,
The second light reflecting layer is disposed to further surround the side surface of the antireflective layer.
A phosphor member characterized by
請求項1に記載の蛍光体部材であって、
前記蛍光体膜における前記基板側面とは反対側に位置する前記励起光の入射面は、前記励起光が入射する入射径の1〜3倍の幅を有して形成される、
ことを特徴とする蛍光体部材。
The phosphor member according to claim 1, wherein
The incident surface of the excitation light located on the opposite side to the side surface of the substrate in the phosphor film is formed to have a width of 1 to 3 times the incident diameter on which the excitation light is incident.
A phosphor member characterized by
請求項1に記載の蛍光体部材と、
前記励起光を発生させる励起光源と、を備えることを特徴とする光源装置。
A phosphor member according to claim 1;
And an excitation light source generating the excitation light.
JP2017224959A 2017-11-22 2017-11-22 Phosphor member and light source device Pending JP2019095601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224959A JP2019095601A (en) 2017-11-22 2017-11-22 Phosphor member and light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224959A JP2019095601A (en) 2017-11-22 2017-11-22 Phosphor member and light source device

Publications (1)

Publication Number Publication Date
JP2019095601A true JP2019095601A (en) 2019-06-20

Family

ID=66971681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224959A Pending JP2019095601A (en) 2017-11-22 2017-11-22 Phosphor member and light source device

Country Status (1)

Country Link
JP (1) JP2019095601A (en)

Similar Documents

Publication Publication Date Title
JP5767444B2 (en) Light source device and image projection device
US9341933B2 (en) Wavelength conversion and filtering module and light source system
EP3229072B1 (en) Illumination system and projection apparatus
CN106796387B (en) Phosphor wheel, light source device, and projection display device
US10481474B2 (en) Wavelength conversion filter module and illumination system
CN110895378B (en) Fluorescent wheel device, illumination device, and projection type image display device
JP2015170419A (en) Light source device and luminaire
JP2016061852A (en) Wavelength conversion element, light source device, and projector
US11415273B2 (en) Wavelength-converting device and projection apparatus
US9810968B2 (en) Wavelength conversion device and projector
JP7212699B2 (en) Highly efficient and uniform white light generator by laser excitation
WO2019107100A1 (en) Phosphor member and light source device
JP2019095601A (en) Phosphor member and light source device
WO2019008869A1 (en) Phosphor member and light source device
US20210349379A1 (en) Wavelength conversion module and projector
JP6388051B2 (en) Light source device and image projection device
JP7228010B2 (en) solid state light source
WO2020189405A1 (en) Optical element, vehicle headlight, light source device, and projection device
JP6453495B2 (en) Light source device and image projection device
WO2023228993A1 (en) Phosphor wheel and light-emitting device
JP6680340B2 (en) Light source device and image projection device
JP6279516B2 (en) Light source device and image projection device
JP2024014445A (en) Wavelength conversion device, light source device and projector
JP2022181221A (en) Light-emitting element, luminaire and projection device
CN116615621A (en) Phosphor wheel and projection type image display device