JP2019094479A - Molded article - Google Patents
Molded article Download PDFInfo
- Publication number
- JP2019094479A JP2019094479A JP2018161833A JP2018161833A JP2019094479A JP 2019094479 A JP2019094479 A JP 2019094479A JP 2018161833 A JP2018161833 A JP 2018161833A JP 2018161833 A JP2018161833 A JP 2018161833A JP 2019094479 A JP2019094479 A JP 2019094479A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- molecular weight
- mass
- olefin polymer
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
本発明は、動摩擦係数の低い、いわゆる滑り性を有し、耐摩耗性に優れた成形体、およびその製造方法に関する。 The present invention relates to a molded article having a low coefficient of dynamic friction, so-called slipperiness and excellent in abrasion resistance, and a method for producing the same.
近年ゴム部品は自動車をはじめ、建物、OA機器等、日常生活の至る所で使用されている。ゴムと相手材との滑り性を良くするために、シリコーングリースを塗布する方法やワックスを配合する方法、シリコーンオイルを配合するなどの種々の方法が採用されている。しかしながら、ゴムと相手材との接触部にシリコーングリースを塗布する方法を採用した場合、アセンブリ工数が増加するためコストアップにつながるという問題があり、ゴム組成物にシリコーンオイルを配合する方法を採用した場合、使用の初期には摩擦係数が低い効果はあるが、長期間使用するとゴム表面が摩耗するという問題点がある。
ゴム組成物からなる成形体の摩擦抵抗を軽減する方法として、超高分子量ポリエチレン粉末をゴムに配合することが幾つか提案されている(特許文献1〜3)。
In recent years, rubber parts are used in automobiles, buildings, office automation equipment, etc. in every part of daily life. Various methods such as a method of applying a silicone grease, a method of blending a wax, and a method of blending a silicone oil are employed in order to improve the sliding property between the rubber and the counterpart material. However, when a method of applying silicone grease to the contact portion between rubber and a partner material is adopted, there is a problem that the number of assembly steps increases, leading to an increase in cost, and a method of compounding silicone oil in a rubber composition was adopted. In this case, the coefficient of friction is low at the beginning of use, but there is a problem that the rubber surface wears when used for a long time.
As a method of reducing the frictional resistance of a molded article made of a rubber composition, several proposals have been made to blend ultra-high molecular weight polyethylene powder into rubber (Patent Documents 1 to 3).
しかしながら、特許文献1では、超高分子量ポリエチレン粉末をゴムに配合するだけでは、特に使用の初期において、超高分子量ポリエチレンがゴム表面に十分露出していないため、滑り性が十分ではなく、滑り性を付与するためには脂肪酸アミドやシリコーンオイルを併用して配合する必要がある。 However, according to Patent Document 1, when the ultra high molecular weight polyethylene powder is only blended into the rubber, the ultra high molecular weight polyethylene is not sufficiently exposed to the rubber surface particularly in the early stage of use, so the slip property is not sufficient. It is necessary to combine fatty acid amide and silicone oil in combination in order to impart.
また、特許文献4には高圧ゴムホ−ス表面に超高分子量ポリエチレン粉末を付着、または超高分子量ポリエチレン粉末を層状に形成して一体化させてなる高圧ゴムホースが提案されているが、この場合、高圧ホースを加硫する前に超高分子量ポリエチレン粉末からなる層をゴム組成物の上に設けなければならないため、製造コストがかかり過ぎ、また、インジェクション加硫が困難であるという問題がある。 In addition, Patent Document 4 proposes a high pressure rubber hose in which an ultrahigh molecular weight polyethylene powder is attached to the surface of a high pressure rubber hose, or an ultrahigh molecular weight polyethylene powder is formed in a layer and integrated. Since it is necessary to provide a layer made of ultrahigh molecular weight polyethylene powder on the rubber composition before the high pressure hose is vulcanized, there is a problem that the production cost is too high and injection vulcanization is difficult.
本発明の課題は、成形体の使用初期から所望の滑り性能を有し、長期間に亘って滑り性能と摩耗性能を有する成形体を得ることにある。 An object of the present invention is to obtain a molded article having desired sliding performance from the beginning of use of the molded article and having sliding performance and wear performance over a long period of time.
上記課題を解決するため鋭意検討を行った結果、超高分子量オレフィン系重合体の粉末を配合したゴム組成物からなる前駆成形体の表面を特定の砥粒を持つ研磨材料で研磨処理することで、成形体とゴムとが摺動する部分や成形体と金属が摺動する部分に使用した場合、使用の初期にも滑り性が確保され、成形体の表面が摩耗しても超高分子量オレフィン系重合体粉末が常に確実に表面に存在し、ゴム成形体の表面に露出した超高分子量ポリエチレンによって、長期間に亘って滑り性能と摩耗性能を有する成形体を提供できることがわかった。
すなわち、本発明は以下の[1]〜[4]に関する。
As a result of earnestly examining in order to solve the above-mentioned subject, by carrying out polish processing of the surface of the precursor compact which consists of a rubber composition which blended the powder of the ultra high molecular weight olefin polymer with the abrasive material which has a specific abrasive grain. When used for sliding parts between the molded body and rubber or sliding parts between the molded body and metal, the sliding property is secured even at the beginning of use, and the ultra-high molecular weight olefins even when the surface of the molded body is worn It has been found that the ultra-high molecular weight polyethylene exposed to the surface of the rubber molded article can provide a molded article having sliding performance and wear performance over a long period of time by ensuring that the base polymer powder is always present on the surface.
That is, the present invention relates to the following [1] to [4].
[1]ゴム(A)100質量部と、下記要件(i)〜(iii)を満たす超高分子量オレフィン系重合体(B)を5〜80質量部とを含有するゴム組成物から形成された前駆成形体の表面を、平均粒子径d50が前記超高分子量オレフィン系重合体(B)の平均粒子径d50の2倍以下である砥粒(Y)で表面を研磨してなる成形体。
(i)DSCで測定した融点(Tm)が120℃以上である。
(ii)ASTM D4020に準じて135℃のデカリン中で測定した極限粘度[η]が3〜50dl/gの範囲にある。
(iii)平均粒子径d50が、1〜200μmの範囲にある。
[2]前記ゴム組成物が、加硫剤(C)を含有してなる[1]に記載の成形体。
[3]前記超高分子量オレフィン系重合体(B)の平均粒子径d50が、5〜35μmの範囲にある、[1]または[2]に記載の成形体。
[4][1]に記載のゴム組成物を型加硫成形して前駆成形体を得た後、[1]に記載の砥粒(Y)で、当該前駆成形体の表面を研磨する工程を含んでなる成形体の製造方法。
[1] It was formed from a rubber composition containing 100 parts by mass of rubber (A) and 5 to 80 parts by mass of an ultrahigh molecular weight olefin polymer (B) satisfying the following requirements (i) to (iii) the surface of the precursor molded body, formed by polishing the surface with an average particle diameter d 50 of the ultra high molecular weight olefin polymer (B) mean twice less is abrasive particle size d 50 (Y), the molded body .
(I) The melting point (T m ) measured by DSC is 120 ° C. or more.
(Ii) The intrinsic viscosity [η] measured in decalin at 135 ° C. according to ASTM D4020 is in the range of 3 to 50 dl / g.
(Iii) The average particle diameter d 50 is in the range of 1 to 200 μm.
[2] The molded article according to [1], wherein the rubber composition contains a vulcanizing agent (C).
[3] The molded article according to [1] or [2], wherein the average particle diameter d 50 of the ultrahigh molecular weight olefin polymer (B) is in the range of 5 to 35 μm.
[4] A step of polishing the surface of the precursor molded article with the abrasive grains (Y) described in [1] after obtaining the precursor molded article by mold-vulcanizing the rubber composition described in [1] A method of producing a molded body comprising:
本発明の成形体は、より簡易な工程で製造できることに加え、機械的強度特性などの物性に優れ、しかも使用の初期にも滑り性が確保され、成形体の表面が摩耗しても超高分子量オレフィン系重合体粉末が常に成形体の表面に露出(存在)し、長期間に亘って滑り性能と摩耗性能に優れる。 The molded product of the present invention is excellent in physical properties such as mechanical strength and the like in addition to being able to be manufactured in a simpler process, and also ensures slipperiness at the beginning of use. The molecular weight olefin polymer powder is always exposed (present) on the surface of the molded body, and is excellent in sliding performance and wear performance over a long period of time.
以下、本発明に係る成形体を得るに好適なゴム組成物について具体的に説明する。なお、本発明では、数値範囲を示す「A〜B」はとくに断りがなければ、A以上B以下を表す。
本発明に係るゴム組成物は、天然ゴムおよび合成ゴムから選ばれる少なくとも1種のゴム(A)と、超高分子量オレフィン重合体(B)と、必要に応じて加硫剤(C)とから構成されている。
Hereinafter, the rubber composition suitable for obtaining the molded object concerning this invention is demonstrated concretely. In the present invention, “A to B” indicating a numerical range indicates A or more and B or less unless otherwise specified.
The rubber composition according to the present invention comprises at least one rubber (A) selected from natural rubber and synthetic rubber, an ultrahigh molecular weight olefin polymer (B), and, if necessary, a vulcanizing agent (C) It is configured.
本発明においては、超高分子量オレフィン系重合体(B)は、ゴム(A)100質量部に対して、5〜80質量部、好ましくは10〜70質量部、更に好ましくは、20〜60質量部の割合で用いられる。ゴム(A)中に混合分散させる超高分子量オレフィン系重合体の量が5質量部未満であると、滑り性と摩耗特性に優れる成形体を得ることができない。また、この超高分子量オレフィン系重合体(B)の量が80質量部を超えると、配合ゴム(未加硫)の加工性および当該配合ゴム(ゴム組成物)を加硫して得られる成形体の機械的性質が悪化するため好ましくない。 In the present invention, the ultrahigh molecular weight olefin polymer (B) is 5 to 80 parts by mass, preferably 10 to 70 parts by mass, more preferably 20 to 60 parts by mass with respect to 100 parts by mass of the rubber (A). Used in proportions of parts. If the amount of the ultrahigh molecular weight olefin polymer mixed and dispersed in the rubber (A) is less than 5 parts by mass, it is not possible to obtain a molded article having excellent slipperiness and wear characteristics. When the amount of the ultrahigh molecular weight olefin polymer (B) exceeds 80 parts by mass, the processability of the compounded rubber (unvulcanized) and the molding obtained by vulcanizing the compounded rubber (rubber composition) It is not preferable because the mechanical properties of the body deteriorate.
<ゴム(A)>
本発明に係るゴム(A)は、天然ゴム(NR)あるいは合成ゴムである。合成ゴムとしては、具体的には、エチレン・プロピレン共重合体ゴム(EPR)、エチレン・プロピレン・ジエン共重合体ゴム(EPDM)などが挙げられる。これらのうち、耐候性が要求される外装材の用途には、EPR、EPDMなどのポリオレフィン系ゴムが好ましく用いられる。
<Rubber (A)>
The rubber (A) according to the present invention is a natural rubber (NR) or a synthetic rubber. Specifically as a synthetic rubber, ethylene propylene copolymer rubber (EPR), ethylene propylene diene copolymer rubber (EPDM), etc. are mentioned. Among these, polyolefin-based rubbers such as EPR and EPDM are preferably used for applications of the exterior material where weather resistance is required.
<超高分子量オレフィン系重合体(B)>
本発明に係わる超高分子量オレフィン系重合体(B)とは、ポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテンなどの単独重合体や、エチレンと少量の他のα−オレフィン、たとえば、プロピレン、1−ブテン、1−ヘキセン、1−オクテンおよび4−メチル−1−ペンテンなどとの共重合体であるが、好ましくはエチレン系のポリマーであり、特に好ましくはエチレンの単独重合体であり、通常、成形加工されるオレフィン重合体に比べ、分子量が大きい重合体である。
<Ultra-high molecular weight olefin polymer (B)>
The ultrahigh molecular weight olefin polymer (B) according to the present invention is a homopolymer such as polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, etc., and ethylene and a small amount of other α Copolymers with olefins, such as, for example, propylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene, preferably ethylene-based polymers, particularly preferably ethylene It is a homopolymer and is usually a polymer having a larger molecular weight than the olefin polymer to be molded.
本発明において超高分子量オレフィン系重合体(B)の製造方法は、下記要件(i)〜(iii)を満たすものであれば特に限定はされないが、例えば、以下の文献に開示された方法により製造することができる。
(1)国際公開2006/054696号パンフレット
(2)国際公開2008/013144号パンフレット
(3)国際公開2009/011231号パンフレット
(4)国際公開2010/074073号パンフレット
In the present invention, the method for producing the ultrahigh molecular weight olefin polymer (B) is not particularly limited as long as it satisfies the following requirements (i) to (iii), but, for example, by the methods disclosed in the following documents It can be manufactured.
(1) WO 2006/054696 pamphlet (2) WO 2008/013144 pamphlet (3) WO 2009/011231 pamphlet (4) WO 2010/074073 pamphlet
本発明に係る超高分子量オレフィン系重合体(B)は下記要件(i)〜(iii)を満たす。
要件(i)
本発明に係る超高分子量オレフィン系重合体(B)は、DSC(示差走査熱量計)で測定された融点が120℃以上である。融点が120℃未満の超高分子量オレフィン系重合体は、バンバリーミキサーなどの実用混練機を用いて混合させた際に溶融し、冷却された後にゴム組成物が加工できなくなる虞がある。また、融点が120℃未満の超高分子量オレフィン系重合体を用いて得られたゴム組成物を加硫してなる成形体は、高温下での性質、例えば圧縮永久歪が大きくなる等の熱的特性が悪化する。よって、本発明では、120℃以上の温度で加硫する温度未満の融点を有する超高分子量オレフィン系重合体を使用することが好ましい。
The ultrahigh molecular weight olefin polymer (B) according to the present invention satisfies the following requirements (i) to (iii).
Requirement (i)
The ultrahigh molecular weight olefin polymer (B) according to the present invention has a melting point of 120 ° C. or higher measured by DSC (differential scanning calorimeter). The ultrahigh molecular weight olefin polymer having a melting point of less than 120 ° C. is melted when mixed using a practical kneader such as a Banbury mixer, and there is a possibility that the rubber composition can not be processed after being cooled. In addition, a molded product obtained by vulcanizing a rubber composition obtained using an ultrahigh molecular weight olefin polymer having a melting point of less than 120 ° C. has a high temperature property, for example, a thermal effect such as an increase in compression set. Characteristics deteriorate. Therefore, in the present invention, it is preferable to use an ultra-high molecular weight olefin polymer having a melting point lower than the temperature at which vulcanization is performed at a temperature of 120 ° C. or higher.
要件(ii)
本発明に係る超高分子量オレフィン系重合体(B)の135℃デカリン溶媒中で測定した極限粘度[η]は3〜50dl/g、好ましくは5〜35dl/g、より好ましくは5〜30dl/gの範囲である。このような超高分子量オレフィン系重合体を使用することにより、加硫時に超高分子量オレフィン系重合体がゴム組成物の流れ方向に偏平したり、フローすることがなく均一な表面状態を有する成形体を得ることができる。また、得られる成形体は耐摩耗性および自己潤滑性などに優れるのでより好ましい。
Requirement (ii)
The intrinsic viscosity [η] of the ultrahigh molecular weight olefin polymer (B) according to the present invention measured in a 135 ° C. decalin solvent is 3 to 50 dl / g, preferably 5 to 35 dl / g, more preferably 5 to 30 dl / g It is in the range of g. By using such an ultrahigh molecular weight olefin polymer, a molding having a uniform surface state without the ultrahigh molecular weight olefin polymer being flattened or flowing in the flow direction of the rubber composition at the time of vulcanization You can get the body. Further, the resulting molded product is more preferable because it is excellent in wear resistance and self-lubricity.
要件(iii)
本発明に係る超高分子量オレフィン系重合体(B)の平均粒子径d50は、コールターカウンター法による重量基準粒度分布の測定によって、粒形分布の積算値が50質量%となる値であり、平均粒子径d50は1〜200μm、好ましくは1〜50μm、より好ましくは1〜40μm、さらに好ましくは1〜35μm、特に好ましくは5〜35μmの範囲である。さらに成形体の滑り性能を向上するには、5〜15μmの範囲であることがより好ましい。
Requirement (iii)
The average particle diameter d 50 of the ultrahigh molecular weight olefin polymer (B) according to the present invention is a value such that the integrated value of particle shape distribution becomes 50% by mass by measurement of weight-based particle size distribution by Coulter counter method The average particle diameter d50 is in the range of 1 to 200 μm, preferably 1 to 50 μm, more preferably 1 to 40 μm, still more preferably 1 to 35 μm, and particularly preferably 5 to 35 μm. In order to further improve the sliding performance of the molded body, the range of 5 to 15 μm is more preferable.
ゴム(A)に配合される超高分子量オレフィン系重合体は、上述した超高分子量オレフィン系重合体(B)に放射線を照射してもよい。
超高分子量オレフィン系重合体(B)に放射線を照射することによって、分子鎖の切断と架橋が生じ、その結果、分子鎖が架橋点で結び合わされる。これより、ガラス転移温度あるいは融点以上でも分子鎖が勝手に流動することができなくなり、高温特性が改善される。さらに応力を受けても形態を保つことができ、機械的特性を保持できるようになる。
The ultrahigh molecular weight olefin polymer blended in the rubber (A) may be irradiated with radiation to the above-mentioned ultrahigh molecular weight olefin polymer (B).
By irradiating the ultrahigh molecular weight olefin polymer (B) with radiation, cleavage and crosslinking of the molecular chain occur, and as a result, the molecular chains are linked at the crosslinking point. As a result, molecular chains can not flow freely even at the glass transition temperature or the melting point or higher, and the high temperature characteristics are improved. Furthermore, the form can be maintained even under stress, and mechanical properties can be maintained.
放射線としては、α線、β線、γ線、電子線、イオンなどがあり、いずれも使用可能であるが、電子線あるいはγ線が適している。
放射線の照射線量は、使用する超高分子量オレフィン系重合体(B)を構成するモノマー種によっても異なるが、通常20〜700kGy、好ましくは100〜500kGyであることが望まれる。
Examples of radiation include α-rays, β-rays, γ-rays, electron beams, and ions, and any of them can be used, but electron beams or γ-rays are suitable.
The irradiation dose of radiation varies depending on the type of monomers constituting the ultrahigh molecular weight olefin polymer (B) to be used, but is usually 20 to 700 kGy, preferably 100 to 500 kGy.
照射線量が上記範囲内にある場合、超高分子量オレフィン系重合体(B)の架橋反応が効率よく進行し、このようにして得られた架橋超高分子量オレフィン系重合体をゴム組成物に使用すると、粒子同士の再凝集を抑制することができる。 When the irradiation dose is in the above range, the crosslinking reaction of the ultrahigh molecular weight olefin polymer (B) proceeds efficiently, and the thus obtained crosslinked ultrahigh molecular weight olefin polymer is used for the rubber composition Then, reaggregation of particles can be suppressed.
上記照射線量が700kGy以下であると、ポリマーを劣化することなく、架橋反応を効率よく進行できる。また、上記照射線量が20kGy以上であると、ポリマー鎖の架橋が十分な架橋速度で進み、好ましい。 A crosslinking reaction can be advanced efficiently, without degrading a polymer as the said irradiation dose is 700 kGy or less. In addition, it is preferable that the irradiation dose is 20 kGy or more, as crosslinking of polymer chains proceeds at a sufficient crosslinking rate.
<加硫剤(C)>
加硫剤(C)は、本発明に係るゴム組成物に含有されていなくてもよいし、また含有されていてもよい。加硫剤(C)を含有していない本発明に係るゴム組成物は、加硫を行なう際(成形体を得る際)に、加硫剤(C)が配合される。
加硫の際に使用される加硫剤(C)としては、イオウ、イオウ化合物および有機過酸化物が挙げられる。
<Vulcanizing agent (C)>
The vulcanizing agent (C) may not be contained in the rubber composition according to the present invention, or may be contained. In the rubber composition according to the present invention not containing the vulcanizing agent (C), the vulcanizing agent (C) is blended when performing vulcanization (when obtaining a molded product).
The vulcanizing agent (C) used in the vulcanization includes sulfur, sulfur compounds and organic peroxides.
《イオウおよびイオウ化合物》
イオウとしては、具体的には、粉末イオウ、沈降イオウ、コロイドイオウ、表面処理イオウ、不溶性イオウなどが挙げられる。
Sulfur and sulfur compounds
Specific examples of sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur and the like.
イオウ化合物としては、具体的には、塩化イオウ、二塩化イオウ、高分子多硫化物などが挙げられる。また、加硫温度で活性イオウを放出して加硫するイオウ化合物、たとえばモルフォリンジスルフィド、アルキルフェノ−ルジスルフィド、テトラメチルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド、ジメチルジチオカルバミン酸セレンなども使用することができる。中でもイオウが好ましく用いられる。 Specific examples of sulfur compounds include sulfur chloride, sulfur dichloride, and polymeric polysulfides. In addition, use is also made of sulfur compounds which release active sulfur at the vulcanization temperature to be vulcanized, such as morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, dipentamethylenethiuram tetrasulfide, selenium dimethyldithiocarbamate and the like. Can. Among them, sulfur is preferably used.
イオウないしイオウ化合物は、ゴム(A)100質量部に対して、0.1〜10質量部、好ましくは0.5〜5質量部の割合で用いられる。
また、加硫剤(C)としてイオウ、イオウ化合物を使用するときは、加硫促進剤を併用することが好ましい。
The sulfur or sulfur compound is used in a proportion of 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the rubber (A).
Moreover, when using a sulfur and a sulfur compound as a vulcanizing agent (C), it is preferable to use a vulcanization accelerator together.
<加硫促進剤>
加硫促進剤としては、具体的には、
N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−オキシジエチレン−2− ベンゾチアゾ−ルスルフェンアミド、N,N−ジイソプロピル−2−ベンゾチアゾ−ルスルフェンアミドなどのスルフェンアミド系化合物;
2−メルカプトベンゾチアゾール、2−(2’,4’−ジニトロフェニル)メルカプトベンゾチアゾール、2−(4’−モルホリノジチオ)ベンゾチアゾール、ジベンゾチアジルジスルフィド等のチアゾール系化合物;
ジフェニルグアニジン、ジオルソトリルグアニジン、ジオルソニトリルグアニジン、オルソニトリルバイグアナイド、ジフェニルグアニジンフタレート等のグアニジン化合物;
アセトアルデヒド−アニリン反応物、ブチルアルデヒド− アニリン縮合物、ヘキサメチレンテトラミン、アセトアルデヒドアンモニア等のアルデヒドアミンまたはアルデヒド−アンモニア系化合物;
2−メルカプトイミダゾリン等のイミダゾリン系化合物;
チオカルバニリド、ジエチルチオユリア、ジブチルチオユリア、トリメチルチオユリア、ジオルソトリルチオユリア等のチオユリア系化合物;
テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、ペンタメチレンチウラムテトラスルフィド等のチウラム系化合物;
ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジ−n−ブチルジチオカルバミン酸亜鉛、エチルフェニルジチオカルバミン酸亜鉛、ブチルフェニルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸セレン、ジメチルジチオカルバミン酸テルル等のジチオ酸塩系化合物;
ジブチルキサントゲン酸亜鉛等のザンテート系化合物;
亜鉛華等の化合物を挙げることができる。
これらの加硫促進剤は、ゴム(A)100質量部に対して、0.1〜20質量部、好ましくは0.2〜10質量部の割合で用いられる。
<Vulcanization accelerator>
Specifically, as a vulcanization accelerator,
Sulfenamide-based compounds such as N-cyclohexyl-2-benzothiazolesulfenamide, N-oxydiethylene-2-benzothiazolesulfenamide, N, N-diisopropyl-2-benzothiazolesulfenamide;
Thiazole compounds such as 2-mercaptobenzothiazole, 2- (2 ′, 4′-dinitrophenyl) mercaptobenzothiazole, 2- (4′-morpholinodithio) benzothiazole, dibenzothiazyl disulfide;
Guanidine compounds such as diphenyl guanidine, diolstril guanidine, diolsonitrile guanidine, ortho nitrile biguanide, diphenyl guanidine phthalate and the like;
Aldehyde amines such as acetaldehyde-aniline reactant, butyraldehyde-aniline condensate, hexamethylenetetramine, acetaldehyde ammonia and the like;
Imidazoline compounds such as 2-mercaptoimidazoline;
Thiourian compounds such as thiocarbanilide, diethylthiourea, dibutylthiourea, trimethylthiourea, diorsotrillthiourea and the like;
Thiuram compounds such as tetramethylthiuram monosulfide, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, pentamethylenethiuram tetrasulfide and the like;
Dithioacid salts such as zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc di-n-butyldithiocarbamate, zinc ethylphenyldithiocarbamate, zinc butylphenyldithiocarbamate, sodium dimethyldithiocarbamate, selenium dimethyldithiocarbamate and tellurium dimethyldithiocarbamate System compounds;
Xanthate compounds such as zinc dibutyl xanthate;
Compounds such as zinc flower can be mentioned.
These vulcanization accelerators are used in a ratio of 0.1 to 20 parts by mass, preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the rubber (A).
《有機過酸化物》
有機過酸化物としては、通常ゴムの過酸化物加硫に使用されるものであればよい。具体的には、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、ジ−t− ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、t−ブチルヒドロパーオキサイド、t−ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシン)ヘキシン−3、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、2,5−ジメチル−2,5−モノ(t−ブチルパーオキシ)− ヘキサン、α,α’− ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼンなどが挙げられる。中でも、ジクミルパーオキサイド、ジ−t− ブチルパーオキサイド、ジ−t− ブチルパーオキシ−3,3,5− トリメチルシクロヘキサンが好ましく用いられる。これらの有機過酸化物は、1種または2種以上組み合わせて用いられる。
<< organic peroxides >>
Any organic peroxide may be used so long as it is usually used for peroxide vulcanization of rubber. Specifically, dicumyl peroxide, di-t-butyl peroxide, di-t-butylperoxy-3,3,5-trimethylcyclohexane, t-butyl hydroperoxide, t-butylcumyl peroxide, benzoyl Peroxide, 2,5-dimethyl-2,5-di (t-butylperoxyne) hexyne-3,2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2 Examples include 5-mono (t-butylperoxy) -hexane, α, α'-bis (t-butylperoxy-m-isopropyl) benzene and the like. Among these, dicumyl peroxide, di-t-butyl peroxide, and di-t-butylperoxy-3,3,5-trimethylcyclohexane are preferably used. These organic peroxides may be used alone or in combination of two or more.
有機過酸化物は、ゴム(A)100gに対して、0.0003〜0.05モル、好ましくは0.001〜0.03モルの割合で使用されるが、要求される物性値に応じて適宜最適量を決定することが望ましい。 The organic peroxide is used at a ratio of 0.0003 to 0.05 mol, preferably 0.001 to 0.03 mol, per 100 g of the rubber (A), but depending on the required physical properties. It is desirable to determine the optimal amount accordingly.
加硫剤(C)として有機過酸化物を使用するときは、加硫助剤を併用することが好ましい。加硫助剤としては、具体的には、イオウ;p− キノンジオキシム等のキノンジオキシム系化合物;ポリエチレングリコールジメタクリレート等のメタクリレート系化合物;ジアリルフタレート、トリアリルシアヌレート等のアリル系化合物;その他マレイミド系化合物;ジビニルベンゼンなどが挙げられる。
このような加硫助剤は、使用する有機過酸化物1モルに対して、0.5〜2モル、好ましくは約等モルの量で用いられる。
When an organic peroxide is used as the vulcanizing agent (C), it is preferable to use a vulcanization aid in combination. Specific examples of the vulcanization aid include: sulfur; quinone dioxime compounds such as p-quinone dioxime; methacrylate compounds such as polyethylene glycol dimethacrylate; allyl compounds such as diallyl phthalate and triallyl cyanurate; Other maleimide compounds; divinyl benzene and the like can be mentioned.
Such a vulcanizing coagent is used in an amount of 0.5 to 2 moles, preferably about equimole, to 1 mole of the organic peroxide used.
<その他の成分>
本発明に係るゴム組成物には、意図する加硫物の用途、性能に応じて、ゴム(A)、超高分子量オレフィン系重合体(B)および加硫剤(C)の他に、ゴム補強剤、充填剤、軟化剤の種類およびその配合量、また加硫助剤などの化合物の種類およびその配合量、老化防止剤、加工助剤の種類およびその配合量、また必要に応じ発泡剤、発泡助剤などの発泡のための化合物の種類およびその配合量、脱泡剤、さらに加硫物を製造する工程(成形体を得る工程)を適宜選択できる。
<Other ingredients>
In the rubber composition according to the present invention, in addition to the rubber (A), the ultrahigh molecular weight olefin polymer (B) and the vulcanizing agent (C), depending on the intended use and performance of the vulcanized product, the rubber Types and amounts of reinforcing agents, fillers and softeners, types of compounds such as vulcanizing aids and their amounts, types of antiaging agents and processing aids, and amounts of foaming agents as required The kind and compounding amount of compounds for foaming such as foaming aids, defoaming agents, and the step of producing a vulcanized product (step of obtaining a molded product) can be appropriately selected.
加硫物中に占めるゴム(A)と超高分子量オレフィン系重合体(B)との総量は、意図する加硫物の性能、用途に応じて適宜選択できるが、通常20質量%以上、好ましくは25質量%以上である。 The total amount of the rubber (A) and the ultrahigh molecular weight olefin polymer (B) in the vulcanizate can be appropriately selected according to the intended performance and use of the vulcanizate, but it is usually at least 20 mass%, preferably Is 25 mass% or more.
[ゴム補強剤および充填剤]
上記ゴム補強剤は、得られる成形体の引張り強さ、引裂き強さ、耐摩耗性などの機械的性質を高める効果がある。
[Rubber reinforcing agents and fillers]
The rubber reinforcing agent has the effect of enhancing mechanical properties such as tensile strength, tear strength and abrasion resistance of the resulting molded body.
このようなゴム補強剤としては、具体的には、SRF、GPF、FEF、MAF、HAF、ISAF、SAF、FT、MT等のカーボンブラック、シランカップリング剤などにより表面処理が施されているこれらカーボンブラック、シリカ、活性化炭酸カルシウム、微粉タルク、微粉ケイ酸などが挙げられる。 As such rubber reinforcing agents, specifically, those surface-treated with carbon black such as SRF, GPF, FEF, MAF, HAF, ISAF, SAF, SAF, MT, silane coupling agent, etc. Carbon black, silica, activated calcium carbonate, finely powdered talc, finely powdered silicic acid and the like can be mentioned.
上記充填剤は、物性にあまり影響を与えることなく、得られる成形体の硬度を高くしたり、コストを引き下げることを目的として使用される。
このような充填剤としては、具体的には、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどが挙げられる。
The above-mentioned filler is used for the purpose of increasing the hardness of the obtained molded product or reducing the cost without significantly affecting the physical properties.
Specific examples of such fillers include light calcium carbonate, ground calcium carbonate, talc, clay and the like.
また、超高分子量オレフィン系重合体(B)を使用することで得られる成形体の硬度を高くすることが可能である。
これらのゴム補強剤および充填剤の種類および配合量は、その用途により適宜選択できるが、これらの配合量は、通常、ゴム(A)100質量部に対して、最大300質量部、好ましくは最大200質量部である。
Moreover, it is possible to make high the hardness of the molded object obtained by using an ultrahigh molecular weight olefin polymer (B).
Although the kind and compounding quantity of these rubber reinforcing agents and fillers can be suitably selected according to the use, these compounding quantities are usually a maximum of 300 mass parts, preferably the maximum with respect to 100 mass parts of rubber (A). It is 200 parts by mass.
[軟化剤]
上記軟化剤としては、通常ゴムに使用される軟化剤を用いることができる。
具体的には、プロセスオイル、潤滑油、パラフィン、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;
コールタール、コールタールピッチ等のコールタール系軟化剤;
ヒマシ油、アマニ油、ナタネ油、ヤシ油等の脂肪油系軟化剤;
トール油;
サブ;
蜜ロウ、カルナウバロウ、ラノリン等のロウ類;
リシノール酸、パルミチン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛等の脂肪酸および脂肪酸塩;
石油樹脂、アタクチックポリプロピレン、クマロンインデン樹脂等の合成高分子物質などを挙げることができる。中でも石油系軟化剤が好ましく用いられ、特にプロセスオイルが好ましく用いられる。
[Softener]
As the above-mentioned softener, a softener usually used for rubber can be used.
Specifically, petroleum-based softeners such as process oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt, petrolatum and the like;
Coal tar softeners such as coal tar and coal tar pitch;
Fatty oil softeners such as castor oil, linseed oil, rapeseed oil, coconut oil, etc.
Tall oil;
sub;
Waxes such as beeswax, carnauba wax and lanolin;
Fatty acids and fatty acid salts such as ricinoleic acid, palmitic acid, barium stearate, calcium stearate, zinc laurate;
Synthetic polymer substances such as petroleum resin, atactic polypropylene and coumarone-indene resin can be mentioned. Among them, petroleum-based softeners are preferably used, and in particular, process oils are preferably used.
これらの軟化剤の配合量は、加硫物の用途により適宜選択できるが、その配合量は、通常、ゴム(A)100質量部に対して、最大150質量部、好ましくは最大100質量部である。 The blending amount of these softeners can be appropriately selected according to the application of the vulcanized product, but the blending amount is usually at most 150 parts by mass, preferably at most 100 parts by mass with respect to 100 parts by mass of rubber (A). is there.
[老化防止剤]
老化防止剤を使用すれば、さらに材料寿命を長くすることが可能である。このことは、通常のゴムの場合と同様である。
[Anti-aging agent]
The use of an antiaging agent can further prolong the material life. This is similar to the case of normal rubber.
本発明で用いられる老化防止剤としては、具体的には、
フェニルナフチルアミン、4,4’−(α,α−ジメチルベンジル)ジフェニルアミン、N,N’−ジ−2−ナフチル−p−フェニレンジアミン等の芳香族第二アミン系安定剤;2,6−ジ−t−ブチル−4−メチルフェノール、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン等のフェノール系安定剤;
ビス[2−メチル−4−(3−n−アルキルチオプロピオニルオキシ)−5−t−ブチルフェニル]スルフィド等のチオエーテル系安定剤;
2−メルカプトベンゾイミダゾール等のベンゾイミダゾール系安定剤;
ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系安定剤;
2,2,4−トリメチル−1,2− ジヒドロキノリンの重合物等のキノリン系安定剤などが挙げられる。これらの老化防止剤は、単独あるいは2種以上が併用して用いられる。
Specifically as the anti-aging agent used in the present invention,
Aromatic secondary amine stabilizers such as phenylnaphthylamine, 4,4 ′-(α, α-dimethylbenzyl) diphenylamine, N, N′-di-2-naphthyl-p-phenylenediamine; 2,6-di- Phenolic stabilizers such as t-butyl-4-methylphenol, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, etc .;
Thioether stabilizers such as bis [2-methyl-4- (3-n-alkylthiopropionyloxy) -5-t-butylphenyl] sulfide;
Benzimidazole-based stabilizers such as 2-mercaptobenzimidazole;
Dithiocarbamate stabilizers such as nickel dibutyl dithiocarbamate;
Quinoline type | system | group stabilizers, such as a polymer of 2,2,4-trimethyl 1, 2- dihydroquinoline, etc. are mentioned. These anti-aging agents may be used alone or in combination of two or more.
このような老化防止剤は、ゴム(A)100質量部に対して、5質量部以下、好ましくは3質量部以下の割合で用いられるが、要求される物性値に応じて適宜最適量を決定することが望ましい。 Such an antiaging agent is used in a proportion of 5 parts by mass or less, preferably 3 parts by mass or less based on 100 parts by mass of the rubber (A), but the optimum amount is appropriately determined according to the required physical property value It is desirable to do.
[加工助剤]
上記加工助剤としては、通常のゴムの加工に使用される化合物を使用することができる。具体的には、リシノール酸、ステアリン酸、パルチミン酸、ラウリン酸等の高級脂肪酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸塩、リシノール酸エステル、ステアリン酸エステル、パルチミン酸エステル、ラウリン酸エステル等の高級脂肪酸エステル類などが挙げられる。
[Processing aid]
As the above-mentioned processing aids, compounds used for processing of ordinary rubbers can be used. Specifically, higher fatty acids such as ricinoleic acid, stearic acid, palmitic acid and lauric acid, higher fatty acid salts such as barium stearate, zinc stearate and calcium stearate, ricinoleic acid ester, stearic acid ester, palmitic acid ester, lauric acid Examples thereof include higher fatty acid esters such as acid esters.
このような加工助剤は、通常、ゴム(A)100質量部に対して、10質量部以下、好ましくは5質量部以下の割合で用いられるが、要求される物性値に応じて適宜最適量を決定することが望ましい。 Such a processing aid is generally used in a proportion of 10 parts by mass or less, preferably 5 parts by mass or less, based on 100 parts by mass of the rubber (A), but the optimum amount is appropriately selected according to the required physical properties. It is desirable to determine
[発泡剤および発泡助剤]
本発明に係るゴム組成物は、上述したように、必要に応じ通常ゴムに使用される発泡剤および発泡助剤を配合し、成形、発泡、加硫を行うことで得ることができる。
[Foaming agent and foaming aid]
The rubber composition according to the present invention can be obtained, as described above, by blending a foaming agent and a foaming auxiliary, which are usually used for rubber, as necessary, and performing molding, foaming, and vulcanization.
発泡剤としては、具体的には、
重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム等の無機発泡剤;
N,N’− ジメチル−N,N’−ジニトロソテレフタルアミド、N,N’− ジニトロソペンタメチレンテトラミン等のニトロソ化合物;
アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;
ベンゼンスルホニルヒドラジド、トルエンスルホニルヒドラジド、p,p’−オキシビス(ベンゼンスルホニルヒドラジド)、ジフェニルスルホン−3,3’−ジスルホニルヒドラジド等のスルホニルヒドラジド化合物;
カルシウムアジド、4,4−ジフェニルジスルホニルアジド、p−トルエンスルホルニルアジド等のアジド化合物などが挙げられる。
Specifically as a foaming agent,
Inorganic blowing agents such as sodium bicarbonate, sodium carbonate, ammonium bicarbonate, ammonium carbonate, ammonium nitrite;
Nitroso compounds such as N, N'-dimethyl-N, N'-dinitrosotephthalamide, N, N'-dinitrosopentamethylenetetramine;
Azo compounds such as azodicarbonamide, azobisisobutyronitrile, azocyclohexyl nitrile, azodiaminobenzene, barium azodicarboxylate and the like;
Sulfonyl hydrazide compounds such as benzene sulfonyl hydrazide, toluene sulfonyl hydrazide, p, p′-oxybis (benzene sulfonyl hydrazide), diphenyl sulfone-3,3′-disulfonyl hydrazide and the like;
An azide compound such as calcium azide, 4,4-diphenyldisulfonyl azide, p-toluenesulfonyl azide and the like can be mentioned.
これらの発泡剤は、ゴム(A)100質量部に対して、0.5〜30質量部、好ましくは1〜20質量部の割合で用いられる。
必要に応じて、発泡剤と併用される発泡助剤は、発泡剤の分解温度の低下、分解促進、気泡の均一化などの作用をする。このような発泡助剤としては、サリチル酸、フタル酸、ステアリン酸、しゅう酸などの有機酸、尿素またはその誘導体などが挙げられる。
These foaming agents are used in a ratio of 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the rubber (A).
If necessary, the foaming aid used in combination with the foaming agent acts to lower the decomposition temperature of the foaming agent, accelerate the decomposition, and homogenize the cells. Examples of such a foaming aid include organic acids such as salicylic acid, phthalic acid, stearic acid and oxalic acid, urea and derivatives thereof.
これらの発泡助剤は、ゴム(A)100質量部に対して、0.01〜10質量部、好ましくは0.1〜5質量部の割合で用いられるが、要求される物性値に応じて適宜最適量を決定することが望ましい。 These foaming assistants are used in a proportion of 0.01 to 10 parts by mass, preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber (A), depending on the required physical property values. It is desirable to determine the optimal amount accordingly.
[脱泡剤]
ゴム組成物を加硫する場合、内包する水分により気泡ができたり、発泡度が異なったりすることがある。これらを防止するために、脱泡剤として酸化カルシウムを添加してもよい。
[Defoamer]
When the rubber composition is vulcanized, bubbles may be generated or the degree of foaming may differ depending on the contained water. In order to prevent these, calcium oxide may be added as a defoamer.
このような脱泡剤は、通常ゴム(A)100質量部に対して、20質量部以下、好ましくは10質量部以下の割合で用いられるが、要求される物性値に応じて適宜最適量を決定することが望ましい。 Such a defoaming agent is usually used in a proportion of 20 parts by mass or less, preferably 10 parts by mass or less with respect to 100 parts by mass of the rubber (A), but the optimum amount is appropriately selected according to the required physical properties. It is desirable to make a decision.
ゴム組成物の調製
本発明に係るゴム組成物は、ゴム(A)、超高分子量オレフィン系重合体(B)および必要に応じて用いられる上述した加硫剤(C)、また、必要に応じて加硫促進剤、加硫助剤、ゴム補強剤、充填剤、軟化剤、老化防止剤、加工助剤、発泡剤、発泡助剤、脱泡剤などのゴム配合剤を上記範囲内の所定量を混合し、一般的なゴム配合物の調製方法によって調製することができる。
Preparation of Rubber Composition The rubber composition according to the present invention comprises a rubber (A), an ultrahigh molecular weight olefin polymer (B), the above-mentioned vulcanizing agent (C) used as needed, and, if necessary, Rubber compounding agents such as vulcanization accelerators, vulcanization aids, rubber reinforcing agents, fillers, softeners, anti-aging agents, processing aids, foaming agents, foaming aids, defoamers, etc. within the above range The determination can be mixed and prepared according to the general method of rubber compounding preparation.
本発明に係るゴム組成物(未加硫の配合ゴム)は、たとえば次のような方法で調製される。すなわち、バンバリーミキサー、ニーダー、インターミックスのようなインターナルミキサー類により、ゴム(A)および充填剤、軟化剤などの添加剤を80〜190℃の温度で3〜10分間混練した後、オープンロールのようなロール類、あるいはニーダーを使用して、超高分子量オレフィン系重合体(B)、加硫剤、必要に応じて加硫促進剤または加硫助剤、発泡剤を200℃未満の温度下で追加混合する。好ましくは、ゴムや加硫剤の劣化を考慮し、160℃未満、更に好ましくは、140℃未満、特に好ましくは120℃未満の温度下で追加混合する。ロール温度40〜80℃で5〜30分間混練した後、分出しすることにより調製することができる。 The rubber composition (unvulcanized blended rubber) according to the present invention is prepared, for example, by the following method. That is, after mixing the rubber (A) and the additives such as the filler and the softener at a temperature of 80 to 190 ° C. for 3 to 10 minutes by an internal mixer such as a Banbury mixer, a kneader or an intermix, open roll Using ultra-high molecular weight olefin polymer (B), vulcanizing agent, if necessary, vulcanizing accelerator or auxiliary agent, blowing agent, temperature of less than 200 ° C. Add mix below. Preferably, in consideration of the deterioration of the rubber and the vulcanizing agent, additional mixing is carried out at a temperature of less than 160 ° C., more preferably less than 140 ° C., particularly preferably less than 120 ° C. After kneading at a roll temperature of 40 to 80 ° C. for 5 to 30 minutes, it can be prepared by dispensing.
また、インターナルミキサー類での混合温度が高くても、ポリマー、充填剤、軟化剤などとともに超高分子量オレフィン系重合体(B)、加硫剤、加硫促進剤、発泡剤などを同時に混練してもよい。
以上のようにして調製されたゴム組成物は、自動車部品をはじめ種々の用途に用いることができ、特に型成形により調製される用途に好適に用いることができる。
Also, even if the mixing temperature in the internal mixers is high, the ultrahigh molecular weight olefin polymer (B), the vulcanizing agent, the vulcanization accelerator, the foaming agent, etc. are simultaneously kneaded together with the polymer, the filler, the softening agent, etc. You may
The rubber composition prepared as described above can be used for various applications including automobile parts, and in particular, can be suitably used for applications prepared by molding.
<前駆成形体の調製>
本発明に係るゴム組成物から前駆成形体を調製するには、通常一般のゴムを成形するときと同様に、未加硫の配合ゴム(ゴム組成物)を上述したような方法で一度調製し、次に、この配合ゴムを意図する形状に成形した後に加硫を行なえばよい。
<Preparation of precursor molded body>
In order to prepare a precursor molded body from the rubber composition according to the present invention, an unvulcanized compounded rubber (rubber composition) is prepared once by the method as described above, as in the case of molding a general rubber. Then, after the compounded rubber is formed into an intended shape, vulcanization may be performed.
上記のようにして調製された未加硫の配合ゴムは、種々の成形法により、成形、加硫することができるが、圧縮成形、射出成形、注入成形などの型成形により、成形、加硫する場合に最もその特性を発揮することができる。 The unvulcanized compounded rubber prepared as described above can be molded and vulcanized by various molding methods, but it can be molded and vulcanized by molding such as compression molding, injection molding and injection molding. When it does, it can exhibit the characteristic most.
すなわち、圧縮成形の場合、予め秤量した未加硫の配合ゴムを型に入れ、型を閉じた後120〜270℃の温度で、30秒〜120分加熱することにより、目的とする前駆成形体が得られる。 That is, in the case of compression molding, an unvulcanized compounded rubber weighed in advance is put in a mold, and after closing the mold, the target precursor molded body is heated at a temperature of 120 to 270 ° C. for 30 seconds to 120 minutes. Is obtained.
射出成形の場合、リボン状あるいはペレット状の配合ゴムをスクリューにより予め設定した量だけポットに供給する。引き続き予備加熱された配合ゴムをプランジャーにより金型内に1〜20秒で送り込む。配合ゴムを射出した後120〜270℃の温度で、30秒〜120分加熱することにより、目的とする前駆成形体が得られる。 In the case of injection molding, a ribbon-like or pellet-like compounded rubber is supplied to the pot in a predetermined amount by a screw. Subsequently, the preheated compounded rubber is fed into the mold by the plunger in 1 to 20 seconds. By injecting the compounded rubber and then heating for 30 seconds to 120 minutes at a temperature of 120 to 270 ° C., a target precursor molded body is obtained.
注入成形の場合、予め秤量した配合ゴムをポットに入れピストンにより金型内に1〜20秒で注入する。配合ゴムを注入した後120〜270℃の温度で、30秒〜120分加熱することにより、目的とする前駆成形体が得られる。 In the case of injection molding, the previously weighed compounded rubber is put into a pot and injected into the mold by a piston in 1 to 20 seconds. By injecting the compounded rubber and heating at a temperature of 120 to 270 ° C. for 30 seconds to 120 minutes, a target precursor molded body is obtained.
これらの型成形の場合、加硫の際に超高分子量オレフィン系重合体(B)は、ゴム(A)や他の配合剤よりも体積膨張が大きくなり、成形後冷却されてもとの体積に戻ることが重要となる。 In the case of these moldings, during vulcanization, the ultrahigh molecular weight olefin polymer (B) has a greater volume expansion than the rubber (A) and other compounding agents, and the volume of the original polymer after being cooled after molding It is important to return to
[成形体の製造方法]
本発明の成形体は、上記製造方法で得られた前駆成形体の表面を、下記に示す砥粒(Y)により研磨することで、本発明の成形体を得ることができる。研磨により、予備成形体内部の超高分子量オレフィン系重合体(B)が成形体表面に析出するため、得られる成形体は、使用の初期にも滑り性が確保される。また、成形体の表面が摩耗しても超高分子量ポリエチレン(B)が常に成形体の表面に存在するため、成形体は長期間に亘って滑り性能と摩耗性能を有することができる。
[Method for producing molded body]
The molded object of this invention can obtain the molded object of this invention by grind | polishing the surface of the precursor molded object obtained by the said manufacturing method by the abrasive grain (Y) shown below. Since the ultrahigh molecular weight olefin polymer (B) inside the preformed body is deposited on the surface of the shaped body by polishing, the obtained shaped body can maintain slippage even at the beginning of use. In addition, since the ultrahigh molecular weight polyethylene (B) is always present on the surface of the molded product even if the surface of the molded product is worn, the molded product can have sliding performance and wear performance over a long period of time.
<砥粒(Y)>
本発明に係わる砥粒(Y)の平均粒子径d50は、前記超高分子量オレフィン系重合体(B)の平均粒子径d50の2倍以下、好ましくは1.5倍以下、より好ましくは1倍以下である。砥粒(Y)の平均粒子径d50は好ましくは0.5μm以上である。
砥粒(Y)の平均粒子径d50が、超高分子量オレフィン系重合体(B)の平均粒子径d50の2倍よりも大きいと、成形体表面に超高分子量オレフィン系重合体(B)が露出しないので、滑り性能に劣る。
<Abrasive grain (Y)>
The average particle size d 50 of the abrasive grain according to the present invention (Y), the 2 times the average particle size d 50 ultra high molecular weight olefin polymer (B) or less, preferably 1.5 times or less, more preferably It is less than 1 time. The average particle size d 50 of the abrasive grains (Y) is preferably 0.5 μm or more.
Abrasive average particle size d 50 of (Y) is, the greater than 2 times the average particle size d 50 ultra high molecular weight olefin-based polymer (B), the molded body surface ultrahigh molecular weight olefin polymer (B Since it does not expose, it is inferior to sliding performance.
本発明に係る砥粒(Y)としては、一般的な研磨剤を用いることができる。具体的には、アルミナや炭化ケイ素、酸化クロム、酸化鉄、酸化セリウム、ジルコニア、シリカ、ダイヤモンド、CBNなどが用いられうる。 As the abrasive grains (Y) according to the present invention, general abrasives can be used. Specifically, alumina, silicon carbide, chromium oxide, iron oxide, cerium oxide, zirconia, silica, diamond, CBN or the like can be used.
本発明に係わる前駆成形体の表面を研磨する方法は、研削盤や研磨機、ラップ盤、ポリッシングマシーン、ホーニングマシーン、バフ研磨機、CMP装置などがあり、いずれの方法を用いても良い。 The method of polishing the surface of the precursor molded body according to the present invention includes a grinder, a polisher, a lapping machine, a polishing machine, a honing machine, a buff polisher, a CMP apparatus, and the like, and any method may be used.
以下、本発明を実施例により説明するが、本発明は、これら実施例に限定されるものではない。
実施例、比較例で用いた超高分子量オレフィン系重合体(B)の物性は下記方法に従って測定した。
Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
Physical properties of the ultrahigh molecular weight olefin polymer (B) used in Examples and Comparative Examples were measured according to the following method.
(1)DSCによる融点(Tm)測定
融点(Tm)は、DSCにより測定した。DSC(DSC220C、セイコーインスツルメンツ社製)を用い、測定用アルミパンに約5mgの試料をつめ、200℃まで昇温し試料を融解させた後、−10℃/分で30℃まで冷却し、10℃/分で昇温した時の結晶溶融ピークのピーク頂点から融点(Tm)を算出した。
(1) Melting point (T m ) measurement by DSC Melting point (Tm) was measured by DSC. Using DSC (DSC 220C, Seiko Instruments Inc.), about 5 mg of the sample is placed in an aluminum pan for measurement, heated to 200 ° C to melt the sample, and then cooled to 30 ° C at -10 ° C / min. The melting point (Tm) was calculated from the peak of the crystal melting peak when the temperature was raised at ° C./min.
(2)極限粘度[η]の測定
極限粘度[η]は、超高分子量オレフィン系重合体(B)をデカリンに溶解させ、温度135℃のデカリン中で測定した。
より具体的には、測定サンプル約15mgをデカリン50mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、下記式に示すように濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位;dl/g)として求めた。
[η]=lim(ηsp/C) (C→0)
(2) Measurement of Intrinsic Viscosity [η] The intrinsic viscosity [η] was measured in decalin at a temperature of 135 ° C. by dissolving the ultrahigh molecular weight olefin polymer (B) in decalin.
More specifically, about 15 mg of a measurement sample was dissolved in 50 ml of decalin, and the specific viscosity η sp was measured in an oil bath at 135 ° C. After diluting 5 ml of decalin solvent to the decalin solution to dilute, the specific viscosity sp sp was measured in the same manner. This dilution operation was further repeated twice, and the value of sp sp / C when the concentration (C) was extrapolated to 0 as shown in the following formula was determined as the limiting viscosity [η] (unit; dl / g).
[Η] = lim (( sp / C) (C → 0)
(3)平均粒子径d50の測定
平均粒子径d50は、ベックマン社製マルチサイザー・スリーを用いて、コールターカウンター法による重量基準粒度分布から算出した。
また、実施例、比較例で得られたゴム組成物から形成されたゴムシートについて行なった引張試験、硬さ試験、圧縮永久歪試験および動摩擦係数の試験方法は、次の通りである。
(3) Measurement of Average Particle Size d 50 The average particle size d 50 was calculated from a weight-based particle size distribution by Coulter Counter method using a Multiman-made by Beckman Corporation.
Further, the tensile test, the hardness test, the compression set test and the test method of the dynamic friction coefficient performed on the rubber sheet formed from the rubber composition obtained in Examples and Comparative Examples are as follows.
(試験方法)
(1)引張試験
厚み2mmの前駆成形体(加硫ゴムシート)からJIS K6251に記載してある3号型ダンベルで打ち抜いて試験片を得た。この試験片を用いて同JIS K6251に規定されている方法に従い、測定温度25℃、引張速度500mm/分の条件で引張試験を行ない、引張破断点応力(TB)と引張破断点伸び(EB)を測定した。
(Test method)
(1) Tensile test A test piece was obtained by punching a 2 mm-thick precursor molded article (vulcanized rubber sheet) with a No. 3 type dumbbell described in JIS K6251. Using this test piece, a tensile test is conducted under the conditions of a measuring temperature of 25 ° C. and a tensile speed of 500 mm / min according to the method defined in the same JIS K6251, tensile stress at break (T B ) and tensile elongation at break (E) B ) was measured.
(2)硬さ試験
硬さ試験は、厚み2mmの前駆成形体(加硫ゴムシート)を6枚重ね、JIS K6253に従い硬度
(JIS−A)を測定した。
(2) Hardness test In the hardness test, six sheets of a precursor molded body (vulcanized rubber sheet) having a thickness of 2 mm were stacked, and the hardness (JIS-A) was measured according to JIS K6253.
(3)圧縮永久歪試験
圧縮永久歪試験は、厚み2mmの前駆成形体(加硫ゴムシート)を6枚重ね、JIS K6262に記載してある方法に従い、圧縮装置に取り付け、試験片の高さが荷重をかける前の高さの3/4になるよう圧縮し、金型ごと70℃のギヤーオーブン中に22時間熱処理した。
熱処理後、試験片を圧縮装置から取り出し、30分間放冷した後、試験片の高さを測定し、以下の計算式で圧縮永久歪を算出した。
圧縮永久歪[%]=[(tO−t1)/(tO−t2)]×100
tO : 試験片の試験前の高さ
t1 : 試験片を熱処理し30分放冷した後の高さ
t2 : 試験片の測定金型に取り付けた状態での高さ
(3) Compression set test In the compression set test, 6 sheets of 2 mm thick precursor molded articles (vulcanized rubber sheet) are stacked and attached to a compression device according to the method described in JIS K6262, and the height of the test piece Was compressed to 3/4 of the height before loading, and the mold was heat treated in a 70 ° C. gear oven for 22 hours.
After the heat treatment, the test piece was taken out of the compression apparatus, allowed to cool for 30 minutes, and then the height of the test piece was measured, and the compression set was calculated by the following formula.
Compression set [%] = [(t o −t 1 ) / (t o −t 2 )] × 100
t O : height of test piece before test t 1 : height of test piece after heat treatment and cooling for 30 minutes t 2 : height of test piece mounted on mold
(4)動摩擦係数測定
前駆成形体(加硫ゴムシート)および前駆成形体の表面を研磨してなる成形体の表面の動摩擦係数は、16mmφのステンレス製冶具をゴム表面に当て500gの錘をのせ、試験速度300mm/minでゴムと水平方向にスライドさせ測定した。
(4) Dynamic coefficient of friction measurement The coefficient of dynamic friction of the surface of the precursor molded product (vulcanized rubber sheet) and the molded product formed by polishing the surface of the precursor molded product is as follows. The rubber was horizontally slid and measured at a test speed of 300 mm / min.
[比較例1]
エチレン・プロピレン・5−エチリデン−2−ノルボルネン三元共重合体[商品名:三井EPT4021、三井化学株式会社製]100質量部と、
亜鉛華 5質量部と、
ステアリン酸 1質量部と、
ポリエチレングリコール#4000 1質量部と、
FEFカーボンブラック65質量部と、
パラフィン系プロセスオイル40質量部とを1.7リットル容量のバンバリーミキサーで5分間混練し、120℃の配合物を排出した。
Comparative Example 1
100 parts by mass of ethylene / propylene • 5-ethylidene-2-norbornene ternary copolymer [trade name: Mitsui EPT 4021, manufactured by Mitsui Chemicals, Inc.],
5 parts by mass of zinc flower,
1 part by mass of stearic acid,
1 part by mass of polyethylene glycol # 4000
65 parts by mass of FEF carbon black,
40 parts by mass of paraffinic process oil were kneaded for 5 minutes with a 1.7-liter volume Banbury mixer, and the mixture at 120 ° C. was discharged.
さらに、この配合物を表面温度が50℃の8インチロールに巻き付けた後、この配合物212質量部に対し、N−シクロヘキシル−2− ベンゾチアゾリルスルフェンアミド1.5質量部、ジメチルジチオカルバミン酸亜鉛[加硫促進剤]0.2質量部、ジ−n−ブチルジチオカルバミン酸亜鉛[加硫促進剤]0.5質量部、イオウ[加硫剤]2.0質量部、および脱泡剤4質量部を加えて8分間混練し、得られた配合物を放冷した。 Furthermore, after winding this composition on an 8 inch roll having a surface temperature of 50 ° C., 1.5 parts by mass of N-cyclohexyl-2-benzothiazolylsulfenamide, with respect to 212 parts by mass of this composition, dimethyldithiocarbamic acid 0.2 parts by mass of zinc [vulcanization accelerator], 0.5 parts by mass of zinc di-n-butyl dithiocarbamate [vulcanization accelerator], 2.0 parts by mass of sulfur [vulcanizing agent], and defoaming agent 4 The parts by mass were added and kneaded for 8 minutes, and the resulting mixture was allowed to cool.
この配合物からプレス成形機を用いて180℃で5分間加硫を行なって厚み2mmのゴムシートを調製した。また、圧縮永久歪試験用のゴムブロックは、180度で10分間加硫して調製した。 The mixture was vulcanized at 180 ° C. for 5 minutes using a press molding machine to prepare a 2 mm-thick rubber sheet. The rubber block for the compression set test was prepared by vulcanizing at 180 degrees for 10 minutes.
上記のようにして得られた前駆成形体について、引張試験、硬さ試験および圧縮永久歪試験を、並びに前駆成形体および前駆成形体の表面を研磨してなる成形体の表面の動摩擦測定試験を上記方法により行なった。結果を表1に示す。 With respect to the precursor molded body obtained as described above, the tensile test, the hardness test and the compression set test, and the dynamic friction measurement test of the surface of the precursor molded body and the molded body obtained by polishing the surface of the precursor molded body It carried out by the above-mentioned method. The results are shown in Table 1.
[比較例2]
比較例1で得られた前駆成形体(加硫ゴムシート)の表面を、研磨材(サンドペーパー研磨紙)の粒度#120(最下段である5段目の篩目開きが90μmで累積篩網上量96%以上)を用いて、1000g加重で、速度48回/分、1000往復摺動して研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
Comparative Example 2
The surface of the precursor molded article (vulcanized rubber sheet) obtained in Comparative Example 1 is accumulated with a grain size of # 120 (the lowermost stage, the fifth step, 90 μm) of the abrasive (sandpaper abrasive paper) Using an upper amount of 96% or more), a molded product was obtained by sliding at 1000 reciprocations at a speed of 48 times / min and reciprocating 1000 times at a load of 1000 g to obtain a molded body. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[比較例3]
比較例1で得られた前駆成形体(加硫ゴムシート)の表面を、研磨材(サンドペーパー研磨紙)の粒度#240(平均粒子径d50:58.5μm±2.0μm)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
Comparative Example 3
The surface of the precursor molded article (vulcanized rubber sheet) obtained in Comparative Example 1 was subjected to particle size # 240 (average particle size d 50 : 58.5 μm ± 2.0 μm) of the abrasive (sandpaper abrasive paper) Polishing was carried out in the same manner as in Comparative Example 1 to obtain a molded body. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[比較例4]
比較例1で得られた前駆成形体(加硫ゴムシート)の表面を、研磨材(サンドペーパー研磨紙)の粒度#320(平均粒子径d50:46.2μm±1.5μm)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
Comparative Example 4
The surface of the precursor molded article (vulcanized rubber sheet) obtained in Comparative Example 1 was subjected to particle size # 320 (average particle size d 50 : 46.2 μm ± 1.5 μm) of the abrasive (sandpaper abrasive paper) Polishing was carried out in the same manner as in Comparative Example 1 to obtain a molded body. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[比較例5]
比較例1で得られた加硫ゴムシート表面を、研磨材(サンドペーパー研磨紙)の粒度#800(平均粒子径d50:21.8μm±1.0μm)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
Comparative Example 5
The surface of the vulcanized rubber sheet obtained in Comparative Example 1 was treated in the same manner as Comparative Example 1 using particle size # 800 (average particle size d 50 : 21.8 μm ± 1.0 μm) of the abrasive (sandpaper abrasive paper). It grind | polished by the method and the molded object was obtained. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[比較例6]
超高分子量ポリエチレン(B)[融点:136℃、極限粘度[η]が13.0dl/g、平均粒子径d50:30μm]40質量部を添加した以外は、比較例1と同様である。結果を表1に示す。
Comparative Example 6
It is the same as Comparative Example 1 except that 40 parts by mass of ultra high molecular weight polyethylene (B) [melting point: 136 ° C., intrinsic viscosity [η] 13.0 dl / g, average particle diameter d 50 : 30 μm] is added. The results are shown in Table 1.
[比較例7]
比較例6で得られた加硫ゴムシート表面を、研磨材(サンドペーパー研磨紙)の粒度#120(最下段である5段目の篩目開きが90μmで累積篩網上量96%以上)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
Comparative Example 7
The surface of the vulcanized rubber sheet obtained in Comparative Example 6 was made to have a particle size # 120 of the abrasive (sandpaper abrasive paper) (the lowermost screen, the fifth step of which was 90 μm and the cumulative mesh weight was 96% or more). Using the same method as in Comparative Example 1 to obtain a molded body. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[実施例1]
比較例6で得られた加硫ゴムシート表面を、研磨材(サンドペーパー研磨紙)の粒度#240(平均粒子径d50:58.5μm±2.0μm)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
Example 1
The surface of the vulcanized rubber sheet obtained in Comparative Example 6 was treated in the same manner as in Comparative Example 1 using particle size # 240 (average particle size d 50 : 58.5 μm ± 2.0 μm) of the abrasive (sandpaper abrasive paper). It grind | polished by the method and the molded object was obtained. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[実施例2]
比較例6で得られた加硫ゴムシート表面を、研磨材(サンドペーパー研磨紙)の粒度#320(平均粒子径d50:46.2μm±1.5μm)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
Example 2
The surface of the vulcanized rubber sheet obtained in Comparative Example 6 was treated in the same manner as Comparative Example 1 using particle size # 320 (average particle size d 50 : 46.2 μm ± 1.5 μm) of the abrasive (sandpaper abrasive paper). It grind | polished by the method and the molded object was obtained. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[実施例3]
比較例6で得られた加硫ゴムシート表面を、研磨材(サンドペーパー研磨紙)の粒度#800(平均粒子径d50:21.8μm±1.0μm)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
[Example 3]
The surface of the vulcanized rubber sheet obtained in Comparative Example 6 was treated in the same manner as Comparative Example 1 using particle size # 800 (average particle size d 50 : 21.8 μm ± 1.0 μm) of the abrasive (sandpaper abrasive paper). It grind | polished by the method and the molded object was obtained. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[実施例4]
比較例6で得られた加硫ゴムシート表面を、研磨材(サンドペーパー研磨紙)の粒度#1200(平均粒子径d50:15.3μm±1.0μm)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
Example 4
The surface of the vulcanized rubber sheet obtained in Comparative Example 6 was treated in the same manner as Comparative Example 1 using particle size # 1200 (average particle size d 50 : 15.3 μm ± 1.0 μm) of the abrasive (sandpaper abrasive paper). It grind | polished by the method and the molded object was obtained. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[比較例8]
超高分子量ポリエチレン(B)[融点:136℃、極限粘度[η]が12.7dl/g、平均粒子径d50:10μm]40質量部を添加した以外は、比較例1と同様である。結果を表1に示す。
Comparative Example 8
It is the same as Comparative Example 1 except that 40 parts by mass of ultrahigh molecular weight polyethylene (B) (melting point: 136 ° C., intrinsic viscosity [極限] 12.7 dl / g, average particle diameter d 50 : 10 μm) is added. The results are shown in Table 1.
[実施例5]
比較例8で得られた加硫ゴムシート表面を、研磨材(サンドペーパー研磨紙)の粒度#1200(平均粒子径d50:15.3μm±1.0μm)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
[Example 5]
The surface of the vulcanized rubber sheet obtained in Comparative Example 8 was treated in the same manner as Comparative Example 1 using particle size # 1200 (average particle size d 50 : 15.3 μm ± 1.0 μm) of an abrasive (sandpaper abrasive paper). It grind | polished by the method and the molded object was obtained. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
[実施例6]
比較例8で得られた加硫ゴムシート表面を、研磨材(サンドペーパー研磨紙)の粒度#2500(平均粒子径d50:8.4μm±0.5μm)を用いて、比較例1と同じ方法で研磨して、成形体を得た。得られた成形体の表面の動摩擦係数を表1に示す。
[Example 6]
The surface of the vulcanized rubber sheet obtained in Comparative Example 8 is the same as Comparative Example 1 using particle size # 2500 (average particle size d 50 : 8.4 μm ± 0.5 μm) of the abrasive (sandpaper abrasive paper) It grind | polished by the method and the molded object was obtained. The dynamic friction coefficient of the surface of the obtained molded product is shown in Table 1.
表1から明らかなように、上記のように加硫して得られた成形体(前駆成形体)の表面を砥石の平均粒子径d50が、超高分子量オレフィン系重合体(B)の平均粒子径d50の2倍以下(実施例1および実施例2および実施例3および実施例4および実施例5および実施例6)で研磨することで、前駆成形体内部の超高分子量オレフィン系重合体(B)が、成形体の表面に露出するため、成形体の使用の初期にも滑り性が良好であることがわかる。さらに、超高分子量オレフィン系重合体(B)の平均粒子径d50が、5〜15μmの範囲であると(実施例5および実施例6)、さらに得られる成形体は動摩擦係数が小さくなり、滑り性能がより良好であることがわかる。 As apparent from Table 1, the average particle diameter d 50 of the grindstone of the molded product (precursor molded product) obtained by vulcanization as described above is the average of the ultrahigh molecular weight olefin polymer (B) Ultra high molecular weight olefin-based weight inside the precursor molded body by polishing with a particle diameter d 50 or less twice as large (Example 1 and Example 2 and Example 3 and Example 4 and Example 5 and Example 6) It can be seen that since the united (B) is exposed on the surface of the molded body, the slipperiness is good even at the beginning of the use of the molded body. Furthermore, when the average particle diameter d 50 of the ultrahigh molecular weight olefin polymer (B) is in the range of 5 to 15 μm (Examples 5 and 6), the resulting molded article has a smaller coefficient of dynamic friction, It can be seen that the sliding performance is better.
Claims (4)
(i)DSCで測定した融点(Tm)が120℃以上である。
(ii)ASTM D4020に準じて135℃のデカリン中で測定した極限粘度[η]が3〜50dl/gの範囲にある。
(iii)平均粒子径d50が、1〜200μmの範囲にある。 A precursor molded article formed from a rubber composition containing 100 parts by mass of rubber (A) and 5 to 80 parts by mass of an ultrahigh molecular weight olefin polymer (B) satisfying the following requirements (i) to (iii) surface, mean average twice less is abrasive particle size d 50 (Y) formed by polishing the surface of a molded body of the particle size d 50 ultra high molecular weight olefin polymer (B) of the.
(I) The melting point (T m ) measured by DSC is 120 ° C. or more.
(Ii) The intrinsic viscosity [η] measured in decalin at 135 ° C. according to ASTM D4020 is in the range of 3 to 50 dl / g.
(Iii) The average particle diameter d 50 is in the range of 1 to 200 μm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017226695 | 2017-11-27 | ||
JP2017226695 | 2017-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019094479A true JP2019094479A (en) | 2019-06-20 |
Family
ID=66972714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018161833A Pending JP2019094479A (en) | 2017-11-27 | 2018-08-30 | Molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019094479A (en) |
-
2018
- 2018-08-30 JP JP2018161833A patent/JP2019094479A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070219320A1 (en) | Process for Producing Rubber Composition, Rubber Composition and use Thereof | |
JP6717982B2 (en) | Rubber composition | |
JP2002080662A (en) | Rubber composition | |
JP6326263B2 (en) | Resin composition and rubber roller | |
JP2018119097A (en) | Rubber composition for automobile aqueous hose | |
JP2021161363A (en) | Ethylenic copolymer composition and applications thereof | |
JP2019094479A (en) | Molded article | |
JPH10168257A (en) | Rubber composition for thermally resistant conveyor belt | |
JPH10195227A (en) | Rubber composition for casted sponge and vulcanized rubber cellular formed material | |
JP3582176B2 (en) | Ethylene-α-olefin-non-conjugated diene copolymer rubber composition | |
JP2018119129A (en) | Rubber composition | |
JP6700865B2 (en) | Hulling roll and method for manufacturing the hulling roll | |
JP3911707B2 (en) | Seal packing | |
JP2010280777A (en) | Rubber composition and rubber molded product | |
JP3584086B2 (en) | Rubber composition | |
JP5414635B2 (en) | Rubber composition and use thereof | |
JPH08337696A (en) | Heat-resistant rubber composition excellent in flowability | |
JP6890432B2 (en) | Composition for paddy roll and paddy roll | |
JP6661413B2 (en) | Hulling roll and method for producing the hulling roll | |
JP3711621B2 (en) | Ethylene-α-olefin copolymer rubber composition for rubber roll | |
JP2002256121A (en) | Vulcanizable rubber composition and sponge rubber | |
JP7257176B2 (en) | Rubber composition and method for producing rubber molding | |
JP2002212328A (en) | Rubber foamed product | |
JP3773376B2 (en) | Rubber composition for sponge and its vulcanized rubber foam molding | |
JP2019167403A (en) | ETHYLENE α-OLEFIN VINYL NORBORNENE COPOLYMER |