JP2019095404A - Data processing device, measurement system and data processing-purpose program - Google Patents

Data processing device, measurement system and data processing-purpose program Download PDF

Info

Publication number
JP2019095404A
JP2019095404A JP2017227694A JP2017227694A JP2019095404A JP 2019095404 A JP2019095404 A JP 2019095404A JP 2017227694 A JP2017227694 A JP 2017227694A JP 2017227694 A JP2017227694 A JP 2017227694A JP 2019095404 A JP2019095404 A JP 2019095404A
Authority
JP
Japan
Prior art keywords
value
data
waveform
values
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017227694A
Other languages
Japanese (ja)
Other versions
JP6965122B2 (en
Inventor
飯島 匡史
Tadashi Iijima
匡史 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2017227694A priority Critical patent/JP6965122B2/en
Publication of JP2019095404A publication Critical patent/JP2019095404A/en
Application granted granted Critical
Publication of JP6965122B2 publication Critical patent/JP6965122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To make it possible to provide data capable of correctly determining a right and wrong of a measurement object without separately performing processing for acquiring a reference value.SOLUTION: A data processing device 3 comprises a processing unit 23 generating inspection-purpose data Dc for identifying whether a discharge waveform component is included in a signal waveform of waveform data D0 in which a plurality of measurement values Ds measured at a preliminarily defined sampling cycle are recorded on the basis of the waveform data D0. The processing unit 23 is configured to: generate, on the basis of waveform data D0, region data Da (measurement value range data) for identifying whether the discharge waveform component is included or not, and waveform data D7 and D8 (comparison value data) capable of identifying whether the discharge waveform component is included or not due to comparison with the region data Da; and generate the inspection-purpose data Dc including the generated region data Da and waveform data D7 and D8.SELECTED DRAWING: Figure 1

Description

本発明は、波形データの信号波形に放電波形成分が含まれているか否かを特定するための放電有無特定用データを生成するデータ処理装置およびデータ処理用プログラム、並びにそのようなデータ処理装置と波形データを生成する測定装置とを備えて構成された測定システムに関するものである。   The present invention relates to a data processing device and a data processing program for generating discharge presence / absence identification data for identifying whether a signal waveform of waveform data contains a discharge waveform component, and such a data processing device The present invention relates to a measurement system configured to include a measurement device that generates waveform data.

例えば、下記の特許文献には、被測定コイルの良否を検査するコイル試験装置およびコイル試験方法(以下、単に「試験装置」および「試験方法」ともいう)が開示されている。この試験装置および試験方法では、被測定コイルに高圧インパルス電圧を印加して減衰振動電圧波形を発生させて諸特性(減衰振動時間、実効値、および測定値の絶対値の積分値等)を測定し、測定結果に基づいて被測定コイルの良否を判定する構成・方法が採用されている。具体的には、この試験装置および試験方法では、複数回の測定において測定結果がどの程度変動するかに基づいて「レアーショート不良」が生じているか否かを判定したり、測定結果と基準値とを比較して「コイル巻数不良」が生じているか否かを判定したりする構成・方法が採用されている。   For example, the following patent documents disclose a coil test apparatus and a coil test method (hereinafter, also simply referred to as "test apparatus" and "test method") for testing the quality of a measured coil. In this test apparatus and test method, a high voltage impulse voltage is applied to the coil to be measured to generate a damped oscillation voltage waveform to measure various characteristics (damped vibration time, effective value, integrated value of absolute value of measured value, etc.) In addition, a configuration and method are used to determine the quality of the measured coil based on the measurement result. Specifically, in this test apparatus and test method, it is determined whether or not the “rear short failure” occurs based on how much the measurement result fluctuates in a plurality of measurements, and the measurement result and the reference value A configuration / method is employed which determines whether or not a "coil turn number defect" has occurred by comparing them with the above.

特開平6−88849号公報(第5−8頁、第1−5図)JP-A-6-88849 (page 5-8, FIG. 1-5)

ところが、上記の特許文献に開示の試験装置および試験方法には、以下のような問題点が存在する。具体的には、上記特許文献に開示の試験装置および試験方法では、測定結果の変動幅の大きさに基づいて被測定コイルに「レアーショート不良」が生じているか否かを判定する構成が採用されている。   However, the test apparatus and test method disclosed in the above-mentioned patent documents have the following problems. Specifically, in the test apparatus and test method disclosed in the above-mentioned patent documents, a configuration is employed in which it is determined whether or not a "rear short failure" occurs in the measured coil based on the magnitude of the fluctuation range of the measurement result. It is done.

この場合、この種の装置・方法による前述のような試験(測定)に際しては、測定対象や測定装置の温度、および測定装置に対して供給される電力の状態などの測定環境の変化に起因して測定結果にばらつきが生じることがある。このため、1つの測定対象に対する測定処理を複数回に亘って行ったときに、各測定処理毎の測定環境が相違する状態となって各測定処理毎の測定結果にばらつきが生じることがある。この結果、上記の特許文献に開示の試験装置および試験方法では、実際には「レアーショート不良」が生じていないにもかかわらず、測定環境の変化に起因して測定結果の変動幅が規定値を超えて、「レアーショート不良」が生じていると誤判定されるおそれがある。   In this case, in the case of the above-mentioned test (measurement) by this kind of apparatus and method, it is caused by the change of the measurement environment such as the temperature of the measurement object and the measurement device and the state of the power supplied to the measurement device. Measurement results may vary. For this reason, when the measurement process for one measurement target is performed multiple times, the measurement environment for each measurement process may be different, and the measurement result for each measurement process may vary. As a result, in the test apparatus and test method disclosed in the above-mentioned patent documents, the fluctuation range of the measurement result is a prescribed value due to the change in the measurement environment even though the “rear short failure” does not actually occur. There is a possibility that it may be misjudged that the “rear short failure” has occurred.

この場合、複数回の測定処理における測定結果の変動幅に基づく判定に代えて、「コイル巻数不良」の試験方法のように測定結果と基準値との差に基づいて「レアーショート不良」が生じているか否かを判定した場合においても、基準値を取得するための測定処理時と、良否判定対象の測定対象についての測定処理時とで測定環境が相違した場合には、測定結果が相違し、「レアーショート不良」の有無を誤判定するおそれがある。   In this case, instead of the determination based on the fluctuation range of the measurement result in a plurality of measurement processes, a “rear short failure” occurs based on the difference between the measurement result and the reference value as in the “coil turn number failure” test method. If the measurement environment is different between the time of measurement processing for acquiring the reference value and the time of measurement processing for the measurement target of the quality determination target even when it is determined whether or not the measurement result is different There is a possibility that the presence or absence of the “rear short defect” may be erroneously determined.

また、この種の装置・方法による前述のような試験(測定)においては、たとえ同種の測定対象(同じ型式の被測定コイル等)であっても、各個体毎に測定結果が僅かに相違するため、これらのばらつきを考慮した基準値を得るためには、複数個の良品の測定対象について複数回の測定処理を実行して最適値を特定する必要がある。この場合、複数個の良品の測定対象の個体差に起因する測定結果のばらつきの大きさが、1つの個体(いずれかの測定対象)に不良が生じているか否かによって生じる測定結果の相違量と同程度、或いはそれ以上となることもある。このため、正確な良否判定が可能な基準値の取得自体が困難となる。   Moreover, in the above-mentioned test (measurement) by this kind of apparatus and method, even if it is the same kind of measurement object (same kind of measurement coil etc.), the measurement result is slightly different for each individual Therefore, in order to obtain a reference value in consideration of these variations, it is necessary to execute a plurality of measurement processes on a plurality of non-defective measurement targets to specify the optimum value. In this case, the difference between the measurement results caused by whether or not a defect occurs in one individual (one of the measurement targets) is the magnitude of the variation of the measurement results due to the individual differences among the plurality of non-defective measurement targets. It may be as good as or even more than that. For this reason, it becomes difficult to obtain the reference value that can accurately determine the quality.

本発明は、かかる問題点に鑑みてなされたものであり、基準値を取得する処理を別途行うことなく測定対象の良否を正確に判定可能なデータを提供し得るデータ処理装置およびデータ処理用プログラム、並びにそのようなデータ処理装置を備えて構成された測定システムを提供することを主目的とする。   The present invention has been made in view of such problems, and provides a data processing apparatus and a data processing program capable of providing data capable of accurately determining the quality of a measurement target without separately performing processing for acquiring a reference value. The main object of the present invention is to provide a measurement system configured to include such a data processing apparatus.

上記目的を達成すべく、請求項1記載のデータ処理装置は、予め規定されたサンプリング周期で測定された複数の測定値が記録されている波形データに基づき、当該波形データの信号波形に放電波形成分が含まれているか否かを特定するための放電有無特定用データを生成する処理部を備えたデータ処理装置であって、前記処理部は、前記放電波形成分が含まれているか否かの特定の基準となる測定値範囲の測定値範囲データと、当該測定値範囲との対比によって前記放電波形成分が含まれているか否かを特定可能な比較値データとを前記波形データに基づいて生成し、生成した当該測定値範囲データおよび当該比較値データを含めて前記放電有無特定用データを生成する。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a data processing apparatus comprising: It is a data processor provided with a processing part which generates data for discharge existence specification for specifying whether a ingredient is contained, and the above-mentioned processing part is whether the above-mentioned discharge waveform ingredient is contained. Based on the waveform data, measurement value range data of a specific reference measurement value range and comparison value data capable of specifying whether the discharge waveform component is included by comparison with the measurement value range are generated. And generating the discharge presence / absence identification data including the generated measurement value range data and the comparison value data.

請求項2記載のデータ処理装置は、請求項1記載のデータ処理装置において、前記処理部は、前記波形データの前記各測定値のなかから連続するNサンプリング内(Nは、予め規定された2以上の自然数)の変化量が予め規定された量以上の第1の値を抽出して第1のデータを生成する第1の処理と、前記波形データの前記各測定値を、対象の当該測定値を含んで連続するMサンプリング分(Mは、予め規定された2以上の自然数)の当該測定値を平均化した第2の値にそれぞれ置き換えて第2のデータを生成する第2の処理と、前記第2のデータの前記各第2の値のなかから前記連続するNサンプリング内の変化量が前記予め規定された量以上の第3の値を抽出して第3のデータを生成する第3の処理と、前記第3のデータの前記各第3の値を絶対値化した第4の値を演算して第4のデータを生成する第4の処理と、前記波形データの前記各測定値を、対象の当該測定値を含んで連続するLサンプリング分(Lは、予め規定された2以上の自然数)の当該測定値を平均化した値に置き換えると共に置換え後の当該測定値を微分した第5の値を演算して第5のデータを生成する第5の処理と、前記第5のデータの前記各第5の値を微分した第6の値を演算して第6のデータを生成する第6の処理と、前記第6のデータの前記各第6の値の絶対値を正規化した第7の値を演算して第7のデータを生成する第7の処理と、前記第1のデータの前記各第1の値を絶対値化した第8の値を演算して第8のデータを生成する第8の処理と、2次元グラフの縦軸および横軸のいずれか予め規定された一方に前記第4のデータの前記各第4の値を対応させると共に当該2次元グラフの縦軸および横軸の他方に当該各第4の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第4の値および当該第7の値の第1の対応点を当該2次元グラフ上にそれぞれプロットする第9の処理と、前記2次元グラフの前記縦軸および横軸のいずれか予め規定された一方に前記第8のデータの前記各第8の値を対応させると共に当該2次元グラフの前記縦軸および横軸の他方に当該各第8の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第8の値および当該第7の値の第2の対応点を当該2次元グラフ上にそれぞれプロットしたときに前記放電波形成分の前記測定値に対応する当該第2の対応点がプロットされない第1の判定領域、および当該放電波形成分の当該測定値に対応する当該第2の対応点がプロットされる第2の判定領域の少なくとも一方の領域を、当該2次元グラフ上の前記各第1の対応点の配置に基づいて予め規定された領域規定手順に従って当該2次元グラフ上に前記測定値範囲として規定する第10の処理とを実行し、前記第10の処理によって規定した前記少なくとも一方の領域を特定可能な領域データを前記測定値範囲データとし、かつ、前記第7のデータおよび前記第8のデータを前記比較値データとして前記放電有無特定用データを生成する。   The data processing apparatus according to claim 2 is the data processing apparatus according to claim 1, wherein the processing unit performs continuous N sampling (where N is a predetermined number) from among the measurement values of the waveform data. A first process of extracting a first value whose amount of change of the above natural number is equal to or more than a predetermined amount to generate first data, and measuring each of the measured values of the waveform data as a target A second process of generating second data by respectively replacing the measured values of successive M samplings (M is a predetermined natural number of 2 or more) including the values with a second averaged value A third value is generated by extracting a third value in which the amount of change in the successive N samplings is equal to or more than the predetermined amount from the second values of the second data; 3 and each of the third of the third data. Processing for generating a fourth data by calculating a fourth value obtained by converting the absolute value into a second value, and each of the measured values of the waveform data including the measured value of L is a value obtained by replacing the measurement value of two or more predefined natural numbers with an averaged value and calculating a fifth value obtained by differentiating the measurement value after replacement to generate fifth data A sixth process of generating sixth data by calculating a sixth value obtained by differentiating each of the fifth values of the fifth data, and the sixth process of each of the sixth data. A seventh process of generating seventh data by calculating a seventh value obtained by normalizing an absolute value of the first value, and an eighth process of calculating the first values of the first data in an absolute value And an eighth process for computing eighth values by calculating values, and either the vertical axis or the horizontal axis of the two-dimensional graph, which has been previously defined. And each of the fourth values of the fourth data is associated with one of the seventh data corresponding to the sampling timing of each fourth value in the other of the vertical axis and the horizontal axis of the two-dimensional graph. Ninth processing in which the seventh values are made to correspond to one another and the first corresponding points of the fourth value and the seventh value are plotted on the two-dimensional graph, and the longitudinal direction of the two-dimensional graph Each of the eighth values of the eighth data is made correspond to any one of the axis and the horizontal axis, and the other of the vertical axis and the horizontal axis of the two-dimensional graph When the seventh values of the seventh data corresponding to the sampling timing are made correspond to each other, and the eighth corresponding value and the second corresponding point of the seventh value are plotted on the two-dimensional graph, respectively. To the measured value of the discharge waveform component At least one of a first determination area in which the corresponding second corresponding point is not plotted, and a second determination area in which the second corresponding point corresponding to the measured value of the discharge waveform component is plotted. Performing a tenth process of defining the measurement value range on the two-dimensional graph in accordance with an area defining procedure defined in advance based on the arrangement of the first corresponding points on the two-dimensional graph; Region data capable of specifying the at least one region defined by the tenth process is used as the measurement value range data, and the seventh data and the eighth data are used as the comparison value data for determining the presence or absence of discharge Generate data.

また、請求項3記載のデータ処理装置は、請求項2記載のデータ処理装置において、前記処理部は、前記第9の処理に先立ち、前記第5のデータの前記各第5の値の絶対値を最大値が1となるように正規化した第9の値を演算して第9のデータを生成すると共に、当該第9のデータの当該各第9の値に係数Ka(Kaは、予め規定された1以下の正数)を乗じた値と、当該各第9の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値とのいずれか大きい一方を新たな第7の値として新たな前記第7のデータを生成する第11の処理を実行する。   Further, in the data processing apparatus according to claim 3, in the data processing apparatus according to claim 2, the processing unit is an absolute value of each of the fifth values of the fifth data prior to the ninth process. Is calculated so that the maximum value becomes 1 and the ninth value is generated to generate ninth data, and the coefficient Ka (Ka is previously determined for each ninth value of the ninth data). Of the seventh value of the seventh data corresponding to the sampling timing of the respective ninth value, and the new seventh value An eleventh process is performed to generate new seventh data as a value.

また、請求項4記載のデータ処理装置は、請求項2記載のデータ処理装置において、前記処理部は、前記第9の処理に先立ち、前記第7のデータの前記各第7の値を、対象の当該第7の値に対してJaサンプリング前(Jaは、予め規定された任意の自然数)の当該第7の値から当該対象の第7の値までの(Ja+1)個の当該第7の値、および当該対象の第7の値から当該対象の第7の値に対してJbサンプリング後(Jbは、予め規定された任意の自然数)の当該第7の値までの(Jb+1)個の当該第7の値の少なくとも一方を含む予め規定されたJc個(Jcは、予め規定された2以上の自然数)の当該第7の値のうちの最大値にそれぞれ置き換えて新たな前記第7のデータを生成する第12の処理を実行する。   The data processing apparatus according to claim 4 is the data processing apparatus according to claim 2, wherein the processing unit targets each of the seventh values of the seventh data prior to the ninth process. The (Ja + 1) number of the seventh values from the seventh value before the Ja sampling (Ja is an arbitrary predetermined natural number) to the seventh value of the target with respect to the seventh value of And the (Jb + 1) number of the seventh values from the seventh value of the object to the seventh value after Jb sampling (Jb is an arbitrary predetermined natural number) with respect to the seventh value of the object The new seventh data is replaced with the maximum value among the seventh values of Jc (Jc is a natural number of 2 or more predetermined in advance) defined in advance including at least one of the values of 7 Execute the 12th process to generate.

また、請求項5記載のデータ処理装置は、請求項2記載のデータ処理装置において、前記処理部は、前記第9の処理に先立ち、前記第7のデータの前記各第7の値のうち、Iサンプリング前(Iは、予め規定された任意の自然数)の当該第7の値よりも小さい当該第7の値を、当該Iサンプリング前の第7の値よりも小さい当該第7の値と、当該Iサンプリング前の第7の値に係数Kb(Kbは、予め規定された1以下の正数)を乗じた第10の値とのいずれか大きい一方に置き換えて新たな前記第7のデータを生成する第13の処理を実行する。   Further, in the data processing apparatus according to claim 5, in the data processing apparatus according to claim 2, the processing unit selects one of the seventh values of the seventh data prior to the ninth process. The seventh value smaller than the seventh value before I sampling (I is an arbitrary predetermined natural number), and the seventh value smaller than the seventh value before I sampling The seventh value before the I sampling is replaced by the larger one of the tenth value obtained by multiplying the seventh value before the I sampling by the coefficient Kb (Kb is a positive number less than or equal to 1 specified in advance) The thirteenth process to generate is executed.

さらに、請求項6記載のデータ処理装置は、請求項2から5のいずれかに記載のデータ処理装置において、前記処理部は、前記第9の処理に先立ち、前記第7のデータの前記各第7の値のうちの最大値に対応する前記測定値よりも後にサンプリングされた前記測定値に対応する当該第7の値を、対象の当該第7の値に対してHaサンプリング前(Haは、予め規定された任意の自然数)の当該第7の値が、当該対象の当該第7の値を含んで連続するHbサンプリング分(Hbは、予め規定された2以上の自然数)の当該第7の値を平均化した値に係数Kc(Kcは、予め規定された任意の正数)を乗じた第11の値以下のときに、当該対象の第7の値と、前記Haサンプリング前の第7の値に予め規定された係数Kd(Kdは、Kcよりも大きい予め規定された任意の正数)を乗じた第12の値とのいずれか小さい一方に置き換えて新たな前記第7のデータを生成する第14の処理を実行する。   Furthermore, in the data processing apparatus according to claim 6, in the data processing apparatus according to any one of claims 2 to 5, the processing unit is configured to receive each of the seventh data before the ninth processing. The seventh value corresponding to the measured value sampled later than the measured value corresponding to the maximum value among the values of 7 before Ha sampling with respect to the seventh value of interest (Ha is The seventh value of the predetermined arbitrary natural number) includes the seventh value of the target, and the seventh value of the consecutive Hb samplings (Hb is a predetermined natural number of 2 or more) When the average value is equal to or less than an eleventh value obtained by multiplying the coefficient Kc (Kc is an arbitrary predetermined positive number), the seventh value of the object, and the seventh value before the Ha sampling Coefficient Kd (Kd is greater than There substituting one predefined arbitrary positive number) smaller one of the first 12 values of multiplied by which to perform the fourteenth process of generating a new said seventh data.

また、請求項7記載のデータ処理装置は、請求項6記載のデータ処理装置において、前記処理部は、前記第14の処理において、前記Haサンプリング前の第7の値が、前記Hbサンプリング分の第7の値を平均化した値に係数Ke(Keは、予め規定された任意の正数)を乗じた第13の値よりも小さいときに、当該対象の第7の値を当該第13の値に置き換える。   In the data processing apparatus according to claim 7, in the data processing apparatus according to claim 6, in the fourteenth process, the processing unit is configured such that a seventh value before the Ha sampling corresponds to the Hb sampling. When the value obtained by averaging the seventh value is smaller than the thirteenth value obtained by multiplying the coefficient Ke (Ke is an arbitrary positive number defined in advance), the seventh value of the object is set to the thirteenth value. Replace with value.

さらに、請求項8記載のデータ処理装置は、請求項2から7のいずれかに記載のデータ処理装置において、前記処理部は、前記第9の処理に先立ち、前記第7のデータの前記各第7の値のうちの最大値に対応する前記測定値よりも前にサンプリングされた前記測定値に対応する当該第7の値を、対象の当該第7の値と、当該対象の第7の値に対してHcサンプリング前(Hcは、予め規定された任意の自然数)の当該第7の値に係数Kf(Keは、予め規定された任意の正数)を乗じた第14の値とのいずれか大きい一方に置き換えて新たな前記第7のデータを生成する第15の処理を実行する。   The data processing apparatus according to claim 8 is the data processing apparatus according to any one of claims 2 to 7, wherein the processing unit is configured to execute each of the seventh data in advance of the ninth processing. The seventh value corresponding to the measurement value sampled before the measurement value corresponding to the maximum value among the seven values, the seventh value of the object, and the seventh value of the object And the 14th value obtained by multiplying the seventh value before Hc sampling (Hc is any predetermined natural number) by the coefficient Kf (Ke is any predetermined predetermined positive number). A fifteenth process is performed to generate new ones of the seventh data by replacing them with one or the other.

また、請求項9記載のデータ処理装置は、請求項8記載のデータ処理装置において、前記処理部は、前記第15の処理において、前記対象の第7の値および前記第14の値の双方が、当該対象の第7の値を含んで連続するHdサンプリング分(Hdは、予め規定された2以上の自然数)の当該第7の値を平均化した値に係数Kg(Kgは、予め規定された任意の正数)を乗じた第15の値よりも小さいときに、当該対象の第7の値を当該第15の値に置き換える。   In the data processing apparatus according to claim 9, in the data processing apparatus according to claim 8, in the fifteenth process, the processing unit is configured to receive both the seventh value and the fourteenth value of the object. The coefficient Kg (Kg is defined in advance as a value obtained by averaging the seventh value of consecutive Hd samplings (Hd is a predetermined natural number of 2 or more) including the seventh value of the object) And the seventh value of the target is replaced with the fifteenth value when it is smaller than the fifteenth value multiplied by any positive number).

さらに、請求項10記載のデータ処理装置は、請求項2から9のいずれかに記載のデータ処理装置において、前記処理部は、前記第10の処理において、前記2次元グラフの原点を通過する前記各第1の対応点の回帰直線を特定し、特定した当該回帰直線における当該2次元グラフの前記縦軸および横軸の他方の値が1のときの当該2次元グラフの前記縦軸および横軸のいずれか予め規定された一方の値を第16の値として特定し、かつ、当該2次元グラフの原点、当該予め規定された一方の値が当該第16の値で当該他方の値が1の第1の点、および当該予め規定された一方の値が0で当該他方の値が1の第2の点の3点を頂点とする三角形領域を特定すると共に、特定した当該三角形領域に基づいて前記少なくとも一方の領域を規定する。   The data processing apparatus according to claim 10 is the data processing apparatus according to any one of claims 2 to 9, wherein the processing unit passes the origin of the two-dimensional graph in the tenth process. The regression line of each first corresponding point is specified, and when the other value of the vertical axis and the horizontal axis of the two-dimensional graph in the specified regression line is 1, the vertical axis and horizontal axis of the two-dimensional graph One of the previously defined ones is specified as the sixteenth value, and the origin of the two-dimensional graph, the one previously defined one is the sixteenth value, and the other is one. A triangular area having three points of the first point and the second point of which one of the predefined values is 0 and the other value is 1 is specified, and the specified triangular area is specified. Define the at least one region

また、請求項11記載のデータ処理装置は、請求項10記載のデータ処理装置において、前記処理部は、前記2次元グラフの前記縦軸および横軸のいずれか予め規定された一方に前記第1のデータの前記各第1の値を対応させると共に当該2次元グラフの前記縦軸および横軸の他方に当該各第1の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第1の値および当該第7の値の第3の対応点を当該2次元グラフ上にそれぞれプロットすると共に、前記縦軸および横軸の他方の値が「0.5」以下の予め規定された第17の値以下である前記第3の対応点を抽出し、抽出した前記各第3の対応点における前記縦軸および横軸のいずれか予め規定された一方の値の標準偏差nσ(nは、予め規定された任意の自然数)を演算すると共に、前記原点、前記第1の点、前記予め規定された一方の値が前記標準偏差nσと前記第16の値との和で前記他方の値が1の第3の点、および当該予め規定された一方の値が当該標準偏差nσで当該他方の値が0の第4の点の4点を頂点とする第1の矩形領域を特定し、特定した当該第1の矩形領域および前記三角形領域に基づいて前記少なくとも一方の領域を規定する。   The data processing apparatus according to claim 11 is the data processing apparatus according to claim 10, wherein the processing unit is configured to set one of the vertical axis and the horizontal axis of the two-dimensional graph to one of which is defined in advance. And each seventh value of the seventh data corresponding to the sampling timing of each first value to the other of the vertical axis and the horizontal axis of the two-dimensional graph. The values are made to correspond, and the third corresponding point of the first value and the seventh value is plotted on the two-dimensional graph, and the other values of the vertical axis and the horizontal axis are “0.5”. The third corresponding point which is equal to or less than the following seventeenth predefined value is extracted, and one of the predetermined one of the vertical axis and the horizontal axis at each of the extracted third corresponding points Standard deviation nσ (n is predefined A natural number), and the origin, the first point, and the one of the predetermined values are the sum of the standard deviation nσ and the sixteenth value, and the other value is the third one. And the first rectangular area having the four points of the fourth point of which the other value is 0 with the standard deviation nσ and the predetermined one of the predetermined points as the apex, and the specified first The at least one region is defined based on the rectangular region and the triangular region.

さらに、請求項12記載のデータ処理装置は、請求項2から9のいずれかに記載のデータ処理装置において、前記処理部は、前記第10の処理において、すべての前記第1の対応点が含まれる最小の方形領域を特定すると共に、特定した当該方形領域に基づいて前記少なくとも一方の領域を規定する。   The data processing apparatus according to claim 12 is the data processing apparatus according to any one of claims 2 to 9, wherein the processing unit includes all the first corresponding points in the tenth process. In addition to specifying the smallest rectangular area to be formed, the at least one area is defined based on the specified rectangular area.

さらに、請求項13記載のデータ処理装置は、請求項2から12のいずれかに記載のデータ処理装置において、前記処理部は、前記放電有無特定用データに基づき、前記第2の対応点と前記少なくとも一方の領域との位置関係を特定して前記波形データの信号波形に前記放電波形成分が含まれているか否かを判定する判定処理を実行し、当該判定処理の判定結果を特定可能な判定結果データを生成する。   The data processing apparatus according to claim 13 is the data processing apparatus according to any one of claims 2 to 12, wherein the processing unit determines the second corresponding point and the second corresponding point based on the discharge presence / absence identification data. A determination process is performed to determine the positional relationship with at least one of the regions and determine whether the discharge waveform component is included in the signal waveform of the waveform data, and determination that can determine the determination result of the determination process Generate result data.

また、請求項14記載のデータ処理装置は、請求項13記載のデータ処理装置において、前記処理部は、前記第1の判定領域を前記少なくとも一方の領域とするときには前記第2の対応点の総数に占める当該第1の判定領域に含まれない当該第2の対応点の割合を特定すると共に、前記第2の判定領域を当該少なくとも一方の領域とするときには当該第2の対応点の総数に占める当該第2の判定領域に含まれる当該第2の対応点の割合を特定し、特定した割合が予め規定された割合以上のときに、予め規定された報知処理を実行する。   The data processing apparatus according to claim 14 is the data processing apparatus according to claim 13, wherein the processing unit counts the total number of the second corresponding points when the first determination area is the at least one area. Specifying the proportion of the second corresponding point not included in the first determination area that occupies the area and occupying the total number of the second corresponding points when the second determination area is the at least one area The ratio of the second corresponding point included in the second determination area is specified, and when the specified ratio is equal to or more than the predetermined ratio, the notification process defined in advance is executed.

また、請求項15記載のデータ処理装置は、請求項13記載のデータ処理装置において、前記処理部は、前記2次元グラフを前記縦軸および横軸の他方の方向でGa個(Gaは、予め規定された2以上の自然数)に分割したGa個の第2の矩形領域を特定し、前記第1の判定領域を当該少なくとも一方の領域とするときには当該第1の判定領域以外の領域に当該第2の対応点が含まれている当該第2の矩形領域の数を特定すると共に、前記第2の判定領域を前記少なくとも一方の領域とするときには当該第2の判定領域に当該第2の対応点が含まれている前記第2の矩形領域の数を特定し、特定した数が予め規定された数以上のときに、予め規定された報知処理を実行する。   Further, in the data processing apparatus according to claim 15, in the data processing apparatus according to claim 13, the processing unit is configured to obtain Ga pieces of Ga in the other direction of the vertical axis and the horizontal axis of the two-dimensional graph The Ga second rectangular areas divided into two or more defined natural numbers are specified, and when the first judgment area is the at least one area, the second judgment area is the area other than the first judgment area. While specifying the number of the second rectangular areas including the two corresponding points, and setting the second determination area as the at least one area, the second corresponding points in the second determination area And identifying the number of the second rectangular areas including the information, and when the identified number is greater than or equal to a predetermined number, execute a predetermined notification process.

さらに、請求項16記載のデータ処理装置は、請求項13から15のいずれかに記載のデータ処理装置において、前記処理部は、前記第2の対応点をプロットした前記2次元グラフと前記少なくとも一方の領域を示す領域表示とを前記判定処理の判定結果と共に表示部に表示させる。   The data processing apparatus according to claim 16 is the data processing apparatus according to any one of claims 13 to 15, wherein the processing unit plots the second corresponding point and the two-dimensional graph and the at least one. And displaying the area indicating the area on the display unit together with the determination result of the determination process.

また、請求項17記載の測定システムは、請求項1から16のいずれかに記載のデータ処理装置と、測定対象についての前記予め規定されたサンプリング周期での測定を実行して前記波形データを出力する測定装置とを備えて構成されている。   The measurement system according to claim 17 outputs the waveform data by executing the measurement with the data processing apparatus according to any one of claims 1 to 16 and the predetermined sampling period for the measurement object. And a measuring device.

また、請求項18記載のデータ処理用プログラムは、予め規定されたサンプリング周期で測定された複数の測定値が記録されている波形データに基づき、当該波形データの信号波形に放電波形成分が含まれているか否かを特定するための放電有無特定用データを生成する処理をデータ処理装置の処理部に実行させるデータ処理用プログラムであって、前記放電波形成分が含まれているか否かの特定の基準となる測定値範囲の測定値範囲データと、当該測定値範囲との対比によって前記放電波形成分が含まれているか否かを特定可能な比較値データとを前記波形データに基づいて生成し、生成した当該測定値範囲データおよび当該比較値データを含めて前記放電有無特定用データを生成する処理を前記処理部に実行させる。   In the data processing program according to claim 18, a discharge waveform component is included in the signal waveform of the waveform data based on the waveform data in which a plurality of measured values measured in a predetermined sampling cycle are recorded. A program for data processing that causes the processing unit of the data processing apparatus to execute processing for generating discharge presence / absence identification data for identifying whether the discharge waveform component is contained or not. Based on the waveform data, measurement value range data of a reference measurement value range and comparison value data capable of specifying whether or not the discharge waveform component is included by comparison with the measurement value range is generated on the basis of the waveform data. The processing unit is caused to execute the processing of generating the discharge presence / absence specification data including the generated measurement value range data and the comparison value data.

また、請求項19記載のデータ処理用プログラムは、請求項18記載のデータ処理用プログラムにおいて、前記波形データの前記各測定値のなかから連続するNサンプリング内(Nは、予め規定された2以上の自然数)の変化量が予め規定された量以上の第1の値を抽出して第1のデータを生成する第1の処理と、前記波形データの前記各測定値を、対象の当該測定値を含んで連続するMサンプリング分(Mは、予め規定された2以上の自然数)の当該測定値を平均化した第2の値にそれぞれ置き換えて第2のデータを生成する第2の処理と、前記第2のデータの前記各第2の値のなかから前記連続するNサンプリング内の変化量が前記予め規定された量以上の第3の値を抽出して第3のデータを生成する第3の処理と、前記第3のデータの前記各第3の値を絶対値化した第4の値を演算して第4のデータを生成する第4の処理と、前記波形データの前記各測定値を、対象の当該測定値を含んで連続するLサンプリング分(Lは、予め規定された2以上の自然数)の当該測定値を平均化した値に置き換えると共に置換え後の当該測定値を微分した第5の値を演算して第5のデータを生成する第5の処理と、前記第5のデータの前記各第5の値を微分した第6の値を演算して第6のデータを生成する第6の処理と、前記第6のデータの前記各第6の値の絶対値を正規化した第7の値を演算して第7のデータを生成する第7の処理と、前記第1のデータの前記各第1の値を絶対値化した第8の値を演算して第8のデータを生成する第8の処理と、2次元グラフの縦軸および横軸のいずれか予め規定された一方に前記第4のデータの前記各第4の値を対応させると共に当該2次元グラフの縦軸および横軸の他方に当該各第4の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第4の値および当該第7の値の第1の対応点を当該2次元グラフ上にそれぞれプロットする第9の処理と、前記2次元グラフの前記縦軸および横軸のいずれか予め規定された一方に前記第8のデータの前記各第8の値を対応させると共に当該2次元グラフの前記縦軸および横軸の他方に当該各第8の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第8の値および当該第7の値の第2の対応点を当該2次元グラフ上にそれぞれプロットしたときに前記放電波形成分の前記測定値に対応する当該第2の対応点がプロットされない第1の判定領域、および当該放電波形成分の当該測定値に対応する当該第2の対応点がプロットされる第2の判定領域の少なくとも一方の領域を、当該2次元グラフ上の前記各第1の対応点の配置に基づいて予め規定された領域規定手順に従って当該2次元グラフ上に前記測定値範囲として規定する第10の処理とを前記処理部に実行させると共に、前記第10の処理によって規定した前記少なくとも一方の領域を特定可能な領域データを前記測定値範囲データとし、かつ、前記第7のデータおよび前記第8のデータを前記比較値データとして前記放電有無特定用データを生成させる処理を前記処理部に実行させる。   In the data processing program according to claim 19, in the data processing program according to claim 18, consecutive N samplings (N is a predetermined number of 2 or more among the measurement values of the waveform data). A first process of extracting a first value whose amount of change of the natural number is a predetermined amount or more to generate first data, and the respective measured values of the waveform data as the target measured values A second process of generating second data by respectively replacing the measured values of successive M samplings (M is a predetermined natural number of 2 or more) including the second to the second averaged values; A third value is generated by extracting a third value in which the amount of change in the consecutive N samplings is equal to or more than the predetermined amount from the second values of the second data. Processing of the third data A fourth process of generating a fourth data by calculating a fourth value obtained by converting each of the third values into an absolute value, and each of the measured values of the waveform data including the measured value of interest A fifth value is calculated by replacing the measured value of consecutive L samplings (L is a predetermined natural number of 2 or more natural numbers) with an averaged value and calculating a fifth value obtained by differentiating the measured value after replacement. A fifth process of generating data, a sixth process of generating sixth data by calculating a sixth value obtained by differentiating each of the fifth values of the fifth data, and the sixth process A seventh process of generating seventh data by calculating a seventh value obtained by normalizing the absolute value of each of the sixth values of data to generate seventh data; and absolute value of each first value of the first data An eighth process of computing eighth value which has been digitized to generate eighth data, and either of the vertical axis and the horizontal axis of the two-dimensional graph The seventh corresponding to each of the predetermined values and the fourth value of the fourth data corresponding to the other of the vertical axis and the horizontal axis of the two-dimensional graph. And the second process of plotting the fourth values and the first corresponding points of the seventh values on the two-dimensional graph in correspondence with the respective seventh values of the data of And each of the eighth values of the eighth data is associated with one of the predetermined vertical axis and horizontal axis of the second data, The seventh value of the seventh data corresponding to the sampling timing of the second value, and the second corresponding point of the eighth value and the seventh value are plotted on the two-dimensional graph, respectively. Before the discharge waveform component when At least a first determination area in which the second corresponding point corresponding to the measured value is not plotted, and at least a second determination area in which the second corresponding point corresponding to the measured value of the discharge waveform component is plotted A tenth process of defining one area as the measurement value range on the two-dimensional graph in accordance with an area defining procedure defined in advance based on the arrangement of the first corresponding points on the two-dimensional graph Region data capable of being executed by the processing unit and capable of specifying the at least one region defined by the tenth processing is the measurement value range data, and the seventh data and the eighth data are the data The processing unit is caused to execute processing for generating the discharge presence / absence identification data as comparison value data.

さらに、請求項20記載のデータ処理用プログラムは、請求項19記載のデータ処理用プログラムにおいて、前記放電有無特定用データに基づき、前記第2の対応点が前記少なくとも一方の領域に含まれているか否かを判別して前記波形データの信号波形に前記放電波形成分が含まれているか否かを判定する判定処理、および当該判定処理の判定結果を特定可能な判定結果データを生成する処理を前記処理部に実行させる。   Furthermore, in the data processing program according to claim 20, in the data processing program according to claim 19, whether the second corresponding point is included in the at least one region based on the discharge presence / absence identification data Determination processing for determining whether or not the discharge waveform component is included in the signal waveform of the waveform data, and determining processing for generating determination result data capable of specifying the determination result of the determination processing. Have the processing unit execute it.

請求項1記載のデータ処理装置では、処理部が、放電波形成分が含まれているか否かを特定する基準となる測定値範囲の測定値範囲データと、測定値範囲データとの対比によって放電波形成分が含まれているか否かを特定可能な比較値データとを波形データに基づいて生成し、生成した測定値範囲データおよび比較値データを含めて放電有無特定用データを生成する。具体的には、例えば請求項2記載のデータ処理装置では、処理部が、波形データを使用して第1の処理から第10の処理までの各処理を順次実行し、第10の処理によって規定した測定値範囲としての第1の判定領域および第2の判定領域の少なくとも一方の領域を特定可能な領域データを測定値範囲データとし、かつ第7の処理によって生成した第7のデータ、および第8の処理によって生成した第8のデータを比較値データとして放電有無特定用データを生成する。また、請求項18,19記載のデータ処理用プログラムは、上記の各処理をデータ処理装置の処理部に実行させる。   In the data processing apparatus according to claim 1, the discharge waveform is obtained by comparing measured value range data of the measured value range serving as a reference for determining whether the discharge waveform component is included in the data processing unit and the measured value range data. Based on the waveform data, comparison value data capable of specifying whether or not a component is included is generated, and the generated measurement value range data and comparison value data are included to generate discharge presence / absence identification data. Specifically, for example, in the data processing apparatus according to claim 2, the processing unit sequentially executes each processing from the first processing to the tenth processing using the waveform data, and is defined by the tenth processing. Region data capable of specifying at least one of the first determination region and the second determination region as the measured value range is determined as the measured value range data, and seventh data generated by the seventh process, and The eighth data generated by the process of 8 is used as comparison value data to generate discharge presence / absence identification data. The data processing program according to claims 18 and 19 causes the processing unit of the data processing apparatus to execute the above-described respective processing.

したがって、請求項1,2記載のデータ処理装置、および請求項18,19記載のデータ処理用プログラムによれば、測定対象について取得した1つの波形データに基づいて、放電波形成分が存在するか否かを判定するための領域データ(測定値範囲データ)と、領域データの判定領域(第1の判定領域および/または第2の判定領域:測定値範囲)との対比によって放電波形成分が存在するか否かを判定可能な第7のデータおよび第8のデータ(比較値データ)とを生成することができる。このため、複数回の測定処理が不要となり、複数の測定対象についての個体差の影響や、測定処理毎の測定環境の相違に起因する測定値のばらつきの影響を受けることがなくなるため、放電現象が発生しているか否かの判定精度を十分に向上させることができるだけでなく、判定用の基準値(閾値)を生成する処理を別個に行う必要もなくなることから、利用者の負担を十分に軽減することができる。   Therefore, according to the data processing device of claims 1 and 2 and the data processing program of claims 18 and 19, it is determined whether or not the discharge waveform component is present based on one waveform data acquired for the measurement object. The discharge waveform component exists by the comparison of the area data (measurement value range data) for determining whether there is a judgment area (the first determination area and / or the second determination area: the measurement value range) of the area data It is possible to generate seventh data and eighth data (comparison value data) whose determination can be made. For this reason, since the measurement process of multiple times becomes unnecessary and the influence of the individual difference about several measurement objects and the influence of the dispersion of the measured value resulting from the difference of the measurement environment for every measurement process are not received, it is a discharge phenomenon. In addition to sufficiently improving the determination accuracy as to whether or not a problem has occurred, there is no need to separately perform processing for generating a reference value (threshold value) for determination, and therefore, the burden on the user is sufficient. It can be reduced.

請求項3記載のデータ処理装置では、処理部が、第9の処理に先立ち、第5のデータの各第5の値の絶対値を最大値が1となるように正規化した第9の値を演算して第9のデータを生成すると共に、第9のデータの各第9の値に係数Kaを乗じた値と、各第9の値のサンプリングタイミングに対応する第7のデータの各第7の値とのいずれか大きい一方を新たな第7の値として新たな第7のデータを生成する第11の処理を実行する。   The data processing apparatus according to claim 3, wherein the processing unit normalizes the absolute value of each fifth value of the fifth data so that the maximum value becomes 1 prior to the ninth process. To generate ninth data, each value of each ninth value of the ninth data multiplied by the coefficient Ka, and each of the seventh data corresponding to the sampling timing of each ninth value An eleventh process is performed to generate new seventh data by setting one of the values of 7 and the larger one as the new seventh value.

また、請求項4記載のデータ処理装置では、処理部が、第9の処理に先立ち、第7のデータの各第7の値を、対象の第7の値に対してJaサンプリング前の第7の値から対象の第7の値までの(Ja+1)個の第7の値、および対象の第7の値から対象の第7の値に対してJbサンプリング後の第7の値までの(Jb+1)個の第7の値の少なくとも一方を含む予め規定されたJc個の第7の値のうちの最大値にそれぞれ置き換えて新たな第7のデータを生成する第12の処理を実行する。   Further, in the data processing device according to claim 4, the processing unit, prior to the ninth processing, sets each seventh value of the seventh data to a seventh value before the Ja sampling with respect to the target seventh value. (Jb + 1) seventh values from a value of 1 to a seventh value of interest, and (Jb + 1) from a seventh value of interest to a seventh value after Jb sampling with respect to the seventh value of interest And performing a twelfth process of generating new seventh data by replacing the maximum value among the predefined Jc seventh values including at least one of the seventh values.

また、請求項5記載のデータ処理装置では、処理部が、第9の処理に先立ち、第7のデータの各第7の値のうち、Iサンプリング前の第7の値よりも小さい第7の値を、Iサンプリング前の第7の値よりも小さい第7の値と、Iサンプリング前の第7の値に係数Kbを乗じた第10の値とのいずれか大きい一方に置き換えて新たな第7のデータを生成する第13の処理を実行する。   Further, in the data processing device according to claim 5, the processing unit, prior to the ninth processing, selects, among the seventh values of the seventh data, a seventh value smaller than the seventh value before I sampling. The value is replaced with the seventh value smaller than the seventh value before I sampling or the tenth value obtained by multiplying the seventh value before I sampling by the coefficient Kb, and a new seventh A thirteenth process is performed to generate 7 data.

したがって、請求項3〜5記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、第7の値が「0」に近い値となる特異点の数を十分に減少させることができ、これにより、放電波形成分の有無を一層高精度に判定し得る第1の判定領域および/または第2の判定領域を規定することができると共に、放電有無特定用データに基づいて放電波形成分の有無を判定する際に、新たな第7のデータに基づいて2次元グラフ上に第2の対応点をプロットすることで放電波形成分の有無を一層高精度に判定することが可能となる。   Therefore, according to the data processing apparatus of claims 3 to 5 and the data processing program for executing such processing, the number of singular points at which the seventh value becomes close to "0" is sufficiently reduced. As a result, it is possible to define a first determination area and / or a second determination area which can determine the presence or absence of the discharge waveform component with higher accuracy, and based on the discharge presence / absence specification data. When determining the presence or absence of the discharge waveform component, it is possible to determine the presence or absence of the discharge waveform component with higher accuracy by plotting the second corresponding point on the two-dimensional graph based on the new seventh data. It becomes.

請求項6記載のデータ処理装置では、処理部が、第9の処理に先立ち、第7のデータの各第7の値のうちの最大値に対応する測定値よりも後にサンプリングされた測定値に対応する第7の値を、対象の第7の値に対してHaサンプリング前の第7の値が、対象の第7の値を含んで連続するHbサンプリング分の第7の値を平均化した値に係数Kcを乗じた第11の値以下のときに、対象の第7の値と、Haサンプリング前の第7の値に予め規定された係数Kdを乗じた第12の値とのいずれか小さい一方に置き換えて新たな第7のデータを生成する第14の処理を実行する。   7. The data processing apparatus according to claim 6, wherein the processing unit, prior to the ninth processing, uses the measured value sampled after the measured value corresponding to the maximum value among the seventh values of the seventh data. The corresponding seventh value is obtained by averaging the seventh value of consecutive Hb samplings with the seventh value before Ha sampling with respect to the seventh value of interest including the seventh value of interest If the value is equal to or less than an eleventh value obtained by multiplying the coefficient Kc, either the seventh value of interest or the twelfth value obtained by multiplying the seventh value before Ha sampling by the predetermined coefficient Kd A fourteenth process is performed to generate new seventh data by replacing the smaller one.

したがって、請求項6記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、測定値の変化率が徐々に小さくなる波形データを対象とするときに、変化率の減少の度合いとは不釣り合いに第7の値が急激に大きな値に変化するような変化状態を、変化率の減少の度合いに応じた適当な変化状態とすることができ、これにより、放電波形成分の有無を一層高精度に判定し得る第1の判定領域および/または第2の判定領域を規定することができると共に、放電有無特定用データに基づいて放電波形成分の有無を判定する際に、新たな第7のデータに基づいて2次元グラフ上に第2の対応点をプロットすることで放電波形成分の有無を一層高精度に判定することが可能となる。   Therefore, according to the data processing apparatus according to claim 6, and the data processing program for executing such processing, when the waveform data in which the rate of change of the measured value gradually decreases is targeted, the rate of change is decreased. It is possible to set a change state in which the seventh value suddenly changes to a large value disproportionately to the degree of change, as an appropriate change state according to the degree of decrease in the change rate. The first determination area and / or the second determination area which can determine the presence or absence of the discharge with higher accuracy can be defined, and when determining the presence or absence of the discharge waveform component based on the discharge presence / absence specification data, By plotting the second corresponding points on the two-dimensional graph based on the new seventh data, the presence or absence of the discharge waveform component can be determined with higher accuracy.

請求項7記載のデータ処理装置では、処理部が、第14の処理において、Haサンプリング前の第7の値が、Hbサンプリング分の第7の値を平均化した値に係数Keを乗じた第13の値よりも小さいときに、対象の第7の値を第13の値に置き換える。したがって、請求項7記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、第7の値の変化状態を一層好適な状態とすることができる。   The data processing apparatus according to claim 7, wherein the processing unit is configured such that in the fourteenth process, the seventh value before Ha sampling is a value obtained by averaging the seventh value of Hb samplings and the coefficient Ke. When the value is smaller than 13, the seventh value of interest is replaced with the thirteenth value. Therefore, according to the data processing apparatus of the seventh aspect and the data processing program for executing such processing, the change state of the seventh value can be made more preferable.

請求項8記載のデータ処理装置では、処理部が、第9の処理に先立ち、第7のデータの各第7の値のうちの最大値に対応する測定値よりも前にサンプリングされた測定値に対応する第7の値を、対象の第7の値と、対象の第7の値に対してHcサンプリング前の第7の値に係数Kfを乗じた第14の値とのいずれか大きい一方に置き換えて新たな第7のデータを生成する第15の処理を実行する。   The data processing apparatus according to claim 8, wherein the processing unit is a measurement value sampled prior to the measurement value corresponding to the maximum value among the seventh values of the seventh data prior to the ninth process. Of the seventh value corresponding to the target, or the fourteenth value obtained by multiplying the seventh value before Hc sampling by the factor Kf with respect to the seventh value of the target To execute the fifteenth process for generating new seventh data.

したがって、請求項8記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、測定値の変化率が徐々に大きくなる波形データを対象とするときに、第7の値が「0」に近い値となる特異点の数を十分に減少させることができ、これにより、放電波形成分の有無を一層高精度に判定し得る第1の判定領域および/または第2の判定領域を規定することができると共に、放電有無特定用データに基づいて放電波形成分の有無を判定する際に、新たな第7のデータに基づいて2次元グラフ上に第2の対応点をプロットすることで放電波形成分の有無を一層高精度に判定することが可能となる。   Therefore, according to the data processing apparatus according to claim 8 and the data processing program for executing such processing, the seventh value is used when the waveform data whose change rate of the measured value is gradually increased is targeted. The first determination area and / or the second determination can sufficiently reduce the number of singular points at which the value is close to “0”, whereby the presence or absence of the discharge waveform component can be determined with higher accuracy. A region can be defined, and the second corresponding point is plotted on the two-dimensional graph based on the new seventh data when determining the presence or absence of the discharge waveform component based on the discharge presence / absence specification data. Thus, the presence or absence of the discharge waveform component can be determined with higher accuracy.

請求項9記載のデータ処理装置では、処理部が、第15の処理において、対象の第7の値および第14の値の双方が、対象の第7の値を含んで連続するHdサンプリング分の第7の値を平均化した値に係数Kgを乗じた第15の値よりも小さいときに、対象の第7の値を第15の値に置き換える。したがって、請求項9記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、第7の値が「0」に近い値となる特異点の数をさらに減少させることができる。   10. The data processing apparatus according to claim 9, wherein in the fifteenth process, the processing unit includes, in the fifteenth process, both the seventh value and the fourteenth value of the target including the seventh value of the target and a continuous Hd sampling portion. The seventh value of interest is replaced with the fifteenth value when the seventh value is smaller than the fifteenth value obtained by multiplying the coefficient Kg by the averaged value. Therefore, according to the data processing apparatus according to claim 9 and the data processing program for executing such processing, it is possible to further reduce the number of singular points at which the seventh value becomes a value close to “0”. it can.

請求項10記載のデータ処理装置では、処理部が、第10の処理において、2次元グラフの原点を通過する各第1の対応点の回帰直線を特定し、特定した回帰直線における2次元グラフの縦軸および横軸の他方の値が1のときの2次元グラフの縦軸および横軸のいずれか予め規定された一方の値を第16の値として特定し、かつ、2次元グラフの原点、予め規定された一方の値が第16の値で他方の値が1の第1の点、および予め規定された一方の値が0で他方の値が1の第2の点の3点を頂点とする三角形領域を特定すると共に、特定した三角形領域に基づいて少なくとも一方の領域を規定する。   In the data processing apparatus according to claim 10, in the tenth processing, the processing unit identifies a regression line of each first corresponding point passing through the origin of the two-dimensional graph, and the two-dimensional graph in the identified regression line One of the previously defined one of the vertical and horizontal axes of the two-dimensional graph when the other one of the vertical and horizontal axes is 1 is specified as the sixteenth value, and the origin of the two-dimensional graph, One point defined as one of the predefined values is a sixteenth value, and the other value is a first point having a value of 1, and the other predefined value having a value of 0 and a second value having the other value having one vertex While specifying the triangular area to be made, at least one area is defined based on the specified triangular area.

したがって、請求項10記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、放電波形成分の値に対応する第2の対応点がプロットされる可能性が極めて低い三角形領域を確実かつ容易に特定することができ、この三角形領域に基づいて、第1の判定領域および/または第2の判定領域を容易に特定して領域データを生成することができる。   Therefore, according to the data processing apparatus according to claim 10 and the data processing program for executing such processing, it is very possible that the second corresponding point corresponding to the value of the discharge waveform component is plotted with extremely low probability. An area can be identified reliably and easily, and based on this triangular area, the first determination area and / or the second determination area can be easily identified to generate area data.

請求項11記載のデータ処理装置では、処理部が、2次元グラフの縦軸および横軸のいずれか予め規定された一方に第1のデータの各第1の値を対応させると共に2次元グラフの縦軸および横軸の他方に各第1の値のサンプリングタイミングに対応する第7のデータの各第7の値を対応させて第1の値および第7の値の第3の対応点を2次元グラフ上にそれぞれプロットすると共に、縦軸および横軸の他方の値が「0.5」以下の予め規定された第17の値以下である第3の対応点を抽出し、抽出した各第3の対応点における縦軸および横軸のいずれか予め規定された一方の値の標準偏差nσを演算すると共に、原点、第1の点、予め規定された一方の値が標準偏差nσと第16の値との和で他方の値が1の第3の点、および予め規定された一方の値が標準偏差nσで他方の値が0の第4の点の4点を頂点とする第1の矩形領域を特定し、特定した第1の矩形領域および三角形領域に基づいて少なくとも一方の領域を規定する。   The data processing apparatus according to claim 11, wherein the processing unit associates each of the first values of the first data with one of predetermined one of the vertical axis and the horizontal axis of the two-dimensional graph in advance and Each seventh value of the seventh data corresponding to the sampling timing of each first value corresponds to the other of the vertical axis and the horizontal axis, and the third corresponding point of the first value and the seventh value is 2 The third corresponding points which are plotted on the dimensional graph, respectively, and in which the other values of the vertical axis and the horizontal axis are equal to or less than a predefined seventeenth value equal to or less than “0.5” are extracted and extracted The standard deviation nσ of one of predetermined values of the vertical axis and the horizontal axis at the corresponding points of 3 is calculated, and the origin, the first point, and one of the predetermined values are the standard deviation nσ and the 16th standard deviation. And a third point whose other value is 1 in addition to the value of Specify a first rectangular area having four points of the fourth point whose standard value nσ and the other value is 0 as vertices, and based on the specified first rectangular area and triangular area, at least one of them Define the area.

したがって、請求項11記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、特定した第1の矩形領域および三角形領域に基づいて第1の判定領域および/または第2の判定領域を容易に特定することができ、波形データの信号波形に放電波形成分が含まれているか否かを高精度に判定可能な第1の判定領域および/または第2の判定領域の領域データを容易に生成することができる。   Therefore, according to the data processing apparatus of claim 11, and the data processing program for executing such processing, the first determination area and / or the second determination area is determined based on the specified first rectangular area and triangle area. Of the first determination area and / or the second determination area that can easily determine whether the signal waveform of the waveform data includes the discharge waveform component with high accuracy. Data can be easily generated.

請求項12記載のデータ処理装置では、処理部が、第10の処理において、すべての第1の対応点が含まれる最小の方形領域を特定すると共に、特定した方形領域に基づいて少なくとも一方の領域を規定する。したがって、請求項12記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、非常に単純な処理によって第1の判定領域および/または第2の判定領域の領域データを生成することができる。   The data processing apparatus according to claim 12, wherein the processing unit identifies, in the tenth process, the smallest rectangular area including all the first corresponding points, and at least one of the areas based on the identified rectangular area. To define. Therefore, according to the data processing apparatus of claim 12, and the data processing program for executing such processing, the area data of the first judgment area and / or the second judgment area can be obtained by very simple processing. Can be generated.

請求項13記載のデータ処理装置では、処理部が、放電有無特定用データに基づき、第2の対応点と少なくとも一方の領域との位置関係を特定して波形データの信号波形に放電波形成分が含まれているか否かを判定する判定処理を実行し、判定処理の判定結果を特定可能な判定結果データを生成する。また、請求項20記載のデータ処理用プログラムは、上記の処理をデータ処理装置の処理部に実行させる。   The data processing apparatus according to claim 13, wherein the processing unit identifies the positional relationship between the second corresponding point and at least one of the regions based on the discharge presence / absence identification data, and the discharge waveform component is a signal waveform of waveform data. A determination process is performed to determine whether or not it is included, and determination result data capable of specifying the determination result of the determination process is generated. The data processing program according to claim 20 causes the processing unit of the data processing apparatus to execute the above processing.

したがって、請求項13記載のデータ処理装置、および請求項20記載のデータ処理用プログラムによれば、複数回の測定処理が不要となり、複数の測定対象についての個体差の影響や、測定処理毎の測定環境の相違に起因する測定値のばらつきの影響を受けることがなくなるため、放電現象が発生しているか否かの判定精度を十分に向上させることができる。また、基準値(閾値)との比較による判定とは異なり、測定環境の変化の影響による誤判定を回避して判定精度を十分に高めることができる。   Therefore, according to the data processing device of claim 13 and the data processing program of claim 20, a plurality of measurement processes become unnecessary, and the influence of individual differences on a plurality of measurement targets, or each measurement process Since the influence of variations in measured values due to the difference in measurement environment is eliminated, it is possible to sufficiently improve the determination accuracy as to whether or not the discharge phenomenon has occurred. Further, unlike determination based on comparison with a reference value (threshold value), it is possible to avoid erroneous determination due to the influence of a change in measurement environment and sufficiently improve the determination accuracy.

請求項14記載のデータ処理装置では、処理部が、第1の判定領域を少なくとも一方の領域とするときには第2の対応点の総数に占める第1の判定領域に含まれない第2の対応点の割合を特定すると共に、第2の判定領域を少なくとも一方の領域とするときには第2の対応点の総数に占める第2の判定領域に含まれる第2の対応点の割合を特定し、特定した割合が予め規定された割合以上のときに、予め規定された報知処理を実行する。   The data processing apparatus according to claim 14, wherein, when the processing unit sets the first determination area as at least one area, a second corresponding point not included in the first determination area occupied in the total number of second corresponding points. The second determination area is specified as the ratio of the second corresponding point to the total number of the second corresponding points when the second determination area is at least one of the areas. When the ratio is equal to or more than a predetermined ratio, the predetermined notification process is performed.

また、請求項15記載のデータ処理装置では、処理部が、2次元グラフを縦軸および横軸の他方の方向でGa個に分割したGa個の第2の矩形領域を特定し、第1の判定領域を少なくとも一方の領域とするときには第1の判定領域以外の領域に第2の対応点が含まれている第2の矩形領域の数を特定すると共に、第2の判定領域を少なくとも一方の領域とするときには第2の判定領域に第2の対応点が含まれている第2の矩形領域の数を特定し、特定した数が予め規定された数以上のときに、予め規定された報知処理を実行する。   Further, in the data processing device according to claim 15, the processing unit specifies Ga second rectangular regions obtained by dividing the two-dimensional graph into Ga in the other direction of the vertical axis and the horizontal axis, and When the determination area is at least one of the areas, the number of second rectangular areas whose second corresponding points are included in areas other than the first determination area is specified, and the second determination area is at least one of the areas. When making it an area, the number of second rectangular areas in which the second corresponding area is included in the second determination area is specified, and when the specified number is a predetermined number or more, the notification specified in advance Execute the process

したがって、請求項14,15記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、波形データの信号波形に放電波形成分が含まれているか否かの判定結果を確実かつ容易に認識させることができる。   Therefore, according to the data processing apparatus of claims 14 and 15 and a data processing program for executing such processing, it is possible to reliably determine whether the signal waveform of the waveform data includes a discharge waveform component. And it can be easily recognized.

請求項16記載のデータ処理装置では、処理部が、第2の対応点をプロットした2次元グラフと少なくとも一方の領域を示す領域表示とを判定処理の判定結果と共に表示部に表示させる。したがって、請求項16記載のデータ処理装置、およびそのような処理を実行させるデータ処理用プログラムによれば、波形データの信号波形に放電波形成分が含まれているか否かの判定結果を一層確実かつ一層容易に認識させることができる。   In the data processing apparatus according to claim 16, the processing unit causes the display unit to display the two-dimensional graph in which the second corresponding points are plotted and the area display indicating at least one of the areas along with the determination result of the determination process. Therefore, according to the data processing apparatus of claim 16 and the data processing program for executing such processing, it is possible to more reliably determine whether or not the signal waveform of the waveform data contains a discharge waveform component. It can be more easily recognized.

請求項17記載の測定システムでは、請求項2から16のいずれかに記載のデータ処理装置と、測定対象についての予め規定されたサンプリング周期での測定を実行して波形データを出力する測定装置とを備えて構成されている。したがって、請求項17記載の測定システムによれば、波形データの取得(生成)から放電有無特定用データの生成(または、放電有無特定用データおよび判定結果データの生成)までの一連の処理を1つのシステムで実行することができる。   In the measurement system according to claim 17, a data processing apparatus according to any one of claims 2 to 16, and a measurement apparatus which executes measurement in a predetermined sampling cycle for a measurement object and outputs waveform data. It is configured with. Therefore, according to the measurement system of claim 17, a series of processes from acquisition (generation) of waveform data to generation of discharge determination data (or generation of discharge determination data and determination result data) Can run on one system.

測定システム1の構成を示す構成図である。FIG. 1 is a block diagram showing the configuration of a measurement system 1; 測定装置2から出力される波形データD0の波形W0の一例を示す信号波形図である。FIG. 6 is a signal waveform diagram showing an example of a waveform W0 of waveform data D0 output from the measuring device 2. 波形データD1の波形W1の一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W1 of waveform data D1. 波形データD0の波形W0および波形データD2の波形W2の一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W0 of waveform data D0, and waveform W2 of waveform data D2. 波形データD3の波形W3の一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W3 of waveform data D3. 波形データD4の波形W4の一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W4 of waveform data D4. 波形データD0の波形W0および波形データD0fの波形W0fの一例を示す信号波形図である。FIG. 6 is a signal waveform diagram showing an example of a waveform W0 of waveform data D0 and a waveform W0f of waveform data D0f. 波形データD5の波形W5の一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W5 of waveform data D5. 波形データD6の波形W6の一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W6 of waveform data D6. 波形データD7の波形W7の一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W7 of waveform data D7. 波形データD8の波形W8の一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W8 of waveform data D8. 波形データD9の波形W9の一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W9 of waveform data D9. 波形データD9の値に基づいて生成された値の波形W9a、波形データD7の波形W7,および波形データD9a,D7の各値から抽出された値の波形W7aの一例を示す信号波形図である。It is a signal waveform diagram showing an example of a waveform W9a of a value generated based on the value of the waveform data D9, a waveform W7 of the waveform data D7, and a waveform W7a of a value extracted from each value of the waveform data D9a, D7. 波形データD9の波形W9、波形データD7の波形W7,および波形データD9,D7の各値から抽出された値の波形W7bの一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W9 of waveform data D9, waveform W7 of waveform data D7, and waveform W7b of the value extracted from each value of waveform data D9 and D7. 新たな波形データD7の波形W7cの一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W7c of new waveform data D7. 新たな波形データD7の波形W7dの一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W7d of new waveform data D7. 処理前の波形データD7の波形W7e、および新たな波形データD7の波形W7fの一例を示す信号波形図である。It is a signal waveform diagram which shows an example of waveform W7e of waveform data D7 before a process, and waveform W7f of new waveform data D7. 波形データD4の値および波形データD7の値の「第1の対応点」をプロットした2次元グラフの一例を示す図である。It is a figure which shows an example of the two-dimensional graph which plotted the "1st corresponding point" of the value of waveform data D4, and the value of waveform data D7. 波形データD8の値および波形データD7の値の「第2の対応点」をプロットした2次元グラフの一例を示す図である。It is a figure which shows an example of the two-dimensional graph which plotted the "2nd corresponding point" of the value of waveform data D8, and the value of waveform data D7. 波形データD8の値および波形データD7の値の「第2の対応点」をプロットした2次元グラフの他の一例を示す図である。It is a figure which shows another example of the two-dimensional graph which plotted the "2nd corresponding point" of the value of waveform data D8, and the value of waveform data D7. 波形データD0の波形W0、波形データD1のW1、波形データD1の各値が放電波形成分であるか否かの閾値を示す波形Waの関係の一例を示す図である。It is a figure which shows an example of the relationship of waveform Wa which shows the threshold value whether each value of waveform W0 of waveform data D0, W1 of waveform data D1, and waveform data D1 is a discharge waveform component. 判定領域Aa,Abの規定方法、並びに規定された判定領域Aa,Abと「第1の対応点」および「第2の対応点」との関係について説明するための説明図である。FIG. 7 is an explanatory diagram for describing a method of defining the determination areas Aa and Ab and the relationship between the defined determination areas Aa and Ab and the “first corresponding point” and the “second corresponding point”. 判定領域Aa,Abの規定方法、並びに規定された判定領域Aa,Abと「第1の対応点」および「第2の対応点」との関係について説明するための他の説明図である。FIG. 14 is another explanatory view for describing a method of defining the determination areas Aa and Ab and a relationship between the defined determination areas Aa and Ab and the “first corresponding point” and the “second corresponding point”. 波形データD1の値および波形データD7の値の対応点をプロットした2次元グラフの他の一例を示す図である。It is a figure which shows another example of the two-dimensional graph which plotted the value of waveform data D1, and the corresponding point of the value of waveform data D7. 判定領域Ac,Adの規定方法、並びに規定された判定領域Ac,Adと「第1の対応点」および「第2の対応点」との関係について説明するための説明図である。FIG. 8 is an explanatory diagram for describing a method of defining the determination areas Ac and Ad, and the relationship between the defined determination areas Ac and Ad, and “first corresponding points” and “second corresponding points”. 2次元グラフにプロットされた波形データD8の値および波形データD7の値の「第2の対応点」と判定領域Aa,Abおよび矩形領域A10〜A19との関係について説明するための説明図である。FIG. 18 is an explanatory diagram for describing a relationship between “the second corresponding point” of the values of the waveform data D8 and the values of the waveform data D7 plotted on the two-dimensional graph, the determination regions Aa and Ab, and the rectangular regions A10 to A19. .

以下、データ処理装置、測定システムおよびデータ処理用プログラムの実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of a data processing apparatus, a measurement system, and a program for data processing will be described with reference to the attached drawings.

最初に、測定システム1の構成について説明する。図1に示す測定システム1は、「測定装置」および「データ処理装置」を有する「測定システム」と、後述する「放電有無特定用データ」に基づいて検査対象(測定対象)Xの良否を検査する「検査装置」とを備えて構成された「インパルス試験システム」であって、測定装置2およびデータ処理装置3を備えて構成されている。この場合、検査対象Xは、「測定対象」の一例であって、本例では、一例として巻線部品(コイル)を検査対象Xとして各種の処理を実行する例について説明する。   First, the configuration of the measurement system 1 will be described. The measurement system 1 shown in FIG. 1 inspects the quality of the inspection object (measurement object) X based on the “measurement system” having the “measurement device” and the “data processing device” and the “discharge presence / absence identification data” described later. The “impulse test system” is configured to include the “test device” to be performed, and is configured to include the measurement device 2 and the data processing device 3. In this case, the inspection object X is an example of the “object to be measured”, and in this example, an example in which various processes are performed with the winding component (coil) as the inspection object X will be described.

測定装置2は、「測定装置」に相当し、一例として、データ処理装置3の制御に従い、検査対象Xを対象とする各種の測定処理を実行可能に構成されている。具体的には、測定装置2は、測定信号発生部11、A/D変換部12、処理部13および記憶部14などを備えている。測定信号発生部11は、処理部13の制御に従って検査対象Xの両端間に測定信号としてのインパルス電圧を印加する。A/D変換部12は、一例として、処理部13の制御に従い、指定された周期(「予め規定されたサンプリング周期:測定周期)で測定対象を流れる電流の電流値をA/D変換(サンプリング:測定)して測定値Ds(サンプリング値:「測定値」の一例)を処理部13に順次出力する。なお、電流値のサンプリングに代えて、指定された周期で測定対象の両端間の電圧値をA/D変換(サンプリング:測定)して測定値Dsを出力する構成を採用することもできる。   The measuring device 2 corresponds to a “measuring device”, and as an example, is configured to be able to execute various types of measurement processing for the inspection target X under the control of the data processing device 3. Specifically, the measurement apparatus 2 includes a measurement signal generation unit 11, an A / D conversion unit 12, a processing unit 13, a storage unit 14, and the like. The measurement signal generation unit 11 applies an impulse voltage as a measurement signal across the inspection target X according to the control of the processing unit 13. As an example, the A / D conversion unit 12 performs A / D conversion (sampling on the current value of the current flowing through the measurement target in a specified cycle (“predetermined sampling cycle: measurement cycle”) under the control of the processing unit 13 : Measurement) and the measured value Ds (sampling value: an example of “measured value”) is sequentially output to the processing unit 13. It is also possible to adopt a configuration in which the measurement value Ds is output by A / D conversion (sampling: measurement) of the voltage value across the measuring object at a designated cycle, instead of sampling of the current value.

処理部13は、測定装置2を総括的に制御する。具体的には、処理部13は、測定信号発生部11を制御して測定対象にインパルス電圧を印加させると共に、A/D変換部12を制御して任意の周期で電流値のA/D変換処理(サンプリング処理)を実行させる。また、処理部13は、A/D変換部12から出力される測定値Dsを記憶部14に記憶させ、かつ測定値Dsに基づいて波形データD0(「波形データ」の一例)を生成して記憶部14に記憶させると共に、生成した波形データD0をデータ処理装置3に出力する。記憶部14は、処理部13の動作プログラムや、上記の測定値Ds(波形データD0)などを記憶する。なお、実際の測定装置2には、測定装置2の動作条件を指示するための各種の操作スイッチや、測定条件の設定画面および測定値の表示画面などを表示する表示部を備えて構成されているが、これらについての図示および説明を省略する。   The processing unit 13 controls the measuring device 2 generally. Specifically, the processing unit 13 controls the measurement signal generation unit 11 to apply an impulse voltage to the measurement target, and controls the A / D conversion unit 12 to perform A / D conversion of the current value at an arbitrary cycle. Execute processing (sampling processing). Further, the processing unit 13 stores the measurement value Ds output from the A / D conversion unit 12 in the storage unit 14, and generates waveform data D0 (an example of “waveform data”) based on the measurement value Ds. The generated waveform data D 0 is output to the data processing device 3 while being stored in the storage unit 14. The storage unit 14 stores an operation program of the processing unit 13 and the measurement value Ds (waveform data D0) described above. The actual measuring device 2 is configured to include various operation switches for instructing the operating conditions of the measuring device 2, and a display unit for displaying a setting screen of the measuring conditions and a display screen of the measured values. However, illustration and description of these will be omitted.

一方、データ処理装置3は、「データ処理装置」に相当し、後述するように測定装置2から取得した波形データD0に基づき、検査対象Xについての検査を行うための検査用データDc(「波形データの信号波形に放電波形成分が含まれているか否かを特定するための放電有無特定用データ」の一例)を生成する。また、データ処理装置3は、「検査装置」に相当し、生成した検査用データDcに基づき、検査対象Xの良否を検査する。この場合、本例の測定システム1では、一例として、「データ処理用プログラム」に相当するデータ処理用プログラムDpが既存のパーソナルコンピュータにインストールされてデータ処理装置3が構成されている。   On the other hand, the data processing device 3 corresponds to a “data processing device”, and as described later, the inspection data Dc for inspecting the inspection object X based on the waveform data D0 acquired from the measurement device 2 (“waveform An example of “the discharge presence / absence specification data” for specifying whether or not the discharge waveform component is included in the signal waveform of the data is generated. Further, the data processing device 3 corresponds to an “inspection device”, and inspects the quality of the inspection object X based on the generated inspection data Dc. In this case, in the measurement system 1 of this example, as an example, the data processing program Dp corresponding to the “data processing program” is installed in the existing personal computer, and the data processing device 3 is configured.

具体的には、このデータ処理装置3は、操作部21、表示部22、処理部23および記憶部24を備えている。操作部21は、キーボード、およびマウスやタッチパネルなどのポインティングデバイスを備え(図示せず)、これらに対する操作に応じた操作信号を処理部23に出力する。表示部22は、「表示部」の一例であって、処理部23の制御に従い、測定結果や検査結果(良否判定の結果)などを示す各種の表示画面を表示する。   Specifically, the data processing device 3 includes an operation unit 21, a display unit 22, a processing unit 23, and a storage unit 24. The operation unit 21 includes a keyboard and a pointing device such as a mouse and a touch panel (not shown), and outputs an operation signal corresponding to an operation on these to the processing unit 23. The display unit 22 is an example of the “display unit”, and displays various display screens indicating measurement results and inspection results (results of the quality determination) according to the control of the processing unit 23.

処理部23は、「処理部」の一例であって、データ処理装置3を総括的に制御する。具体的には、処理部23は、後述するようにデータ処理用プログラムDpに従い、測定装置2を制御して検査対象Xを対象とする測定処理を実行させると共に、測定装置2から出力される波形データD0に基づいて検査用データDcを生成するデータ生成処理を実行する。また、処理部23は、データ処理用プログラムDpに従い、検査用データDcに基づいて検査対象Xの良否を検査する検査処理(良否の判定処理)を実行して検査結果データDrを生成する。   The processing unit 23 is an example of a “processing unit”, and controls the data processing device 3 in a comprehensive manner. Specifically, the processing unit 23 controls the measuring device 2 to execute the measuring process on the inspection object X in accordance with the data processing program Dp as described later, and the waveform output from the measuring device 2 A data generation process is performed to generate inspection data Dc based on data D0. Further, the processing unit 23 generates inspection result data Dr by executing an inspection process (a judgment process of quality) in which the quality of the inspection object X is inspected based on the inspection data Dc according to the data processing program Dp.

記憶部24は、データ処理用プログラムDp(処理部23の動作プログラムのデータ)、測定システム1から出力される波形データD0、および処理部23によって生成される各種のデータを記憶する。   The storage unit 24 stores a data processing program Dp (data of an operation program of the processing unit 23), waveform data D0 output from the measurement system 1, and various data generated by the processing unit 23.

次に、測定システム1による検査対象Xの検査方法について、添付図面を参照して説明する。なお、データ処理装置3にデータ処理用プログラムDpをインストールする作業や、測定装置2とデータ処理装置3とを接続する作業については既に完了しているものとする。   Next, the inspection method of the inspection object X by the measurement system 1 will be described with reference to the attached drawings. It is assumed that the work of installing the data processing program Dp in the data processing device 3 and the work of connecting the measuring device 2 and the data processing device 3 have already been completed.

検査対象Xの検査に際しては、まず、検査対象Xについての測定装置2による測定処理を実行する。具体的には、検査対象Xを測定装置2に接続すると共に、データ処理装置3の操作部21を操作して測定処理の開始を指示する。これに応じて、処理部23は、データ処理用プログラムDpに従って測定装置2を制御して検査対象Xについての測定処理を開始させる。   At the time of inspection of the inspection object X, first, measurement processing by the measuring device 2 on the inspection object X is executed. Specifically, the inspection target X is connected to the measurement device 2 and the operation unit 21 of the data processing device 3 is operated to instruct start of the measurement process. In response to this, the processing unit 23 controls the measuring device 2 according to the data processing program Dp to start the measurement process on the inspection object X.

この際に、測定装置2では、処理部13が、まず、A/D変換部12を制御してデータ処理装置3(処理部23)から指示されたサンプリング周期での電流値のサンプリング(測定)を開始させる。これにより、A/D変換部12から検査対象Xについての測定値Ds(検査対象Xを流れる電流の電流値)が順次出力されて記憶部14に記憶される。また、処理部13は、測定信号発生部11を制御して検査対象Xにインパルス電圧を印加させる。この際には、検査対象Xを流れる電流についての測定値Ds(電流値)が、図2に示す波形W0(「波形データの信号波形」の一例)のように変化する。   At this time, in the measuring device 2, the processing unit 13 first controls the A / D conversion unit 12 to sample (measure) the current value at the sampling cycle instructed from the data processing device 3 (processing unit 23). To start. Thereby, the measurement value Ds (current value of the current flowing through the inspection object X) of the inspection object X is sequentially output from the A / D conversion unit 12 and stored in the storage unit 14. Further, the processing unit 13 controls the measurement signal generation unit 11 to apply an impulse voltage to the inspection object X. At this time, the measured value Ds (current value) of the current flowing through the inspection object X changes as shown by a waveform W0 (an example of “a signal waveform of waveform data”) shown in FIG.

次いで、処理部13は、一例として、検査対象Xに対するインパルス電圧の印加を開始させる直前の時点から、処理部23によって指示された時間が経過した時点において、この時間内にA/D変換部12から出力された複数の測定値Ds,Ds・・を記録して波形データD0を生成し、生成した波形データD0を記憶部14に記憶させる。また、処理部13は、生成した波形データD0をデータ処理装置3に出力する。また、データ処理装置3では、処理部23が、測定装置2から出力された波形データD0を検査対象Xに関連付けて記憶部24に記憶させる。これにより、検査対象Xについての測定処理が完了する。   Next, as an example, when the time indicated by the processing unit 23 has passed from the time immediately before the application of the impulse voltage to the inspection object X is started, the processing unit 13 executes the A / D conversion unit 12 within this time. Are recorded to generate waveform data D0, and the generated waveform data D0 is stored in the storage unit 14. Further, the processing unit 13 outputs the generated waveform data D0 to the data processing device 3. Further, in the data processing device 3, the processing unit 23 stores the waveform data D 0 output from the measuring device 2 in the storage unit 24 in association with the inspection target X. This completes the measurement process for the inspection object X.

一方、データ処理装置3では、波形データD0の取得が完了したときに、処理部23が、データ処理用プログラムDpに従い、検査対象Xが良品か不良品かを検査するための検査用データDcを生成する「データ生成処理」を開始する。   On the other hand, in the data processing device 3, when the acquisition of the waveform data D0 is completed, the processing unit 23 follows the data processing program Dp, and uses the inspection data Dc for inspecting whether the inspection object X is good or defective. Start the "data generation process" to generate.

この「データ生成処理」において、処理部23は、まず、波形データD0の各測定値Dsのなかから連続するNサンプリング内の変化量が予め規定された量以上の測定値(「第1の値」の一例)を抽出して波形データD1(「第1のデータ」の一例)を生成する「第1の処理」を実行する。具体的には、処理部23は、一例として、ハイパスフィルタや1次元のラプラシアンフィルタ等を用いたフィルタリング処理により、波形データD0の各測定値Dsのなかから連続するN=2サンプリング内の変化量が規定量を超える測定値Dsを抽出して波形データD1を生成する。これにより、図3に示す波形W1のように、波形データD0の生成時(測定処理時)に検査対象Xに生じた放電現象の成分や、大きなノイズ等の成分に対応する急峻な変化の波形成分の測定値が波形データD1として取得され、「第1の処理」が完了する。   In the “data generation process”, the processing unit 23 first measures the measured value (“the first value or more”) by which the amount of change in consecutive N samplings from among the measured values Ds of the waveform data D0 is predetermined. “One example” of “1.” is extracted to generate the waveform data D1 (one example of “first data”). Specifically, as an example, the processing unit 23 performs a filtering process using a high-pass filter, a one-dimensional Laplacian filter, or the like, and the amount of change in N = 2 samplings continuously from among the measured values Ds of the waveform data D0. Extract a measured value Ds exceeding a prescribed amount to generate waveform data D1. Thereby, as shown by the waveform W1 shown in FIG. 3, the waveform of the abrupt change corresponding to the component of the discharge phenomenon generated in the inspection object X at the time of generation of the waveform data D0 (at the time of measurement processing) The measured values of the components are acquired as waveform data D1, and the "first process" is completed.

また、処理部23は、波形データD0の各測定値Dsを、対象の測定値Dsを含んで連続するMサンプリング分の測定値Dsを平均化した値(「第2の値」の一例)にそれぞれ置き換えて波形データD2(「第2のデータ」の一例)を生成する「第2の処理」を実行する。具体的には、処理部23は、一例として、波形データD0の各測定値Dsのうちのnサンプリング目の測定値Dsを測定値Dsnとし、かつ上記の「M」の値を「3」に規定したときに、測定値Dsnの1サンプリング前の測定値Ds(n−1)と、測定値Dsnの1サンプリング後の測定値Ds(n+1)と、測定値Dsnとの合計値を「M=3」で除した値(連続する3サンプリング分の測定値Dsの値の平均値)を「第2の値」として演算して波形データD2を生成する。   In addition, the processing unit 23 sets each measurement value Ds of the waveform data D0 to a value (an example of a “second value”) obtained by averaging the measurement values Ds for M continuous samples including the measurement value Ds of interest. A “second process” is performed to generate waveform data D2 (an example of “second data”) by replacing each. Specifically, as an example, the processing unit 23 sets the measurement value Ds of the nth sample among the measurement values Ds of the waveform data D0 as the measurement value Dsn, and sets the value of “M” to “3”. When specified, the sum of the measurement value Ds (n-1) before one sampling of the measurement value Dsn, the measurement value Ds (n + 1) after one sampling of the measurement value Dsn, and the measurement value Dsn is “M = The waveform data D2 is generated by calculating the value divided by 3 "(the average value of measured values Ds for three consecutive samplings) as the" second value ".

これにより、図4に破線で示す波形W2のように、波形データD0において、上記の「第1の処理」において抽出した「放電現象の成分や、大きなノイズ等の成分に対応する急峻な変化の波形成分」の影響が十分に軽減された測定値の波形データD2が生成され、「第2の処理」が完了する。なお、同図では、「第2の処理」についての理解を容易とするために、図2に示す波形W0における時間軸方向の一部を拡大し、その波形W0の測定値Dsに基づいて演算される値の波形W2を波形W0に重ねて図示している。また、「第2の処理」については、上記の例にようにM=3値の3点平均値を求める処理に限定されず、M=3以外の複数値の平均値を求める処理や、ハミング窓等を用いた平均化処理を「第2の処理」として実行してもよい。   Thereby, as shown by a waveform W2 indicated by a broken line in FIG. 4, in the waveform data D0, the steep change corresponding to the component of the discharge phenomenon or the component such as large noise extracted in the above "first processing" The waveform data D2 of the measurement value in which the influence of the waveform component is sufficiently reduced is generated, and the "second processing" is completed. In the same figure, in order to facilitate understanding of the "second process", part of the time axis direction of the waveform W0 shown in FIG. 2 is enlarged, and calculation is performed based on the measured value Ds of the waveform W0. The waveform W2 of the desired value is shown superimposed on the waveform W0. Further, the “second process” is not limited to the process of obtaining the three-point average value of M = 3 as in the above example, but is a process of obtaining the average value of a plurality of values other than M = 3, Hamming An averaging process using a window or the like may be executed as the “second process”.

続いて、処理部23は、波形データD2の各測定値のなかから連続するNサンプリング内の変化量が予め規定された量以上の測定値(「第3の値」の一例)を抽出して波形データD3(「第3のデータ」の一例)を生成する「第3の処理」を実行する。具体的には、処理部23は、前述した「第1の処理」において使用したフィルタと同じフィルタを用いたフィルタリング処理により、波形データD2の各測定値のなかから連続するN=2サンプリング内の変化量が規定量を超える測定値を抽出して波形データD3を生成する。これにより、図5に示す波形W3のように、上記の「第2の処理」において「急峻な変化の波形成分」の影響が十分に軽減された波形データD2について、「第1の処理」において使用したフィルタと同じフィルタを用いてフィルタリングされた波形データD3が生成され、「第3の処理」が完了する。   Subsequently, the processing unit 23 extracts a measurement value (an example of the “third value”) having an amount of change in consecutive N samplings equal to or more than a predetermined amount from each measurement value of the waveform data D2. A "third process" for generating waveform data D3 (an example of "third data") is executed. Specifically, the processing unit 23 performs the filtering process using the same filter as the filter used in the above-described “first process”, so that the measured value of the waveform data D2 is continuously measured out of N = 2 samplings. A measured value whose variation exceeds a prescribed amount is extracted to generate waveform data D3. Thus, in the “first process”, the waveform data D2 in which the influence of the “waveform component of the abrupt change” is sufficiently reduced in the above “second process” as in the waveform W3 shown in FIG. Filtered waveform data D3 is generated using the same filter as the used filter, and the "third process" is completed.

次いで、処理部23は、波形データD3の各測定値を絶対値化した値(「第4の値」の一例)を演算して波形データD4(「第4のデータ」の一例)を生成する「第4の処理」を実行する。これにより、図6に示す波形W4のような波形の波形データD4が生成され、「第4の処理」が完了する。   Next, the processing unit 23 calculates a value (an example of the “fourth value”) obtained by converting each measurement value of the waveform data D3 into an absolute value to generate the waveform data D4 (an example of the “fourth data”). Execute the "fourth process". Thereby, waveform data D4 having a waveform like the waveform W4 shown in FIG. 6 is generated, and the "fourth process" is completed.

続いて、処理部23は、波形データD0の各測定値Dsを、対象の測定値Dsを含んで連続するLサンプリング分の測定値Dsを平均化した値に置き換えると共に、置換え後の測定値を微分した値(「第5の値」の一例)を演算して波形データD5(「第5のデータ」の一例)を生成する「第5の処理」を実行する。具体的には、処理部23は、一例として、まず、対象の測定値Dsを対象の測定値Dsの5サンプリング前の測定値Dsから、対象の測定値Dsの5サンプリング後の測定値DsまでのL=5+5+1=11サンプリング分の測定値Dsの平均値に置き換えて波形データD0fを生成する。これにより、図7に示す波形W0fのように、各サンプリング毎のばらつきの度合いが小さい測定値の波形データD0fが生成される。   Subsequently, the processing unit 23 replaces each measurement value Ds of the waveform data D0 with a value obtained by averaging the measurement values Ds for continuous L sampling including the measurement value Ds of the object, and the measurement value after replacement is A “fifth process” is performed to calculate waveform data D5 (an example of “fifth data”) by calculating a differentiated value (an example of “fifth value”). Specifically, as an example, the processing unit 23 first measures the target measured value Ds from the measured value Ds before 5 sampling of the target measured value Ds to the measured value Ds after 5 sampling of the target measured value Ds. The waveform data D0f is generated by replacing the average value of the measurement values Ds for L = 5 + 5 + 1 = 11 samplings. As a result, as shown by a waveform W0f shown in FIG. 7, waveform data D0f of a measured value having a small degree of variation for each sampling is generated.

なお、同図では、「第5の処理」についての理解を容易とするために、図2に示す波形W0における時間軸方向の一部を拡大し、その波形W0の測定値Dsに基づいて演算される平均値の波形W0fを波形W0に重ねて図示している。また、波形データD0fの生成に際しては、上記の11サンプリング分の平均値に置き換える処理に代えて、11サンプリング以外の複数サンプリング分の平均値に置き換える処理や、ハミング窓等を用いた平均化処理を実行してもよい。   In the same figure, in order to facilitate understanding of the "fifth process", part of the time axis direction in the waveform W0 shown in FIG. 2 is enlarged, and calculation is performed based on the measured value Ds of the waveform W0. The waveform W0f of the averaged value is shown superimposed on the waveform W0. In addition, when generating the waveform data D0f, instead of the processing of replacing with the average value for 11 samplings described above, processing for replacing with average values for a plurality of samplings other than 11 sampling, averaging processing using a Hamming window, etc. It may be executed.

次いで処理部23は、波形データD0fの各測定値を微分した値(一階微分値:第5の値)を演算して波形データD5を生成する。これにより、図8に示す波形W5のような波形データD5が生成され、「第5の処理」が完了する。なお、この「第5の処理」については、波形データD0fの値を微分する上記の処理に代えて、波形データD0fの値を最小二乗法などで「変化率を示す値」に置き換える処理を実行することもできる。   Next, the processing unit 23 generates a waveform data D5 by computing a value (first order differential value: fifth value) obtained by differentiating each measurement value of the waveform data D0f. Thereby, waveform data D5 like the waveform W5 shown in FIG. 8 is generated, and the "fifth process" is completed. In the fifth process, instead of the above process of differentiating the value of the waveform data D0f, the process of replacing the value of the waveform data D0f with the value indicating the rate of change by the least squares method is performed. You can also

続いて、処理部23は、波形データD5の各値(第5の値)を微分した値(二階微分値:第6の値)を演算して波形データD6(「第6のデータ」の一例)を生成する。これにより、図9に示す波形W6のような波形データD6が生成され、「第6の処理」が完了する。なお、この「第6の処理」についても、波形データD5の値を微分する上記の処理に代えて、波形データD5の値を最小二乗法などで「変化率を示す値」に置き換える処理を実行することもできる。   Subsequently, the processing unit 23 calculates a value (second-order differential value: sixth value) obtained by differentiating each value (fifth value) of the waveform data D5 to obtain waveform data D6 (an example of “sixth data” Generate). Thereby, waveform data D6 like the waveform W6 shown in FIG. 9 is generated, and the "sixth process" is completed. Also in this "sixth process", instead of the above process of differentiating the value of the waveform data D5, the process of replacing the value of the waveform data D5 with the "value indicating the rate of change" by the least squares method etc. You can also

次いで、処理部23は、波形データD6の各値の絶対値を正規化した値(「第7の値」の一例)を演算して波形データD7(「第7のデータ」の一例)を生成する「第7の処理」を実行する。これにより、図10に示す波形W7のような波形データD7が生成され、「第7の処理」が完了する。   Next, the processing unit 23 calculates a value (an example of the “seventh value”) obtained by normalizing the absolute value of each value of the waveform data D6 to generate the waveform data D7 (an example of the “seventh data”) To perform the "seventh process". Thereby, waveform data D7 like the waveform W7 shown in FIG. 10 is generated, and the "seventh process" is completed.

続いて、処理部23は、波形データD1の各測定値を絶対値化した値(「第8の値」の一例)を演算して波形データD8(「第8のデータ」の一例)を生成する「第8の処理」を実行する。これにより、図11に示す波形W8のような波形データD8が生成され、「第8の処理」が完了する。   Subsequently, the processing unit 23 generates a waveform data D8 (an example of an “eighth data”) by calculating a value (an example of the “eighth value”) obtained by converting each measured value of the waveform data D1 into an absolute value. To perform the "eighth process". Thereby, waveform data D8 like the waveform W8 shown in FIG. 11 is generated, and the "eighth process" is completed.

次いで、処理部23は、後述する「第9の処理」の開始に先立ち、以下に説明する「第11の処理」から「第13の処理」までの各処理のうちのいずれか、または任意の複数を実行して、処理前の波形データD7の各値に存在する下記のような特異点の数を減少させる。具体的には、前述した「第7の処理」によって生成された波形データD7では、図10に示すように、対応する波形データD6の各値の変化率が2値連続して同程度のとき(波形W6の傾きが2サンプリング分連続して同じとき)に、その値(第7の値)が「0」に近い値(非常に小さな値)となる特異点が発生する。この特異点(「0」に近い値)は、後の良否判定において正確な判定を阻害するため、予め規定された条件に従って各値を処理することで、特異点を減少させた新たな波形データD7を生成するのが好ましい。   Next, prior to the start of the “ninth process” described later, the processing unit 23 selects any one of the processes from the “11th process” to the “13th process” described below, or any process. A plurality is performed to reduce the number of singular points as described below existing in each value of the waveform data D7 before processing. Specifically, in the waveform data D7 generated by the above-described “seventh process”, as shown in FIG. 10, when the change rates of the respective values of the corresponding waveform data D6 are binary values in the same degree continuously. (When the slope of the waveform W6 is continuously the same for two samplings), a singular point is generated whose value (seventh value) is close to "0" (very small value). This singular point (a value close to “0”) inhibits the accurate determination in the subsequent pass / fail determination, and thus new waveform data in which the singular point is reduced by processing each value according to a predetermined condition. It is preferred to produce D7.

この場合、特異点を減少させる処理の1つとしては、以下に説明する「第11の処理」を実行する。まず、波形データD5の各値(第5の値)の絶対値を、最大値が「1」となるように正規化した値(「第9の値」の一例)を演算して波形データD9(「第9のデータ」の一例)を生成する。これにより、図12に示す波形W9のような波形データD9が生成される。次いで、処理部23は、波形データD9の各の値(第9の値)に係数Ka(一例として、Ka=0.1)を乗じた値(図13に示す波形W9aの値)と、波形データD9の値(第9の値)のサンプリングタイミングに対応する波形データD7の値(第7の値:図13に示す波形W7の値)とのいずれか大きい一方を、新たな値(新たな第7の値)として新たな波形データD7を生成する。この際には、図13に太線で示す波形W7aのような波形データD7(新たな波形データD7)が生成され、「第11の処理」が完了する。   In this case, as one of the processes for reducing the singular point, the “11th process” described below is performed. First, the absolute value of each value (fifth value) of the waveform data D5 is normalized so that the maximum value becomes “1” (an example of the “ninth value”) to calculate the waveform data D9. (An example of “ninth data”) is generated. Thus, waveform data D9 such as the waveform W9 shown in FIG. 12 is generated. Next, the processing unit 23 calculates a value (the value of the waveform W9a shown in FIG. 13) obtained by multiplying each value (ninth value) of the waveform data D9 by the coefficient Ka (as an example, Ka = 0.1) One of the larger one of the value (the seventh value: the value of the waveform W7 shown in FIG. 13) of the waveform data D7 corresponding to the sampling timing of the value (the ninth value) of the data D9 is a new value (a new value A new waveform data D7 is generated as a seventh value). At this time, waveform data D7 (new waveform data D7) such as the waveform W7a indicated by a thick line in FIG. 13 is generated, and the "11th process" is completed.

なお、「第11の処理」において使用する「係数Ka」については、「1」以下で「0.1」以外の任意の正数とすることができる。また、上記の「第11の処理」に代えて、波形データD9の各の値(第9の値)に係数Kaを乗じない値(すなわち、第9の値:図14に示す波形W9の値)と、波形データD9の値(第9の値)のサンプリングタイミングに対応する波形データD7の値(第7の値:図14に示す波形W7の値)とのいずれか大きい一方を、新たな値(新たな第7の値)として新たな波形データD7を生成する処理を実行することもできる。この際には、同図に太線で示す波形W7bのような新たな波形データD7が生成される。   In addition, about "coefficient Ka" used in "the 11th process", it can be set as arbitrary positive numbers other than "0.1" below "1". In addition, instead of the above-mentioned "the eleventh process", each value (the ninth value) of the waveform data D9 is not multiplied by the coefficient Ka (that is, the ninth value: the value of the waveform W9 shown in FIG. 14) Or the value of the waveform data D7 (the seventh value: the value of the waveform W7 shown in FIG. 14) corresponding to the sampling timing of the value of the waveform data D9 (the ninth value), whichever is larger, It is also possible to execute a process of generating new waveform data D7 as a value (a new seventh value). At this time, new waveform data D7 such as a waveform W7b indicated by a thick line in the same drawing is generated.

また、特異点を減少させる処理の他の1つとしては、以下に説明する「第12の処理」を実行する。この「第12の処理」では、波形データD7の各値(第7の値)を、対象の値に対してJaサンプリング前の値から対象の値までの(Ja+1)個の値と、対象の値から対象の値に対してJbサンプリング後の値までの(Jb+1)個の値の少なくとも一方を含む予め規定されたJc個の第7の値のうちの最大値にそれぞれ置き換えて新たな波形データD7を生成する。   In addition, as another one of the processing for reducing the singularity, the “12th processing” described below is performed. In this "12th process", each value (seventh value) of the waveform data D7 is set to (Ja + 1) values from the value before Ja sampling to the target value with respect to the target value, Each is replaced with the maximum value among the predefined Jc seventh values including at least one of (Jb + 1) values from the value to the value after the Jb sampling with respect to the target value, and new waveform data is generated. Generate D7.

具体的には、一例として、波形データD7の各値(第7の値)を、対象の値に対してJa=2サンプリング前の値から対象の値までの(Ja+1)個の値と、対象の値から対象の値に対してJb=2サンプリング後の値までの(Jb+1)個の値の双方を含む予め規定されたJa+Jb+1=Jc=5個の値のうちの最大値にそれぞれ置き換えて新たな波形データD7を生成する。この際には、図15に示す波形W7cのような新たな波形データD7が生成される。なお、「Ja」および「Jb」については「2」以外の任意の自然数に規定することができ、「Jc」についても「5」以外の任意の自然数とすることができる。   Specifically, as an example, each value (seventh value) of the waveform data D7 is set to (Ja + 1) values from the value before Ja = 2 sampling to the target value and the target value, Replace with the maximum value among the predefined Ja + Jb + 1 = Jc = 5 values including both (Jb + 1) values from the value of the target to the value after the target value Jb = 2 after sampling. Waveform data D7 is generated. At this time, new waveform data D7 such as the waveform W7c shown in FIG. 15 is generated. Note that “Ja” and “Jb” can be defined as any natural number other than “2”, and “Jc” can also be any natural number other than “5”.

さらに、特異点を減少させる処理のさらに他の1つとしては、以下に説明する「第13の処理」を実行する。この「第13の処理」では、波形データD7の各値(第7の値)のうち、Iサンプリング前の値よりも小さい値を、その値(第7の値)と、Iサンプリング前の値に係数Kb(一例として、Kb=0.9)を乗じた値(「第10の値」の一例)とのいずれか大きい一方に置き換えて新たな前波形データD7を生成する。この際には、図16に示す波形W7dのような新たな波形データD7が生成される。なお、「第13の処理」において使用する「係数Kb」については、「1」以下で「0.9」以外の任意の正数とすることができる。   Furthermore, as yet another process of reducing singular points, the “13th process” described below is performed. In the “13th process”, among the values (seventh values) of the waveform data D7, a value smaller than the value before the I sampling is its value (seventh value) and the value before the I sampling Is replaced by the larger one of a value (an example of “the tenth value”) obtained by multiplying the coefficient Kb (an example, Kb = 0.9) to generate new pre-waveform data D7. At this time, new waveform data D7 such as the waveform W7d shown in FIG. 16 is generated. The “coefficient Kb” used in the “third process” can be an arbitrary positive number other than “0.9” in “1” or less.

また、本例のような減衰振動波形の波形データD0に基づいて検査用データDcを生成する場合、後述する「第9の処理」の開始に先立ち、以下に説明する「第14の処理」を実行するのが好ましい。この場合、波形データD0のような減衰振動波形に基づいて生成した波形データD7では、その値(第7の値)が最大値となった時点以降において波形の変化量が時間の経過とともに小さくなる。このため、最大値以降の各値(第7の値)に関し、その変化量が極めて大きくなった場合は、正常な過渡現象ではなく、測定処理時に放電波形成分を含む測定値Dsが測定されたと判定できるように波形データD7の値を処理することで、判定精度を高めることが可能となる。したがって、波形データD7の値のうちの最大値以降の値に関し、以下のように処理する。   Further, when the inspection data Dc is generated based on the waveform data D0 of the damped vibration waveform as in this example, the “fourteenth process” described below is performed prior to the start of the “ninth process” described later. It is preferable to carry out. In this case, in the waveform data D7 generated based on the damped oscillation waveform such as the waveform data D0, the amount of change in the waveform decreases with the passage of time after the value (the seventh value) reaches the maximum value. . Therefore, regarding each value after the maximum value (seventh value), when the amount of change becomes extremely large, it is not a normal transient phenomenon, but the measured value Ds including the discharge waveform component is measured during the measurement process. By processing the value of the waveform data D7 so that it can be determined, it is possible to improve the determination accuracy. Therefore, the values after the maximum value among the values of the waveform data D7 are processed as follows.

具体的には、「第14の処理」においては、波形データD7の各値(第7の値)のうちの最大値に対応する測定値Dsよりも後にサンプリングされた測定値Dsに対応する値(第7の値)を対象として、対象の値(第7の値)に対してHaサンプリング前(一例として、1サンプリング前)の値(第7の値)が、対象の値を含んで連続するHbサンプリング分(一例として、Ha=1サンプリング前の値を含むHb=101サンプリング分)の値(第7の値)を平均化した値に係数Kc(一例として、Kc=1.0)を乗じた値(第11の値)以下のとき(すなわち、Hbサンプリング分の値の平均値に係数Kcを乗じた値が、対象の値のHaサンプリング前の値よりも大きいとき:対象の値を含むHbサンプリング分の値が急激に大きくなったとき)に、対象の値と、Haサンプリング前の値に予め規定された係数Kd(一例として、1.4)を乗じた値(第12の値)とのいずれか小さい一方に置き換えて新たな波形データD7を生成する。   Specifically, in the "fourteenth process", a value corresponding to the measured value Ds sampled after the measured value Ds corresponding to the maximum value among the respective values (seventh values) of the waveform data D7. A value (seventh value) before Ha sampling (as an example, one sampling) for the target value (seventh value) for the (seventh value) is continuous including the target value Coefficient Kc (for example, Kc = 1.0) to the value obtained by averaging the value (seventh value) of Hb sampling (for example, Hb = 101 sampling for Ha = 1 including the value before sampling) When it is below the multiplied value (11th value) (that is, when the value obtained by multiplying the coefficient Kc by the average value of the Hb sampling values is larger than the value before Ha sampling of the target value: target value The value of the included Hb sampling rapidly increases And the value before the Ha sampling is replaced with the smaller one (the 12th value) of the value before the Ha sampling multiplied by a predetermined coefficient Kd (for example, 1.4) to newly Waveform data D7 is generated.

この際に、上記のHaサンプリング前の値(第7の値)が、上記のHbサンプリング分の値(第7の値)を平均化した値に係数Ke(一例として、Ke=0.1)を乗じた値(「第13の値」の一例)よりも小さいときに、対象の値(第7の値)を、平均化した値に係数Keを乗じた値(第13の値)に置き換えることにより、特異点の数を減少させることができる。このような「第14の処理」を実行することにより、波形データD7の値のうちの最大値以降の値(すなわち、変化量が徐々に小さくなるべき各値)について、図17に実線で示す波形W7eの値のように急激に値が大きくなっていた場合には、その増加量が制限されて同図に破線で示す波形W7fに置き換えられて、新たな波形データD7が生成される。   At this time, the value before the Ha sampling (the seventh value) is a coefficient Ke (an example: Ke = 0.1) as a value obtained by averaging the above-mentioned values for the Hb sampling (the seventh value). When it is smaller than the value (an example of the “13th value”) multiplied by, the target value (the 7th value) is replaced with the value (the 13th value) obtained by multiplying the averaged value by the coefficient Ke This can reduce the number of singularities. The values after the maximum value of the values of the waveform data D7 (that is, each value whose change amount should gradually decrease) are indicated by a solid line in FIG. 17 by executing such a “fourteenth process”. When the value is rapidly increased as in the value of the waveform W7e, the amount of increase is limited and replaced by the waveform W7f indicated by a broken line in the same drawing, whereby new waveform data D7 is generated.

なお、「第14の処理」において使用する「係数Kc」については、「1」以外の任意の正数とすることができ、「係数Kd」については、「係数Kc」よりも大きい「1.4」以外の任意の正数とすることができ、「係数Ke」については、「0.1」以外の任意の正数とすることができる。また、「Haサンプリング前の値」についても「2サンプリング以上の複数サンプリング前の値」とすることができ、「Hbサンプリング分を平均化した値」についても「100サンプリング分以下の複数サンプリング分を平均化した値」や「102サンプリング分以上の複数サンプリング分を平均化した値」とすることができる。   The “factor Kc” used in the “fourteenth process” can be any positive number other than “1”, and the “factor Kd” is “1. It may be any positive number other than 4 ", and" coefficient Ke "may be any positive number other than" 0.1 ". In addition, "value before Ha sampling" can be "value before sampling by 2 or more" and "value obtained by averaging Hb sampling" can also be "sampling by 100 sampling or less". It can be an averaged value or a value obtained by averaging a plurality of samplings of 102 samplings or more.

さらに、本例のような減衰振動波形の波形データD0に基づいて検査用データDcを生成する場合、後述する「第9の処理」の開始に先立ち、以下に説明する「第15の処理」も実行するのが好ましい。この場合、波形データD0のような振動波形であって検査対象Xに対する電圧の印加前からの測定値Dsを含む複数の測定値Dsに基づいて生成した波形データD7では、その値(第7の値)が最大値となる時点以前において波形の変化量が時間の経過とともに徐々に大きくなる傾向がある。このため、最大値以前の各値(第7の値)に関し、その変化量が変化率の増加の度合いとは不釣り合いに局所的に極めて小さいときには、ノイズ等の影響によってそのような極く小さな変化率の変化が生じたものとみなし、そのような変化の影響を十分に小さくするように波形データD7の値を処理することで、判定精度を高めることが可能となる。したがって、波形データD7の値のうちの最大値以前の値に関し、以下のように処理する。   Furthermore, when the inspection data Dc is generated based on the waveform data D0 of the damped vibration waveform as in this example, the “fifteenth process” described below is also performed prior to the start of the “ninth process” described later. It is preferable to carry out. In this case, the waveform data D7 is a vibration waveform such as the waveform data D0, and the waveform data D7 generated based on the plurality of measurement values Ds including the measurement value Ds from before the application of the voltage to the inspection object X Before the time when the value) reaches the maximum value, the amount of change in the waveform tends to increase gradually with the passage of time. Therefore, for each value (seventh value) before the maximum value, when the amount of change is extremely small locally disproportionately with the degree of increase in the rate of change, such an extremely small amount due to the influence of noise or the like It is possible to increase the determination accuracy by processing the value of the waveform data D7 so as to consider that a change in change rate has occurred and sufficiently reduce the influence of such change. Therefore, regarding the value before the maximum value among the values of the waveform data D7, the following processing is performed.

具体的には、「第15の処理」においては、波形データD7の各値(第7の値)のうちの最大値に対応する測定値Dsよりも前にサンプリングされた測定値Dsに対応する値(第7の値)を対象として、対象の値と、対象の第7の値に対してHcサンプリング前(一例として、Hc=1サンプリング前)の値(第7の値)に係数Kf(一例として、Ke=0.9)を乗じた値(「第14の値」の一例)とのいずれか大きい一方に置き換えて新たな波形データD7を生成する。   Specifically, in the “fifteenth process”, the process corresponds to the measurement value Ds sampled before the measurement value Ds corresponding to the maximum value among the respective values (seventh values) of the waveform data D7. For the value (seventh value), the factor Kf (the seventh value) before Hc sampling (as an example, Hc = 1 sampling) for the target value and the target seventh value As one example, new waveform data D7 is generated by replacing the larger one with the value (an example of the “fourteenth value”) multiplied by Ke = 0.9.

この際に、対象の値(第7の値)、およびHcサンプリング前の値(第7の値)に係数Kfを乗じた値(第14の値)の双方が、対象の値を含んで連続するHdサンプリング分(一例として、Hd=101サンプリング分)の値(第7の値)を平均化した値に係数Kg(一例として、Kg=1)を乗じた値(「第15の値」の一例)よりも小さいときに、対象の値を、Hdサンプリング分の値を平均化した値に係数Kgを乗じた値(第15の値)に置き換えることもできる。このような「第15の処理」を実行することにより、波形データD7の値のうちの最大値以前の値について、値の増加量が過剰に小さいときに、その増加量が本来的な増加量に対応して補強された値に置き換えられ、新たな波形データD7が生成される。   At this time, both the target value (seventh value) and the value before the Hc sampling (seventh value) multiplied by the coefficient Kf (the fourteenth value) are continuous including the target value. A value ("15th value") obtained by multiplying a value obtained by averaging values (seventh values) of Hd samplings (as an example, Hd = 101 samplings) to be multiplied by a coefficient Kg (as an example, Kg = 1). When the value is smaller than one example), the target value can be replaced with a value (fifteenth value) obtained by multiplying the value obtained by averaging the Hd sampling values by the coefficient Kg. By executing such a “fifteenth process”, when the amount of increase in value is excessively small for the value before the maximum value among the values of the waveform data D7, the amount of increase is an inherent amount of increase Are replaced with the values reinforced corresponding to the new waveform data D7 is generated.

なお、「第15の処理」において使用する「係数Kg」については、「1」以外の任意の正数とすることができる。また、「Hcサンプリング前の値」についても「2サンプリング前以上の複数サンプリング前の値」とすることができ、「Hdサンプリング分を平均化した値」についても「100サンプリング分以下の複数サンプリング分を平均化した値」や「102サンプリング分以上の複数サンプリング分を平均化した値」とすることができる。   The “coefficient Kg” used in the “fifteenth process” can be any positive number other than “1”. In addition, "value before Hc sampling" can be "value before sampling more than 2 samplings", and "value obtained by averaging Hd sampling" can also be "sampling more than 100 samplings" A value obtained by averaging “a” or “a value obtained by averaging a plurality of samplings of 102 samplings or more” can be used.

一方、処理部23は、上記の「第11の処理」から「第13の処理」や、「第14の処理」および「第15の処理」のうちの予め規定された処理を完了したときに、「第9の処理」を開始する。なお、「第11の処理」から「第15の処理」までの各処理を実行しないよう規定されているときには、前述した「第8の処理」を完了した時点において「第9の処理」を開始する。   On the other hand, when the processing unit 23 completes the above-described "Eleventh processing" to "Thirteenth processing", or a predetermined processing of "Fourteenth processing" and "Fifteenth processing". , "9th process" is started. When it is specified not to execute each process from “Eleventh Process” to “Fifteenth Process”, “Ninth Process” is started when “Eighth Process” described above is completed. Do.

具体的には、この「第9の処理」では、処理部23は、図18に示すように、一例として、2次元グラフの縦軸に波形データD4の値(第4の値)を対応させると共に(「縦軸および横軸のいずれか予め規定された一方」を「縦軸」とした例)、2次元グラフの横軸に波形データD4の各値のサンプリングタイミングに対応する波形データD7の各値(第7の値)を対応させて(「縦軸および横軸の他方」を「横軸」とした例)、波形データD4の値、および波形データD7の値の対応点(「第1の対応点」の一例)を2次元グラフ上にそれぞれプロットする。なお、同図では、両値の対応点(第1の対応点)を「◆」で表している。   Specifically, in the “ninth process”, as shown in FIG. 18, the processing unit 23 associates the value (fourth value) of the waveform data D4 with the vertical axis of the two-dimensional graph, as an example. Along with (“one of the vertical axis and the horizontal axis defined in advance” as the “vertical axis”), the horizontal axis of the two-dimensional graph represents the waveform data D7 corresponding to the sampling timing of each value of the waveform data D4. Each value (the seventh value) is made to correspond (an example in which “the other of the vertical axis and the horizontal axis” is the “horizontal axis”), corresponding values of the values of the waveform data D4 and the values of the waveform data D7 One example of “corresponding points of 1” is plotted on a two-dimensional graph. In the same figure, the corresponding points (first corresponding points) of the two values are indicated by "-".

この際には、前述した「第4の処理」において生成された波形データD4の値、すなわち、波形データD0の測定値Dsのうちの「放電成分と判定されるべき変化量と同程度に短時間で大きく変化した値」が平均化されて絶対値化された値(第4の値)と、「第7の処理」において生成された波形データD7の値、または、波形データD7の値に対して各種の処理を施した新たな波形データD7の値、すなわち、波形データD0の測定値Dsのうちの「放電成分と判定されるべき変化量と同程度に短時間で大きく変化した値」が平均化されて絶対値化された値の二階微分値が絶対値化された値(第7の値)との対応点が「第1の対応点」として2次元グラフ上にそれぞれプロットされる。   In this case, the value of the waveform data D4 generated in the above-described "fourth process", that is, the change amount to be determined as a "discharge component" among the measured values Ds of the waveform data D0 The value (the fourth value) obtained by averaging and converting the value significantly changed with time to the value of the waveform data D7 generated in the “seventh process” or the value of the waveform data D7 With respect to the value of new waveform data D7 subjected to various processing, that is, a value that has changed significantly in a short time to the same extent as the amount of change to be determined as a discharge component among measured values Ds of waveform data D0. Are averaged and the second derivative of the absolute value is plotted on the two-dimensional graph as the "first corresponding point", the corresponding point of the second derivative of the absolute value (the seventh value) .

つまり、2次元グラフ上の各「第1の対応点」は、仮に波形データD0の波形W0に放電波形成分が含まれていたとしても、その放電波形成分の影響を排除された値(第4の値および第7の値)に基づく「対応点」がプロットされるべき領域内にプロットされることとなる。したがって、処理部23は、上記の「第9の処理」においてプロットした各「第1の対応点」の2次元グラフ上の配置に基づき、予め規定された「領域規定手順」に従って2次元グラフ上に「判定領域」を規定する(「第10の処理」の実行)。   That is, even if the discharge waveform component is included in the waveform W0 of the waveform data D0, each “first corresponding point” on the two-dimensional graph is a value in which the influence of the discharge waveform component is excluded (fourth The “corresponding points” based on the value of and the seventh value) will be plotted in the area to be plotted. Therefore, based on the arrangement on the two-dimensional graph of each "first corresponding point" plotted in the above-mentioned "ninth process", the processing unit 23 follows the "region defining procedure" defined in advance. Defines the “determination area” (execution of “the tenth process”).

なお、この「第10の処理」の具体的な手順については、後に詳細に説明するが、本例の測定システム1(データ処理装置3)では、波形データD0の波形W0に放電波形成分が含まれているときに、その放電波形成分に対応する値の後述する「第2の対応点」がプロットされない判定領域Aa(「測定値範囲」としての「第1の判定領域」の一例)と、波形データD0の波形W0に放電波形成分が含まれているときに、その放電波形成分に対応する値の後述する「第2の対応点」がプロットされる判定領域Ab(「測定値範囲」としての「第2の判定領域」の一例)との少なくとも一方を規定する処理を「第10の処理」として実行する。   Although the specific procedure of the “tenth process” will be described in detail later, in the measurement system 1 (data processing device 3) of this example, the waveform W0 of the waveform data D0 includes a discharge waveform component. A determination region Aa (an example of a “first determination region” as a “measurement value range”) in which a “second corresponding point” described later of the value corresponding to the discharge waveform component is not plotted when being When a discharge waveform component is included in the waveform W0 of the waveform data D0, a determination region Ab (as a “measurement value range”) in which a “second corresponding point” described later of the value corresponding to the discharge waveform component is plotted A process of defining at least one of “one example of the“ second determination area ”” of the above is performed as “the tenth process”.

続いて、処理部23は、「第10の処理」によって規定した判定領域Aaおよび/または判定領域Abを特定可能な領域データDa(「測定値範囲データ」としての「領域データ」の一例)を生成すると共に、生成した領域データDaおよび波形データD7,D8(「比較値データ」の一例)を検査対象Xに関連付けて記録して検査用データDc(「放電有無特定用データ」の一例)を生成して記憶部14に記憶させる。以上により、「データ生成処理」が完了する。   Subsequently, the processing unit 23 generates area data Da (an example of “area data” as “measurement value range data”) that can specify the determination area Aa and / or the determination area Ab defined by the “tenth process”. Along with the generation, the generated area data Da and the waveform data D7, D8 (an example of “comparison value data”) are associated with the inspection target X and recorded, and the inspection data Dc (an example of “discharge presence / absence specification data”) It is generated and stored in the storage unit 14. Thus, the "data generation process" is completed.

次いで、処理部23は、生成した検査用データDcに基づき、検査対象Xについて測定した波形データD0の波形W0に放電波形成分が含まれているか否かの「判定処理(すなわち、検査対象Xが良品であるか不良品であるかの検査処理)」を実行する。   Next, the processing unit 23 determines whether the waveform W0 of the waveform data D0 measured for the inspection object X includes a discharge waveform component based on the generated inspection data Dc (that is, the inspection object X is Execute the inspection process to determine whether the product is non-defective or defective.

具体的には、処理部23は、まず、検査用データDcに記録されている領域データDaに基づき、2次元グラフ上に判定領域Aaおよび/または判定領域Abを規定する。また、処理部23は、検査用データDcに記録されている波形データD7,D8に基づき、2次元グラフ上に「第2の対応点」をそれぞれプロットする。この際に、本例の測定システム1(データ処理装置3)では、一例として、2次元グラフの縦軸に波形データD8の各値(第8の値)を対応させると共に(「縦軸および横軸のいずれか予め規定された一方」を「縦軸」とした例)、2次元グラフの横軸に波形データD8の値のサンプリングタイミングに対応する波形データD7の各値(第7の値)を対応させて(「縦軸および横軸の他方」を「横軸」とした例)、波形データD8の値および波形データD7の値の対応点(第2の対応点)を2次元グラフ上にそれぞれプロットする。   Specifically, the processing unit 23 first defines the determination area Aa and / or the determination area Ab on the two-dimensional graph based on the area data Da recorded in the inspection data Dc. Further, the processing unit 23 plots “second corresponding points” on the two-dimensional graph, based on the waveform data D7 and D8 recorded in the inspection data Dc. At this time, in the measurement system 1 (data processing device 3) of this example, as an example, the vertical axis of the two-dimensional graph is made to correspond to each value (eighth value) of the waveform data D8 An example in which one of the axes is defined in advance as “the vertical axis”, each value (seventh value) of the waveform data D7 corresponding to the sampling timing of the value of the waveform data D8 on the horizontal axis of the two-dimensional graph Corresponding to each other (an example in which “the other of the vertical axis and the horizontal axis” is “horizontal axis”), the corresponding point (second corresponding point) of the value of the waveform data D8 and the value of the waveform data D7 on the two-dimensional graph Plot each on

また、本例の測定システム1(データ処理装置3)では、図19,20に示すように、上記の2次元グラフと、2次元グラフ上に規定した判定領域Aaおよび/または判定領域Abとを表示部22に表示させると共に、新たな「第2の対応点」をプロットする都度、その「第2の対応点」を示す記号または図柄を2次元グラフ上に表示させる。なお、両図の例では、「第2の対応点」を示す記号の一例である「■」を2次元グラフ上に表示させた(プロットした)例を図示している。   Further, in the measurement system 1 (data processing device 3) of the present example, as shown in FIGS. 19 and 20, the two-dimensional graph described above and the determination area Aa and / or the determination area Ab defined on the two-dimensional graph Every time a new "second corresponding point" is plotted while displaying on the display unit 22, a symbol or a symbol indicating the "second corresponding point" is displayed on a two-dimensional graph. Note that, in the examples of both figures, an example in which “■” which is an example of a symbol indicating “the second corresponding point” is displayed (plotted) on a two-dimensional graph is illustrated.

この場合、波形データD8は、前述した「第1の処理」において波形データD0の各測定値Dsのなかから連続するNサンプリング内の変化量が予め規定された量以上の測定値(第1の値:放電波形成分を構成する値と同様にNサンプリング内に急峻に変化した値)を「第8の処理」において絶対値化した値で構成されている。   In this case, the waveform data D8 is a measured value in which the amount of change in consecutive N samplings from among the measured values Ds of the waveform data D0 in the “first process” described above is a predetermined amount or more (first Value: Similar to the value constituting the discharge waveform component, the value is constituted by a value obtained by converting the steep change in N sampling) into an absolute value in the “eighth process”.

このため、この波形データD8の元となった波形データD0の各測定値DsがNサンプリング内に急峻に変化しなかったとき、すなわち、波形データD0の波形W0に放電波形成分が含まれていないときには、図19に示すように、すべての「第2の対応点」が判定領域Aa内(判定領域Ab外)にプロットされることとなる。これに対して、波形データD8の元となった波形データD0の各測定値DsがNサンプリング内に急峻に変化したとき、すなわち、波形データD0の波形W0に放電波形成分が含まれていたときには、図20に示すように、幾つかの「第2の対応点」(放電波形成分の測定値Dsに対応する波形データD7,8の対応点)が判定領域Aa外(判定領域Ab内)にプロットされることとなる。   Therefore, when each measured value Ds of the waveform data D0 which is the source of the waveform data D8 does not change sharply within N sampling, that is, no discharge waveform component is included in the waveform W0 of the waveform data D0. Sometimes, as shown in FIG. 19, all “second corresponding points” are plotted in the determination area Aa (outside of the determination area Ab). On the other hand, when each measured value Ds of the waveform data D0 which is the source of the waveform data D8 changes sharply within N sampling, that is, when a discharge waveform component is included in the waveform W0 of the waveform data D0. As shown in FIG. 20, some "second corresponding points" (corresponding points of the waveform data D7, 8 corresponding to the measured value Ds of the discharge waveform component) are outside the judgment area Aa (within the judgment area Ab). It will be plotted.

したがって、処理部23は、すべての「第2の対応点」のプロットを完了したときに、まず、上記の「第2の対応点」と判定領域Aa、および/または判定領域Abとの位置関係を特定する。この際に、すべての「第2の対応点」が判定領域Aa内にプロットされているとき(すべての「第2の対応点」が判定領域Ab外にプロットされているとき)に、処理部23は、波形データD0の波形W0に放電波形成分が含まれていないと判定する。また、幾つかの「第2の対応点」が判定領域Aa外にプロットされているとき(幾つかの「第2の対応点」が判定領域Ab内にプロットされているとき)に、処理部23は、波形データD0の波形W0に放電波形成分が含まれていると判定する。   Therefore, when the processing unit 23 completes the plotting of all the "second corresponding points", first, the positional relationship between the "second corresponding point" described above and the determination area Aa and / or the determination area Ab Identify At this time, when all the "second corresponding points" are plotted in the determination area Aa (when all the "second corresponding points" are plotted outside the determination area Ab), the processing unit 23 determines that the waveform W0 of the waveform data D0 does not include the discharge waveform component. In addition, when some “second corresponding points” are plotted outside the determination area Aa (when some “second corresponding points” are plotted in the determination area Ab), the processing unit 23 determines that the waveform W0 of the waveform data D0 includes a discharge waveform component.

また、処理部23は、操作部21の操作による使用者からの指示に従い、上記の図19,20に示す2次元グラフに代えて(または、両図に示す2次元グラフと共に)図21に示す2次元グラフを表示部22に表示させる。この2次元グラフは、波形データD0の波形W0、波形データD1の波形W1、および前述した判定領域Aaと判定領域Abと境界に対応する波形Waとが重ねて表示されている。したがって、同図に示すように、波形データD1の波形W1の一部が波形Waよりも上方に描画されているときには、その部位に対応する波形W0の一部が放電波形成分であり、波形データD1の波形W1において波形Waよりも下方に描画されている部位については、その部位に対応する波形W0の部位が放電波形成分ではないと直感的に認識させることが可能となる。   Further, the processing unit 23 is shown in FIG. 21 in place of the two-dimensional graphs shown in FIGS. 19 and 20 (or together with the two-dimensional graphs shown in both figures) according to an instruction from the user by the operation of the operation unit 21. A two-dimensional graph is displayed on the display unit 22. In the two-dimensional graph, the waveform W0 of the waveform data D0, the waveform W1 of the waveform data D1, and the waveform Wa corresponding to the boundary between the determination area Aa, the determination area Ab, and the boundary are displayed. Therefore, as shown in the figure, when a part of the waveform W1 of the waveform data D1 is drawn above the waveform Wa, a part of the waveform W0 corresponding to that part is the discharge waveform component, and the waveform data With respect to a portion drawn lower than the waveform Wa in the waveform W1 of D1, it is possible to intuitively recognize that the portion of the waveform W0 corresponding to the portion is not a discharge waveform component.

この後、処理部23は、上記の放電波形成分の有無の判定処理とは別個に行う他の検査項目に関する判定処理の結果と共に、放電波形成分の有無の判定処理の判定結果を検査対象Xに関連付けて記録して検査結果データDrを生成する。また、すべての検査項目において不良なしと判定したときには、検査対象Xが良品であるとの事項を検査結果データDrに記録すると共に、いずれかの検査項目において不良ありと判定したときには、検査対象Xが不良品であるとの事項を検査結果データDrに記録する。以上により、検査対象Xについての一連の検査処理が完了する。   After this, the processing unit 23 sets the determination result of the determination process of the presence or absence of the discharge waveform component as the inspection target X together with the result of the determination process regarding the other inspection item performed separately from the determination process of the presence or absence of the discharge waveform component described above. It associates and records and generates inspection result data Dr. In addition, when it is determined that there is no defect in all the inspection items, the item that the inspection object X is good is recorded in the inspection result data Dr, and when it is determined that there is a defect in any inspection item, the inspection object X Records that the item is a defective product in the inspection result data Dr. Thus, a series of inspection processes for the inspection object X are completed.

次に、検査対象Xについての上記の一連の処理のうちの「第10の処理(2次元グラフ上に判定領域Aa,Abを規定する処理)」について、添付図面を参照して詳細に説明する。   Next, “the tenth process (process for defining the determination areas Aa and Ab on a two-dimensional graph)” of the series of processes for the inspection object X will be described in detail with reference to the attached drawings. .

上記の「第10の処理」において判定領域Aa(または、判定領域Ab)を規定するときに、処理部23は、まず、図22,23に示すように「第9の処理」においてプロットした「第1の対応点」の位置(両図における各「◇」の位置)を特定すると共に、2次元グラフの原点P0を通過する「各第1の対応点の回帰直線」を特定する。この際には、一例として、両図に示す二点鎖線Lが「回帰直線」として特定される。次いで、処理部23は、特定した回帰直線(二点鎖線L)における2次元グラフの横軸(「縦軸および横軸の他方」の一例)の値が「1」のときの2次元グラフの縦軸(縦軸および横軸のいずれか予め規定された一方」の一例)の値(本例では、約0.08:「第16の値」の一例)を特定する。   When defining the determination area Aa (or the determination area Ab) in the above-described “tenth process”, the processing unit 23 first plots “the ninth process” as shown in FIGS. While specifying the position of the first corresponding point (the position of each “◇” in both figures), the “regression line of each first corresponding point” passing through the origin P0 of the two-dimensional graph is specified. At this time, as an example, a two-dot chain line L shown in both figures is specified as a "regression line". Next, the processing unit 23 generates a two-dimensional graph when the value of the horizontal axis (an example of “the other of the vertical axis and the horizontal axis”) of the two-dimensional graph in the identified regression line (two-dot chain line L) is “1”. The value (in the present example, about 0.08: an example of the “16th value”) is specified as the value of the vertical axis (an example of either the vertical axis or the horizontal axis, which is previously defined).

続いて、2次元グラフの原点P0、縦軸の値が「第16の値」で横軸の値が「1」の点P1(「第1の点」の一例)、および縦軸の値が「0」で横軸の値が「1」の点2(「第2の点」の一例)の3点を頂点とする三角形領域A1を特定すると共に、特定した三角形領域A1に基づいて判定領域Aaおよび/または、判定領域Abを規定する。   Subsequently, the point P1 of the origin P0 of the two-dimensional graph, the value of the vertical axis is “16th value” and the value of the horizontal axis is “1” (an example of “first point”), and the value of the vertical axis is A triangular area A1 having three points of point 2 (an example of a "second point") whose value of the horizontal axis is "1" and "1" is a vertex is specified, and a determination area is determined based on the specified triangular area A1. Aa and / or a determination area Ab is defined.

具体的には、処理部23は、図24に示すように、2次元グラフの縦軸(「縦軸および横軸のいずれか予め規定された一方」の一例)に波形データD1の値(第1の値)を対応させると共に、2次元グラフの横軸(「縦軸および横軸の他方」の一例)に波形データD1の各値のサンプリングタイミングに対応する波形データD7の値(第7の値)を対応させて波形データD1の値、および波形データD7の値の対応点(「第3の対応点」の一例)を2次元グラフ上にそれぞれプロットする。なお、同図では、両値の対応点(第3の対応点)を「■」で表している。   Specifically, as shown in FIG. 24, the processing unit 23 sets the value of the waveform data D1 on the vertical axis of the two-dimensional graph (an example of “one of the vertical axis and the horizontal axis defined in advance”). Value of 7), and the horizontal axis of the two-dimensional graph (an example of “the other of the vertical axis and the The values of the waveform data D1 and the corresponding points of the values of the waveform data D7 (an example of the “third corresponding point”) are plotted on a two-dimensional graph in correspondence with the values of the values. In the same figure, the corresponding points (third corresponding points) of the two values are indicated by "■".

この場合、波形データD0のような減衰振動波形(過渡現象の波形)の値に基づく「第3の対応点」は、変化率が小さい値が多くなるため、同図の2次元グラフの例では、横軸方向の原点側の部位に数多くの「第3の対応点」がプロットされることとなる。また、横軸方向の原点側の部位にプロットされた各「第3の対応点」は、対応する「第1の値」の自体が小さいことから、その分布が2次元グラフ上において縦軸方向に大きく分離せずに密集した状態となる。   In this case, the “third corresponding point” based on the value of the damped oscillation waveform (the waveform of the transient phenomenon) such as the waveform data D0 has many values with small change rates, so in the example of the two-dimensional graph of FIG. A number of "third corresponding points" are plotted at a position on the origin side in the horizontal axis direction. In addition, since each "third corresponding point" plotted on the origin side in the horizontal axis direction has a small "first value" itself, the distribution is in the vertical axis direction on the two-dimensional graph. It will be in a dense state without large separation.

したがって、処理部23は、一例として、横軸の値が「0.1(「縦軸および横軸の他方の値が「0.5」以下の予め規定された第17の値」の一例)」以下である「第3の対応点」、すなわち、各「第3の対応点」のうちの大半を占める通常の測定値Dsに対応する「第3の対応点」(放電波形成分や大きなノイズ成分が存在する場合に、そのような特異な測定値Dsを除く測定値Dsに対応する「第3の対応点」)を抽出する。なお、上記の「第17の値」については、「0.5」以下の「0.1」以外の任意の正数とすることができる。   Therefore, as an example, processing unit 23 has a value of the horizontal axis “0.1 (“ an example of a predefined seventeenth value with the other value of the vertical axis and the horizontal axis being “0.5” or less ”). Or less, that is, the “third corresponding point” corresponding to the normal measurement value Ds that occupies most of each “third corresponding point” (discharge waveform component or large noise When the component is present, the "third corresponding point" corresponding to the measured value Ds excluding such a unique measured value Ds is extracted. In addition, about said "17th value", it can be set as arbitrary positive numbers other than "0.1" below "0.5".

次いで、処理部23は、抽出した各「第3の対応点」における縦軸の値の標準偏差nσを演算する。この場合、「n」については、測定値Dsの数(サンプリング数)に応じて任意の自然数を予め規定しておく。具体的には、一例として、波形データD0における測定値Dsの数が「10,000」であって、この波形データD0の波形W0に放電波形成分が存在しないときに、標準偏差nσ=3σの範囲内に含まれる測定値Dsは、「10,000×約99.73%≒9,973値」で「10,000−9,973=27値」が標準偏差nσの範囲外となる可能性があり、標準偏差nσ=4σの範囲内に含まれる測定値Dsは、「10,000×約99.994%≒9,999.4値」で「10,000−9,999.4=0.6値」が標準偏差nσの範囲外となる可能性がある。   Next, the processing unit 23 calculates the standard deviation nσ of the value of the vertical axis at each of the extracted “third corresponding points”. In this case, for “n”, an arbitrary natural number is defined in advance according to the number of measurement values Ds (the number of samplings). Specifically, as an example, when the number of measured values Ds in the waveform data D0 is "10,000" and a discharge waveform component does not exist in the waveform W0 of the waveform data D0, the standard deviation nσ = 3σ The measured value Ds included in the range is "10,000 × about 99.73% 9,9 9,973 value" and "10,000-9,973 = 27 value" may be outside the standard deviation nσ range. And the standard deviation nσ = 4σ, the measured value Ds is “10,000 × about 99.994% 約 9,999.4” and “10,000-9,999.4 = 0”. 6 values may fall outside the range of the standard deviation nσ.

また、標準偏差nσ=5σの範囲内に含まれる測定値Dsは、「10,000×約99.9999%≒9,999.99値」で「10,000−9,999.99=0.01値」が標準偏差nσの範囲外となる可能性があり、標準偏差nσ=6σの範囲内に含まれる測定値Dsは、「10,000×約99.999999%≒9,999.9999値」で「10,000−9,999.999999=0.000001値」が標準偏差nσの範囲外となる可能性がある。したがって、この「第10の処理」においては、標準偏差nσ(n≧3)、好ましくは、標準偏差5σ、または標準偏差6σを演算することで、放電波形成分が存在するとの誤判定が生じさせる可能性が十分に低い判定領域Aa(または、判定領域Ab)を規定することが可能となる。   Moreover, the measured value Ds included in the range of the standard deviation nσ = 5σ is “10,000 × about 99.9999% ≒ 9,999.99” and “10,000-9,999.99 = 0”. 01 value may fall outside the range of the standard deviation nσ, and the measurement value Ds included in the range of the standard deviation nσ = 6σ is “10,000 × about 99.999999% ≒ 99.99.9999” "Value of 10,000-9,999.999999 = 0.000001" may be out of the range of the standard deviation nσ. Therefore, in this “tenth process”, the erroneous determination that the discharge waveform component exists is caused by calculating the standard deviation nσ (n ≧ 3), preferably the standard deviation 5σ or the standard deviation 6σ. It becomes possible to define a judgment area Aa (or a judgment area Ab) with a sufficiently low possibility.

続いて、処理部23は、図22,23に示すように、前述した原点P0、および点P1と、縦軸の値が標準偏差nσと「第16の値(本例では、約0.08)」との和で横軸の値が「1」の点P3(「第3の点」の一例)と、縦軸の値が標準偏差nσで横軸の値が「0」の点P4(「第4の点」の一例)との4点を頂点とする矩形領域A2(「第1の矩形領域」の一例)を特定する。また、処理部23は、処理部23は、判定領域Aaを規定するときには、上記の三角形領域A1と矩形領域A2とを足し合わせた領域を判定領域Aaとし、判定領域Abを規定するときには、2次元グラフにおいて上記の三角形領域A1および矩形領域A2を除く領域を判定領域Abとし、これらの判定領域Aaおよび/または判定領域Abを特定可能なデータを領域データDaとして検査用データDcに記録する。以上により、判定領域Aaおよび/または判定領域Abを規定する「第10の処理」が完了する。   Subsequently, as shown in FIGS. 22 and 23, the processing unit 23 determines that the values of the origin P0 and the point P1 described above have the standard deviation nσ and the “sixteenth value (about 0.08 in this example). Point P3 (an example of a “third point”) having a horizontal axis value of “1”, and a point P4 having a standard deviation nσ (vertical deviation) and a horizontal axis value of “0” (4) A rectangular area A2 (an example of a “first rectangular area”) having four points of “an example of the“ fourth point ”” as apexes is specified. When the processing unit 23 defines the determination area Aa, the processing unit 23 sets an area obtained by adding the above triangular area A1 and the rectangular area A2 as the determination area Aa, and when defining the determination area Ab, 2 An area excluding the triangular area A1 and the rectangular area A2 in the dimensional graph is set as a determination area Ab, and data capable of specifying the determination area Aa and / or the determination area Ab is recorded as the area data Da in the inspection data Dc. Thus, the “tenth process” for defining the determination area Aa and / or the determination area Ab is completed.

この場合、図22に示すように、波形データD0の波形W0に放電波形成分が含まれていないときには、検査用データDcに記録されている波形データD8の値および波形データD7の値の「第2の対応点(同図に示す「■」の点)」を2次元グラフ上にそれぞれプロットしたときに、すべての「第2の対応点」が判定領域Aa内(判定領域Ab外)にプロットされる。これに対して、図23に示すように、波形データD0の波形W0に放電波形成分が含まれていたときには、検査用データDcに記録されている波形データD8の値および波形データD7の値の「第2の対応点(同図に示す「■」の点)」を2次元グラフ上にそれぞれプロットしたときに、幾つかの「第2の対応点」(放電波形成分の測定値Dsに対応する「第2の対応点」)が判定領域Aa外(判定領域Ab内)にプロットされる。したがって、上記のような手順で判定領域Aa、および/または判定領域Abを規定することにより、そのような領域データDaと、波形データD7,D8とに基づき、波形データD0の波形W0に放電波形成分が含まれているか否かを好適に判定できる。   In this case, as shown in FIG. 22, when the waveform W0 of the waveform data D0 does not include the discharge waveform component, the value of the waveform data D8 and the value of the waveform data D7 recorded in the inspection data Dc When the two corresponding points (the points indicated by “■” shown in the same figure) are plotted on the two-dimensional graph, all “second corresponding points” are plotted in the determination area Aa (outside the determination area Ab) Be done. On the other hand, as shown in FIG. 23, when the discharge waveform component is included in the waveform W0 of the waveform data D0, the values of the waveform data D8 and the values of the waveform data D7 recorded in the inspection data Dc When plotting the “second corresponding points (the points of“ ■ ”shown in the same figure”) on the two-dimensional graph, some “second corresponding points” (corresponding to the measured value Ds of the discharge waveform component) “The second corresponding point” is plotted outside the determination area Aa (in the determination area Ab). Therefore, by defining the determination area Aa and / or the determination area Ab according to the above-described procedure, the discharge waveform of the waveform W0 of the waveform data D0 is obtained based on such area data Da and the waveform data D7 and D8. Whether or not a component is contained can be suitably determined.

一方、「第1の判定領域および第2の判定領域の少なくとも一方の領域」を規定する「第10の処理」は、上記の手順に限定されず、以下のように「少なくとも一方の領域」を簡易に規定することもできる。具体的には、処理部23は、「第10の処理」として、まず、図25に示すように「第9の処理」においてプロットした「第1の対応点」の位置(同図における各「◇」の位置)を特定すると共に、特定したすべての「第1の対応点」が含まれる最小の方形領域A3(「最小の方形領域」の一例)を特定する。次いで、一例として、上記の判定領域Aa,Abの規定に際して特定した手順と同様の手順に従って標準偏差nσを演算する。   On the other hand, the “tenth process” for defining “at least one of the first determination area and the second determination area” is not limited to the above procedure, and “at least one area” is defined as follows. It can also be defined simply. Specifically, the processing unit 23 first positions the “first corresponding points” plotted in the “ninth process” as shown in FIG. 25 as “the tenth process” (each “in FIG. And the smallest square area A3 (an example of the "smallest square area") in which all the "first corresponding points" specified are included. Next, as an example, the standard deviation nσ is calculated according to the same procedure as the procedure specified in defining the above-described determination regions Aa and Ab.

続いて、方形領域A3を2次元グラフの縦軸方向に標準偏差nσだけ拡大し、拡大後の方形領域を「測定値範囲」としての「第1の判定領域」の他の一例である判定領域Acとし、かつ2次元グラフにおける判定領域Acを除く領域を「測定値範囲」としての「第2の判定領域」の他の一例である判定領域Adとして規定すると共に、これらの判定領域Acおよび/または判定領域Adを特定可能なデータを領域データDaとして検査用データDcに記録する。以上により、判定領域Acおよび/または判定領域Adを規定する「第10の処理」が完了する。   Subsequently, the rectangular area A3 is enlarged by the standard deviation nσ in the vertical axis direction of the two-dimensional graph, and the enlarged rectangular area is a determination area which is another example of the “first determination area” as the “measurement value range”. An area excluding the determination area Ac in the two-dimensional graph is defined as Ac, which is another example of the “second determination area” as the “measurement value range”, and these determination areas Ac and / or Alternatively, data capable of specifying the determination area Ad is recorded as the area data Da in the inspection data Dc. Thus, the “tenth process” for defining the determination area Ac and / or the determination area Ad is completed.

次に、前述の検査対象Xについての前述した一連の処理のうちの「判定処理」(波形データD0の波形W0に放電波形成分が含まれているか否かの判定)について、添付図面を参照して詳細に説明する。   Next, the “determination process” (determination as to whether or not the discharge waveform component is included in the waveform W0 of the waveform data D0) in the above-described series of processes for the inspection object X will be described with reference to the attached drawings. Will be described in detail.

検査用データDcにおける領域データDaおよび波形データD7,D8に基づいて波形データD0の波形W0に放電波形成分が含まれているか否かを判定する場合、「第10の処理」において判定領域Aaや判定領域Acを過剰に狭く規定したとき(判定領域Abや判定領域Adを過剰に広く規定したとき)に、放電波形成分ではないノイズ成分等が放電波形成分であると誤判定されるおそれがある。したがって、本例の測定システム1(データ処理装置3)では、「判定処理」において放電波形成分の有無を判定したときに、以下のような「報知処理」を行うことで、判定領域Aa〜Adが好適に規定されているか否かを利用者に把握させる構成が採用されている。   When it is determined whether the discharge waveform component is included in the waveform W0 of the waveform data D0 based on the region data Da and the waveform data D7 and D8 in the inspection data Dc, the determination region Aa or When the determination area Ac is defined too narrowly (when the determination area Ab and the determination area Ad are defined too widely), noise components and the like that are not discharge waveform components may be erroneously determined as discharge waveform components. . Therefore, in the measurement system 1 (data processing device 3) of this example, when the presence or absence of the discharge waveform component is determined in the "determination process", the following "informing process" is performed to determine the determination areas Aa to Ad. A configuration is adopted that allows the user to know whether or not

具体的には、一例として、処理部23は、まず、判定領域Aaや判定領域Ac(第1の判定領域)を「少なくとも一方の領域」とするときには、「第2の対応点」の総数に占める判定領域Aaや判定領域Acに含まれない「第2の対応点」の割合を特定すると共に、判定領域Abや判定領域Ad(第2の判定領域)を「少なくとも一方の領域」とするときには、「第2の対応点」の総数に占める判定領域Abや判定領域Adに含まれる「第2の対応点」の割合を特定する。つまり、各「第2の対応点」に占める「放電波形成分に対応すると判定される第2の対応点」の割合を特定する。   Specifically, as an example, when the processing unit 23 first sets the determination area Aa and the determination area Ac (first determination area) as the “at least one area”, the processing unit 23 sets the total number of “second corresponding points” to When specifying the proportion of “second corresponding points” not included in the determination area Aa or the determination area Ac, and setting the determination area Ab or the determination area Ad (second determination area) as “at least one of the areas” The ratio of the “second corresponding point” included in the determination area Ab or the determination area Ad to the total number of “second corresponding points” is specified. That is, the ratio of the "second corresponding point determined to correspond to the discharge waveform component" to each "second corresponding point" is specified.

次いで、特定した割合が「予め規定された割合(一例として、10%)」以上のときに、「放電波形成分と判定されるポイント数が10%を超えました」とのメッセージを表示部22に表示させる(「予め規定された報知処理」の一例)。したがって、このメッセージを見た利用者は、波形データD0の測定時にそれほど多くの放電現象が発生している筈がないと判断したときには、判定領域Aa,Acを狭く規定し過ぎた(判定領域Ab,Adを広く規定し過ぎた)と判断し、判定領域Aa,Ac、および/または判定領域Ab,Adの広さを手動で調整したり、上記の一連の手順における各係数を変更して新たな判定領域Aa,Ac、および/または判定領域Ab,Adを規定させたりする。なお、上記の「予め規定された割合」は、「0%」よりも大きく「100%」よりも小さい範囲内で「10%」以外の任意の割合に規定することができる。   Next, when the specified percentage is “predetermined percentage (10% as an example)” or more, a message “The number of points determined to be a discharge waveform component has exceeded 10%” is displayed on the display unit 22 (An example of “predefined notification processing”). Therefore, when the user who sees this message determines that there is not a large number of discharge phenomena occurring during measurement of the waveform data D0, the determination areas Aa and Ac are too narrowly defined (determination area Ab , Ad is too widely defined), and the adjustment areas Aa, Ac, and / or the areas of the evaluation areas Ab, Ad are manually adjusted, or each coefficient in the above-described series of procedures is changed to newly The judgment areas Aa and Ac and / or the judgment areas Ab and Ad are defined. In addition, said "predetermined ratio" can be prescribed | regulated to arbitrary ratios other than "10%" within the range larger than "0%" and smaller than "100%."

また、「報知処理」としては、上記の処理に代えて、以下のような処理を行うこともできる。具体的には、一例として、処理部23は、「判定処理」において、図26に示すように、まず、2次元グラフを横軸(「縦軸および横軸の他方」の一例)の方向で10個(「Ga=10個」の例)に分割したGa=10個の矩形領域A10〜A19(「第2の矩形領域」の一例)を特定する。次いで、処理部23は、判定領域Aaを「少なくとも一方の領域」とするときには判定領域Aa以外の領域に「第2の対応点」が含まれている矩形領域A10〜A19の数を特定すると共に、判定領域Abを「少なくとも一方の領域」とするときには判定領域Abに「第2の対応点」が含まれている矩形領域A10〜A19の数を特定する。つまり、矩形領域A10〜A19のうちの「放電波形成分に対応すると判定される第2の対応点」が存在する領域の数を特定する。この際に、同図に示す例では、該当する領域が矩形領域A10の1つであると特定される。   Further, as the “informing process”, the following process can be performed instead of the above process. Specifically, as an example, in the “determination process”, as shown in FIG. 26, the processing unit 23 first sets the two-dimensional graph in the direction of the horizontal axis (an example of “the other of the vertical axis and the horizontal axis”) The Ga = 10 divided rectangular regions A10 to A19 (an example of the “second rectangular region”) divided into 10 pieces (example of “Ga = 10 pieces”) are specified. Next, when setting the determination area Aa as “at least one area”, the processing unit 23 specifies the number of rectangular areas A10 to A19 in which “second corresponding points” are included in areas other than the determination area Aa. When the determination area Ab is set to "at least one area", the number of rectangular areas A10 to A19 in which "second corresponding points" are included in the determination area Ab is specified. That is, the number of areas in which “the second corresponding points determined to correspond to the discharge waveform component” among the rectangular areas A10 to A19 are specified. At this time, in the example shown in the figure, the corresponding area is identified as one of the rectangular areas A10.

続いて、処理部23は、特定した領域の数が「予め規定された数(一例として、Ga=10/2=5)」以上のときに、「放電波形成分と判定されるポイントが位置する領域が50%を超えました」とのメッセージを表示部22に表示させる(「予め規定された報知処理」の他の一例)。なお、同図に示す例では、特定された領域の数が1つだけのため、上記のようなメッセージが表示されることなく、前述したような判定結果が表示部22に表示されるが、上記のようなメッセージが表示された場合、そのメッセージを見た利用者は、波形データD0の測定時にそれほど多くの放電現象が発生している筈がないと判断したときには、判定領域Aaを狭く規定し過ぎた(判定領域Abを広く規定し過ぎた)と判断し、判定領域Aa、および/または判定領域Abの広さを手動で調整したり、上記の一連の手順における各係数を変更して新たな判定領域Aa、および/または判定領域Abを規定させたりする。なお、上記の「Ga個」は、10個以外で2以上の任意の自然数に規定することができる。また、「予め規定された数」についても、5個以外でGa個以下の任意の自然数に規定することができる。   Subsequently, the processing unit 23 locates a point determined as “discharge waveform component” when the number of specified regions is “prescribed number (for example, Ga = 10/2 = 5)” or more. A message that “the area has exceeded 50%” is displayed on the display unit 22 (another example of “predefined notification processing”). In the example shown in the figure, the determination result as described above is displayed on the display unit 22 without displaying the message as described above because the number of specified areas is only one. If a message like the above is displayed, the user who sees the message narrows down the judgment area Aa when judging that there should not be a large number of discharge phenomena occurring at the time of measurement of the waveform data D0. Too large (the determination area Ab is defined too broadly), and manually adjusting the size of the determination area Aa and / or the determination area Ab, or changing each coefficient in the above-described series of procedures. A new determination area Aa and / or a determination area Ab is defined. In addition, above-mentioned "Ga piece" can be prescribed | regulated to two or more arbitrary natural numbers except ten pieces. In addition, the “predefined number” can also be defined to an arbitrary natural number of Ga or less other than five.

このように、このデータ処理装置3では、放電波形成分が含まれているか否かを特定する基準となる「測定値範囲」の「測定値範囲データ」と、「測定値範囲データ」との対比によって放電波形成分が含まれているか否かを特定可能な「比較値データ」とを波形データD0に基づいて生成し、生成した「測定値範囲データ」および「比較値データ」を含めて検査用データDcを生成する。具体的には、処理部23が、波形データD0を使用して「第1の処理」から「第10の処理」までの各処理を順次実行し、「第10の処理」によって規定した「測定値範囲としての少なくとも一方の領域(本例では、「第1の判定領域」としての判定領域Aa(または、判定領域Ac)、および「第2の判定領域」としての判定領域Ab(または、判定領域Ad)の双方)」を特定可能な領域データDa(測定値範囲データ)と、「第7の処理」によって生成した波形データD7、および「第8の処理」によって生成した波形データD8(比較値データ)とを含めて検査用データDcを生成する。また、このデータ処理用プログラムDpは、上記の各処理をデータ処理装置3の処理部23に実行させる。   As described above, in the data processing device 3, the comparison between the "measurement value range data" of the "measurement value range" and the "measurement value range data" serving as a reference for specifying whether the discharge waveform component is included or not. Generates "comparison value data" that can specify whether the discharge waveform component is included or not based on the waveform data D0, and includes the generated "measurement value range data" and "comparison value data" for inspection Generate data Dc. Specifically, the processing unit 23 sequentially executes each processing from the “first processing” to the “tenth processing” using the waveform data D0, and “measurement” defined by the “tenth processing” At least one of the areas as the value range (in this example, the determination area Aa as the “first determination area” (or the determination area Ac), and the determination area Ab as the “second determination area” (or the determination Region data Da (measurement value range data) which can specify “both in region Ad)”, waveform data D7 generated by “seventh process”, and waveform data D8 (compared by “eighth process”) The inspection data Dc is generated including the value data). Also, the data processing program Dp causes the processing unit 23 of the data processing device 3 to execute the above-described processing.

したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、検査対象Xについて取得した1つの波形データD0に基づいて、放電波形成分が存在するか否かを判定するための領域データDaと、領域データDaの判定領域(判定領域Aa〜Ad)との対比によって放電波形成分が存在するか否かを判定可能な波形データD7,D8とを生成することができる。このため、複数回の測定処理が不要となり、複数の「測定対象」についての個体差の影響や、測定処理毎の測定環境の相違に起因する測定値Dsのばらつきの影響を受けることがなくなるため、放電現象が発生しているか否かの判定精度を十分に向上させることができるだけでなく、判定用の基準値(閾値)を生成する処理を別個に行う必要もなくなることから、利用者の負担を十分に軽減することができる。   Therefore, according to data processing device 3 and data processing program Dp, region data Da for determining whether a discharge waveform component is present or not based on one waveform data D0 acquired for inspection object X It is possible to generate waveform data D7 and D8 capable of determining whether or not a discharge waveform component exists by comparison with the determination region (determination regions Aa to Ad) of the region data Da. For this reason, the measurement process is not required a plurality of times, and the influence of the individual difference of a plurality of "measurement objects" and the influence of the variation of the measured value Ds due to the difference of the measurement environment for each measurement process are eliminated. Not only is it possible to sufficiently improve the determination accuracy of whether or not the discharge phenomenon has occurred, there is no need to separately perform processing for generating a reference value (threshold) for determination, which causes the burden on the user. Can be reduced enough.

また、このデータ処理装置3では、処理部23が、「第9の処理」に先立ち、波形データD5の各「第5の値」の絶対値を最大値が「1」となるように正規化した「第9の値」を演算して波形データD9を生成すると共に、各「第9の値」に係数Kaを乗じた値と、各「第9の値」のサンプリングタイミングに対応する波形データD7の各「第7の値」とのいずれか大きい一方を新たな「第7の値」として新たな波形データD7を生成する「第11の処理」を実行する。   Further, in the data processing device 3, the processing unit 23 normalizes the absolute value of each "fifth value" of the waveform data D5 so that the maximum value becomes "1" prior to the "ninth process". Calculating the “9th value” to generate the waveform data D9, and multiplying each “9th value” by the coefficient Ka and the waveform data corresponding to the sampling timing of each “9th value” An “eleventh process” is performed to generate new waveform data D <b> 7 by setting one of the “seventh values” of D <b> 7 whichever is larger as a new “seventh value”.

また、このデータ処理装置3では、処理部23が、「第9の処理」に先立ち、波形データD7の各「第7の値」を、対象の「第7の値」に対してJaサンプリング前の「第7の値」から対象の「第7の値」までの(Ja+1)個の「第7の値」、および対象の「第7の値」から対象の「第7の値」に対してJbサンプリング後の「第7の値」までの(Jb+1)個の「第7の値」の少なくとも一方を含む予め規定されたJc個の「第7の値」のうちの最大値にそれぞれ置き換えて新たな波形データD7を生成する「第12の処理」を実行する。   Further, in the data processing device 3, the processing unit 23 performs each “seventh value” of the waveform data D7 prior to the “seventh process” before Ja sampling with respect to the “seventh value” of interest. The (Ja + 1) pieces of “seventh values” from the “seventh value” to the target “seventh value” and the target “seventh value” to the target “seventh value” Replace with the maximum value among the predefined Jc "seventh values" including at least one of (Jb + 1) "seventh values" up to the "seventh value" after Jb sampling The “12th process” is performed to generate new waveform data D7.

また、このデータ処理装置3では、処理部23が、「第9の処理」に先立ち、波形データD7の各「第7の値」のうち、Iサンプリング前の「第7の値」よりも小さい「第7の値」を、Iサンプリング前の「第7の値」よりも小さい「第7の値」と、Iサンプリング前の「第7の値」に係数Kbを乗じた「第10の値」とのいずれか大きい一方に置き換えて新たな波形データD7を生成する「第13の処理」を実行する。   Further, in the data processing device 3, the processing unit 23 is smaller than the “seventh value” before I sampling among the “seventh values” of the waveform data D7 prior to the “seventh process”. A “10th value” obtained by multiplying the “7th value” by “the 7th value” smaller than the “7th value” before I sampling and the “7th value” before I sampling by the coefficient Kb The “13th process” is executed to generate new waveform data D7 in place of the larger one.

したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、「第7の値」が「0」に近い値となる特異点の数を十分に減少させることができ、これにより、放電波形成分の有無を一層高精度に判定し得る判定領域Aaおよび/または判定領域Abを規定することができると共に、検査用データDcに基づいて放電波形成分の有無を判定する際に、新たな波形データD7に基づいて2次元グラフ上に「第2の対応点」をプロットすることで放電波形成分の有無を一層高精度に判定することが可能となる。   Therefore, according to the data processing device 3 and the data processing program Dp, the number of singular points at which the “seventh value” becomes a value close to “0” can be sufficiently reduced, whereby the discharge waveform While it is possible to define the determination area Aa and / or the determination area Ab that can determine the presence or absence of the component with higher accuracy, new waveform data can be determined when determining the presence or absence of the discharge waveform component based on the inspection data Dc. By plotting the “second corresponding point” on the two-dimensional graph based on D7, it becomes possible to determine the presence or absence of the discharge waveform component with higher accuracy.

また、このデータ処理装置3では、処理部23が、「第9の処理」に先立ち、波形データD7の各「第7の値」のうちの最大値に対応する測定値Dsよりも後にサンプリングされた測定値Dsに対応する「第7の値」を、対象の「第7の値」に対してHaサンプリング前の「第7の値」が、対象の「第7の値」を含んで連続するHbサンプリング分の「第7の値」を平均化した値に係数Kcを乗じた「第11の値」以下のときに、対象の「第7の値」と、Haサンプリング前の「第7の値」に予め規定された係数Kdを乗じた「第12の値」とのいずれか小さい一方に置き換えて新たな波形データD7を生成する「第14の処理」を実行する。   Further, in the data processing device 3, the processing unit 23 is sampled after the measured value Ds corresponding to the maximum value among the "seventh values" of the waveform data D7 prior to the "seventh process". The “seventh value” corresponding to the measured value Ds is continuous to the “seventh value” of the object, including the “seventh value” of the object before the Ha sampling. When the value is equal to or less than the “11th value” obtained by multiplying the coefficient Kc by the value obtained by averaging the “7th value” for Hb sampling, the “7th value” of interest and “7th value before Ha sampling” The “fourteenth process” is executed to generate new waveform data D 7 by replacing it with the smaller one of “12th value” obtained by multiplying “value of“ 12 ”by a predetermined coefficient Kd.

したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、測定値の変化率が徐々に小さくなる波形データD0を対象とするときに、変化率の減少の度合いとは不釣り合いに「第7の値」が急激に大きな値に変化するような変化状態を、変化率の減少の度合いに応じた適当な変化状態とすることができ、これにより、放電波形成分の有無を一層高精度に判定し得る判定領域Aaおよび/または判定領域Abを規定することができると共に、検査用データDcに基づいて放電波形成分の有無を判定する際に、新たな波形データD7に基づいて2次元グラフ上に「第2の対応点」をプロットすることで放電波形成分の有無を一層高精度に判定することが可能となる。   Therefore, according to the data processing device 3 and the data processing program Dp, when the waveform data D0 in which the rate of change of the measured value gradually decreases is targeted, the degree of decrease in the rate of change is disproportionately A change state in which the value of “7” suddenly changes to a large value can be made an appropriate change state according to the degree of decrease in the change rate, thereby making the presence or absence of the discharge waveform component more accurate. While determination area Aa and / or determination area Ab that can be determined can be defined, when determining the presence or absence of a discharge waveform component based on inspection data Dc, on a two-dimensional graph based on new waveform data D7 By plotting “the second corresponding point” on the other hand, the presence or absence of the discharge waveform component can be determined with higher accuracy.

さらに、このデータ処理装置3では、処理部23が、「第14の処理」において、Haサンプリング前の「第7の値」が、Hbサンプリング分の「第7の値」を平均化した値に係数Keを乗じた「第13の値」よりも小さいときに、対象の「第7の値」を「第13の値」に置き換える。したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、「第7の値」の変化状態を一層好適な状態とすることができる。   Furthermore, in the data processing device 3, in the “fourteenth process”, the processing unit 23 sets the “seventh value” before the Ha sampling to a value obtained by averaging the “seventh value” for the Hb sampling. When the value is smaller than the “13th value” multiplied by the coefficient Ke, the “7th value” of interest is replaced with the “13th value”. Therefore, according to the data processing device 3 and the data processing program Dp, the change state of the "seventh value" can be made more preferable.

また、このデータ処理装置3では、処理部23が、「第9の処理」に先立ち、波形データD7の各「第7の値」のうちの最大値に対応する測定値Dsよりも前にサンプリングされた測定値Dsに対応する「第7の値」を、対象の「第7の値」と、対象の「第7の値」に対してHcサンプリング前の「第7の値」に係数Kfを乗じた「第14の値」とのいずれか大きい一方に置き換えて新たな波形データD7を生成する「第15の処理」を実行する。   Further, in the data processing device 3, the processing unit 23 samples the value before the measured value Ds corresponding to the maximum value of the “seventh values” of the waveform data D7 prior to the “ninth process”. The “seventh value” corresponding to the measured value Ds, the “seventh value” of the object, and the “seventh value” before Hc sampling for the “seventh value” of the object are coefficients Kf To generate a new waveform data D7 by replacing it with the larger one of the "fourteenth values" multiplied by.

したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、測定値の変化率が徐々に大きくなる波形データD0を対象とするときに、「第7の値」が「0」に近い値となる特異点の数を十分に減少させることができ、これにより、放電波形成分の有無を一層高精度に判定し得る判定領域Aaおよび/または判定領域Abを規定することができると共に、検査用データDcに基づいて放電波形成分の有無を判定する際に、新たな波形データD7に基づいて2次元グラフ上に「第2の対応点」をプロットすることで放電波形成分の有無を一層高精度に判定することが可能となる。   Therefore, according to the data processing device 3 and the data processing program Dp, the “seventh value” is a value close to “0” when the waveform data D0 in which the change rate of the measured value gradually increases. It is possible to sufficiently reduce the number of singular points that are to be determined, thereby defining the determination area Aa and / or the determination area Ab where the presence or absence of the discharge waveform component can be determined with higher accuracy, and When determining the presence or absence of the discharge waveform component based on the data Dc, the “second corresponding point” is plotted on the two-dimensional graph based on the new waveform data D7 to further increase the presence or absence of the discharge waveform component It is possible to determine

さらに、このデータ処理装置3では、処理部23が、「第15の処理」において、対象の「第7の値」および「第14の値」の双方が、対象の「第7の値」を含んで連続するHdサンプリング分の「第7の値」を平均化した値に係数Kgを乗じた「第15の値」よりも小さいときに、対象の「第7の値」を「第15の値」に置き換える。したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、「第7の値」が「0」に近い値となる特異点の数をさらに減少させることができる。   Furthermore, in the data processing device 3, in the “fifteenth process”, the processing unit 23 determines that both the “seventh value” and the “fifteenth value” of the object are the “seventh value” of the object. The target "seventh value" is set to the "fifteenth value" when it is smaller than the "fifteenth value" obtained by multiplying the coefficient Kg by the value obtained by averaging the "seventh value" for consecutive Hd samplings including Replace with "value". Therefore, according to the data processing device 3 and the data processing program Dp, it is possible to further reduce the number of singular points at which the “seventh value” becomes a value close to “0”.

また、このデータ処理装置3では、処理部23が、「第10の処理」において、2次元グラフの原点P0を通過する各「第1の対応点」の回帰直線(図22,23における二点鎖線L)を特定し、特定した回帰直線における2次元グラフの横軸の値が「1」のときの縦軸の値を「第16の値」として特定し、かつ、2次元グラフの原点P0、縦軸の値が「第16の値」で横軸の値が「1」の点P1、および縦軸の値が「0」で横軸の値が「1」の点P2の3点を頂点とする三角形領域A1を特定すると共に、特定した三角形領域A1に基づいて「少なくとも一方の領域」を規定する。   Further, in the data processing device 3, in the “tenth process”, the processing unit 23 sets a regression line of each “first corresponding point” passing through the origin P 0 of the two-dimensional graph (two points in FIGS. The dashed line L) is identified, and the value of the vertical axis when the value of the horizontal axis of the identified regression line is "1" is identified as the "sixteenth value", and the origin P0 of the two-dimensional graph , Point P1 whose value of the horizontal axis is "1" and whose value of the horizontal axis is "0" and whose value of the horizontal axis is "1" and whose value of the horizontal axis is "1" are three points: While specifying the triangle area A1 to be a vertex, "at least one area" is defined based on the specified triangle area A1.

したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、放電波形成分の値に対応する「第2の対応点」がプロットされる可能性が極めて低い三角形領域A1を確実かつ容易に特定することができ、この三角形領域A1に基づいて、判定領域Aaおよび/または判定領域Abを容易に特定して領域データDaを生成することができる。   Therefore, according to data processing device 3 and data processing program Dp, it is possible to reliably and easily specify triangle area A1 which is extremely unlikely to be plotted with the "second corresponding point" corresponding to the value of the discharge waveform component. Based on this triangular area A1, the determination area Aa and / or the determination area Ab can be easily specified to generate the area data Da.

さらに、このデータ処理装置3では、処理部23が、2次元グラフの縦軸に波形データD1の各「第1の値」を対応させると共に2次元グラフの横軸に各「第1の値」のサンプリングタイミングに対応する波形データD7の各「第7の値」を対応させて「第1の値」および「第7の値」の「第3の対応点」を2次元グラフ上にそれぞれプロットすると共に、横軸の値が「0.5」以下の予め規定された「第17の値」以下である「第3の対応点」を抽出し、抽出した各「第3の対応点」における縦軸の値の標準偏差nσを演算すると共に、原点P0、点P1、縦軸の値が標準偏差nσと「第16の値」との和で横軸の値が「1」の点P3、および縦軸の値が標準偏差nσで横軸の値が「0」の点P4の4点を頂点とする矩形領域A2を特定し、特定した矩形領域A2および三角形領域A1に基づいて「少なくとも一方の領域」を規定する。   Furthermore, in the data processing device 3, the processing unit 23 associates each “first value” of the waveform data D1 with the vertical axis of the two-dimensional graph, and each “first value” along the horizontal axis of the two-dimensional graph. The “third value” of the “first value” and the “third value” of the “seventh value” are plotted on the two-dimensional graph in correspondence with each “seventh value” of the waveform data D7 corresponding to the sampling timing of While extracting the “third corresponding point” having the value of the horizontal axis equal to or less than the predefined “17th value” equal to or less than “0.5” and extracting each “third corresponding point” The standard deviation nσ of the values on the vertical axis is calculated, and the origin P0, point P1, the point P3 on the vertical axis is the sum of the standard deviation nσ and the “16th value”, and the point P3 on the horizontal axis is “1”, And a rectangular area A2 having four points of the point P4 whose values of the vertical axis are standard deviation nσ and whose values of the horizontal axis are “0” are specified as vertexes, Defines the "at least one region" based on the boss was a rectangular area A2 and the triangular region A1.

したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、特定した矩形領域A2および三角形領域A1に基づいて判定領域Aaおよび/または判定領域Abを容易に特定することができ、波形データD0の波形W0に放電波形成分が含まれているか否かを高精度に判定可能な判定領域Aaおよび/または判定領域Abの領域データDaを容易に生成することができる。   Therefore, according to the data processing device 3 and the data processing program Dp, the determination area Aa and / or the determination area Ab can be easily specified based on the specified rectangular area A2 and triangular area A1, and the waveform data D0 It is possible to easily generate the area data Da of the determination area Aa and / or the determination area Ab that can determine with high accuracy whether the discharge waveform component is included in the waveform W0.

また、このデータ処理装置3では、処理部23が、「第10の処理」において、すべての「第1の対応点」が含まれる最小の方形領域A3を特定すると共に、特定した方形領域A3に基づいて「少なくとも一方の領域」を規定する。したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、非常に単純な処理によって判定領域Acおよび/または判定領域Adの領域データDaを生成することができる。   Further, in the data processing device 3, the processing unit 23 specifies the smallest rectangular area A3 including all the “first corresponding points” in the “tenth process” and specifies the smallest rectangular area A3. Define "at least one region" on the basis. Therefore, according to the data processing device 3 and the data processing program Dp, the area data Da of the determination area Ac and / or the determination area Ad can be generated by very simple processing.

さらに、このデータ処理装置3では、処理部23が、検査用データDcに基づき、「第2の対応点」と「少なくとも一方の領域」との位置関係を特定して波形データD0の波形W0に放電波形成分が含まれているか否かを判定する「判定処理」を実行し、「判定処理」の判定結果を特定可能な検査結果データDrを生成する。また、このデータ処理用プログラムDpは、上記の処理をデータ処理装置3の処理部23に実行させる。   Furthermore, in the data processing device 3, the processing unit 23 specifies the positional relationship between the "second corresponding point" and the "at least one of the regions" based on the inspection data Dc, and sets it as the waveform W0 of the waveform data D0. A “determination process” is performed to determine whether a discharge waveform component is included, and inspection result data Dr capable of specifying the determination result of the “determination process” is generated. Also, the data processing program Dp causes the processing unit 23 of the data processing device 3 to execute the above-described processing.

したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、複数回の測定処理が不要となり、、複数の「測定対象」についての個体差の影響や、測定処理毎の測定環境の相違に起因する測定値Dsのばらつきの影響を受けることがなくなるため、放電現象が発生しているか否かの判定精度を十分に向上させることができる。また、基準値(閾値)との比較による判定とは異なり、測定環境の変化の影響による誤判定を回避して判定精度を十分に高めることができる。   Therefore, according to the data processing device 3 and the data processing program Dp, a plurality of measurement processes become unnecessary, and the influence of individual differences in a plurality of "measurement objects" or the difference in measurement environment for each measurement process Since the influence of the variation in the measurement value Ds resulting therefrom is eliminated, it is possible to sufficiently improve the determination accuracy as to whether or not the discharge phenomenon has occurred. Further, unlike determination based on comparison with a reference value (threshold value), it is possible to avoid erroneous determination due to the influence of a change in measurement environment and sufficiently improve the determination accuracy.

また、このデータ処理装置3では、処理部23が、判定領域Aa(または、判定領域Ac)を「少なくとも一方の領域」とするときには「第2の対応点」の総数に占める判定領域Aa(または、判定領域Ac)に含まれない「第2の対応点」の割合を特定すると共に、判定領域Ab(または、判定領域Ad)を「少なくとも一方の領域」とするときには「第2の対応点」の総数に占める判定領域Ab(または、判定領域Ad)に含まれる「第2の対応点」の割合を特定し、特定した割合が予め規定された割合以上のときに、予め規定された「報知処理」を実行する。   Further, in the data processing device 3, when the processing unit 23 sets the determination area Aa (or the determination area Ac) as the “at least one area”, the determination area Aa (or the total number of “second corresponding points”) When specifying the ratio of “second corresponding points” not included in the determination area Ac) and setting the determination area Ab (or the determination area Ad) as “at least one of the areas”, “second corresponding point” The ratio of the “second corresponding point” included in the determination area Ab (or the determination area Ad) occupying the total number of the groups is specified, and when the specified ratio is equal to or more than the previously defined ratio, Execute "Process".

また、このデータ処理装置3では、処理部23が、2次元グラフを横軸の方向でGa個に分割したGa個の矩形領域A10〜A19を特定し、判定領域Aa(または、判定領域Ac)を「少なくとも一方の領域」とするときには判定領域Aa(または、判定領域Ac)以外の領域に「第2の対応点」が含まれている矩形領域A10〜A19の数を特定すると共に、判定領域Ab(または、判定領域Ad)を「少なくとも一方の領域」とするときには判定領域Ab(または、判定領域Ad)に「第2の対応点」が含まれている矩形領域A10〜A19の数を特定し、特定した数が予め規定された数以上のときに、予め規定された「報知処理」を実行する。   Further, in the data processing device 3, the processing unit 23 specifies Ga rectangular areas A10 to A19 obtained by dividing the two-dimensional graph into Ga in the direction of the horizontal axis, and determines the determination area Aa (or the determination area Ac). When the “at least one of the areas” is designated, the number of rectangular areas A10 to A19 in which the “second corresponding point” is included in the areas other than the determination area Aa (or the determination area Ac) is specified and When Ab (or determination area Ad) is "at least one area", the number of rectangular areas A10 to A19 in which "second corresponding points" are included in the determination area Ab (or determination area Ad) is specified When the specified number is equal to or more than the number defined in advance, the "informing process" defined in advance is executed.

したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、波形データD0の波形W0に放電波形成分が含まれているか否かの判定結果を確実かつ容易に認識させることができる。   Therefore, according to the data processing device 3 and the data processing program Dp, the determination result as to whether or not the waveform W0 of the waveform data D0 includes a discharge waveform component can be recognized surely and easily.

また、このデータ処理装置3では、処理部23が、「第2の対応点」をプロットした2次元グラフと「少なくとも一方の領域」を示す「領域表示」とを「判定処理」の判定結果と共に表示部22に表示させる。したがって、このデータ処理装置3およびデータ処理用プログラムDpによれば、波形データD0の波形W0に放電波形成分が含まれているか否かの判定結果を一層確実かつ一層容易に認識させることができる。   Further, in the data processing device 3, the processing unit 23 sets a two-dimensional graph in which the “second corresponding point” is plotted and “area display” indicating “at least one area” together with the determination result of the “determination process”. It is displayed on the display unit 22. Therefore, according to the data processing device 3 and the data processing program Dp, the determination result as to whether or not the waveform W0 of the waveform data D0 includes a discharge waveform component can be recognized more surely and more easily.

また、この測定システム1では、上記のデータ処理装置3と、測定対象(検査対象X)についての予め規定されたサンプリング周期での測定を実行して波形データD0を出力する測定装置2とを備えて構成されている。したがって、この測定システム1によれば、波形データD0の取得(生成)から検査用データDcの生成(または、検査用データDcおよび検査結果データDrの生成)までの一連の処理を1つのシステムで実行することができる。   In addition, the measurement system 1 includes the data processing device 3 described above, and the measurement device 2 that performs measurement at a predetermined sampling period for the measurement target (examination target X) and outputs the waveform data D0. Is configured. Therefore, according to the measurement system 1, a series of processes from acquisition (generation) of the waveform data D0 to generation of the inspection data Dc (or generation of the inspection data Dc and the inspection result data Dr) are performed by one system. It can be done.

なお、「データ処理装置」および「測定システム」の構成や、「データ処理用プログラム」による処理の手順は、上記のデータ処理装置3の構成、およびデータ処理装置3を備えて構成された測定システム1の構成の例や、データ処理用プログラムDpの記述の内容の例に限定されない。例えば、「第1の対応点」から「第3の対応点」のプロット時に、「縦軸および横軸のいずれか予め規定された一方」を「縦軸」とし、かつ「縦軸および横軸の他方」を「横軸」とした例について説明したが、「縦軸および横軸のいずれか予め規定された一方」を「横軸」とし、「縦軸および横軸の他方」を「縦軸」としてプロットしてもよい。   Note that the configurations of the “data processing device” and the “measurement system” and the procedure of processing by the “data processing program” are the configuration of the data processing device 3 described above and the measurement system configured to include the data processing device 3 The present invention is not limited to the example of the configuration 1 or the example of the contents of the description of the data processing program Dp. For example, when plotting “first corresponding point” to “third corresponding point”, “one of the vertical axis and the horizontal axis defined in advance” is set as the “vertical axis”, and “the vertical axis and the horizontal axis An example in which the “other axis” is “horizontal axis” has been described, but “one of the vertical axis and the horizontal axis defined in advance” is “horizontal axis”, and “the other of the vertical axis and horizontal axis” is “vertical It may be plotted as "axis".

また、検査用データDcの生成処理、および検査用データDcに基づく「放電波形成分が存在するか否かの判定処理」の双方をデータ処理装置3において実行する構成を例に挙げて説明したが、検査用データDcを生成するデータ処理装置3とは別個の「データ処理装置」において検査用データDcに基づく「判定処理」を実行する構成を採用することもできる。さらに、「判定処理」の判定結果をデータ処理装置3の構成要素である表示部22に表示させる構成を例に挙げて説明したが、外部装置としての表示装置(表示部)に判定結果を表示させる構成を採用することもできる。   Also, the configuration in which the data processing device 3 executes both the generation process of the inspection data Dc and the “determination process whether or not the discharge waveform component exists” based on the inspection data Dc has been described as an example. It is also possible to adopt a configuration in which the “determination process” based on the inspection data Dc is executed in the “data processing device” separate from the data processing device 3 that generates the inspection data Dc. Furthermore, although the configuration in which the determination result of the “determination process” is displayed on the display unit 22 which is a component of the data processing device 3 has been described as an example, the determination result is displayed on the display device (display unit) as an external device It is also possible to adopt a configuration that

また、測定装置2と、測定装置2とは別体のデータ処理装置3とを備えて測定システム1を構成した例について説明したが、「測定装置」および「データ処理装置」を一体化した装置を「測定システム」として構成することもできる。加えて、「測定対象」としての巻線部品についてのデータを処理して検査する例について説明したが、「データ処理装置」によるデータ処理の対象や、「測定システム」による検査の対象はこれに限定されず、コンデンサや抵抗体などの各種の電子部品や、回路基板上の任意の検査ポイント間についての「波形データ」に基づいてデータ処理や検査処理を実行することができる。   Although an example in which the measurement system 1 is configured to include the measurement apparatus 2 and the data processing apparatus 3 separate from the measurement apparatus 2 has been described, an apparatus in which the "measurement apparatus" and the "data processing apparatus" are integrated Can also be configured as a "measurement system". In addition, although the example of processing and inspecting the data on the winding parts as the "object to be measured" has been described, the object of data processing by the "data processing apparatus" and the object of inspection by the "measurement system" It is not limited, and data processing and inspection processing can be performed based on various electronic components such as capacitors and resistors, and "waveform data" between arbitrary inspection points on the circuit board.

1 測定システム
2 測定装置
3 データ処理装置
21 操作部
22 表示部
23 処理部
24 記憶部
Aa〜Ad 判定領域
A1 三角形領域
A2,A10〜A19 矩形領域
A3 方形領域
Ds 測定値
D0,D0f,D1〜D9 波形データ
Da 領域データ
Dc 検査用データ
Dp データ処理用プログラム
Dr 検査結果データ
P0 原点
P1〜P4 点
W0,W0f,W1〜W7,W7a〜W7f,W8,W9,Wa 波形
X 検査対象
DESCRIPTION OF SYMBOLS 1 measurement system 2 measurement device 3 data processing device 21 operation unit 22 display unit 23 processing unit 24 storage unit Aa to Ad determination region A1 triangular region A2, A10 to A19 rectangular region A3 rectangular region Ds measured value D0, D0f, D1 to D9 Waveform data Da area data Dc data for inspection Dp data processing program Dr inspection result data P0 origin P1 to P4 points W0, W0f, W1 to W7, W7a to W7f, W8, W9, Wa waveform X inspection target

Claims (20)

予め規定されたサンプリング周期で測定された複数の測定値が記録されている波形データに基づき、当該波形データの信号波形に放電波形成分が含まれているか否かを特定するための放電有無特定用データを生成する処理部を備えたデータ処理装置であって、
前記処理部は、前記放電波形成分が含まれているか否かの特定の基準となる測定値範囲の測定値範囲データと、当該測定値範囲との対比によって前記放電波形成分が含まれているか否かを特定可能な比較値データとを前記波形データに基づいて生成し、生成した当該測定値範囲データおよび当該比較値データを含めて前記放電有無特定用データを生成するデータ処理装置。
Based on waveform data in which a plurality of measured values measured in a predetermined sampling cycle are recorded, for determining whether or not a signal waveform of the waveform data includes a discharge waveform component A data processing apparatus comprising a processing unit for generating data, the data processing apparatus comprising:
The processing unit determines whether the discharge waveform component is included by comparing measured value range data of a measured value range serving as a specific reference of whether or not the discharge waveform component is included, and the measured value range. A data processing apparatus that generates comparison value data that can specify whether or not the discharge value determination data is generated based on the waveform data and including the generated measurement value range data and the comparison value data.
前記処理部は、
前記波形データの前記各測定値のなかから連続するNサンプリング内(Nは、予め規定された2以上の自然数)の変化量が予め規定された量以上の第1の値を抽出して第1のデータを生成する第1の処理と、
前記波形データの前記各測定値を、対象の当該測定値を含んで連続するMサンプリング分(Mは、予め規定された2以上の自然数)の当該測定値を平均化した第2の値にそれぞれ置き換えて第2のデータを生成する第2の処理と、
前記第2のデータの前記各第2の値のなかから前記連続するNサンプリング内の変化量が前記予め規定された量以上の第3の値を抽出して第3のデータを生成する第3の処理と、
前記第3のデータの前記各第3の値を絶対値化した第4の値を演算して第4のデータを生成する第4の処理と、
前記波形データの前記各測定値を、対象の当該測定値を含んで連続するLサンプリング分(Lは、予め規定された2以上の自然数)の当該測定値を平均化した値に置き換えると共に置換え後の当該測定値を微分した第5の値を演算して第5のデータを生成する第5の処理と、
前記第5のデータの前記各第5の値を微分した第6の値を演算して第6のデータを生成する第6の処理と、
前記第6のデータの前記各第6の値の絶対値を正規化した第7の値を演算して第7のデータを生成する第7の処理と、
前記第1のデータの前記各第1の値を絶対値化した第8の値を演算して第8のデータを生成する第8の処理と、
2次元グラフの縦軸および横軸のいずれか予め規定された一方に前記第4のデータの前記各第4の値を対応させると共に当該2次元グラフの縦軸および横軸の他方に当該各第4の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第4の値および当該第7の値の第1の対応点を当該2次元グラフ上にそれぞれプロットする第9の処理と、
前記2次元グラフの前記縦軸および横軸のいずれか予め規定された一方に前記第8のデータの前記各第8の値を対応させると共に当該2次元グラフの前記縦軸および横軸の他方に当該各第8の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第8の値および当該第7の値の第2の対応点を当該2次元グラフ上にそれぞれプロットしたときに前記放電波形成分の前記測定値に対応する当該第2の対応点がプロットされない第1の判定領域、および当該放電波形成分の当該測定値に対応する当該第2の対応点がプロットされる第2の判定領域の少なくとも一方の領域を、当該2次元グラフ上の前記各第1の対応点の配置に基づいて予め規定された領域規定手順に従って当該2次元グラフ上に前記測定値範囲として規定する第10の処理とを実行し、
前記第10の処理によって規定した前記少なくとも一方の領域を特定可能な領域データを前記測定値範囲データとし、かつ、前記第7のデータおよび前記第8のデータを前記比較値データとして前記放電有無特定用データを生成する請求項1記載のデータ処理装置。
The processing unit is
A first value is extracted by extracting a first value of which the variation in continuous N sampling (N is a predetermined natural number of 2 or more) is equal to or greater than a predetermined amount from each of the measured values of the waveform data. A first process of generating data of
Each of the measured values of the waveform data is a second value obtained by averaging the measured values of consecutive M samplings (M is a predetermined natural number of 2 or more) including the measured value of interest A second process of replacing to generate second data;
A third value is generated by extracting a third value in which the amount of change in the consecutive N samplings is equal to or more than the predetermined amount from the second values of the second data. Processing and
A fourth process of generating fourth data by calculating a fourth value obtained by subjecting each of the third values of the third data to an absolute value;
The measurement values of the waveform data are replaced with the average value of the measurement values of consecutive L samplings (L is a predetermined natural number of 2 or more) including the measurement value of interest, and after replacement A fifth process of calculating a fifth value obtained by differentiating the measurement value of the second to generate fifth data;
A sixth process of generating sixth data by calculating a sixth value obtained by differentiating the fifth value of the fifth data;
A seventh process of generating seventh data by calculating a seventh value obtained by normalizing the absolute value of each of the sixth values of the sixth data;
An eighth process of generating an eighth data by calculating an eighth value obtained by subjecting each first value of the first data to an absolute value;
Each of the fourth values of the fourth data is made to correspond to either one of the predetermined vertical axis and horizontal axis of the two-dimensional graph, and the other of the vertical axis and horizontal axis of the two-dimensional graph The seventh values of the seventh data corresponding to the sampling timings of 4 values correspond to each other, and the fourth corresponding value and the first corresponding point of the seventh value are respectively displayed on the two-dimensional graph. The ninth process to plot,
Each of the eighth values of the eighth data is associated with one of the predetermined vertical and horizontal axes of the two-dimensional graph and the other of the vertical and horizontal axes of the two-dimensional graph. The seventh values of the seventh data corresponding to the sampling timings of the eighth values correspond to each other, and the second corresponding points of the eighth values and the seventh values are the two-dimensional graph A first determination region in which the second corresponding point corresponding to the measured value of the discharge waveform component is not plotted when plotted on the top, and the second correspondence region corresponding to the measured value of the discharge waveform component At least one region of the second determination region in which the points are plotted is set on the two-dimensional graph according to a region definition procedure defined in advance based on the arrangement of the first corresponding points on the two-dimensional graph. measured value Run a tenth process of defining a circumference,
Region data that can specify the at least one region defined by the tenth process is the measurement value range data, and the seventh data and the eighth data are the comparison value data, and the discharge presence / absence is specified The data processing apparatus according to claim 1, wherein the data processing apparatus generates data for processing.
前記処理部は、前記第9の処理に先立ち、前記第5のデータの前記各第5の値の絶対値を最大値が1となるように正規化した第9の値を演算して第9のデータを生成すると共に、当該第9のデータの当該各第9の値に係数Ka(Kaは、予め規定された1以下の正数)を乗じた値と、当該各第9の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値とのいずれか大きい一方を新たな第7の値として新たな前記第7のデータを生成する第11の処理を実行する請求項2記載のデータ処理装置。   The processing unit, prior to the ninth processing, calculates a ninth value obtained by normalizing the absolute value of each of the fifth values of the fifth data so that the maximum value becomes 1. Of the respective ninth values of the ninth data and a coefficient Ka (Ka is a predetermined positive number less than or equal to 1) multiplied by the respective ninth values, and sampling of the respective ninth values An eleventh process is executed to generate new seventh data with one larger one of the seventh data corresponding to the timing and the seventh value as a new seventh value. Data processor as described. 前記処理部は、前記第9の処理に先立ち、前記第7のデータの前記各第7の値を、対象の当該第7の値に対してJaサンプリング前(Jaは、予め規定された任意の自然数)の当該第7の値から当該対象の第7の値までの(Ja+1)個の当該第7の値、および当該対象の第7の値から当該対象の第7の値に対してJbサンプリング後(Jbは、予め規定された任意の自然数)の当該第7の値までの(Jb+1)個の当該第7の値の少なくとも一方を含む予め規定されたJc個(Jcは、予め規定された2以上の自然数)の当該第7の値のうちの最大値にそれぞれ置き換えて新たな前記第7のデータを生成する第12の処理を実行する請求項2記載のデータ処理装置。   The processing unit, prior to the ninth processing, sets each of the seventh values of the seventh data to the target seventh value before Ja sampling (Ja is an arbitrary predetermined value. Jb sampling of (Ja + 1) pieces of the seventh value from the seventh value of the natural numbers) to the seventh value of the object and the seventh value of the object from the seventh value of the object Predefined Jc (Jc is predetermined) including at least one of (Jb + 1) the seventh values to the seventh value after (Jb is an arbitrary predetermined natural number) 3. The data processing apparatus according to claim 2, wherein a twelfth process of generating new seventh data by replacing the maximum value among the seventh values of two or more natural numbers) with each other is executed. 前記処理部は、前記第9の処理に先立ち、前記第7のデータの前記各第7の値のうち、Iサンプリング前(Iは、予め規定された任意の自然数)の当該第7の値よりも小さい当該第7の値を、当該Iサンプリング前の第7の値よりも小さい当該第7の値と、当該Iサンプリング前の第7の値に係数Kb(Kbは、予め規定された1以下の正数)を乗じた第10の値とのいずれか大きい一方に置き換えて新たな前記第7のデータを生成する第13の処理を実行する請求項2記載のデータ処理装置。   The processing unit, prior to the ninth processing, selects, from the seventh value before I sampling (I is an arbitrary predetermined natural number), of the seventh values of the seventh data. Is smaller than the seventh value before the I sampling, and the seventh value before the I sampling is a coefficient Kb (Kb is 1 or less defined in advance 3. The data processing apparatus according to claim 2, wherein a thirteenth process of generating new seventh data by replacing the tenth value multiplied by the positive number of 10) with the larger one of the tenth values is executed. 前記処理部は、前記第9の処理に先立ち、前記第7のデータの前記各第7の値のうちの最大値に対応する前記測定値よりも後にサンプリングされた前記測定値に対応する当該第7の値を、対象の当該第7の値に対してHaサンプリング前(Haは、予め規定された任意の自然数)の当該第7の値が、当該対象の当該第7の値を含んで連続するHbサンプリング分(Hbは、予め規定された2以上の自然数)の当該第7の値を平均化した値に係数Kc(Kcは、予め規定された任意の正数)を乗じた第11の値以下のときに、当該対象の第7の値と、前記Haサンプリング前の第7の値に予め規定された係数Kd(Kdは、Kcよりも大きい予め規定された任意の正数)を乗じた第12の値とのいずれか小さい一方に置き換えて新たな前記第7のデータを生成する第14の処理を実行する請求項2から5のいずれかに記載のデータ処理装置。   The processing unit corresponds to the measurement value corresponding to the measurement value sampled after the measurement value corresponding to the maximum value among the seventh values of the seventh data prior to the ninth process. The seventh value of Ha prior to Ha sampling (Ha is an arbitrary predetermined natural number) with respect to the seventh value of interest is continuous including the seventh value of interest of interest. An eleventh value obtained by averaging the seventh value of the Hb sampling (Hb is a predetermined natural number of 2 or more) and the coefficient Kc (Kc is a predetermined arbitrary positive number) When the value is less than the value, the seventh value of the subject and the seventh value before the Ha sampling are multiplied by a predetermined coefficient Kd (Kd is any predetermined positive number larger than Kc). Replace the 12th value with the smaller one The data processing apparatus according to any one of claims 2 to 5 to perform fourteenth process of generating data. 前記処理部は、前記第14の処理において、前記Haサンプリング前の第7の値が、前記Hbサンプリング分の第7の値を平均化した値に係数Ke(Keは、予め規定された任意の正数)を乗じた第13の値よりも小さいときに、当該対象の第7の値を当該第13の値に置き換える請求項6記載のデータ処理装置。   In the fourteenth process, the processing unit may set the seventh value before the Ha sampling to a value obtained by averaging the seventh value for the Hb sampling as a coefficient Ke (Ke is any predetermined value. 7. The data processing apparatus according to claim 6, wherein the seventh value of the target is replaced with the thirteenth value when it is smaller than a thirteenth value multiplied by a positive number). 前記処理部は、前記第9の処理に先立ち、前記第7のデータの前記各第7の値のうちの最大値に対応する前記測定値よりも前にサンプリングされた前記測定値に対応する当該第7の値を、対象の当該第7の値と、当該対象の第7の値に対してHcサンプリング前(Hcは、予め規定された任意の自然数)の当該第7の値に係数Kf(Keは、予め規定された任意の正数)を乗じた第14の値とのいずれか大きい一方に置き換えて新たな前記第7のデータを生成する第15の処理を実行する請求項2から7のいずれかに記載のデータ処理装置。   The processing unit corresponds to the measurement value sampled prior to the measurement value corresponding to the maximum value of the seventh values of the seventh data prior to the ninth process. A factor Kf (the seventh value) is set to the seventh value before the Hc sampling (Hc is an arbitrary predetermined natural number) with respect to the seventh value of the target and the seventh value of the target. 8. The method according to claim 2, wherein a Ke is replaced with a 14th value multiplied by an arbitrary predetermined positive number), whichever is larger, to execute a 15th process of generating new 7th data. The data processing apparatus according to any one of the above. 前記処理部は、前記第15の処理において、前記対象の第7の値および前記第14の値の双方が、当該対象の第7の値を含んで連続するHdサンプリング分(Hdは、予め規定された2以上の自然数)の当該第7の値を平均化した値に係数Kg(Kgは、予め規定された任意の正数)を乗じた第15の値よりも小さいときに、当該対象の第7の値を当該第15の値に置き換える請求項8記載のデータ処理装置。   In the fifteenth process, the processing unit is configured such that both the seventh value and the fourteenth value of the target include the seventh value of the target and the continuous Hd sampling portion (Hd is predetermined The value obtained by averaging the seventh value of the two or more natural numbers) is smaller than the fifteenth value obtained by multiplying the coefficient K.sub.g (K.sub.g is an arbitrary predetermined positive number), The data processing apparatus according to claim 8, wherein the seventh value is replaced with the fifteenth value. 前記処理部は、前記第10の処理において、前記2次元グラフの原点を通過する前記各第1の対応点の回帰直線を特定し、特定した当該回帰直線における当該2次元グラフの前記縦軸および横軸の他方の値が1のときの当該2次元グラフの前記縦軸および横軸のいずれか予め規定された一方の値を第16の値として特定し、かつ、当該2次元グラフの原点、当該予め規定された一方の値が当該第16の値で当該他方の値が1の第1の点、および当該予め規定された一方の値が0で当該他方の値が1の第2の点の3点を頂点とする三角形領域を特定すると共に、特定した当該三角形領域に基づいて前記少なくとも一方の領域を規定する請求項2から9のいずれかに記載のデータ処理装置。   In the tenth process, the processing unit identifies a regression line of the first corresponding points passing through the origin of the two-dimensional graph, and the vertical axis of the two-dimensional graph in the identified regression line and One of the previously defined one of the vertical axis and the horizontal axis of the two-dimensional graph when the other value of the horizontal axis is 1 is specified as a sixteenth value, and the origin of the two-dimensional graph, The predetermined one value is the sixteenth value and the other value is the first point of 1, and the predetermined one value is 0 and the other value is the second point. The data processing apparatus according to any one of claims 2 to 9, wherein a triangular area having three points of (3) as vertices is specified, and the at least one area is defined based on the specified triangular area. 前記処理部は、前記2次元グラフの前記縦軸および横軸のいずれか予め規定された一方に前記第1のデータの前記各第1の値を対応させると共に当該2次元グラフの前記縦軸および横軸の他方に当該各第1の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第1の値および当該第7の値の第3の対応点を当該2次元グラフ上にそれぞれプロットすると共に、前記縦軸および横軸の他方の値が「0.5」以下の予め規定された第17の値以下である前記第3の対応点を抽出し、抽出した前記各第3の対応点における前記縦軸および横軸のいずれか予め規定された一方の値の標準偏差nσ(nは、予め規定された任意の自然数)を演算すると共に、前記原点、前記第1の点、前記予め規定された一方の値が前記標準偏差nσと前記第16の値との和で前記他方の値が1の第3の点、および当該予め規定された一方の値が当該標準偏差nσで当該他方の値が0の第4の点の4点を頂点とする第1の矩形領域を特定し、特定した当該第1の矩形領域および前記三角形領域に基づいて前記少なくとも一方の領域を規定する請求項10記載のデータ処理装置。   The processing unit associates each of the first values of the first data with one of the predetermined vertical axis and horizontal axis of the two-dimensional graph in advance, and the vertical axis and the vertical axis of the two-dimensional graph. The seventh values of the seventh data corresponding to the sampling timings of the first values correspond to the other of the horizontal axis, and the third corresponding points of the first value and the seventh value Are plotted on the two-dimensional graph, and the third corresponding points whose other values of the vertical axis and the horizontal axis are less than or equal to a predefined seventeenth value of “0.5” or less are extracted. Calculating the standard deviation nσ (n is an arbitrary natural number defined in advance) of one of the predetermined values of the vertical axis and the horizontal axis at each of the extracted third corresponding points, and the origin , Said first point, said pre-defined one side Is the sum of the standard deviation nσ and the sixteenth value, and the third point of the other value is 1 and the previously defined one value is the standard deviation nσ of the other value of 0 The data processing apparatus according to claim 10, wherein a first rectangular area having four points of four points as vertices is specified, and the at least one area is defined based on the specified first rectangular area and the triangular area. . 前記処理部は、前記第10の処理において、すべての前記第1の対応点が含まれる最小の方形領域を特定すると共に、特定した当該方形領域に基づいて前記少なくとも一方の領域を規定する請求項2から9のいずれかに記載のデータ処理装置。   The processing unit specifies a minimum rectangular area including all the first corresponding points in the tenth process, and defines the at least one area based on the specified rectangular area. The data processing device according to any one of 2 to 9. 前記処理部は、前記放電有無特定用データに基づき、前記第2の対応点と前記少なくとも一方の領域との位置関係を特定して前記波形データの信号波形に前記放電波形成分が含まれているか否かを判定する判定処理を実行し、当該判定処理の判定結果を特定可能な判定結果データを生成する請求項2から12のいずれかに記載のデータ処理装置。   Does the processing unit specify the positional relationship between the second corresponding point and the at least one region based on the discharge presence / absence identification data, and the discharge waveform component is included in the signal waveform of the waveform data? The data processing apparatus according to any one of claims 2 to 12, wherein the data processing apparatus executes determination processing for determining whether or not it is not, and determination result data capable of specifying the determination result of the determination processing is generated. 前記処理部は、前記第1の判定領域を前記少なくとも一方の領域とするときには前記第2の対応点の総数に占める当該第1の判定領域に含まれない当該第2の対応点の割合を特定すると共に、前記第2の判定領域を当該少なくとも一方の領域とするときには当該第2の対応点の総数に占める当該第2の判定領域に含まれる当該第2の対応点の割合を特定し、特定した割合が予め規定された割合以上のときに、予め規定された報知処理を実行する請求項13記載のデータ処理装置。   The processing unit specifies a ratio of the second corresponding points not included in the first determination area in the total number of the second corresponding points when the first determination area is the at least one area. In addition, when the second determination area is the at least one area, the ratio of the second corresponding point included in the second determination area to the total number of the second corresponding points is specified and specified. The data processing apparatus according to claim 13, wherein when the ratio is equal to or more than a predetermined ratio, the notification process defined in advance is executed. 前記処理部は、前記2次元グラフを前記縦軸および横軸の他方の方向でGa個(Gaは、予め規定された2以上の自然数)に分割したGa個の第2の矩形領域を特定し、前記第1の判定領域を当該少なくとも一方の領域とするときには当該第1の判定領域以外の領域に当該第2の対応点が含まれている当該第2の矩形領域の数を特定すると共に、前記第2の判定領域を前記少なくとも一方の領域とするときには当該第2の判定領域に当該第2の対応点が含まれている前記第2の矩形領域の数を特定し、特定した数が予め規定された数以上のときに、予め規定された報知処理を実行する請求項13記載のデータ処理装置。   The processing unit specifies Ga second rectangular regions obtained by dividing the two-dimensional graph into Ga pieces (Ga is a predetermined natural number of 2 or more) in the other direction of the vertical axis and the horizontal axis. When the first determination area is the at least one area, the number of the second rectangular areas in which the second corresponding points are included in areas other than the first determination area is specified, When the second determination area is the at least one area, the number of the second rectangular areas in which the second corresponding point is included in the second determination area is specified, and the specified number is determined in advance. The data processing apparatus according to claim 13, wherein when the number is greater than or equal to a defined number, a notification process defined in advance is performed. 前記処理部は、前記第2の対応点をプロットした前記2次元グラフと前記少なくとも一方の領域を示す領域表示とを前記判定処理の判定結果と共に表示部に表示させる請求項13から15のいずれかに記載のデータ処理装置。   The display processing unit according to any one of claims 13 to 15, wherein the processing unit causes the display unit to display the two-dimensional graph obtained by plotting the second corresponding points and a region display indicating the at least one region together with the determination result of the determination process. The data processing apparatus according to claim 1. 請求項1から16のいずれかに記載のデータ処理装置と、
測定対象についての前記予め規定されたサンプリング周期での測定を実行して前記波形データを出力する測定装置とを備えて構成されている測定システム。
The data processing apparatus according to any one of claims 1 to 16.
And a measuring device configured to execute the measurement at the predetermined sampling period for the measurement target and output the waveform data.
予め規定されたサンプリング周期で測定された複数の測定値が記録されている波形データに基づき、当該波形データの信号波形に放電波形成分が含まれているか否かを特定するための放電有無特定用データを生成する処理をデータ処理装置の処理部に実行させるデータ処理用プログラムであって、
前記放電波形成分が含まれているか否かの特定の基準となる測定値範囲の測定値範囲データと、当該測定値範囲との対比によって前記放電波形成分が含まれているか否かを特定可能な比較値データとを前記波形データに基づいて生成し、生成した当該測定値範囲データおよび当該比較値データを含めて前記放電有無特定用データを生成する処理を前記処理部に実行させるデータ処理用プログラム。
Based on waveform data in which a plurality of measured values measured in a predetermined sampling cycle are recorded, for determining whether or not a signal waveform of the waveform data includes a discharge waveform component A data processing program that causes a processing unit of a data processing apparatus to execute processing for generating data,
Whether or not the discharge waveform component is included can be identified by comparing measured value range data of the measured value range serving as a specific reference of whether or not the discharge waveform component is included, and the measured value range. A data processing program that causes the processing unit to generate comparison value data based on the waveform data and generate the discharge presence / absence identification data including the generated measurement value range data and the comparison value data. .
前記波形データの前記各測定値のなかから連続するNサンプリング内(Nは、予め規定された2以上の自然数)の変化量が予め規定された量以上の第1の値を抽出して第1のデータを生成する第1の処理と、
前記波形データの前記各測定値を、対象の当該測定値を含んで連続するMサンプリング分(Mは、予め規定された2以上の自然数)の当該測定値を平均化した第2の値にそれぞれ置き換えて第2のデータを生成する第2の処理と、
前記第2のデータの前記各第2の値のなかから前記連続するNサンプリング内の変化量が前記予め規定された量以上の第3の値を抽出して第3のデータを生成する第3の処理と、
前記第3のデータの前記各第3の値を絶対値化した第4の値を演算して第4のデータを生成する第4の処理と、
前記波形データの前記各測定値を、対象の当該測定値を含んで連続するLサンプリング分(Lは、予め規定された2以上の自然数)の当該測定値を平均化した値に置き換えると共に置換え後の当該測定値を微分した第5の値を演算して第5のデータを生成する第5の処理と、
前記第5のデータの前記各第5の値を微分した第6の値を演算して第6のデータを生成する第6の処理と、
前記第6のデータの前記各第6の値の絶対値を正規化した第7の値を演算して第7のデータを生成する第7の処理と、
前記第1のデータの前記各第1の値を絶対値化した第8の値を演算して第8のデータを生成する第8の処理と、
2次元グラフの縦軸および横軸のいずれか予め規定された一方に前記第4のデータの前記各第4の値を対応させると共に当該2次元グラフの縦軸および横軸の他方に当該各第4の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第4の値および当該第7の値の第1の対応点を当該2次元グラフ上にそれぞれプロットする第9の処理と、
前記2次元グラフの前記縦軸および横軸のいずれか予め規定された一方に前記第8のデータの前記各第8の値を対応させると共に当該2次元グラフの前記縦軸および横軸の他方に当該各第8の値のサンプリングタイミングに対応する前記第7のデータの前記各第7の値を対応させて当該第8の値および当該第7の値の第2の対応点を当該2次元グラフ上にそれぞれプロットしたときに前記放電波形成分の前記測定値に対応する当該第2の対応点がプロットされない第1の判定領域、および当該放電波形成分の当該測定値に対応する当該第2の対応点がプロットされる第2の判定領域の少なくとも一方の領域を、当該2次元グラフ上の前記各第1の対応点の配置に基づいて予め規定された領域規定手順に従って当該2次元グラフ上に前記測定値範囲として規定する第10の処理とを前記処理部に実行させると共に、
前記第10の処理によって規定した前記少なくとも一方の領域を特定可能な領域データを前記測定値範囲データとし、かつ、前記第7のデータおよび前記第8のデータを前記比較値データとして前記放電有無特定用データを生成させる処理を前記処理部に実行させる請求項18記載のデータ処理用プログラム。
A first value is extracted by extracting a first value of which the variation in continuous N sampling (N is a predetermined natural number of 2 or more) is equal to or greater than a predetermined amount from each of the measured values of the waveform data. A first process of generating data of
Each of the measured values of the waveform data is a second value obtained by averaging the measured values of consecutive M samplings (M is a predetermined natural number of 2 or more) including the measured value of interest A second process of replacing to generate second data;
A third value is generated by extracting a third value in which the amount of change in the consecutive N samplings is equal to or more than the predetermined amount from the second values of the second data. Processing and
A fourth process of generating fourth data by calculating a fourth value obtained by subjecting each of the third values of the third data to an absolute value;
The measurement values of the waveform data are replaced with the average value of the measurement values of consecutive L samplings (L is a predetermined natural number of 2 or more) including the measurement value of interest, and after replacement A fifth process of calculating a fifth value obtained by differentiating the measurement value of the second to generate fifth data;
A sixth process of generating sixth data by calculating a sixth value obtained by differentiating the fifth value of the fifth data;
A seventh process of generating seventh data by calculating a seventh value obtained by normalizing the absolute value of each of the sixth values of the sixth data;
An eighth process of generating an eighth data by calculating an eighth value obtained by subjecting each first value of the first data to an absolute value;
Each of the fourth values of the fourth data is made to correspond to either one of the predetermined vertical axis and horizontal axis of the two-dimensional graph, and the other of the vertical axis and horizontal axis of the two-dimensional graph The seventh values of the seventh data corresponding to the sampling timings of 4 values correspond to each other, and the fourth corresponding value and the first corresponding point of the seventh value are respectively displayed on the two-dimensional graph. The ninth process to plot,
Each of the eighth values of the eighth data is associated with one of the predetermined vertical and horizontal axes of the two-dimensional graph and the other of the vertical and horizontal axes of the two-dimensional graph. The seventh values of the seventh data corresponding to the sampling timings of the eighth values correspond to each other, and the second corresponding points of the eighth values and the seventh values are the two-dimensional graph A first determination region in which the second corresponding point corresponding to the measured value of the discharge waveform component is not plotted when plotted on the top, and the second correspondence region corresponding to the measured value of the discharge waveform component At least one region of the second determination region in which the points are plotted is set on the two-dimensional graph according to a region definition procedure defined in advance based on the arrangement of the first corresponding points on the two-dimensional graph. measured value And a tenth process of defining a circumference with executing the processing unit,
Region data that can specify the at least one region defined by the tenth process is the measurement value range data, and the seventh data and the eighth data are the comparison value data, and the discharge presence / absence is specified The program for data processing according to claim 18, making the processing unit execute a process of generating data for processing.
前記放電有無特定用データに基づき、前記第2の対応点が前記少なくとも一方の領域に含まれているか否かを判別して前記波形データの信号波形に前記放電波形成分が含まれているか否かを判定する判定処理、および当該判定処理の判定結果を特定可能な判定結果データを生成する処理を前記処理部に実行させる請求項19記載のデータ処理用プログラム。   Whether or not the discharge waveform component is included in the signal waveform of the waveform data by determining whether or not the second corresponding point is included in the at least one region based on the discharge presence / absence identification data 20. The data processing program according to claim 19, causing the processing unit to execute a determination process of determining the determination result and a process of generating determination result data capable of specifying the determination result of the determination process.
JP2017227694A 2017-11-28 2017-11-28 Data processing equipment, measurement system and data processing program Active JP6965122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017227694A JP6965122B2 (en) 2017-11-28 2017-11-28 Data processing equipment, measurement system and data processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017227694A JP6965122B2 (en) 2017-11-28 2017-11-28 Data processing equipment, measurement system and data processing program

Publications (2)

Publication Number Publication Date
JP2019095404A true JP2019095404A (en) 2019-06-20
JP6965122B2 JP6965122B2 (en) 2021-11-10

Family

ID=66971458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017227694A Active JP6965122B2 (en) 2017-11-28 2017-11-28 Data processing equipment, measurement system and data processing program

Country Status (1)

Country Link
JP (1) JP6965122B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248783A (en) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp Partial discharge detection apparatus
JP2005274440A (en) * 2004-03-25 2005-10-06 Toyota Motor Corp Inspection device and technique of rotary electric machine
JP2009115505A (en) * 2007-11-02 2009-05-28 Mitsubishi Electric Corp Winding inspection device and inspection method
US20100201370A1 (en) * 2008-02-14 2010-08-12 Mks Instruments, Inc. Arc Detection
JP2012207937A (en) * 2011-03-29 2012-10-25 Toshiba Corp Insulation diagnosis device
JP2013190342A (en) * 2012-03-14 2013-09-26 Toshiba Mitsubishi-Electric Industrial System Corp Partial discharge measurement system and partial discharge measurement method by repeated impulse voltage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248783A (en) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp Partial discharge detection apparatus
JP2005274440A (en) * 2004-03-25 2005-10-06 Toyota Motor Corp Inspection device and technique of rotary electric machine
JP2009115505A (en) * 2007-11-02 2009-05-28 Mitsubishi Electric Corp Winding inspection device and inspection method
US20100201370A1 (en) * 2008-02-14 2010-08-12 Mks Instruments, Inc. Arc Detection
JP2012207937A (en) * 2011-03-29 2012-10-25 Toshiba Corp Insulation diagnosis device
JP2013190342A (en) * 2012-03-14 2013-09-26 Toshiba Mitsubishi-Electric Industrial System Corp Partial discharge measurement system and partial discharge measurement method by repeated impulse voltage

Also Published As

Publication number Publication date
JP6965122B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP5437868B2 (en) Triggering method and RF test measurement apparatus
US9791422B2 (en) Analysis of periodic information in a signal
JP6126771B2 (en) Triggering method and frequency domain test and measurement apparatus
KR101482509B1 (en) Diagnosis System and Method of Bearing Defect
TWI447371B (en) Real-time detection system and the method thereof
CN110334816B (en) Industrial equipment detection method, device, equipment and readable storage medium
JPH0961488A (en) Measuring method of partial discharge using frequency spectrum analyzer
CN110132402B (en) Detection of spikes and faults in vibration trend data
US20180217198A1 (en) Evaluation of phase-resolved partial discharge
KR101998972B1 (en) Method of analyzing and visualizing the cause of process failure by deriving the defect occurrence index by variable sections
JP5237939B2 (en) Method for instantaneous determination of signal distortion rate in AC distribution network and related apparatus
JP2018185223A (en) Partial discharge measurement system and partial discharge measurement method
CN113095192A (en) Dynamic load spectrum compiling method based on time domain extrapolation technology
JP6965123B2 (en) Data processing equipment, measurement system and data processing program
JP2019095404A (en) Data processing device, measurement system and data processing-purpose program
JP2015099043A (en) Eddy current test device
KR101676538B1 (en) Analysis apparatus and method of surface roughness
KR101615346B1 (en) Method and apparatus for detecting fault in the semiconductor menufacturing process and recording medium thereof
JP6180897B2 (en) Weight display device and failure diagnosis method
JP7094143B2 (en) Data processing equipment, measurement systems and data processing programs
JP2019032191A (en) Inspection data generator, inspection system, and program for inspection data generation process
JPH04169849A (en) Threshold setting method for discriminating data
JP6152806B2 (en) Biological information measurement method
CN110646201B (en) Bearing defect detection system and method
JP4893695B2 (en) Coverage measuring device, coverage measuring method, coverage measuring program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211020

R150 Certificate of patent or registration of utility model

Ref document number: 6965122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150