JP2019095300A - Lake decontamination method - Google Patents

Lake decontamination method Download PDF

Info

Publication number
JP2019095300A
JP2019095300A JP2017224965A JP2017224965A JP2019095300A JP 2019095300 A JP2019095300 A JP 2019095300A JP 2017224965 A JP2017224965 A JP 2017224965A JP 2017224965 A JP2017224965 A JP 2017224965A JP 2019095300 A JP2019095300 A JP 2019095300A
Authority
JP
Japan
Prior art keywords
decontamination
lake
soil
water
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017224965A
Other languages
Japanese (ja)
Other versions
JP6746556B2 (en
Inventor
義美 臼井
Yoshimi Usui
義美 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO SEIBI CO Ltd
Original Assignee
KANKYO SEIBI CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO SEIBI CO Ltd filed Critical KANKYO SEIBI CO Ltd
Priority to JP2017224965A priority Critical patent/JP6746556B2/en
Publication of JP2019095300A publication Critical patent/JP2019095300A/en
Application granted granted Critical
Publication of JP6746556B2 publication Critical patent/JP6746556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a lake decontamination method for surely and efficiently decontaminating reserved water and bottom soil contaminated by a radioactive material.SOLUTION: A lake decontamination method in the invention is conducted by: a decontamination area segmentalization step of using a silt fence to segmentalize a lake into prescribed decontamination areas; a bottom excavation step of making bottom soil in the respective decontamination areas muddy by using a hydraulic shovel to excavate the bottom soil by prescribed depth and also by using a mixer to mix it with reserved water in the same areas; a flocculation and separation step of using a jetting machine to jet a flocculant to the muddy reserved water and then separating it into coagulated soil and clear water; a suction step of using a suction pump to suck the separated coagulated soil along with the clear water; a sorting step of using a sorter to sort out the sucked coagulated soil and clear water from each other; a clear water returning step of returning the sorted clear water to the lake; and a soil decontamination step of applying decontamination processing to the sorted coagulated soil.SELECTED DRAWING: Figure 1

Description

本発明は、湖沼における除染工法に関し、詳しくは、湖沼において放射能物質によって汚染された貯留水ならびに水底土壌を確実且つ効率良く除染する湖沼除染工法に関するものである。   The present invention relates to a decontamination method in a lake, and more particularly, to a lake decontamination method for reliably and efficiently decontaminating reservoir water and bottom soil contaminated with radioactive materials in a lake.

従来より、放射能事故によって大気中に放出された放射性セシウム(セシウム134、セシウム137)、放射性ヨウ素(ヨウ素131)、放射性ストロンチウム(ストロンチウム90)が含まれる放射性物質は、風や雨等によって拡散して地表に降り注ぎ、河川やダム・湖沼・水田に堆積することになり、それらは地上における雨水や土壌の放射能除染方法とは異なり、大量に貯留された雨水と堆積土壌を同時に除染しなければならないことから、これまで有効な除染工法が確立されてこなかった。   Conventionally, radioactive substances including radioactive cesium (cesium 134 and cesium 137), radioactive iodine (iodine 131), and radioactive strontium (strontium 90) released to the atmosphere due to a radioactive accident are diffused by wind or rain. The rain falls on the surface and deposits in rivers, dams, lakes, and paddy fields, which, unlike the methods of decontaminating rainwater and soil on the ground, simultaneously decontaminate a large amount of stored rainwater and sedimentary soil. As a result, no effective decontamination method has been established until now.

近年における湖沼除染工法の多くは、湖底に堆積する汚染土壌をパワーショベルやバキュームを使用して除去する方法が採られているが、その工事にあたっては、ダムや湖沼に貯水されている水を全て抜いて汚染土壌を掘削する方法と、湖底に堆積する汚染土壌と貯留水をバキュームで全て吸引して、汚染土壌と貯留水を分離後、貯留水のみを放出して汚染土壌を処理する工法が採られていた。したがって、広範な湖沼を除染処理するには、いずれにしても貯留水を全て空にすることが必要となるため、現実的に困難で作業効率が悪く、しかも作業者に多大な労力を課してしまう、といった問題があった。   Most of the lake decontamination methods in recent years have adopted a method of removing the contaminated soil deposited on the bottom of the lake using a power shovel or vacuum, but the water stored in dams and lakes is used for the construction. A method of excavating all contaminated soil and a method of vacuuming the contaminated soil and reservoir water deposited on the bottom of the lake, separating the contaminated soil and reservoir water, and then discharging only the reservoir water to process the contaminated soil Was taken. Therefore, in order to decontaminate a wide range of lakes, it is necessary to empty all the storage water anyway, so it is practically difficult and operation efficiency is poor, and a large amount of labor is required for workers. There was a problem that

その従来における汚染土壌処理工法として、例えば「放射性物質の除染方法」(特許文献1参照)が提案され、公知技術となっている。該「放射性物質の除染方法」は、放射性物質で汚染された土壌や瓦礫や水の除染のために、従来、放射性物質を吸着させる吸着材に放射性物質を吸着させた後に生じていた吸着材自体の回収の困難さを低減させることによって、吸着材をより自由に撒いたり混ぜたりすることが可能であって、且つ、吸着材自体の拡散を防ぐために網や布を用いる必要のない技術提案となっている。   As a method for treating contaminated soil in the prior art, for example, a "method of decontaminating radioactive material" (see Patent Document 1) has been proposed and has become a well-known technology. The "method for decontamination of radioactive material" is an adsorption method which conventionally occurs after adsorbing the radioactive material to an adsorbent which adsorbs the radioactive material for decontamination of soil, rubble and water contaminated with the radioactive material. A technology that makes it possible to more freely crawl and mix the adsorbent by reducing the difficulty of recovering the material itself, and does not require the use of a net or cloth to prevent the diffusion of the adsorbent itself It is a proposal.

しかしながら、かかる「放射性物質の除染方法」の提案は、放射性物質で汚染された土壌乃至瓦礫乃至水のうちの一又は複数の混合物(以後、当該混合物と称す)から放射性物質を取り除くために、放射性物質を吸着させる吸着材として多孔性質を有し酸化鉄を含む玄武岩を用いて、当該混合物と混合し、玄武岩に放射性物質を吸着させた後に、磁力を使って玄武岩を吸い寄せて当該混合物から分離し、放射性物質を吸着した玄武岩を回収する手段を採用するものであって、湖底にある汚染土壌は取り除くことができるが、広範な湖沼の除染を行う場合は、そこに貯留されている水を全て抜く必要があり、上記問題の解決には至っていない。   However, such a proposal of “method of decontamination of radioactive material” is to remove radioactive material from a mixture of one or more of soil, rubble and water contaminated with radioactive material (hereinafter referred to as the mixture). The basalt which has a porous property and contains iron oxide as an adsorbent for adsorbing radioactive substances is mixed with the mixture, and after the radioactive substances are adsorbed to the basalt, the basalt is attracted using magnetic force and separated from the mixture Adopt a means of recovering basalt adsorbed with radioactive material, and the contaminated soil at the bottom of the lake can be removed, but when decontaminating a large area of lakes, the water stored there It is necessary to pull out all the problems, and the solution to the above problems has not been achieved.

また、容易にため池の放射性物質の量を基準値以下とすることができ、かつ、除染による放射性廃棄物の発生量が少ない「放射性物質の除染処理方法」(特許文献2参照)が提案され、公知技術となっている。具体的には、ため池から水を抜く落水工程と、前記落水工程の後、ため池の底に堆積している堆積汚泥を吸引し浚渫する吸引浚渫工程と、前記吸引浚渫工程の後、吸引した堆積汚泥に凝集剤を添加し、凝集汚泥と上澄みに分離する凝集分離工程と、前記凝集分離工程の後、凝集汚泥を加圧脱水し、脱水ケーキとする脱水工程とを含む手段を採用するものである。   In addition, it is possible to easily set the amount of radioactive material in the pond below the standard value, and the method for decontamination treatment of radioactive materials (see Patent Document 2) is proposed, which generates less radioactive waste due to decontamination. And has become known. Specifically, a drainage step for draining water from the reservoir, a suction droop step for sucking and collecting sediment sludge deposited on the bottom of the reservoir after the water drain step, and a sediment deposited after the suction droop step A method comprising a flocculating separation step of adding a coagulant to sludge and separating it into flocculated sludge and supernatant, and a dewatering step of pressure dewatering the flocculated sludge after the flocculation separation step to make a dewatered cake is there.

しかしながら、かかる「放射性物質の除染処理方法」の提案は、ため池から水を抜いた後、ため池の底に堆積している堆積汚泥を吸引し浚渫する吸引浚渫作業を要するため、ぬかるんだ湖底を作業員が移動することとなって極めて作業効率が悪いと共に、作業員の労働負担も多大なものになり、広範なため池の除染を行う場合は、やはり貯留水を全て抜く必要があるため、上記問題の解決には至っていない。   However, such a proposal for the “method of decontamination treatment of radioactive materials” requires a suction dredging operation for sucking and covering sediment sludge deposited on the bottom of the reservoir after draining water from the reservoir, so As the workers move, the working efficiency is extremely low, and the labor burden on the workers also increases, and if it is necessary to decontaminate the pond for a wide area, it is still necessary to drain all the stored water. It has not reached the solution of the above problem.

さらに、広範囲にわたってスピーディーかつ確実に、ため池等の放射性物質を含む汚染物質を取り除くことができる「ため池等にヘリコプター等の飛行体その他を用いて粒粉ゼオライトを散布することにより放射性物質を含む汚染物質を吸着させ流出及び飛散を防止することによりため池等を除染する方法」(特許文献3参照)が提案され、公知技術となっている。具体的には、放射性物質を含む汚染物質が底部等に堆積しているため池等の上から飛行体その他を用いて粉粒状のゼオライトを空中散布し、汚染物質を含む底部等の表面をゼオライト層で覆い、ゼオライトにより汚染物質を吸着し、封止し、汚染物質の浮遊、飛散を防止する、ため池等の除染方法であって、ゼオライト層はゼオライトにより汚染物質を吸着し、封止し、汚染物質の浮遊、飛散を防止するのに有効な厚さを有し、かつ汚染物質を含む底部等の表面に渡りゼオライト層により被覆する手段を採用するものである。   Furthermore, it can remove pollutants including radioactive materials such as ponds rapidly and reliably over a wide area "contaminants containing radioactive substances by spraying granular zeolite with a flying object such as a helicopter on the pond etc. No. 5,075,014 has been proposed, and has become a well-known technology. Specifically, radioactive material-containing pollutants are deposited on the bottom and so on, so particulate zeolite is sprayed in the air from the top of the pond etc using the flying object etc., and the surface such as the bottom containing pollutants is zeolite layer Covering with zeolite, adsorbing and sealing contaminants with zeolite, preventing floating and scattering of contaminants, and decontamination methods such as ponds, wherein the zeolite layer adsorbs and seals contaminants with zeolite, It has a thickness effective to prevent floating and scattering of contaminants, and employs a means for covering the surface such as the bottom containing contaminants with a zeolite layer.

しかしながら、かかる「・・・ため池等を除染する方法」の提案は、被覆したゼオライト層がその後の地層の経時的変化や地震等の自然現象によってひび割れや浸食がされて汚染物質が再び水中に放出される可能性があるものであって、一時期的な応急手段としては有効であるが、恒久的な汚染防止手段としては近くに住む住民に対して安心と安全が十分に確保することができない技術提案であった。   However, the proposal of “method of decontaminating reservoirs etc.” is that the coated zeolite layer is cracked or eroded by the subsequent temporal change of the formation or natural phenomena such as earthquakes, and the contaminants are again in the water. It may be released and is effective as a temporary emergency measure, but as a permanent pollution prevention measure, it is not possible to secure sufficient security and security for the people living nearby. It was a technical proposal.

またさらに、水中や水底の土砂に含まれる放射性物質を簡易な装置や方法で除染することができる「水底の土砂中又は水中に含まれる放射線物質を除染する方法」(特許文献4参照)が提案され、公知技術となっている。具体的には、吸着剤を詰めた袋を複数個連結させた連結マットを水底に沈下後、回収することにより該水底の土砂中又は水中に含まれる放射性物質を除染する方法であって、該吸着剤は、珪藻土が天然で固結したものや、泥岩又は粘土岩を粉砕後焼成することによって得られ、該袋は、上記吸着剤が流出及び目詰まりしない大きさの網目を有し、該連結マットの両端には水底から引き上げるための手段を設けて除染するものである。   Furthermore, a radioactive material contained in water or sediment of the water bottom can be decontaminated by a simple apparatus or method "a method of decontaminating a radioactive substance contained in water bottom sediment or in water" (see Patent Document 4) Has been proposed and is known. Specifically, a method of decontaminating radioactive substances contained in the bottom of the water bottom or in the water by sinking the connection mat in which a plurality of bags filled with adsorbents are connected to the bottom of the water, and recovering it. The adsorbent is obtained by natural coagulum of diatomaceous earth, or by crushing and calcining mudstone or clay rock, and the bag has a mesh of a size that does not cause the adsorbent to flow out and clog, At both ends of the connection mat, a means for pulling up from the bottom of the water is provided for decontamination.

しかしながら、かかる「水底の土砂中又は水中に含まれる放射線物質を除染する方法」の提案は、吸着剤を詰めた袋を複数個連結させた連結マットを広範囲な湖沼の水底に沈下させて射性物質を除染することで、大量の吸着剤を詰めた袋が必要になると共に、経時的変化によって、袋の上に土砂やゴミ・藻などが付着して、放射能除去効果が薄れてしまう、といった問題がある提案であった。   However, such a proposal of “Method for decontaminating radioactive substances contained in bottom sediments or in water bottom” is a method in which a connection mat in which a plurality of bags filled with adsorbent are connected is sunk to the bottom of a wide range of lakes. The decontamination of toxic substances requires a bag filled with a large amount of adsorbent, and due to the change over time, dirt, dirt, algae, etc. adhere on the bag and the radiation removal effect is diminished. It is a proposal that there is a problem that

本出願人は、湖沼等の広範な貯水池において貯留水と水底土壌の放射能物質を除染する手法に着目し、貯留水を全て空にすることなく除染作業ができないものかという着想下、エリアを区切って各エリアごと貯留水ならびに水底土壌を確実且つ効率良く除染する湖沼除染工法を開発し、本発明における「湖沼除染工法」の提案に至るものである。   The present applicant focused on a method for decontaminating stored water and radioactive materials in the bottom soil in a wide range of reservoirs such as lakes and the idea that decontamination work can not be performed without emptying all the stored water, We developed a lake decontamination method that decontaminates the area and decontaminate the reservoir water and bottom soil for each area reliably and efficiently, and leads to the proposal of the "lake decontamination method" in the present invention.

特開2013−164407号JP 2013-164407 特開2015−117988号Unexamined-Japanese-Patent No. 2015-117988 特開2015−111100号JP 2015-111100 特開2015−10852号JP 2015-10852

本発明は、上記問題点に鑑み、湖沼において放射能物質によって汚染された貯留水ならびに水底土壌を確実且つ効率良く除染する湖沼除染工法を提供することを課題とする。   An object of the present invention is to provide a lake decontamination method for reliably and efficiently decontaminating reservoir water and bottom soil contaminated with radioactive materials in a lake, in view of the above problems.

上記課題を解決するため、本発明は、放射能物質によって汚染された貯留水ならびに水底土壌を確実且つ効率良く除染する湖沼除染工法であって、湖沼をシルトフェンスで所定の除染エリアに分断する除染エリア分断工程と、除染エリア内の水底土壌を掘削機により所定深さだけ掘削すると同時に撹拌機により同エリア内の貯留水と撹拌して泥状化する水底掘削工程と、泥状化した貯留水に噴射機により凝集剤を噴射して凝固土壌と清澄水とに分離する凝集分離工程と、分離された凝固土壌を清澄水と共に吸引ポンプにより吸引する吸引工程と、吸引した凝固土壌及び清澄水を選別機により夫々選り分ける選別工程と、選別された清澄水を湖沼に戻す清澄水戻し工程と、選別された凝固土壌を除染処理する土壌除染工程と、から構成される手段を採る。   In order to solve the above problems, the present invention is a lake decontamination method for reliably and efficiently decontaminating storage water and bottom soil contaminated with radioactive materials, and the lake is subjected to a predetermined decontamination area with a silt fence. Decontamination area demarcation process to be divided, Bottom excavation process to excavate the bottom soil in the decontamination area with a reservoir at the same time by excavating the water bottom soil in the decontamination area to a predetermined depth and stirring with the agitator in the same area, Mud Flocculating separation step of injecting flocculating agent into solidified soil water by injection machine to separate into coagulated soil and clear water, suction step of sucking separated coagulated soil together with clear water by suction pump, and coagulated suction It consists of a sorting process to separate the soil and clear water with a sorting machine, a clear water return process to return the sorted clear water to the lake, and a soil decontamination process to decontaminate the sorted coagulated soil. hand The take.

また、本発明は、前記除染エリア分断工程が湖沼の大きさに合わせて順次移動して繰り返し施工されると共に、それに合わせて水底掘削工程、凝集分離工程並びに吸引工程も順次移動して繰り返し施工される手段を採用し得る。   Further, according to the present invention, the decontamination area dividing step is sequentially moved according to the size of the lake and repeatedly constructed, and the water bottom excavation step, the flocculation separating step and the suction step are sequentially moved correspondingly to it, and repeated construction Can be adopted.

さらに、本発明は、前記掘削機と、前記噴射機と、前記吸引ポンプとが、湖沼に浮かべられた一乃至複数の台船に載置された状態で施工される手段を採用し得る。   Furthermore, the present invention may employ means that is installed in a state in which the excavator, the injector, and the suction pump are placed on one or more vessels floated in a lake.

またさらに、本発明は、前記除染エリア分断工程の施工前に、湖沼における水底地形や水深、水底土壌の厚さ及び固さ、障害物の有無といった水底状況を確認するための事前モニタリング工程が施工される手段を採用し得る。   Furthermore, according to the present invention, prior to the construction of the decontamination area dividing step, there is a prior monitoring step for confirming the bottom condition such as bottom topography and depth in the lake, thickness and hardness of bottom soil, and presence or absence of obstacles in the lake. The means to be constructed can be adopted.

さらにまた、本発明は、前記吸引工程の施工後に、除染エリア内の水底土壌のサンプルを採取することで凝固土壌の吸引状況を確認するための事後モニタリング工程が施工される手段を採用し得る。   Furthermore, the present invention may employ a method in which a post-monitoring step for confirming the suction condition of the solidified soil is implemented by collecting a sample of the bottom soil in the decontamination area after the application of the suction step. .

本発明にかかる湖沼除染工法によれば、湖沼という広範な除染対象エリアをシルトフェンスで分断することによって、エリアを区切って各エリアごと貯留水ならびに水底土壌を確実且つ効率良く除染することができるため、作業の効率化と労力の低減に資する、といった優れた効果を奏する。   According to the lake and lake decontamination method according to the present invention, the area is divided by dividing the wide area to be decontaminated with the lake by the silt fence, and the storage water and the bottom soil are decontaminated reliably and efficiently for each area. It has an excellent effect of improving work efficiency and reducing labor.

また、本発明にかかる湖沼除染工法によれば、作業エリアが区切られているため、湖沼に戻すための吸引した清澄水の保管容量が少なくて済み、作業機器等の省スペース化が図られる、といった優れた効果を奏する。   Further, according to the lake and lake decontamination method according to the present invention, since the work area is divided, the storage capacity of the suctioned clear water to be returned to the lake can be small, and space saving of working equipment and the like can be realized. It plays an excellent effect such as.

さらに、本発明における湖沼除染工法によれば、除染エリア分断工程が湖沼の大きさに合わせて順次移動して繰り返し施工されると共に、それに合わせて水底掘削工程、凝集分離工程並びに吸引工程も順次移動して繰り返し施工されることで、広範な湖沼であってもエリアごと確実且つ効率よく除染することができ、作業の効率化と労力の低減に資する、といった優れた効果を奏する。   Furthermore, according to the lake decontamination method in the present invention, the decontamination area dividing step is sequentially moved according to the size of the lake and repetitively constructed, and according to it, the water bottom excavation step, the flocculation separation step and the suction step By sequentially moving and repeating construction, it is possible to reliably and efficiently decontaminate the area even in a wide area of the lake, which has an excellent effect of contributing to the improvement of work efficiency and reduction of labor.

またさらに、本発明にかかる湖沼除染工法によれば、各工程で使用する機器を必要に応じて湖沼に浮かべられた一乃至複数の台船上に載置して水面に浮かべて移動しながら作業を行うことで、広範な湖沼をスムーズに移動しつつ施工することが可能であって、作業の効率化と労力の低減に資する、といった優れた効果を奏する。   Furthermore, according to the lake and lake decontamination method according to the present invention, the equipment used in each process is placed on one or a plurality of vessels floated in the lake and floated on the water to move as needed. By doing this, it is possible to install while moving a wide range of lakes smoothly, and there are outstanding effects such as contributing to the improvement of work efficiency and reduction of labor.

本発明にかかる湖沼除染工法の第一の実施工程を示すフローチャートである。(実施例1)It is a flowchart which shows the 1st implementation process of the lakes and lakes decontamination method concerning this invention. Example 1 本発明にかかる湖沼除染工法の実施態様を示す模式的断面説明図であるBRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional explanatory drawing which shows the embodiment of the lakes and lakes decontamination method concerning this invention. 本発明にかかる湖沼除染工法の施工態様を示す説明図である。It is explanatory drawing which shows the construction aspect of the lakes and lakes decontamination method concerning this invention. 本発明にかかる湖沼除染工法の第二の実施工程を示すフローチャートである。(実施例2)It is a flowchart which shows the 2nd implementation process of the lakes and lakes decontamination method concerning this invention. (Example 2)

本発明にかかる湖沼除染工法10は、湖沼をシルトフェンス22で所定の除染エリア21に分断する除染エリア分断工程20を採用することによって、エリアを区切って各エリアごと貯留水W1ならびに水底土壌S1を確実且つ効率良く除染する手段を採ったことを最大の特徴とする。
以下、本発明にかかる湖沼除染工法10の実施形態を、図面に基づいて説明する。
The lake and decontamination method 10 according to the present invention divides the area by dividing the lake into predetermined decontamination areas 21 with the silt fence 22 so as to divide the area and store water W1 and the bottom of each area. The greatest feature is that it has taken measures to decontaminate soil S1 reliably and efficiently.
Hereinafter, an embodiment of a lake and decontamination method 10 according to the present invention will be described based on the drawings.

尚、本発明にかかる湖沼除染工法10は、以下に述べる実施形態に限定されるものではなく、本発明の技術的思想の範囲内、すなわち同一の作用効果を発揮できる手法や機器等の範囲内で、適宜変更することができる。
また、本発明の説明で用いられる文言について、その意味が必ずしも一義的に決定されるものではなく、本発明の技術的思想を逸脱しない範囲内において広く解釈し得るものである。例えば、本発明において「湖沼」とは、自然界における湖や沼、池を示すほか、河川や海、あるいは人工的に作られた人工池や貯水池、ダム、ため池、水田、など貯留水が存するもの全てを含む概念として解釈され得る文言である。
The lake decontamination method 10 according to the present invention is not limited to the embodiment described below, but is within the scope of the technical idea of the present invention, that is, the range of methods, devices and the like that can exhibit the same effects. It can be changed as appropriate.
Further, the meanings of the terms used in the description of the present invention are not necessarily determined uniquely, and can be broadly interpreted within the scope of the technical idea of the present invention. For example, in the present invention, "lakes and lakes" refer to lakes, swamps, and ponds in the natural world, as well as rivers and oceans, or artificially created artificial ponds, reservoirs, dams, reservoirs, paddy fields, etc. It is a word that can be interpreted as a concept that includes everything.

図1は、本発明にかかる湖沼除染工法10の第一の実施工程を示すフローチャートである。また、図2は、本発明にかかる湖沼除染工法10の実施態様を示す模式的断面説明図である。さらに、図3は、本発明にかかる湖沼除染工法10の施工態様を示す説明図である。
本発明にかかる湖沼除染工法10は、除染エリア分断工程20と、水底掘削工程30と、凝集分離工程40と、吸引工程50と、選別工程60と、清澄水戻し工程70と、土壌除染工程80と、で構成される手段を採り、各工程の具体的内容は以下のとおりである。
FIG. 1 is a flow chart showing a first implementation process of the lake and decontamination method 10 according to the present invention. Moreover, FIG. 2 is typical sectional explanatory drawing which shows the embodiment of the lake decontamination method 10 concerning this invention. Furthermore, FIG. 3 is explanatory drawing which shows the construction aspect of the lake decontamination method 10 concerning this invention.
The lake decontamination method 10 according to the present invention includes the decontamination area dividing step 20, the bottom excavation step 30, the flocculation and separation step 40, the suction step 50, the sorting step 60, the clear water return step 70, and the soil removal. Taking the means constituted by the dyeing process 80, the specific contents of each process are as follows.

除染エリア分断工程20は、湖沼をシルトフェンス22で所定の除染エリア21に分断する工程で、具体的には、除染しようとする湖沼の大きさや水深、障害物の有無等の水底状況、さらに工事日程などを踏まえ、任意の範囲の除染エリア21をシルトフェンス22によって分断するものである。   The decontamination area dividing step 20 is a step of dividing the lake into predetermined decontamination areas 21 by the silt fence 22. Specifically, the bottom condition such as the size and depth of the lake to be decontaminated, presence or absence of obstacles, etc. Further, the decontamination area 21 of an arbitrary range is divided by the silt fence 22 based on the construction schedule and the like.

使用されるシルトフェンス22は、湖沼を縦あるいは横方向に仕切ることが可能な長さと、その長さ全域にわたって底辺が水底に接する高さを有し、上辺には水面に浮遊し得る複数の浮き体が適宜配置され、底辺には水底に接した状態を維持するための金属チェーン等から成る錘が全域に配置され、上辺から底辺までの中間箇所は透水性を有しつつ土壌物質を通さない例えばメッシュ構造を為す素材により成形されている。尚、シルトフェンス22の運搬性向上を図るべく、所定長さのシルトフェンス22を繋ぎ合せることで、必要な長さを確保する態様も可能である。   The silt fence 22 used has a length capable of vertically or horizontally dividing the lake, and a height at which the bottom contacts the bottom over the entire length, and a plurality of floats that can float on the water surface at the top The body is properly arranged, a weight consisting of a metal chain etc. for keeping the bottom of the body in contact with the bottom of the body is arranged in the whole area, and the middle part from the top to the bottom has water permeability while impinging soil material For example, it is formed of a material having a mesh structure. In addition, in order to aim at the transportability improvement of the silt fence 22, the aspect which ensures a required length is also possible by connecting the silt fence 22 of predetermined length together.

水底掘削工程30は、除染エリア21内の水底土壌S1を掘削機31により所定深さだけ掘削し、それと同時に撹拌機により同エリア21内の貯留水W1と撹拌して泥状化する工程である。水底土壌Sを掘削する深さについては特に限定はなく、湖沼の汚染度や水底土壌S1の沈降堆積厚等を考慮して適宜決定されるものであるが、概ね40〜50cm程度の深さの水底土壌S1が掘削されることとなる。   The water bottom excavation step 30 is a step in which the water bottom soil S1 in the decontamination area 21 is excavated to a predetermined depth by the excavator 31 and simultaneously stirred with the stored water W1 in the area 21 by the agitator to form a muddy is there. The depth to which the bottom soil S is excavated is not particularly limited, and is appropriately determined in consideration of the degree of contamination of the lake, the thickness of sedimentation of the bottom soil S1, etc. The bottom soil S1 will be excavated.

掘削機31は、例えば油圧式のパワーショベルが用いられ、バケット(ショベル)の先端で水底土壌S1を穿るように掘削される。撹拌機については、特に限定するものではなく、掘削機31とは別途用意することも考え得るが、内部にミキシング機能を備えたバケット(ショベル)を有するパワーショベルを使用することで、掘削機31と撹拌機とをまとめて一台でまかなうことが可能となる。これにより、掘削と同時に除染エリア21内の貯留水W1と水底土壌S1とが撹拌され、泥状化する。
尚、掘削機31には、バケット(ショベル)の先端に掘削センサが備えられ、掘削が予め定められた深さに到達した際に、該センサが反応する態様を採り得る。また、バケット(ショベル)先端に水中カメラを装備し、掘削状況を監視しながら作業を行う態様も考え得る。
The excavator 31 is, for example, a hydraulic power shovel and is excavated so as to pierce the bottom soil S1 at the tip of a bucket (excavator). The stirrer is not particularly limited, and it may be considered to prepare separately from the excavator 31. However, the excavator 31 can be considered by using a power shovel having a bucket (excavator) with a mixing function inside. It becomes possible to put together and the stirrer together in one unit. Thereby, the stored water W1 and the bottom soil S1 in the decontamination area 21 are stirred simultaneously with the excavation and become muddified.
In addition, the digging machine 31 is equipped with a digging sensor at the tip of the bucket (excavator), and when the digging reaches a predetermined depth, the sensor may react. Moreover, the aspect which equips an underwater camera with a bucket (excavator) tip and works while monitoring an excavation condition can also be considered.

凝集分離工程40は、泥状化した貯留水W1に噴射機42により凝集剤41を噴射して凝固土壌S2と清澄水W2とに分離する工程で、具体的には、水底土壌S1と撹拌され泥状化した除染エリア21内の貯留水W1に、放射能汚染物質の吸着作用を有する凝集剤41を噴射して溶解させることによって、該凝集剤41の作用により汚染物質を水底土壌S1と共に凝固させて、凝固土壌S2と清澄水W2とに分離するものである。   The flocculation and separation step 40 is a step of injecting the coagulant 41 into the muddy storage water W1 by the injector 42 to separate it into solidified soil S2 and clear water W2, specifically, it is agitated with the bottom soil S1. The coagulant 41 having the adsorptive action of radioactive contaminants is sprayed and dissolved in the stored water W1 in the mud-like decontamination area 21 to dissolve the contaminants together with the bottom soil S1 by the action of the coagulant 41. It coagulates and separates into solidified soil S2 and clear water W2.

凝集剤41としては、例えば、PAC(ポリ塩化アルミニュウム)や、ゼオライト系などの凝集剤41が使用される。尚、自然環境に配慮し、人体や動植物に対し安全な無機系の凝集剤41を用いることが好ましい。
尚、本工程では、凝集剤41を噴射後、凝固土壌S2と清澄水W2とに分離するまで数分程度待つことを要し、凝固土壌S2は自重により水中に沈澱し、清澄水W2が上方に溜まることとなる。
As coagulant | flocculant 41, coagulant | flocculant 41, such as PAC (poly aluminum chloride) and a zeolite type, is used, for example. In addition, it is preferable to use an inorganic coagulant 41 safe to human bodies and animals and plants in consideration of the natural environment.
In this step, it is necessary to wait for several minutes until the coagulated soil S2 and the clear water W2 are separated after spraying the coagulant 41, and the solidified soil S2 precipitates in water by its own weight, and the clear water W2 is upward It will accumulate in the

吸引工程50は、分離された凝固土壌S2を清澄水W2と共に吸引ポンプ51により吸引する工程であり、具体的には、除染エリア21内において水底に沈殿した凝固土壌S2を清澄水W2と一緒に吸引する工程である。このとき、シルトフェンス22の透水作用により、除染エリア21内に当該エリア外から貯留水W1が流れ込むこととなるが、汚染された水底土壌S1の流入は阻害される。尚、吸引された凝固土壌S2と清澄水W2は、搬送ホース62等を介して選別機61へ送られる。   The suction step 50 is a step of sucking the separated coagulated soil S2 together with the clear water W2 by the suction pump 51. Specifically, the coagulated soil S2 precipitated on the water bottom in the decontamination area 21 is combined with the clarified water W2 Aspiration process. At this time, although the stored water W1 flows into the decontamination area 21 from the outside of the area due to the water permeability of the silt fence 22, the inflow of the contaminated water bottom soil S1 is inhibited. The coagulated soil S2 and the clear water W2 sucked are sent to the sorting machine 61 via the transfer hose 62 and the like.

本工程で使用される吸引ポンプ51は、常法のものを使用すれば足り、特に限定するものではない。尚、前記掘削機31におけるバケット(ショベル)の先端に吸引用ホースの先端を固定し、該バケット(ショベル)の動きで除染エリア21内の吸引箇所を移動する態様も考え得る。   It is sufficient for the suction pump 51 used in this step to use a conventional method, and is not particularly limited. In addition, the tip of a suction hose may be fixed to the tip of the bucket (excavator) in the excavating machine 31, and the aspiration point in the decontamination area 21 may be moved by the movement of the bucket (excavator).

選別工程60は、吸引した凝固土壌S2及び清澄水W2を選別機61により夫々選り分ける工程で、具体的には、一緒になって吸い上げられた凝固土壌S2と清澄水W2から凝固土壌S2を取り除いて、凝固土壌S2のみと清澄水W2のみとに選り分けるものであって、前記吸引工程50で凝固土壌S2及び清澄水W2が吸引されるのと同時進行で行われる。   The sorting step 60 is a step of sorting the suctioned coagulated soil S2 and the clear water W2 respectively by the sorter 61. Specifically, the solidified soil S2 is removed from the coagulated soil S2 and the clear water W2 sucked together. It is separated into only the solidified soil S2 and only the clear water W2, and is performed simultaneously with the suction of the coagulated soil S2 and the clear water W2 in the suction step 50.

選別機61の具体的構造については、特に限定するものではないが、例えば凝固土壌S2は通過できず清澄水W2は通過可能なフィルタ(布体など)を仲介させる態様が考え得る。
選り分けられた凝固土壌S2は、フレコンバッグ等の収納容器82に入れられ、また清澄水W2は、貯留タンク72に入れられ保管される。
Although it does not specifically limit about the specific structure of the sorter 61, For example, the aspect which makes solidified soil S2 pass and clear water W2 can mediate the filter (cloth body etc.) which can pass can be considered.
The separated solidified soil S2 is placed in a storage container 82 such as a flexible container bag, and the clear water W2 is placed in a storage tank 72 and stored.

清澄水戻し工程70は、選別された清澄水W2を湖沼に戻す工程で、具体的には、前記選別工程60により凝固土壌S2と清澄水W2とに選り分けられた清澄水W2について、一時的に貯留タンク72で保管し、その後湖沼へ該清澄水W2を戻す工程である。湖沼における清澄水W2を戻す箇所については特に限定はなく、除染エリア21の内外を問わない。   The clear water return step 70 is a step of returning the sorted clear water W2 back to the lake, specifically, temporarily for the clear water W2 sorted into the solidified soil S2 and the clear water W2 in the sorting step 60. It is a process of storing the storage tank 72 and thereafter returning the clear water W2 to the lake. There is no limitation in particular about the place which returns the clear water W2 in a lake, and the inside and the outside of the decontamination area 21 do not matter.

戻される清澄水W2の水量は、凝固土壌S2に若干の含水があるものの、当初の貯留水W1と略同水量が戻されることとなる。これにより、湖沼は、所要深さの汚染された水底土壌S1が掘削され取り除かれたことで、除染された新たな水底を表層とする湖沼へと生まれ変わる。   Although the water amount of the clear water W2 to be returned is that the coagulated soil S2 has some water content, substantially the same water amount as the initial stored water W1 is returned. As a result, the lake is reborn as a lake with the newly decontaminated fresh bottom as the surface layer by digging and removing the contaminated bottom soil S1 of the required depth.

土壌除染工程80は、選別された凝固土壌S2を除染処理する工程で、具体的には、凝固土壌S2をフレコンバッグ等の収納容器82に入れて処分場へ運搬し、該処分場にて具体的に除染のための最終処理が行われるものである。処分場における凝固土壌S2の除染処理については、土壌に対する常法の除染処理が為されるもので、特に限定するものではないが、例えば以下の様になる。   The soil decontamination step 80 is a step of decontaminating the coagulated soil S2 thus selected. Specifically, the coagulated soil S2 is placed in a storage container 82 such as a FIBC bag and transported to a disposal site, and then to the disposal site. Specifically, the final treatment for decontamination is performed. The decontamination treatment of the solidified soil S2 in the disposal site is carried out by a conventional decontamination treatment for the soil, and is not particularly limited.

即ち、最初に凝固土壌S2を洗浄して放射性物質を50%以上除染し(洗浄工程)、次いで洗浄した凝固土壌S2を分級器にかけ、200ミクロン以下の素粒子(微粒子)を含んだ汚染土壌水と、200ミクロン以上の粗粒子を含んだ土壌とに分級し(分級工程)、汚染土壌水に含まれている放射能物質が水中に均等に行きわたるように撹拌タンクで撹拌し(撹拌工程)、撹拌された汚染土壌水を個液分離機によって含水スラッジと清水とに分離し(固液分離工程)、含水スラッジを脱水濾過機で脱水してスラッジを生成し(脱水工程)、該スラッジをフレコンバッグ等の収納容器に入れて処分する(袋詰工程)、といった除染処理が行われる。尚、上記分級工程で生成された200ミクロン以上の粗粒子を含んだ土壌や、固液分離工程で生成された清水は、放射性物質を含有せず除染されたものであるため、湖沼に戻すことも可能である。   That is, first, the coagulated soil S2 is washed to decontaminate the radioactive material by 50% or more (washing step), and then the washed coagulated soil S2 is subjected to a classifier and contaminated soil containing elementary particles (fine particles) of 200 microns or less Classify into water and soil containing coarse particles of 200 microns or more (classification process), stir in a stirring tank so that radioactive substances contained in contaminated soil water are evenly distributed in water (stirring process) ) The stirred contaminated soil water is separated into water-containing sludge and fresh water by a single-liquid separator (solid-liquid separation step), and the water-containing sludge is dewatered by a dehydration filter to form sludge (dewatering step), the sludge Is placed in a container such as a flexible container bag for disposal (bagging process). In addition, soil containing coarse particles of 200 microns or more generated in the classification step and fresh water generated in the solid-liquid separation step are returned to the lake because they are decontaminated without containing radioactive substances. It is also possible.

本発明にかかる湖沼除染工法10は、以上の各工程により施工されるものであるが、各工程で使用される各種装置、例えば前記水底掘削工程30で使用される掘削機31や、前記凝集分離工程40で使用される噴射機42、前記吸引工程50で使用される吸引ポンプ51について、湖沼が比較的小規模な場合は、それら各種装置を岸辺に載置して施工することも可能であるが、湖沼が広範な場合など作業効率に鑑みると、それら各種装置について必要に応じて湖沼に浮かべられた台船23に載置し、各工程が施工されることが望ましい。   The lake decontamination method 10 according to the present invention is constructed by the above-described steps, but various devices used in each step, for example, the excavating machine 31 used in the water bottom excavation step 30 or the aggregation In the case of a relatively small scale of the lake, the injector 42 used in the separation step 40 and the suction pump 51 used in the suction step 50 can be installed on the shore and constructed. However, in view of the working efficiency when the lake is wide, etc., it is desirable that the various devices be placed on the boat 23 floated in the lake as needed, and each process be implemented.

このとき、各種装置が載置される台船23の数については、特に限定するものではなく、全装置を一の台船23に載置する態様のほか、台船23を複数用意して載置する装置を適宜振り分ける態様も可能である。
また、台船23に載置する装置は、上記例示したものに限定されるものではなく、例えば、選別工程60で使用される選別機61や清澄水戻し工程70で使用される貯留タンク72、土壌除染工程80で用いられる収納容器82なども、必要に応じて適宜台船23に載置することも可能である。但し、吸引工程50により清澄水W2と共に吸引される凝固土壌S2は、放射能で汚染されたものであって凝集により高い放射線量を有しているため、一時的でも台船23上で保管した場合に、該台船23で作業する作業者への被爆が懸念されることとなる。したがって、選別機61や収納容器82に関しては、台船23に載置するのではなく、陸上に設置することが望ましい。
At this time, the number of platforms 23 on which various devices are mounted is not particularly limited, and a plurality of platforms 23 are prepared and mounted in addition to a mode in which all the devices are mounted on one platform 23. It is also possible to appropriately allocate the devices to be installed.
Further, the device to be mounted on the vessel 23 is not limited to the above-exemplified one, and, for example, the storage tank 72 used in the sorting machine 61 used in the sorting process 60 or the clear water returning process 70 The storage container 82 and the like used in the soil decontamination step 80 can also be appropriately placed on the berth 23 as needed. However, the coagulated soil S2 sucked with the clear water W2 by the suction step 50 is contaminated with radioactivity and has a high radiation dose due to aggregation, so it was temporarily stored on the table ship 23 even if temporarily In such a case, there is a concern that the workers working on the vessel 23 will be exposed to radiation. Therefore, it is desirable that the sorting machine 61 and the storage container 82 be installed on land instead of being mounted on the vessel 23.

ところで、前記除染エリア分断工程20におけるシルトフェンス22を用いた湖沼の除染エリア21の分断は、図3(b)に示すように、複数のシルトフェンス22を用いて当所から複数の除染エリア21に分断しておく施工態様も考え得るが、湖沼の大きさに合わせて順次移動して遂次除染エリア21の分断を行いつつ繰り返し施工する態様も可能である。即ち、図3(a)に示すように、初めにAエリアを除染エリア21としてシルトフェンス22により分断し、当該Aエリアの除染が完了した後、新たなシルトフェンス22を使用してAエリアに隣接するBエリアを除染エリア21として分断する。Bエリアの除染が完了すると、AエリアとBエリアとを分断していたシルトフェンス22を外し、当該シルトフェンス22を使用してBエリアに隣接するCエリアを除染エリア21として分断する。このように、順次移動しながら外したシルトフェンス22を次の除染エリア21の分断のために使用することで、除染対象たる一の湖沼に対しシルトフェンス22が二つあれば、本発明にかかる湖沼除染工法10の施工が可能となる。   By the way, the division of the decontamination area 21 of the lake using the silt fence 22 in the decontamination area dividing step 20 is carried out by using a plurality of silt fences 22 as shown in FIG. Although the construction aspect divided into the area 21 can also be considered, the aspect which moves repeatedly according to the size of the lake and carries out division of the decontamination area 21 sequentially is also possible. That is, as shown in FIG. 3A, the area A is first divided as the decontamination area 21 by the silt fence 22, and after the decontamination of the area A is completed, the new silt fence 22 is used to The B area adjacent to the area is divided as the decontamination area 21. When the decontamination of the B area is completed, the silt fence 22 which has divided the A area and the B area is removed, and the C area adjacent to the B area is divided as the decontamination area 21 using the silt fence 22. Thus, by using the silt fence 22 removed while moving sequentially for division of the next decontamination area 21, if there are two silt fences 22 for one lake which is to be decontaminated, the present invention The construction of the Lake Decontamination Method 10 is possible.

前記除染エリア分断工程20(シルトフェンス22を用いた湖沼の除染エリア21の分断)について順次移動して繰り返し施工される態様に際し、その後の工程のうち水底掘削工程30と凝集分離工程40と吸引工程50についても、各除染エリア21ごと順次移動して繰り返し施工されることとなる。
このように、湖沼を複数の除染エリア21に分断して除染作業を行うに際し、順次移動しながら繰り返し施工を行うことで、広範な湖沼であってもエリアごと確実且つ効率よく除染することができ、作業の効率化と労力の低減に資する
In the embodiment in which the decontamination area dividing step 20 (division of the decontamination area 21 of the lake using the silt fence 22) is sequentially moved and repeatedly constructed, the bottom excavation step 30 and the aggregation and separation step 40 in the subsequent steps Also in the suction process 50, each decontamination area 21 is sequentially moved and repeatedly constructed.
In this way, when carrying out decontamination work by dividing the lake into a plurality of decontamination areas 21, by repeating construction while moving sequentially, decontamination can be carried out reliably and efficiently for each area even in a wide range of lakes. Contribute to work efficiency and labor reduction.

以上の各工程・各構成から成る本発明にかかる湖沼除染工法10の施工手順は、以下のとおりである。
《施工手順》
(a)除染対象たる湖沼の大きさと工事日程に合わせて、任意の数の除染エリア21(例えば、A,B,C,D,Eエリア)を想定する。
(b)湖沼に台船23を浮かべ、該台船23に各種装置(掘削機31,噴射機41,吸引ポンプ51など)を搭載する。
(c)シルトフェンス22を使用してAエリアを除染エリア21として分断する。このとき、台船23は同じAエリアに位置させる。(除染エリア分断工程20)
(d)Aエリア内の水底土壌S1を掘削機31により掘削しつつ、撹拌機により同エリア内の貯留水W1と撹拌して泥状化する。(水底掘削工程30)
(e)泥状化した貯留水W1に対し噴射機42により凝集剤41を噴射し、その後数分程度待機することで、自重により沈澱する凝固土壌S2と清澄水W2とに分離する。(凝集分離工程40)
(f)分離された凝固土壌S2を清澄水W2と共に吸引ポンプ51により吸引する。このとき、Aエリア内にエリア外からシルトフェンス22を介して貯留水W1が流入する。(吸引工程50)
(g)上記の凝固土壌S2及び清澄水W2の吸引と同時進行で、陸上の選別機61により吸引した凝固土壌S2及び清澄水W2を夫々選り分け、凝固土壌S2はフレコンバッグ等の収納容器82に収納すると共に清澄水W2は貯留タンク72に送って、一時的に保管する。(選別工程60)
(h)貯留タンク72に一時的に保管された清澄水W2を湖沼に戻す。(清澄水戻し工程70)
(i)凝固土壌S2を収納した収納容器82を湖沼外の処分場へ運搬し、常法に従って該凝固土壌S2の除染処理を行う。(土壌除染工程80)
(j)Aエリアで上記(c)〜(f)の作業が終了したら、次のBエリアに移動して再び上記(c)以降の作業を行う。
(k)その後、順次Cエリア→Dエリア→Eエリアと移動して同様に上記(c)以降の作業を行い、最終エリア(Eエリア)の作業が完了することで、本発明にかかる湖沼除染減容工法10は施工完了となる。
The construction procedure of the lake decontamination method 10 according to the present invention including the above-described steps and each configuration is as follows.
<< construction procedure >>
(A) An arbitrary number of decontamination areas 21 (for example, A, B, C, D, and E areas) are assumed in accordance with the size of the lake to be decontaminated and the construction schedule.
(B) A stand 23 is floated on a lake, and various devices (excavator 31, injector 41, suction pump 51, etc.) are mounted on the stand 23.
(C) The area A is divided into the decontamination area 21 using the silt fence 22. At this time, the boat 23 is located in the same area A. (Decontamination area cutting process 20)
(D) While excavating the bottom soil S1 in the area A with the excavator 31, it mixes with the reservoir water W1 in the area with the agitator to form a mud. (Bottom drilling process 30)
(E) The coagulant 41 is sprayed to the accumulated water W1 by the injector 42 and then waits for several minutes to separate it into coagulated soil S2 and clear water W2 which are precipitated by their own weight. (Agglomeration separation process 40)
(F) The separated solidified soil S2 is suctioned by the suction pump 51 together with the clear water W2. At this time, the stored water W1 flows into the area A from outside the area via the silt fence 22. (Suction process 50)
(G) Simultaneously with the suction of the solidified soil S2 and the clear water W2, the coagulated soil S2 and the clear water W2 sucked by the land sorting machine 61 are respectively separated, and the solidified soil S2 is stored in a container 82 such as a FIBC bag. While storing it, the clear water W2 is sent to the storage tank 72 and temporarily stored. (Sorting process 60)
(H) The clear water W2 temporarily stored in the storage tank 72 is returned to the lake. (Clear water return process 70)
(I) The storage container 82 containing the solidified soil S2 is transported to a disposal site outside the lake, and the decontamination treatment of the solidified soil S2 is performed according to a conventional method. (Soil decontamination process 80)
(J) When the above operations (c) to (f) are completed in the area A, the operation moves to the next area B and the operations after the above (c) are performed again.
(K) After that, move sequentially from C area → D area → E area, and do the work from (c) onward in the same way, and the work of the final area (E area) is completed. Construction of the dye reduction method 10 is completed.

上記施工手順において、Aエリアは、湖沼の岸辺と新たなシルトフェンス22とで囲まれたエリアとなる。また、Bエリアは、Aエリアの外側であって該Aエリアの分断に使用したシルトフェンス22と新たなシルトフェンス22とで挟まれたエリアとなり、それ以後のエリア(Cエリア以降)についても同様、前段エリアの分断に使用したシルトフェンス22と新たなシルトフェンス22とで挟まれたエリアとなる。尚、最終エリア(Eエリア)は、前段エリアの分断に使用したシルトフェンス22と湖沼の岸辺とで囲まれたエリアとなる。   In the above construction procedure, the area A is an area surrounded by the shore of the lake and the new silt fence 22. The B area is an area outside the A area and sandwiched between the silt fence 22 used for dividing the A area and the new silt fence 22. The same applies to the subsequent areas (after the C area). The area is sandwiched between the silt fence 22 used for dividing the former area and the new silt fence 22. The final area (E area) is an area surrounded by the silt fence 22 used to divide the preceding area and the shore of the lake.

ところで、上記施工手順において、最終エリアを除くCエリア以降の分断に使用するシルトフェンス22は、前々段エリアの分断に使用したシルトフェンス22を外し、それを再利用する態様を採ることが可能である。即ち、Cエリアの分断にはAエリアで使用したシルトフェンス22が再利用され、Dエリアの分断にはBエリアで使用したシルトフェンス22を再利用される。したがって、本発明にかかる湖沼除染工法10を施工するにあたり、除染対象たる一の湖沼につきシルトフェンス22は、少なくとも二つあれば足りることとなる。   By the way, the silt fence 22 used for division after C area except the final area in the above-mentioned construction procedure can take the aspect which removes the silt fence 22 used for division of the front second row area and reuses it. It is. That is, the silt fence 22 used in the A area is reused to divide the C area, and the silt fence 22 used in the B area is reused to divide the D area. Therefore, when constructing the lake and decontamination method 10 according to the present invention, at least two silt fences 22 are sufficient for one lake which is to be decontaminated.

また、上記施工手順において、当初エリア(Aエリア)や最終エリア(Eエリア)の作業に、各種装置を載置した台船23を使用しない施工態様も考え得る。即ち、当初エリア(Aエリア)及び最終エリア(Eエリア)は、岸辺との接線距離が長いため、台船23によらずとも各種装置が岸辺を移動しつつ効率的に作業を行うことが可能である。   Moreover, in the said construction procedure, the construction aspect which does not use the barge 23 which mounted various apparatuses in the operation | work of an initial area (A area) and a final area (E area) can also be considered. That is, since the tangent distance with the shore is long in the initial area (area A) and the final area (E area), various devices can work efficiently while moving along the shore without using the ship 23 It is.

以上で構成される本発明にかかる湖沼除染工法10は、湖沼という広範な除染対象エリアをシルトフェンス22によって複数の除染エリア21に区切り、その区切られた各エリアごと順次除染作業を行うことで、貯留水W1ならびに水底土壌S1を確実且つ効率良く除染することができることから、従来工法と比較して作業の効率化と労力の低減に資するものである。   In the lake and lake decontamination method 10 according to the present invention configured as described above, the broad area to be decontaminated with lakes and lakes is divided into a plurality of decontamination areas 21 by the silt fence 22 and decontamination work is sequentially performed for each divided area By carrying out the method, the stored water W1 and the bottom soil S1 can be decontaminated reliably and efficiently, which contributes to the improvement of work efficiency and reduction of labor compared with the conventional method.

他の実施例について、図4を用いて説明する。実施例1と同様の部分は省略する。図4は、本発明にかかる湖沼除染工法10の第二の実施工程を示すフローチャートである。   Another embodiment will be described with reference to FIG. The same parts as in the first embodiment are omitted. FIG. 4 is a flowchart showing a second implementation process of the lake and decontamination method 10 according to the present invention.

各湖沼において、流木の有無や水底土壌S1の堆積量などといった水底の状況は、周辺環境により一様に定まるものではないが、水底土壌S1の掘削やシルトフェンス22の水底への密着性といった、本発明にかかる湖沼除染工法10に関する各作業に影響を及ぼし、場合によって作業効率等の弊害となり得ることが考えられる。
また、吸引工程50の施工に際し、水深が深い場合など、除染エリア21内における凝固土壌S2の吸引が完全に為されたか否かの判断が難しい場合も想定される。
In each lake, the condition of the bottom such as presence or absence of driftwood and the amount of sediment of the bottom soil S1 is not uniformly determined by the surrounding environment, but excavating the bottom soil S1 and adhesion to the bottom of the silt fence 22 It is considered that it affects each operation related to the lake and lake decontamination method 10 according to the present invention, and in some cases, it may be an adverse effect such as operation efficiency.
Moreover, when the water depth is deep when constructing the suction process 50, it may be difficult to determine whether suction of the solidified soil S2 in the decontamination area 21 has been completely made.

そこで先ず、本発明にかかる湖沼除染工法10において、除染エリア分断工程10の施工前に、事前モニタリング工程M1を施工する態様を採ることが考え得る。即ち、事前モニタリング工程M1は、水底地形や水深、水底土壌S1の厚さや固さ、障害物の有無といった、湖沼における水底状況を事前に確認しモニタリングするための工程である。   Therefore, first, in the lake decontamination method 10 according to the present invention, it can be considered to adopt an aspect in which the pre-monitoring step M1 is performed before the decontamination area dividing step 10 is performed. That is, the pre-monitoring step M1 is a step for confirming and monitoring the bottom condition in the lake in advance, such as bottom topography, depth, thickness and hardness of bottom soil S1, and presence or absence of obstacles.

該事前モニタリング工程M1における具体的な施工態様については、確認すべき作業内容によって種々異なるものであるが、夫々の内容につき概ね常法のモニタリング手法が用いられる。例えば、水底地形や水深、障害物の有無をモニタリングする場合は、リモートコントロール式水中カメラなどで水中探査を行う手法や、ソナー(超音波計測器)を用いて深浅測量を行う手法、上空から各色レーザー光を発射して反射の時間差を用いる手法などが考えられ、さらに、凝集剤散布による水質浄化を図った後に目視確認する手法を採ることも考え得る。また、水底土壌S1の厚さや固さ、汚染状況などをモニタリングする場合は、一乃至複数の定点における水底土壌S1のサンプルを採取する手法などが考え得る。このときの定点管理は、例えばDGPSや光波測量などによって為される。   Although the specific construction mode in the pre-monitoring step M1 varies depending on the work content to be confirmed, a general monitoring method is generally used for each content. For example, to monitor underwater topography, water depth, and the presence or absence of obstacles, a method of underwater exploration with a remote control type underwater camera, a method of bathymetric survey using a sonar (ultrasonic measurement instrument), and each color from the sky A method of emitting laser light and using a time difference of reflection may be considered, and further, it may be considered to adopt a method of visually confirming the water quality after dispersing the coagulant and then visually confirming it. In addition, when monitoring the thickness and hardness of the bottom soil S1 and the state of contamination, a method of sampling the bottom soil S1 at one or a plurality of fixed points can be considered. The fixed point management at this time is performed by, for example, DGPS or lightwave surveying.

このように、除染エリア分断工程10の施工前に、事前に水底の状況についてモニタリングを行うことで、シルトフェンス22の水底への密着性向上に資すると共に、作業効率を考慮しての分断エリアの決定に資することとなる。   As described above, by performing monitoring on the condition of the bottom of the water in advance before the construction of the decontamination area dividing step 10, it contributes to the improvement of the adhesion of the silt fence 22 to the bottom of the water, and the dividing area in consideration of work efficiency. Contribute to the decision of

また、本発明にかかる湖沼除染工法10において、吸引工程50の施工後に、事後モニタリング工程M2を施工する態様を採ることも考え得る。即ち、事後モニタリング工程M2は、除染エリア21内の凝固土壌S2の吸引状況を事後的に確認しモニタリングするための工程である。   Moreover, in the lake decontamination method 10 according to the present invention, it may be considered to adopt an aspect in which the post-monitoring step M2 is performed after the suction step 50 is performed. That is, the post-monitoring process M2 is a process for confirming and monitoring the aspiration situation of the coagulated soil S2 in the decontamination area 21 after the fact.

該事後モニタリング工程M2における具体的な施工態様については、除染エリア21内において水底土壌S1のサンプルを採取し、残存する凝固土壌S2の有無を目視確認する手法が用いられ、エリア範囲の大小によって一乃至複数の定点にて水底土壌S1のサンプル採取が行われる。このときの定点管理も、上記同様、例えばDGPSや光波測量などによって為されることとなる。   Regarding a concrete construction mode in the post-monitoring step M2, a method of collecting a sample of the bottom soil S1 in the decontamination area 21 and visually confirming the presence or absence of the solidified soil S2 remaining is used. Sampling of the bottom soil S1 is performed at one or more fixed points. The fixed point management at this time is also performed by, for example, DGPS or light wave surveying, as described above.

このように、吸引工程50の施工後に、事後的に吸引の状況についてモニタリングを行うことで、除染エリア21における汚染された凝固土壌S2の吸引忘れをなくし、確実な除染作業を図ることが可能となる。   As described above, after the construction of the suction process 50, by performing monitoring on the situation of suction afterward, it is possible to eliminate the suction failure of the contaminated solidified soil S2 in the decontamination area 21 and to perform a reliable decontamination work It becomes possible.

本発明にかかる湖沼除染工法10は、自然界における湖や沼、池、河川、海のほか、人工的に作られた人工池や貯水池、ダム、ため池、水田、など貯留水が存するところであれば何処でも施工することが可能であって、しかもシルトフェンス22で複数に区切られた除染エリア21ごと順次除染作業を行うことで、貯留水W1ならびに水底土壌S1を確実且つ効率良く除染することができるものである。したがって、本発明にかかる「湖沼除染工法」の産業上の利用可能性は、極めて大であるものと思料する。   The lake decontamination method 10 according to the present invention is not only lakes and marshes, ponds, rivers and seas in the natural world, but also artificial ponds, reservoirs, dams, reservoirs, paddy fields, etc. It is possible to construct anywhere, and decontaminating the storage water W1 and the bottom soil S1 reliably and efficiently by sequentially performing decontamination work with the decontamination area 21 divided into a plurality of sections by the silt fence 22. It can be done. Therefore, the industrial applicability of the "lake decontamination method" according to the present invention is considered to be extremely large.

10 湖沼除染工法
20 除染エリア分断工程
21 除染エリア
22 シルトフェンス
23 台船
30 水底掘削工程
31 掘削機
40 凝集分離工程
41 凝集剤
42 噴射機
50 吸引工程
51 吸引ポンプ
52 搬送ホース
60 選別工程
61 選別機
70 清澄水戻し工程
72 貯留タンク
80 土壌除染工程
82 収納容器
M1 事前モニタリング工程
M2 事後モニタリング工程
S1 水底土壌
S2 凝固土壌
W1 貯留水
W2 清澄水
10 Lake Decontamination Method 20 Decontamination Area Division Process 21 Decontamination Area 22 Silt Fence 23 Barge 30 Bottom Drilling Process 31 Excavator 40 Cohesive Separation Process 41 Flocculant 42 Sprayer 50 Suction Process 51 Suction Pump 52 Transport Hose 60 Sorting Process 61 Sorting machine 70 Clearing water return process 72 Storage tank 80 Soil decontamination process 82 Storage container M1 Pre-monitoring process M2 Post-monitoring process S1 Water bottom soil S2 Solidification soil W1 Reservoir water W2 Clear water

上記課題を解決するため、本発明は、放射能物質によって汚染された貯留水ならびに水底土壌を確実且つ効率良く除染する湖沼除染工法であって、湖沼をシルトフェンスで所定の除染エリアに分断する除染エリア分断工程と、除染エリア内の水底土壌をバケット(ショベル)の先端で穿るように掘削する掘削機により所定深さだけ掘削すると同時に撹拌機により同エリア内の貯留水と撹拌して泥状化する水底掘削工程と、泥状化した貯留水に噴射機により凝集剤を噴射して凝固土壌と清澄水とに分離する凝集分離工程と、分離された凝固土壌を清澄水と共に吸引ポンプにより吸引する吸引工程と、吸引した凝固土壌及び清澄水を選別機により夫々選り分ける選別工程と、選別された清澄水を湖沼に戻す清澄水戻し工程と、選別された凝固土壌を除染処理する土壌除染工程と、から構成される手段を採る。
In order to solve the above problems, the present invention is a lake decontamination method for reliably and efficiently decontaminating storage water and bottom soil contaminated with radioactive materials, and the lake is subjected to a predetermined decontamination area with a silt fence. The decontamination area demarcation process to divide and the bottom soil in the decontamination area are excavated to a predetermined depth by an excavating machine to excavate so as to pierce the bottom of the bucket (excavator) and at the same time the stored water in the area and the agitator. Stirring and muddy water bottom excavation process, Coagulation and separation process where a coagulant is injected into the muddy storage water by a jet to separate it into coagulated soil and clear water, and the coagulated soil separated is clarified water The suction process which sucks with a suction pump with it, the sorting process which separates the coagulated soil and the clear water which are sucked by the sorting machine respectively, the clear water return process which returns the sorted clear water to the lake, the sorted coagulated soil Soil decontamination process for decontamination takes the unit consisting of.

Claims (5)

放射能物質によって汚染された貯留水ならびに水底土壌を確実且つ効率良く除染する湖沼除染減容工法であって、
湖沼をシルトフェンスで所定の除染エリアに分断する除染エリア分断工程と、
除染エリア内の水底土壌を掘削機により所定深さだけ掘削すると同時に撹拌機により同エリア内の貯留水と撹拌して泥状化する水底掘削工程と、
泥状化した貯留水に噴射機により凝集剤を噴射して凝固土壌と清澄水とに分離する凝集分離工程と、
分離された凝固土壌を清澄水と共に吸引ポンプにより吸引する吸引工程と、
吸引した凝固土壌及び清澄水を選別機により夫々選り分ける選別工程と、
選別された清澄水を湖沼に戻す清澄水戻し工程と、
選別された凝固土壌を除染処理する土壌除染工程と、
から構成されることを特徴とする湖沼除染減容工法。
A lake decontamination and volume reduction method that decontaminates reservoir water and bottom soil contaminated with radioactive materials reliably and efficiently.
Decontamination area division process which divides lakes and marshes into predetermined decontamination area with silt fence,
A bottom excavation step of excavating the bottom soil in the decontamination area by a drilling machine to a predetermined depth and simultaneously stirring and muddying the stored water in the same area by a stirrer;
Flocculation and separation step of injecting a flocculant into the muddy storage water by a jet and separating it into solidified soil and clear water;
A suction step of suctioning the separated coagulated soil together with the clear water by a suction pump;
A sorting step of sorting the aspirated coagulated soil and clear water with a sorting machine;
A clear water return process to return the sorted clear water to the lake;
A soil decontamination step of decontaminating the separated solidified soil;
Lake decontamination and volume reduction method characterized by being composed of
前記除染エリア分断工程が湖沼の大きさに合わせて順次移動して繰り返し施工されると共に、それに合わせて水底掘削工程、凝集分離工程並びに吸引工程も順次移動して繰り返し施工されることを特徴とする請求項1に記載の湖沼除染減容工法。   The decontamination area dividing step is sequentially moved according to the size of the lake to be repeatedly constructed, and the water bottom excavation step, the flocculation separating step and the suction step are also sequentially moved and repeatedly constructed accordingly. The lake decontamination and volume reduction method according to claim 1. 前記掘削機と、前記噴射機と、前記吸引ポンプとが、湖沼に浮かべられた一乃至複数の台船に載置された状態で施工されることを特徴とする請求項1または請求項2に記載の湖沼除染減容工法。   The construction according to claim 1 or 2, wherein the excavator, the injector, and the suction pump are installed on one or more vessels floating in a lake. Description of lake decontamination and volume reduction method. 前記除染エリア分断工程の施工前に、湖沼における水底地形や水深、水底土壌の厚さ及び固さ、障害物の有無といった水底状況を確認するための事前モニタリング工程が施工されることを特徴とする請求項1乃至請求項3に記載の湖沼除染減容工法。   Before the construction of the decontamination area dividing process, a pre-monitoring process is carried out to confirm the water bottom condition such as the bottom topography and depth of the lake, the thickness and hardness of the bottom soil, and the presence or absence of obstacles in the lake. The lake decontamination and volume reduction method according to any one of claims 1 to 3. 前記吸引工程の施工後に、除染エリア内の水底土壌のサンプルを採取することで凝固土壌の吸引状況を確認するための事後モニタリング工程が施工されることを特徴とする請求項1乃至請求項4に記載の湖沼除染減容工法。   After the construction of the suctioning step, a post-monitoring step is carried out to confirm the suctioning state of the solidified soil by collecting a sample of the bottom soil in the decontamination area. Lake decontamination and volume reduction method described in
JP2017224965A 2017-11-22 2017-11-22 Lake decontamination method Active JP6746556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224965A JP6746556B2 (en) 2017-11-22 2017-11-22 Lake decontamination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224965A JP6746556B2 (en) 2017-11-22 2017-11-22 Lake decontamination method

Publications (2)

Publication Number Publication Date
JP2019095300A true JP2019095300A (en) 2019-06-20
JP6746556B2 JP6746556B2 (en) 2020-08-26

Family

ID=66971470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224965A Active JP6746556B2 (en) 2017-11-22 2017-11-22 Lake decontamination method

Country Status (1)

Country Link
JP (1) JP6746556B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118698A (en) * 1996-10-17 1998-05-12 Mitsubishi Heavy Ind Ltd Dam sludge and sand discharging facility
JP2013164379A (en) * 2012-02-13 2013-08-22 Daiho Constr Co Ltd Processor for radiation-contaminated soil
JP2014134425A (en) * 2013-01-09 2014-07-24 Masaaki Ishizeki Radioactive cesium decontamination agent, concrete member, building member, paint for building, and resin product using the same, submerged scattering device of the same, and decontamination method of radioactive cesium
JP2015010853A (en) * 2013-06-26 2015-01-19 株式会社アースロック・テクノロジーズ Method for decontaminating radioactive material adhering to tree, building or road
JP2015010848A (en) * 2013-06-26 2015-01-19 株式会社アースロック・テクノロジーズ Adsorbent for decontaminating radiation material
JP2015064310A (en) * 2013-09-26 2015-04-09 国立大学法人名古屋大学 Metallic element containment method
JP2015087303A (en) * 2013-10-31 2015-05-07 株式会社荏原製作所 Contaminated water area decontamination device and method
JP2015120110A (en) * 2013-12-24 2015-07-02 株式会社バイオメルト Contaminated water purification system
JP2015203210A (en) * 2014-04-14 2015-11-16 橋梁技建株式会社 Sludge dredging method in enclosed area
JP2016032778A (en) * 2014-07-30 2016-03-10 国立研究開発法人産業技術総合研究所 Method for recovering soil particle adsorbate from environmental water region bottom part
JP2016050880A (en) * 2014-09-01 2016-04-11 昌彦 辻田 Method for decontaminating radioactive material in pond and the like and decontamination apparatus using the same
JP2017111063A (en) * 2015-12-18 2017-06-22 国立大学法人茨城大学 Decontamination method of radioactive material and decontamination system thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118698A (en) * 1996-10-17 1998-05-12 Mitsubishi Heavy Ind Ltd Dam sludge and sand discharging facility
JP2013164379A (en) * 2012-02-13 2013-08-22 Daiho Constr Co Ltd Processor for radiation-contaminated soil
JP2014134425A (en) * 2013-01-09 2014-07-24 Masaaki Ishizeki Radioactive cesium decontamination agent, concrete member, building member, paint for building, and resin product using the same, submerged scattering device of the same, and decontamination method of radioactive cesium
JP2015010853A (en) * 2013-06-26 2015-01-19 株式会社アースロック・テクノロジーズ Method for decontaminating radioactive material adhering to tree, building or road
JP2015010848A (en) * 2013-06-26 2015-01-19 株式会社アースロック・テクノロジーズ Adsorbent for decontaminating radiation material
JP2015064310A (en) * 2013-09-26 2015-04-09 国立大学法人名古屋大学 Metallic element containment method
JP2015087303A (en) * 2013-10-31 2015-05-07 株式会社荏原製作所 Contaminated water area decontamination device and method
JP2015120110A (en) * 2013-12-24 2015-07-02 株式会社バイオメルト Contaminated water purification system
JP2015203210A (en) * 2014-04-14 2015-11-16 橋梁技建株式会社 Sludge dredging method in enclosed area
JP2016032778A (en) * 2014-07-30 2016-03-10 国立研究開発法人産業技術総合研究所 Method for recovering soil particle adsorbate from environmental water region bottom part
JP2016050880A (en) * 2014-09-01 2016-04-11 昌彦 辻田 Method for decontaminating radioactive material in pond and the like and decontamination apparatus using the same
JP2017111063A (en) * 2015-12-18 2017-06-22 国立大学法人茨城大学 Decontamination method of radioactive material and decontamination system thereof

Also Published As

Publication number Publication date
JP6746556B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
US6640470B2 (en) Contaminated sediment remediation vessel
CN104261492A (en) Apparatus, System And Method For Remediation Of Contamination
JP6582361B2 (en) Vacuum-consolidated dredging method, tower-type airtight loading box and dedicated work ship.
CA2854522C (en) Systems and methods for storage and treatment of remediation materials
EP2520726B1 (en) Device and method for removing material deposits from the reservoir of a hydrotechnical structure
JP5494993B1 (en) Sea sand removal method
DE4001630C1 (en)
JP4890043B2 (en) Contaminated soil treatment method by deep mixing treatment
EP3647496B1 (en) System for cleaning heterogeneous sludge deposited in hydraulic facilities
US20140338233A1 (en) Methods, apparatus and systems for pond remediation
US20020124440A1 (en) Contaminated sediment removal vessel
JP6746556B2 (en) Lake decontamination method
KR100742319B1 (en) Hopper barge with container for loading dredged soils and removal method utilizing thereof
JP2020084427A (en) Purification method by enclosing area in river and like
Lisi et al. Engineering tools for the estimation of dredging-induced sediment resuspension and coastal environmental management
JP2017002534A (en) System and method for recovering bottom mud
JPS6314926A (en) Underwater soil and sand-sampling and charging work
Guerroué et al. Recovery of sunken and buried oil in coastal water during the Erika spill
JP6615410B1 (en) Reservoir pond decontamination method including environmental measures
KR20120117607A (en) Deep cement mixing equipment equipped with slime gathering facility and environmently friendly deep cement mixing method using the same
JP2011202502A (en) Ship and method for separating dredged sediment
JPS6073920A (en) Settled-mud dredger
Land CHAPTER 11 Dredging and disposal of contaminated sediments
Cullinane Guidelines for selecting control and treatment options for contaminated dredged material
JP6159300B2 (en) Treatment method of radioactive material in the bottom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200805

R150 Certificate of patent or registration of utility model

Ref document number: 6746556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150