JP2019093621A - Antistatic antibacterial film material - Google Patents

Antistatic antibacterial film material Download PDF

Info

Publication number
JP2019093621A
JP2019093621A JP2017224463A JP2017224463A JP2019093621A JP 2019093621 A JP2019093621 A JP 2019093621A JP 2017224463 A JP2017224463 A JP 2017224463A JP 2017224463 A JP2017224463 A JP 2017224463A JP 2019093621 A JP2019093621 A JP 2019093621A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
mass
coating layer
ligand
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017224463A
Other languages
Japanese (ja)
Other versions
JP6929543B2 (en
Inventor
狩野 俊也
Toshiya Karino
俊也 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2017224463A priority Critical patent/JP6929543B2/en
Publication of JP2019093621A publication Critical patent/JP2019093621A/en
Application granted granted Critical
Publication of JP6929543B2 publication Critical patent/JP6929543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a static electricity countermeasure sheet having antibacterial properties which has a lower coloring property (less influence of the hue of carbon nanotubes) and is obtained by using an antistatic film using carbon nanotubes.SOLUTION: There is provided a static electricity countermeasure sheet which uses a fiber fabric as a base material and has a coating film layer on at least one surface of a thermoplastic resin coating layer of a flexible sheet having a thermoplastic resin coating layer on one or more surfaces of the base material, wherein the coating film layer contains a chelate complex and carbon nanotubes, the chelate complex is one or more selected from a silver ligand, a copper ligand, a zinc ligand, an aluminum ligand, a nickel ligand and a cobalt ligand and especially the coating film layer is formed as a continuous body having an area occupation ratio of at least 20% to the surface of the thermoplastic resin coating layer.SELECTED DRAWING: None

Description

本発明は産業資材シートの帯電防止技術、及び抗菌技術に関するものであり、具体的に本発明は、工場、倉庫、クリーンルームなどで、センサー感知式のシートシャッター装置の静電気対策に用いる帯電防止性、かつ抗菌・防黴性の防塵膜材と、さらに間仕切り、フロアシート、機器カバー、エプロンなどの静電気対策に用いる帯電防止性、かつ抗菌・防黴性の防塵膜材と、さらにはフレキシブルコンテナバッグなどの物流用品の静電気対策に用いる帯電防止性、かつ抗菌・防黴性の防塵膜材に関する。   The present invention relates to an antistatic technique and an antimicrobial technique for industrial material sheets, and more specifically, the present invention relates to an antistatic property used as a countermeasure against static electricity of a sensor sensing type sheet shutter device in a factory, a warehouse, a clean room or the like. And anti-bacterial and anti-dustproof film material, anti-static, anti-bacterial and anti-dust film material used for anti-static measures such as partitions, floor sheets, equipment covers and aprons, and flexible container bags etc. The present invention relates to an anti-static, antibacterial and anti-dustproof dust-proof film material used for the static electricity countermeasure of the logistics goods of

工場や倉庫などには、フォークリフトや搬送ロボット及び搬送ドローンなどによる荷物の入出庫作業が頻繁に行われるため、センサー感知で開閉するシートシャッター装置が出入口として設けられている。これらのシートシャッター装置は、塩化ビニル樹脂製など合成樹脂製仕様のシート膜材を巻取/巻解することで出入口の開閉を行うものであるが、合成樹脂製仕様のため、高速開閉時のシート摩擦で静電気を帯び易く、帯電した膜材が、ホコリ、ゴミなどの異物を引き寄せる粉塵汚染を起したり、また工場環境によっては、引火や粉塵爆発の事故原因となる問題が顕在している。そのため食品工場、薬品工場、精密機器工場などでクリーンルーム仕様や防虫・防塵仕様として、帯電防止性や害虫飛来防止性、さらには抗菌性を考慮したシートシャッター装置が希求されている。このような施設では、シートシャッター以外にも、間仕切り、フロアシート、機器カバー、エプロンなど様々な静電気対策シートで、かつ抗菌・防黴性シートのニーズが存在している。また、物流では、フレキシブルコンテナからの粉体、粒体、樹脂ペレットなどの排出摩擦で発生する静電気を低減可能なフレキシブルコンテナのニーズが古くから存在し、カーボンブラックを配合したものが技術的主流となっている。しかし、十分な帯電防止効果を得るだけのカーボンブラック量を配合したシートでは黒色隠蔽性の理由でシートシャッターや間仕切りでは安全確認に不適切なカーボンブラックの使用は敬遠されていた。   In a factory or a warehouse, a loading and unloading operation of a load by a forklift, a transfer robot, a transfer drone or the like is frequently performed, and therefore, a sheet shutter device which is opened and closed by sensor detection is provided as an entrance. These sheet shutter devices open and close the entrance and exit by taking up / rewind a sheet film material of a specification made of a synthetic resin such as polyvinyl chloride resin, but since the specification is made of a synthetic resin, it can be opened and closed at high speed. Sheet friction tends to cause static electricity, and charged film materials cause dust contamination that attracts foreign substances such as dust and dirt, and depending on the factory environment, problems that cause fires and dust explosion accidents are manifested. . Therefore, there is a demand for a sheet shutter device that takes into consideration the antistatic property, the prevention of insect pests, and the antibacterial property as a clean room specification, insect repellent and dustproof specification in a food factory, a drug factory, a precision instrument factory and the like. In such facilities, in addition to sheet shutters, there is a need for various anti-static sheets such as partitions, floor sheets, equipment covers, aprons, etc., and anti-bacterial and anti-glare sheets. Also, in the physical distribution, there has been a long-felt need for flexible containers that can reduce static electricity generated due to discharge friction of powders, particles, resin pellets, etc. from flexible containers, and those containing carbon black are technical mainstream and It has become. However, in a sheet containing a carbon black amount sufficient to obtain a sufficient antistatic effect, use of carbon black unsuitable for safety confirmation has been avoided in sheet shutters and partitions because of the black concealing property.

近年、熱電導部材、導電性部材、帯電防止部材、発熱部材、放熱部材、電磁波遮蔽部材などへのカーボンナノチューブの応用開発が進み、特に導電性機能の技術分野では、カーボンブラックよりも遥かに少ない使用量で優れた導電効果が得られることで、淡い着色性は有するものの、透視性と耐久性に優れた帯電防止フィルムが得られるようになった。さらに従来のπ系共役ポリマーへの応用として、導電性ポリマーとカーボンナノチューブとを含有する導電層を有してなる、帯電防止性、透明性、基材と導電性層との密着性に優れる導電性包装材料(特許文献1)、また、基材に積層した導電性高分子層と、その上に接触して設けたカーボンナノチューブ層を有してなる、高い導電性、光透過率をもつ透明導電膜(特許文献2)などの発明が提案されているが、これらはカーボンナノチューブによる着色(例えば黒青系、黒紫系など)と、導電性ポリマー(ドーピング系)との着色(例えば青緑系、赤紫系など)の影響で外観を暗くする欠点を有している。従って、シートシャッター、間仕切り、フロアシート、機器カバー、エプロンなどの用途では、導電材料の色相の影響の少ない静電気対策シートで、かつ抗菌・防黴性を有するシートが希求されていた。   In recent years, the application development of carbon nanotubes to heat conductive members, conductive members, antistatic members, heat generating members, heat radiating members, electromagnetic wave shielding members, etc. has progressed, and in the technical field of conductive functions, in particular, much less than carbon black. An excellent conductive effect can be obtained by the amount used, so that an antistatic film having excellent transparency and durability can be obtained although it has light colorability. Furthermore, as an application to a conventional π-based conjugated polymer, a conductive layer having a conductive layer containing a conductive polymer and a carbon nanotube, which is excellent in antistatic property, transparency, and adhesion between a substrate and the conductive layer Transparent packaging material (Patent Document 1), a conductive polymer layer laminated on a substrate, and a carbon nanotube layer provided in contact thereon, transparent with high conductivity and light transmittance Inventions such as conductive films (Patent Document 2) have been proposed, but these are colored with carbon nanotubes (for example, black-blue type, black-purple type, etc.) and with conductive polymers (doping type) (for example blue-green It has the fault which makes the appearance dark under the influence of the system, the reddish purple etc.). Therefore, in applications such as sheet shutters, partitions, floor sheets, equipment covers, and aprons, there has been a demand for an anti-electrostatic sheet that is less affected by the hue of the conductive material, and a sheet having antibacterial and anti-corrosion properties.

特開2005−81766号公報JP 2005-81766 A 特開2009−211978号公報JP, 2009-2119, A 特開2013−189562号公報JP, 2013-189562, A

本発明は、カーボンナノチューブを利用した帯電防止フィルムを用いた静電気対策シート(シートシャッター、間仕切り、フロアシート、機器カバー、エプロンなど)でありながら、カーボンナノチューブの色相の影響の少ない低着色性で、抗菌性を有する静電気対策シートの提供を課題とする。   The present invention is an anti-static sheet (sheet shutter, partition, floor sheet, equipment cover, apron, etc.) using an antistatic film using carbon nanotubes, but with low coloring property with little influence of the hue of carbon nanotubes, An object is to provide an anti-static sheet having antibacterial properties.

本発明は、上記の現状に鑑みて研究、検討を重ねた結果、繊維織物を基材として、その1面以上に熱可塑性樹脂被覆層を有する可撓性シートの、少なくとも1面の熱可塑性樹脂被覆層上に塗膜層を有し、この塗膜層がキレート錯体、及びカーボンナノチューブを含むことによって、上記従来技術で困難であった、カーボンナノチューブを少なく用いながら、十分な帯電防止効果が得られ、低着色性(カーボンナノチューブの色相の影響が少なく)で、抗菌・防黴性の静電気対策シートが得られることを見出して本発明を完成するに至った。   As a result of repeating researches and studies in view of the above-mentioned present conditions, the present invention uses at least one surface thermoplastic resin of a flexible sheet having a thermoplastic resin coating layer on at least one surface thereof using a fiber fabric as a base material By having a coating layer on the covering layer, and the coating layer containing a chelate complex and carbon nanotubes, it is possible to obtain a sufficient antistatic effect while using a small amount of carbon nanotubes, which is difficult in the above-mentioned prior art. As a result, it has been found that an anti-electrostatic and anti-electrostatic sheet can be obtained with low colorability (less affected by the hue of carbon nanotubes), and the present invention has been completed.

すなわち本発明の帯電防止性抗菌膜材は、繊維織物を基材として、その1面以上に熱可塑性樹脂被覆層を有する可撓性シートの、少なくとも1面の前記熱可塑性樹脂被覆層上に塗膜層を有し、この塗膜層がキレート錯体、及びカーボンナノチューブを含み、前記キレート錯体が、銀配位子、銅配位子、亜鉛配位子、アルミニウム配位子、ニッケル配位子、リチウム配位子、及びコバルト配位子、から選ばれた1種以上、かつ前記塗膜層が、前記熱可塑性樹脂被覆層の表面に対して、少なくとも20%の面積占有率を有する連続体であるであることが好ましい。これによって、カーボンナノチューブを少なく用いながら、十分な帯電防止効果が得られ、低着色性(カーボンナノチューブの色相の影響が少なく)で、しかも抗菌・防黴性の静電気対策シートを得ることができる。   That is, the antistatic antibacterial film material of the present invention is coated on at least one surface of the flexible resin sheet having a thermoplastic resin coating layer on at least one surface of the fibrous woven fabric as a base material. It has a membrane layer, and this coating layer contains a chelate complex and a carbon nanotube, and the chelate complex is a silver ligand, a copper ligand, a zinc ligand, an aluminum ligand, a nickel ligand, One or more selected from lithium ligands and cobalt ligands, and the coated layer is a continuum having an area occupancy of at least 20% with respect to the surface of the thermoplastic resin coating layer. Is preferred. As a result, a sufficient antistatic effect can be obtained while using a small amount of carbon nanotubes, and an anti-electrostatic and anti-static antistatic sheet can be obtained with low colorability (less affected by the hue of the carbon nanotubes).

本発明の帯電防止性抗菌膜材は、前記キレート錯体の配位子が、アミノ酸、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ピピリジン、アセチルアセトナート、エチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルエチレンジアミン二酢酸、1,3−プロパンジアミン四酢酸、ジエチルトリアミン五酢酸、トリエチレンテトラミン六酢酸、ピリチオン、フェナントロリン、ポルフィリン及びクラウンエーテルから選ばれた1種以上であることが好ましい。キレート錯体の存在によって、カーボンナノチューブを少なく用いながら、十分な帯電防止効果が得られ、低着色性(カーボンナノチューブの色相の影響が少なく)で、しかも抗菌・防黴性の静電気対策シートを得ることができる。   In the antistatic antibacterial film material of the present invention, the ligand of the chelate complex is amino acid, ethylenediamine, diethylenetriamine, triethylenetetramine, pyridine, acetylacetonate, ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminedioxide It is preferable that it is one or more selected from acetic acid, 1,3-propanediaminetetraacetic acid, diethyltriaminepentaacetic acid, triethylenetetramine hexaacetic acid, pyrithione, phenanthroline, porphyrin and crown ether. Due to the presence of the chelate complex, a sufficient antistatic effect can be obtained while using a small amount of carbon nanotubes, and an antistatic / antistatic sheet having low colorability (less affected by the hue of the carbon nanotubes), and moreover an antibacterial / antiglare property Can.

本発明の帯電防止性抗菌膜材は、前記カーボンナノチューブが、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カップ積重型カーボンナノチューブ、酸化カーボンナノチューブ、官能化カーボンナノチューブ(末端修飾及び/または側壁修飾)、及び金属(蒸着またはスパッタ)カーボンナノチューブから選ばれた1種以上であることが好ましい。このようなカーボンナノチューブの存在によって、従来のカーボンブラックよりも少ない添加量で十分な帯電防止効果が得られ、低着色性(カーボンナノチューブの色相の影響が少なく)の静電気対策シートを得ることができる。   The antistatic antibacterial film material of the present invention is characterized in that the carbon nanotubes are single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, cup-stacked carbon nanotubes, oxidized carbon nanotubes, functionalized carbon nanotubes (terminal modification and / or It is preferable that it is at least one selected from sidewall modification) and metal (vapor deposition or sputtering) carbon nanotubes. Due to the presence of such carbon nanotubes, a sufficient antistatic effect can be obtained with a smaller amount of addition than conventional carbon black, and an antistatic sheet with low colorability (less affected by the hue of carbon nanotubes) can be obtained. .

本発明の帯電防止性抗菌膜材は、前記塗膜層がバインダー樹脂を含み、前記キレート錯体、及び前記カーボンナノチューブとの含有量が、前記塗膜層に対して0.1〜6質量%であることが好ましい。これによってカーボンナノチューブを少なく用いながら、十分な帯電防止効果が得られ、低着色性(カーボンナノチューブの色相の影響が少なく)で、しかも抗菌・防黴性の静電気対策シートを得ることができる。   In the antistatic antibacterial film material of the present invention, the coating layer contains a binder resin, and the content with the chelate complex and the carbon nanotube is 0.1 to 6% by mass with respect to the coating layer. Is preferred. As a result, a sufficient antistatic effect can be obtained while using a small amount of carbon nanotubes, and an anti-electrostatic and anti-static sheet can be obtained with low colorability (less affected by the hue of carbon nanotubes).

本発明の帯電防止性抗菌膜材は、前記塗膜層が、シリカ、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化セリウム、及びアルミナ、から選ばれた1種以上のナノ粒子と、シラン化合物とをさらに含み、前記塗膜層に対して0.1〜5質量%のナノ粒子ネットワークを構成していることが好ましい。塗膜層にナノ粒子ナノ粒子ネットワークをさらに含むことによって帯電防止効果をより高め、カーボンナノチューブを少なく用いながら、十分な帯電防止効果が得られ、低着色性(カーボンナノチューブの色相の影響が少なく)で、しかも抗菌・防黴性の静電気対策シートを得ることができる。   In the antistatic antibacterial film material of the present invention, the coating layer is one or more nanoparticles selected from silica, titanium oxide, zinc oxide, tin oxide, zirconium oxide, cerium oxide, and alumina, and silane It is preferable to further contain a compound, and to constitute a nanoparticle network of 0.1 to 5% by mass with respect to the coating layer. By further including a nanoparticle nanoparticle network in the coating layer, the antistatic effect is further enhanced, and a sufficient antistatic effect can be obtained while using a small amount of carbon nanotubes, and low colorability (less affected by the hue of the carbon nanotubes) In addition, it is possible to obtain an anti-electrostatic and anti-static sheet.

本発明の帯電防止性抗菌膜材は、前記塗膜層が、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、ポリエチレンジオキチオフェン、及びこれらのドーピング体、から選ばれた1種以上のπ電子共役系導電性ポリマーをさらに含み、その含有量が前記塗膜層に対して1〜25質量%であることが好ましい。塗膜層にπ電子共役系導電性ポリマーをさらに含むことによって帯電防止効果をより高め、カーボンナノチューブを少なく用いながら、十分な帯電防止効果が得られ、低着色性(カーボンナノチューブの色相の影響が少なく)で、しかも抗菌・防黴性の静電気対策シートを得ることができる。   In the antistatic antibacterial film material of the present invention, the coating film is formed of polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, polyethylene dioxithiophene, It is preferable to further include one or more π electron conjugated conductive polymers selected from the group consisting of the following: and the content thereof is 1 to 25% by mass with respect to the coating layer. By further including a π electron conjugated conductive polymer in the coating layer, the antistatic effect is further enhanced, and a sufficient antistatic effect can be obtained while using a small amount of carbon nanotubes, and the low coloring property (the influence of the hue of carbon nanotubes In addition, it is possible to obtain an anti-static sheet that is antibacterial and antifungal.

本発明の帯電防止性抗菌膜材は、前記塗膜層が、シリカ、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化セリウム、及びアルミナ、から選ばれた少なくとも1種のナノ粒子と、シラン化合物とによるナノ粒子ネットワークと、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体、から選ばれた少なくとも1種のπ電子共役系導電性ポリマーとをさらに含み、前記ナノ粒子と前記π電子共役系導電性ポリマーとの含有量が、前記塗膜層に対して1〜25質量%、かつ含有質量比率が2:1〜1:5であることが好ましい。塗膜層にナノ粒子とπ電子共役系導電性ポリマーとを特定比率でさらに含むことによって帯電防止効果をより高め、カーボンナノチューブを少なく用いながら、十分な帯電防止効果が得られ、低着色性(カーボンナノチューブの色相の影響が少なく)で、しかも抗菌・防黴性の静電気対策シートを得ることができる。   In the antistatic antibacterial film material of the present invention, at least one nanoparticle selected from the group consisting of silica, titanium oxide, zinc oxide, tin oxide, zirconium oxide, cerium oxide, and alumina, and the coating layer is a silane Nanoparticle network with compound and at least one π selected from polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof An electron conjugated conductive polymer is further contained, and the content of the nanoparticles and the π electron conjugated conductive polymer is 1 to 25% by mass with respect to the coating layer, and the content ratio is 2: 1 It is preferable that it is-1: 5. By further including nanoparticles and a π electron conjugated conductive polymer in the coating layer in a specific ratio, the antistatic effect is further enhanced, and a sufficient antistatic effect can be obtained while using a small amount of carbon nanotubes, and low colorability ( It is possible to obtain an anti-electrostatic sheet that is resistant to the influence of the color of the carbon nanotube), and is also antibacterial and antifungal.

本発明によれば、カーボンナノチューブを利用した帯電防止フィルムを用いた静電気対策シートでありながら、十分な帯電防止効果が得られ、低着色性(カーボンナノチューブの色相の影響が少なく)で、しかも抗菌・防黴性の静電気対策シートを得ることができる。より低着色性の抗菌・防黴性の静電気対策シートを得ることができるので、シートシャッター、間仕切り、フロアシート、機器カバー、エプロンなどに適して用いることができる。   According to the present invention, although it is an antistatic sheet using an antistatic film utilizing carbon nanotubes, a sufficient antistatic effect can be obtained, and the coloring property is low (the influence of the hue of carbon nanotubes is small), and the antibacterial・ We can obtain antistatic protective sheet. Since a less colored anti-bacterial and anti-static sheet can be obtained, it can be suitably used as a sheet shutter, partition, floor sheet, equipment cover, apron, and the like.

本発明の帯電防止性抗菌膜材は、繊維織物を基材として、その1面以上に熱可塑性樹脂被覆層を有する可撓性シートの、少なくとも1面の熱可塑性樹脂被覆層上に塗膜層を有し、この塗膜層がキレート錯体、及びカーボンナノチューブを含み、特に塗膜層がバインダー樹脂を含み、キレート錯体、及びカーボンナノチューブとの含有量が、塗膜層に対して0.1〜6質量%で、塗膜層が、熱可塑性樹脂被覆層の表面(塗膜層を設ける対象面の面積)に対して、少なくとも20%の面積占有率を有する連続体である。   The antistatic antibacterial film material of the present invention is a coated film layer on at least one surface of a thermoplastic resin coated layer of a flexible sheet having a thermoplastic resin coated layer on at least one surface of a fibrous woven fabric as a substrate. The coating layer contains a chelate complex and a carbon nanotube, and in particular, the coating layer contains a binder resin, and the content with the chelate complex and the carbon nanotube is 0.1 to the coating layer. At 6% by mass, the coating layer is a continuous body having an area occupancy of at least 20% with respect to the surface of the thermoplastic resin coating layer (the area of the target surface on which the coating layer is to be provided).

本発明に使用する基材としての繊維織物は、織布、編布、不織布などの何れの形態でも使用でき、織布としては、平織物(経糸、緯糸とも最少2本ずつ用いた最小構成単位を有する)、バスケット織物(例えば2×2、3×3、4×4などの正則バスケット織、3×2、4×2、4×3、5×3、2×3、2×4、3×4、3×5などの不規則バスケット織)、綾織物(経糸、緯糸とも最少3本ずつ用いた最小構成単位を有する:3枚斜文、4枚斜文、5枚斜文、6枚斜文、8枚斜文など)、朱子織物(経糸、緯糸とも最少5本ずつ用いた最小構成単位を有する:2飛び、3飛び、4飛び、5飛びなどの正則朱子)、及び変化平織物、変化綾織物、変化朱子織物など、さらに蜂巣織物、梨子地織物、破れ斜文織物、昼夜朱子織物、もじり織物(紗織物、絽織物)、縫取織物、二重織物なども使用できるが、特に平織物、2×2バスケット織物が経緯物性バランスに優れ好ましい。上記の織物には精練、漂白、染色、柔軟化、撥水、防水、防炎、毛焼き、カレンダー、バインダー固着、接着剤塗布などの公知の繊維処理加工を単数、または複数を施したものを使用することもできる。   The fiber fabric as a base material used in the present invention can be used in any form such as woven fabric, knitted fabric, non-woven fabric, etc. As a woven fabric, plain woven fabric (a minimum structural unit using at least two warp and weft) , Basket fabrics (eg 2 × 2, 3 × 3, 4 × 4, etc. regular basket weave, 3 × 2, 4 × 2, 4 × 3, 5 × 3, 2 × 3, 2 × 4, 3) Irregular basket weave such as × 4, 3 × 5, etc., twill weave (with both warp and weft yarns each having a minimum of 3 units): 3 sheets, 4 sheets, 4 sheets, 5 sheets, 6 sheets Swash, 8 sheets, etc.), satin weave (a minimum of 5 warps and wefts each have minimum structural units: 2 fly, 3 fly, 4 fly, 5 fly, etc.), and change plain weave , Change 綾 fabric, change 朱 such as woven fabric, also honeycomb fabric, 子 ground fabric, 、 斜 織物, day and night 朱 織物 fabric, 織物 織物 (紗 fabric , Twill weaves, sewn weaves, double weaves, etc., but plain weaves and 2 × 2 basket weaves are particularly preferred because of their excellent balance of longitudinal and physical properties. The above-mentioned woven fabric is subjected to one or more of known fiber processing such as scouring, bleaching, dyeing, softening, water repellency, waterproofing, water proofing, flame proofing, baking, calendering, binder fixing, adhesive application, etc. It can also be used.

繊維織物を構成する糸条は、合成繊維、天然繊維、半合成繊維、無機繊維またはこれらの2種以上から成る混合繊維など、何れも使用できるが、ポリプロピレン繊維、ポリエチレン繊維、ポリビニルアルコール繊維、ポリエステル(PET、PBT、PNT)繊維、全芳香族ポリエステル繊維、ナイロン繊維、全芳香族ポリアミド繊維、芳香族ヘテロ環ポリマー(ポリベンゾイミダゾール、ポリベンゾオキサゾール、ポリベンゾチアゾールなど)繊維、アクリル繊維、ポリウレタン繊維、または、これらの混合繊維などの合成繊維が使用でき、特にポリエステル(PET:ポリエチレンテレフタレート)繊維が好ましい。これらの糸条の態様は、モノフィラメント、マルチフィラメント、短繊維紡績(スパン)、スプリット、テープなどであるが、膜材のフレキシブル性、及び引裂強度を確保するためにはマルチフィラメント、または短繊維紡績(スパン)が好ましい。また、ガラス繊維、シリカ繊維、アルミナ繊維、シリカアルミナ繊維、炭素繊維などのマルチフィラメント糸条も使用でき、これらの無機系繊維は特に国土交通大臣認定の不燃材料(テント構造物用不燃膜材)用に適し、特にガラス繊維マルチフィラメント糸条が好ましい。   The yarn constituting the fiber fabric may be any of synthetic fibers, natural fibers, semi-synthetic fibers, inorganic fibers or mixed fibers composed of two or more of them, but polypropylene fibers, polyethylene fibers, polyvinyl alcohol fibers, polyesters (PET, PBT, PNT) fiber, wholly aromatic polyester fiber, nylon fiber, wholly aromatic polyamide fiber, aromatic heterocyclic polymer (polybenzimidazole, polybenzoxazole, polybenzothiazole etc.) fiber, acrylic fiber, polyurethane fiber Alternatively, synthetic fibers such as these mixed fibers can be used, and polyester (PET: polyethylene terephthalate) fibers are particularly preferable. Aspects of these yarns are monofilaments, multifilaments, short fiber spinning (span), splits, tapes, etc., but multifilament or short fiber spinning to ensure flexibility of the membrane material and tear strength. (Span) is preferred. In addition, multifilament yarns such as glass fibers, silica fibers, alumina fibers, silica alumina fibers, carbon fibers can also be used, and these inorganic fibers are particularly nonflammable materials approved by the Minister of Land, Infrastructure, Transport and Tourism (incombustible film materials for tent structures) Suitable for use, in particular glass fiber multifilament yarns are preferred.

本発明に使用する繊維織物は、マルチフィラメント糸条からなる織物、または短繊維紡績布(スパン)であることが好ましく、マルチフィラメント糸条は、250〜3000デニール(277〜3333dtex)の範囲、特に500〜2000デニール(555〜2222dtex)が好ましく、必要に応じて無撚糸(断面が楕円または扁平)、または撚糸が使用できる。また短繊維紡績糸条は、10番手(591dtex)〜60番手(97dtex)の範囲、特に10番手(591dtex)、14番手(422dtex)、16番手(370dtex)、20番手(295dtex)、24番手(246dtex)、30番手(197dtex)など、これらの単糸、または双糸(片撚糸)、単糸2本以上による合撚糸(諸撚糸)などが好ましい。織物の経糸及び緯糸の打込み密度に制限は無く、用いる糸条の太さ(デニール、番手)に応じて任意の設計が可能であるが、織物の空隙率(目抜け)が、0〜30%の範囲となる打込み密度で、目付量100〜500g/mの織物が帯電防止性抗菌膜材の基材に適している。空隙率は繊維織物の単位面積中に占める糸条の面積を百分率として求め、100から差し引いた値として求めることができる。マルチフィラメント糸条で製織された織物(空隙率7.5〜30%)の好ましくは両面に、熱可塑性樹脂フィルムを熱ラミネートして熱可塑性樹脂被覆層を形成する製造に適し、また短繊維紡績布(スパン)の場合、空隙率0〜5%の短繊維紡績布(スパン)の好ましくは両面に、液状熱可塑性樹脂を用いてのコーティング〜熱処理、またはデッピィング〜熱処理による熱可塑性樹脂被覆層の形成に適している。 The fiber fabric used in the present invention is preferably a fabric comprising multifilament yarns, or a staple fiber spun fabric (span), and the multifilament yarns have a range of 250 to 3000 denier (277 to 3333 dtex), particularly 500 to 2000 denier (555 to 2222 dtex) is preferable, and if necessary, non-twisted yarn (elliptic or flat in cross section) or twisted yarn can be used. The staple fiber spun yarn is in the range of 10 counts (591 dtex) to 60 counts (97 dtex), in particular 10 counts (591 dtex), 14 counts (422 dtex), 16 counts (370 dtex), 20 counts (295 dtex), 24 counts (24 246 dtex), 30 count yarn (197 dtex), etc., these single yarns, or double yarns (one-twist yarns), double-twist yarns with two or more single yarns (ply twist yarns), etc. are preferable. There are no limitations on the density of the warp and weft threads of the fabric, and any design is possible depending on the thickness (denier, count) of the yarn used, but the porosity of the fabric (perforated) is 0 to 30%. A woven fabric having a weight per unit area of 100 to 500 g / m 2 is suitable as a substrate for the antistatic antibacterial film material, with a shot density in the range of The porosity can be determined as a percentage of the area of the yarn occupied in the unit area of the fiber fabric and can be determined as a value subtracted from 100. Suitable for production in which a thermoplastic resin film is heat-laminated on preferably both sides of a multi-filament yarn woven fabric (porosity 7.5-30%) to form a thermoplastic resin coating layer, and short fiber spinning In the case of a cloth (span), preferably, on both sides of a staple fiber spun cloth (span) having a porosity of 0 to 5%, coating with a liquid thermoplastic resin-heat treatment or dipping-heat treatment of a thermoplastic resin coating layer Suitable for forming.

熱可塑性樹脂被覆層は、軟質塩化ビニル樹脂組成物(可塑剤含有)から形成されるもので、ペースト塩化ビニル樹脂(乳化重合タイプ)を用いたコーティングまたはディッピング〜ゲル化熱処理による被膜形成、或いはストレート塩化ビニル樹脂(懸濁重合タイプ)を用いて、カレンダー圧延成型またはTダイス押出成型した塩化ビニル樹脂フィルム(シート)による被膜形成が特に好ましい。ペースト塩化ビニル樹脂は帆布の被覆層に適し、ストレート塩化ビニル樹脂はターポリンの被覆層に好適である。可塑剤は、フタル酸エステル系可塑剤、イソフタル酸エステル系可塑剤、テレフタル酸エステル系可塑剤、シクロヘキサンジカルボン酸エステル系可塑剤、シクロヘキセンジカルボン酸エステル系可塑剤、塩素化パラフィン系可塑剤、ポリエステル系可塑剤、エチレン−酢酸ビニル−一酸化炭素3元共重合体樹脂、エチレン−(メタ)アクリル酸エステル−一酸化炭素3元共重合体樹脂などが使用でき、特にアルキル鎖中にエーテル結合を1以上含む可塑剤が導電性に優れ好ましい。また熱可塑性樹脂被覆層には、オレフィン樹脂(PE,PP)、オレフィン系エラストマー、エチレン−酢酸ビニル共重合体樹脂、エチレン−(メタ)アクリル酸(エステル)共重合体樹脂、ウレタン系エラストマー、アクリル系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、フッ素系エラストマー、シリコーン系エラストマーなどを、単独またはブレンド併用で用い、カレンダー圧延成型またはTダイス押出成型した、1層あたり100〜1000g/m、特に200〜500g/mのフィルムまたはシートが使用でき、これらの熱可塑性樹脂被覆層を積層したターポリンが好ましい。 The thermoplastic resin coating layer is formed from a soft vinyl chloride resin composition (containing a plasticizer), and coating with polyvinyl chloride resin (emulsion polymerization type) or film formation by dipping to gelation heat treatment, or straight Particularly preferred is film formation from a vinyl chloride resin film (sheet) that has been calendered or T-die-extruded using a vinyl chloride resin (suspension polymerization type). Paste vinyl chloride resin is suitable for the covering layer of canvas, straight vinyl chloride resin is suitable for the covering layer of tarpaulin. The plasticizers include phthalic acid ester plasticizers, isophthalic acid ester plasticizers, terephthalic acid ester plasticizers, cyclohexanedicarboxylic acid ester plasticizers, cyclohexene dicarboxylic acid ester plasticizers, chlorinated paraffinic plasticizers, and polyester resins. Plasticizer, ethylene-vinyl acetate-carbon monoxide terpolymer resin, ethylene- (meth) acrylic acid ester-carbon monoxide terpolymer resin, etc. can be used, and in particular, it is possible to use an ether bond in the alkyl chain 1 The plasticizer contained above is excellent in conductivity and is preferable. In addition, in the thermoplastic resin coating layer, olefin resin (PE, PP), olefin elastomer, ethylene-vinyl acetate copolymer resin, ethylene- (meth) acrylic acid (ester) copolymer resin, urethane elastomer, acrylic 100 to 1000 g / m 2 , in particular 200 per layer, obtained by calendering or T-die extrusion using a single elastomer, a styrene elastomer, a polyester elastomer, a fluoroelastomer, a silicone elastomer and the like alone or in combination A film or sheet of -500 g / m < 2 > can be used, and a tarpaulin laminated with these thermoplastic resin coating layers is preferred.

特に熱可塑性樹脂被覆層には難燃剤を配合することによって消防法に適合する防炎性を確保し、さらには国土交通大臣認定の不燃材料(テント構造物用不燃膜材)とすることができる。具体的には熱可塑性樹脂100質量部に対し、リン含有化合物、窒素含有化合物、無機系化合物などの難燃剤を10〜100質量部配合すればよく、リン含有化合物としては、赤リン、(金属)リン酸塩、(金属)有機リン酸塩、ポリリン酸アンモニウムなどが挙げられ、また、窒素含有化合物としては、(イソ)シアヌレート系化合物、(イソ)シアヌル酸系化合物、グアニジン系化合物、尿素系化合物及びこれらの誘導体化合物であり、無機系化合物としては、金属酸化物(三酸化アンチモン、五酸化アンチモンなど)、金属水酸化物(水酸化アルミニウム、水酸化マグネシウムなど)、金属複合酸化物(ジルコニウム−アンチモン複合酸化物)、金属複合水酸化物(ヒドロキシスズ酸亜鉛、ハイドロタルサイトなど)などである。これらの難燃剤は2種以上を併用することで難燃性を向上させることができる。   In particular, a flame retardant can be added to the thermoplastic resin coating layer to ensure flame resistance conforming to the Fire Service Act, and furthermore, it can be made a non-combustible material (incombustible film material for tent structure) approved by the Minister of Land, Infrastructure, Transport and Tourism . Specifically, 100 to 100 parts by mass of a flame retardant such as a phosphorus-containing compound, a nitrogen-containing compound, or an inorganic compound may be added to 100 parts by mass of a thermoplastic resin. ) Phosphate, (metal) organic phosphate, ammonium polyphosphate and the like, and as nitrogen-containing compounds, (iso) cyanurate compounds, (iso) cyanuric acid compounds, guanidine compounds, urea compounds Compounds and derivative compounds thereof, and as inorganic compounds, metal oxides (such as antimony trioxide and antimony pentoxide), metal hydroxides (such as aluminum hydroxide and magnesium hydroxide), metal complex oxides (such as zirconium Antimony complex oxides), metal complex hydroxides (eg, zinc hydroxystannate, hydrotalcite, etc.) and the like. These flame retardants can improve a flame retardance by using 2 or more types together.

特に熱可塑性樹脂被覆層には防黴性有機化合物を含むことが好ましく、防黴性有機化合物としては、黴、細菌(グラム陽性、グラム陰性)、真菌などの細胞壁、細胞膜、細胞質、及び細胞核などに対して、酸化的リン酸化阻害、電子伝達系阻害、−SH基阻害、DNA合成阻害、細胞表皮機能阻害、脂質代謝阻害、キレート形成などの作用を及ぼす有機化合物で具体的に、イミダゾール系化合物、チアゾール系化合物、イソチアゾリン系化合物、ピリジン系化合物、トリアジン系化合物、トリアゾール系化合物、N−ハロアルキルチオ系化合物、四級アンモニウム塩系化合物、フェノキシアルシン化合物など、具体的に、10,10−オキシビスフェノキシアルシン、2−(4−チアゾリル)−ベンズイミダゾールが特に好ましい。これら防黴性有機化合物は、メソポーラスシリカ、(合成)ゼオライト、チタンゼオライト、リン酸ジルコニウム、リン酸カルシウム、リン酸亜鉛カルシウム、ハイドロタルサイト、ヒドロキシアパタイト、シリカアルミナ、ケイ酸カルシウム、ケイ酸アルミン酸マグネシウム、ケイソウ土、及びこれらのシランカップリング剤処理物、から選ばれた1種以上の無機多孔質粒子に担持されていることが好ましい。熱可塑性樹脂被覆層(特に軟質塩化ビニル樹脂組成物)に含むこれらの防黴性有機化合物または無機多孔質粒子担持物の含有率は熱可塑性樹脂被覆層(軟質塩化ビニル樹脂組成物)に対して、0.01〜5質量%、好ましくは0.1〜1質量%である。 In particular, it is preferable that the thermoplastic resin coating layer contains a mildew-proof organic compound, and as the mildew-proof organic compound, it is possible to use salmon, bacteria (gram positive, gram negative), cell walls such as fungi, cell membranes, cytoplasm, cell nuclei, etc. Specific organic compounds that exert effects such as oxidative phosphorylation inhibition, electron transport system inhibition, -SH group inhibition, DNA synthesis inhibition, cell epidermal function inhibition, lipid metabolism inhibition, chelate formation, etc. , thiazole compounds, isothiazoline compounds, pyridine compounds, triazine compounds, triazole compounds, N- haloalkylthio compounds, quaternary ammonium salt compounds, phenoxazine sialic Shin compounds such as, specifically, 10,10 '- oxy Bisphenoxyarsine, 2- (4-thiazolyl) -benzimidazole is particularly preferred. These flameproof organic compounds are mesoporous silica, (synthetic) zeolite, titanium zeolite, zirconium phosphate, calcium phosphate, zinc calcium phosphate, hydrotalcite, hydroxyapatite, silica alumina, calcium silicate, magnesium aluminum silicate, It is preferable to be supported by one or more kinds of inorganic porous particles selected from diatomaceous earth and treated products of these silane coupling agents. The content of the support of such a flameproof organic compound or inorganic porous particles contained in the thermoplastic resin coating layer (particularly the soft vinyl chloride resin composition) is relative to the thermoplastic resin coating layer (soft vinyl chloride resin composition) 0.01 to 5% by mass, preferably 0.1 to 1% by mass.

特に軟質塩化ビニル樹脂被覆層には軟質塩化ビニル樹脂用安定剤として、カルシウム亜鉛複合系、バリウム亜鉛複合系、有機錫ラウレート、有機錫メルカプタイト、エポキシ系などの安定剤を単独あるいは複数種併用して用いることが、本発明の帯電防止性抗菌膜材の製造時の熱劣化や変色を抑止し、さらに耐候性を向上させる。また本発明の帯電防止性抗菌膜材は顔料着色が自在で、特に白、パステル色などの着色はインクジェットプリントやマーキングフィルム文字入れのコントラストを鮮明とする。その他、熱可塑性樹脂被覆層には、熱可塑性樹脂用の公知の添加剤を種々任意量配合することができ、必要に応じて、耐光安定剤(HALS)、紫外線吸収剤(ベンゾトリアゾール系、ベンゾフェノン系など)、酸化防止剤(フェノール系)、蛍光増白剤、帯電防止剤、硬化剤(イソシアネート系など)、防虫剤(ピレスロイド系など)、消臭剤(酸化珪素・金属酸化物複合系など)、遮熱フィラー(中空粒子、粗粒酸化チタンなど)、芳香剤、蓄光顔料(アルミン酸ストロンチウム系など)、アルミフレーク顔料、パール顔料、無機充填剤(炭酸カルシウム、硫酸バリウムなど)などを含むことができる。   In particular, calcium-zinc complex type, barium-zinc complex type, organic tin laurate, organic tin laurate, organic tin mercaptite, epoxy type stabilizer or the like may be used alone or in combination as a soft vinyl chloride resin coating layer as a soft vinyl chloride resin coating layer. By using it, heat deterioration and discoloration during the production of the antistatic antibacterial film material of the present invention are suppressed, and the weather resistance is further improved. Further, the antistatic antibacterial film material of the present invention is free of pigment coloration, and in particular, coloring such as white and pastel colors makes the contrast of ink jet printing and marking film letter insertion clear. In the thermoplastic resin coating layer, various known additives for thermoplastic resin can be added in optional amounts, and if necessary, light stabilizers (HALS), ultraviolet absorbers (benzotriazole-based, benzophenone) Systems, etc.), antioxidants (phenolic), fluorescent whitening agents, antistatic agents, hardeners (isocyanate etc.), insect repellents (pyrethroids etc.), deodorants (silicon oxide and metal oxide composites etc.) ), Thermal barrier filler (hollow particles, coarse titanium dioxide etc), fragrance, luminous pigment (strontium aluminate etc), aluminum flake pigment, pearl pigment, inorganic filler (calcium carbonate, barium sulfate etc) etc. be able to.

熱可塑性樹脂被覆層上に塗膜層を有し、塗膜層にはキレート錯体、及びカーボンナノチューブを含み、その含有質量比は5:1〜1:5、好ましくは2:1〜1:2である。また塗膜層はバインダー樹脂を含み、キレート錯体、及びカーボンナノチューブとの含有量は塗膜層に対して0.1〜6質量%、好ましくは0.3〜3質量%である。塗膜層にキレート錯体を特定量含むことによって、低着色性(カーボンナノチューブの色相の影響が少なく)、かつ抗菌性の静電気対策シートを得ることができる。特に塗膜層は1つの熱可塑性樹脂被覆層の表面に対して20%以上、特に35%以上の面積占有率を有する連続体で、0.05〜20g/m、特に0.5〜10g/mが好ましく、塗膜層は表裏の熱可塑性樹脂被覆層上に設けられていてもよい。バインダーは有機化合物、無機化合物、及び有機化合物と無機化合物との混合物の何れであってもよい。有機化合物としては、(メタ)アクリル樹脂、(メタ)アクリル系共重合体樹脂、(メタ)アクリレートのラジカル重合体(紫外線硬化樹脂)、ウレタン樹脂、アクリル変性ウレタン樹脂、シリコン変性ウレタン樹脂、ポリエステル系樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニル−酢ビニル共重合体樹脂、フッ素含有共重合体樹脂(ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体など)が例示できる。また、無機化合物は、シリカゾル、アルミナゾル、ジルコニアゾル、酸化ニオブゾルなどの金属酸化物ゲル及び/又は金属水酸化物ゲルと、ポリシロキサン、コロイダルシリカ、シリカなどのケイ素化合物を主体とするゾルゲル薄膜が例示できる。 A coating layer is provided on the thermoplastic resin coating layer, and the coating layer contains a chelate complex and carbon nanotubes, and the content ratio thereof is 5: 1 to 1: 5, preferably 2: 1 to 1: 2. It is. The coating layer contains a binder resin, and the content of the chelate complex and the carbon nanotube with respect to the coating layer is 0.1 to 6% by mass, preferably 0.3 to 3% by mass. By including a specific amount of the chelate complex in the coating layer, it is possible to obtain an anti-static sheet having low coloring (less affected by the hue of carbon nanotubes) and antibacterial properties. In particular, the coating layer is a continuous body having an area occupancy of 20% or more, particularly 35% or more, to the surface of one thermoplastic resin coating layer, and is 0.05 to 20 g / m 2 , particularly 0.5 to 10 g / M < 2 > is preferable and the coating film layer may be provided on the thermoplastic resin coating layer of front and back. The binder may be any of an organic compound, an inorganic compound, and a mixture of an organic compound and an inorganic compound. As the organic compound, (meth) acrylic resin, (meth) acrylic copolymer resin, radical polymer of (meth) acrylate (ultraviolet curing resin), urethane resin, acrylic modified urethane resin, silicon modified urethane resin, polyester based Resin, vinyl acetate resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer resin, fluorine-containing copolymer resin (polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride-hexafluoropropylene- Tetrafluoroethylene copolymer etc. can be illustrated. The inorganic compounds are exemplified by sol-gel thin films mainly composed of metal oxide gel and / or metal hydroxide gel such as silica sol, alumina sol, zirconia sol, niobium oxide sol, and silicon compound such as polysiloxane, colloidal silica and silica. it can.

キレート錯体は、銀配位子、銅配位子、亜鉛配位子、アルミニウム配位子、ニッケル配位子、及びコバルト配位子、から選ばれた1種以上で、これらのキレート錯体(金属イオン)が黴菌表層の細胞透過性に関与するタンパク質のSH基と反応して生命活動に必要な酵素・タンパクを阻害する効果、或いは細胞内に侵入した金属イオンが黴菌の二本鎖DNAを架橋し、DNA複製を阻害することで黴や藻の繁殖を抑止する。銀イオンは臭化銀、塩化銀、クエン酸銀、沃化銀、乳酸銀、硝酸銀、酸化銀、ピクリン酸銀などの銀塩を供給源とし、銅イオンはクエン酸二ナトリウム銅、トリエタノールアミン銅、炭酸銅、炭酸アンモニウム第一銅、水酸化第二銅、塩化銅、塩化第二銅、エチレンジアミン銅錯体、オキシ塩化銅、硫酸オキシ塩化銅、酸化第一銅、チオシアン酸銅などの銅塩を供給源とし、亜鉛イオンは酢酸亜鉛、酸化亜鉛、炭酸亜鉛、塩化亜鉛、硫酸亜鉛、水酸化亜鉛、クエン酸亜鉛、フッ化亜鉛、沃化亜鉛、乳酸亜鉛、オレイン酸亜鉛、蓚酸亜鉛、燐酸亜鉛、プロピオン酸亜鉛、サリチル酸亜鉛、セレン酸亜鉛、珪酸亜鉛、ステアリン酸亜鉛、硫化亜鉛、タンニン酸亜鉛、酒石酸亜鉛、バレリアン酸亜鉛、グルコン酸亜鉛、ウンデシル酸亜鉛などの亜鉛塩を供給源とし、アルミニウムイオンは、酸化アルミニウム、水酸化アルミニウム、塩化アルミニウム、リン酸アルミニウム、硫酸アルミニウムなどのアルミニウム塩を供給源とし、ニッケルイオンは、酸化ニッケル、水酸化ニッケル、塩化ニッケル、スルファミン酸ニッケル、硫酸ニッケルなどのニッケル塩を供給源とし、リチウムイオンは、炭酸リチウム、塩化リチウム、酸化リチウム、水酸化リチウム、クエン酸リチウムなどのリチウム塩を供給源とし、コバルトイオンは、珪酸コバルト、酸化コバルト、塩化コバルト、アルミン酸コバルト、硫酸コバルトなどのコバルト塩を供給源とする。キレート錯体はこれらイオン供給源の金属塩と配位子とを適切な溶媒介してイオン結合させることで得られ、それを乾燥単離したものが本発明に用いられる。   The chelate complex is one or more selected from silver ligands, copper ligands, zinc ligands, aluminum ligands, nickel ligands, and cobalt ligands, and these chelate complexes (metals Ion) react with the SH group of the protein involved in cell permeability in the outer layer of gonococci to inhibit enzymes and proteins necessary for life activity, or metal ions that enter the cell crosslink double stranded DNA of gonococci Inhibit the replication of moss and algae by inhibiting DNA replication. Silver ions are sourced from silver salts such as silver bromide, silver chloride, silver citrate, silver iodide, silver lactate, silver nitrate, silver oxide, silver picrate and the like, and copper ions are sodium citrate disodium, triethanolamine Copper salts such as copper, copper carbonate, ammonium cuprous carbonate, cupric hydroxide, copper chloride, cupric chloride, ethylenediamine copper complex, copper oxychloride, copper oxychloride chloride, cuprous oxide, copper thiocyanate and the like Using zinc acetate as a source, zinc ion as zinc acetate, zinc oxide, zinc carbonate, zinc chloride, zinc sulfate, zinc hydroxide, zinc hydroxide, zinc citrate, zinc fluoride, zinc iodide, zinc lactate, zinc oleate, zinc borate, phosphoric acid Zinc, zinc propionate, zinc salicylate, zinc selenate, zinc silicate, zinc stearate, zinc sulfide, zinc tannate, zinc tartrate, zinc valerate, zinc gluconate, zinc undecylate and the like The source is aluminum ion, and the source is aluminum salt such as aluminum oxide, aluminum hydroxide, aluminum chloride, aluminum phosphate, and aluminum sulfate. The nickel ion is nickel oxide, nickel hydroxide, nickel chloride, sulfamic acid. The source is a nickel salt such as nickel or nickel sulfate. The lithium ion is a source such as lithium carbonate, lithium chloride, lithium oxide, lithium hydroxide or lithium citrate. The cobalt ion is cobalt silicate, oxidized. Cobalt, cobalt chloride, cobalt aluminate, cobalt sulfate such as cobalt sulfate is used as a source. The chelate complex is obtained by ionically bonding the metal salt of the ion source and the ligand through an appropriate solvent, and the dried and isolated one is used in the present invention.

配位子は、アミノ酸、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ピピリジン、アセチルアセトナート、エチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルエチレンジアミン二酢酸、1,3−プロパンジアミン四酢酸、ジエチルトリアミン五酢酸、トリエチレンテトラミン六酢酸、ピリチオン、フェナントロリン、ポルフィリン及びクラウンエーテルから選ばれた1種以上であり、アミノ酸としては具体的にグリシン、ヒスチジン、メチオニンから選ばれた1種以上のアミノ酸が好ましい。特にクラウンエーテルは、〔(9+3n)−クラウン−(3+n)〕式:nは1以上の整数で表される環状ポリエーテルで、頭の数字は全原子数、末尾の数字は酸素原子数を表す。またベンゾクラウンエーテルとして、これらの〔(9+3n)−クラウン−(3+n)〕式のクラウンエーテルに、少なくとも1個のベンゼン環がクラウンエーテルの2個の炭素原子と共有して結合したベンゾクラウンエーテル、またはこれらの〔(9+3n)−クラウン−(3+n)〕式のクラウンエーテルに、少なくとも1個のシクロヘキサン環がクラウンエーテルの2個の炭素原子と共有して結合したシクロヘキサノクラウンエーテル、上記クラウンエーテル群の酸素原子の一部または全部を窒素原子(NH)に置換したアザクラウンエーテル、ベンゾアザクラウンエーテル、シクロヘキサノアザクラウンエーテル、上記クラウンエーテル群の酸素原子の一部または全部を硫黄原子(S)に置換したチアクラウンエーテル、ベンゾチアクラウンエーテル、シクロヘキサノチアクラウンエーテル、上記クラウンエーテル群の酸素原子の一部または全部を窒素原子(NH)と硫黄原子(S)に置換したアザチアクラウンエーテル、ベンゾアザチアクラウンエーテル、シクロヘキサノアザチアクラウンエーテルが例示でき、これらのクラウンエーテルに官能基及び/または置換基を導入した誘導体、及びこれらのクラウンエーテルを繰り返し単位に有する重合体であってもよい。具体的にはヒスチジン銀、グリシン銅、ピリチオン亜鉛、ピリチオン銅、トリエチレンテトラミン銅、ジベンゾ24−クラウン−8銀、ジベンゾ24−クラウン−8銅などが例示できる。これらのキレート錯体が抗菌性及び防黴性を発現する。抗菌性は、黄色ブドウ球菌、大腸菌、肺炎桿菌、緑膿菌、メチシリン耐性黄色ブドウ球菌、および腸管出血性大腸菌などに対して、その増殖を抑止する効果を有するものである。   The ligands include amino acids, ethylenediamine, diethylenetriamine, triethylenetetramine, pyridine, acetylacetonate, ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethyltriaminepentaacetic acid It is one or more selected from triethylenetetramine hexaacetic acid, pyrithione, phenanthroline, porphyrin and crown ether, and as the amino acid, one or more amino acids specifically selected from glycine, histidine and methionine are preferable. In particular, crown ether is a [(9 + 3n) -crown- (3 + n)] formula: n is a cyclic polyether represented by an integer of 1 or more, the head number is the total number of atoms, and the end number is oxygen Represents the number of atoms. Also, as benzo crown ethers, at least one benzene ring is covalently bonded to the two carbon atoms of the crown ether to these [(9 + 3 n) -crown- (3+ n)] crown ethers. A benzocrown ether, or a cyclohexene having at least one cyclohexane ring covalently bonded to two carbon atoms of the crown ether, to a crown ether of these [(9 + 3n) -crown- (3 + n)] formula. Sano crown ether, aza crown ether in which part or all of oxygen atoms of the above crown ether group are substituted by nitrogen atom (NH), benzoaza crown ether, cyclohexano aza crown ether, part of oxygen atoms of the above crown ether group Thia crown ether substituted entirely or entirely with sulfur atom (S), benzothiaklau Ether, cyclohexanothia crown ether, azathia crown ether in which a part or all of the oxygen atoms of the above crown ether group are substituted by nitrogen atom (NH) and sulfur atom (S), benzoazathia crown ether, cyclohexanoazathiat ether Crown ethers can be exemplified, and derivatives obtained by introducing functional groups and / or substituents to these crown ethers, and polymers having these crown ethers as repeating units may be used. Specifically, histidine silver, glycine copper, pyrithione zinc, pyrithione copper, triethylenetetramine copper, dibenzo 24-crown-8 silver, dibenzo 24-crown-8 copper and the like can be exemplified. These chelate complexes exhibit antibacterial and antifungal properties. Antibacterial activity has the effect of inhibiting the growth of S. aureus, E. coli, K. pneumoniae, P. aeruginosa, methicillin resistant S. aureus, enterohemorrhagic E. coli and the like.

カーボンナノチューブは、平均繊維径0.5〜100nm、アスペクト比50〜5000のもので、整列したもの、ランダムに配列したものなど何れであってもよい。種別的には、直径0.4nm〜5nmの単層カーボンナノチューブ、直径1.5nm〜5nmの二層カーボンナノチューブ、直径3nm〜50nmの多層カーボンナノチューブ、カップ積重型カーボンナノチューブ、酸化カーボンナノチューブ、官能化カーボンナノチューブ(末端修飾及び/または側壁修飾)、金属(蒸着またはスパッタ)カーボンナノチューブ、から選ばれた1種以上で、カーボンナノチューブを構成する六角形の配置(カイラル指数)が(n,n)のアームチェア型、(n,0)のジグザグ型、(n,m)のヘリカル型の何れであってもよい。また、これらのカーボンナノチューブは、他の電気活性材料と併用することで導電性を向上させることができる。電気活性材料は、Ru、Ir、W、Mo,Mn、Ni,及びCoなどの遷移金属の酸化物が例示でき、特にπ電子共役系導電性ポリマー(段落〔0027〕〔0028〕記載)などはバインダーとしても兼用できる。特に金属(蒸着またはスパッタ)カーボンナノチューブは、Au、Ag、Cu、Al、Zn、Tiなどを蒸着法またはスパッタ法によって表面が金属化されたカーボンナノチューブで、特に2層構造で、アンカーをTi層とするAu/Ti、Ag/Ti、Cu/Tiが、導電性が飛躍的に向上する。また別の併用例として、π電子共役系導電性ポリマーを含有する導電性ネットワークをA、カーボンナノチューブを含有する導電性ネットワークをBとした時の「A/B」、「B/A」の2層併用、「A/B/A」、「B/A/B」の3層併用なども導電性を飛躍的に向上させる。また、カーボンナノチューブとフラーレンを100:1〜2:1質量比で併用することで導電性を飛躍的に向上させる。フラーレンは、C60フラーレン、有機修飾フラーレン、無機修飾フラーレン、水素内包フラーレン、金属内包フラーレンなどが使用できる。 The carbon nanotubes may be those having an average fiber diameter of 0.5 to 100 nm and an aspect ratio of 50 to 5000, and may be aligned or randomly arranged. Specifically, single-walled carbon nanotubes with a diameter of 0.4 nm to 5 nm, double-walled carbon nanotubes with a diameter of 1.5 nm to 5 nm, multi-walled carbon nanotubes with a diameter of 3 nm to 50 nm, cup-stacked carbon nanotubes, oxidized carbon nanotubes, functionalization One or more types selected from carbon nanotubes (end modification and / or sidewall modification), metal (vapor deposited or sputtered) carbon nanotubes, and having a hexagonal arrangement (chiral index) of (n, n) constituting carbon nanotubes It may be an armchair type, an (n, 0) zigzag type, or an (n, m) helical type. Moreover, conductivity can be improved by using these carbon nanotubes in combination with other electroactive materials. Examples of the electroactive material include oxides of transition metals such as Ru, Ir, W, Mo, Mn, Ni, and Co, and in particular, a π electron conjugated conductive polymer (described in paragraphs [0027] and [0028]), etc. It can also be used as a binder. In particular, metal (vapor deposited or sputtered) carbon nanotubes are carbon nanotubes whose surface is metallized by vapor deposition or sputtering with Au, Ag, Cu, Al, Zn, Ti etc. The conductivity of Au / Ti, Ag / Ti, and Cu / Ti is dramatically improved. As another example of combined use, when the conductive network containing the π electron conjugated conductive polymer is A and the conductive network containing carbon nanotubes is B, 2 of “A / B” and “B / A” The combined use of layers, triple combination of "A / B / A" and "B / A / B" etc. also dramatically improves the conductivity. In addition, the conductivity is dramatically improved by using carbon nanotubes and fullerene in combination at a mass ratio of 100: 1 to 2: 1. As the fullerene, C 60 fullerene, organically modified fullerene, inorganically modified fullerene, hydrogen-containing fullerene, metal-containing fullerene and the like can be used.

塗膜層が含むバインダー樹脂は、塗膜層に対して94〜99.9質量%である。バインダー樹脂としては、アクリル系樹脂、アクリル−シリコン系樹脂、ウレタン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、フッ素系樹脂、酢酸ビニル系樹脂、塩ビ−酢酸ビニル系樹脂などが例示できる。また、1)上述の塗膜層には、シリカ、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化セリウム、及びアルミナ、から選ばれた1種以上のナノ粒子(塗膜層形成時にはナノ粒子ゾルを使用)と、シラン化合物とをさらに含み、塗膜層に対して0.1〜5質量%のナノ粒子ネットワークを構成することが好ましい。塗膜層にナノ粒子ナノ粒子ネットワークをさらに含むことによって帯電防止効果をより高め、より少ないカーボンナノチューブ量で導電性を発現させることを可能とすることで、より低着色性(カーボンナノチューブの色相の影響が少ない)の静電気対策シートを得ることができる。また、2)上述の塗膜層には、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、ポリエチレンジオキチオフェン、及びこれらのドーピング体(ポリスチレンスルホン酸、パラトルエンスルホン酸などをドーピング剤として含む)、から選ばれた1種以上のπ電子共役系導電性ポリマーをさらに含み、その含有量を塗膜層に対して1〜25質量%とすることが好ましい。塗膜層にπ電子共役系導電性ポリマーをさらに含むことによって帯電防止効果をより高め、より少ないカーボンナノチューブ量で導電性を発現させることを可能とすることで、より低着色性(カーボンナノチューブの色相の影響が少ない)静電気対策シートを得ることができる。また、3)上述の塗膜層には、上記ナノ粒子(塗膜層形成時にはナノ粒子ゾルを使用)及びシラン化合物によるナノ粒子ネットワークと、上記π電子共役系導電性ポリマーを同時に含んでいてもよく、ナノ粒子ナノ粒子ネットワークとπ電子共役系導電性ポリマーとの含有量は、塗膜層に対して1〜25質量%、かつ含有質量比率が1:10〜1:1であることが好ましい。塗膜層にナノ粒子ナノ粒子ネットワークとπ電子共役系導電性ポリマーとを特定比率でさらに含むことによって帯電防止効果をより高め、より少ないカーボンナノチューブ量で導電性を発現させることを可能とすることで、より低着色性(カーボンナノチューブの色相の影響が少ない)静電気対策シートを得ることができる。シラン化合物はメチルトリメトキシシラン、メチルトリエトキシシランなどが使用できる。ナノ粒子とシラン化合物または、その加水分解生成物との混合比率は、質量比で90%:10%〜40%:60%が好ましい。   The binder resin contained in the coating layer is 94 to 99.9% by mass with respect to the coating layer. Examples of the binder resin include acrylic resins, acrylic-silicon resins, urethane resins, polyester resins, epoxy resins, fluorine resins, vinyl acetate resins, and polyvinyl chloride-vinyl acetate resins. 1) One or more types of nanoparticles selected from silica, titanium oxide, zinc oxide, tin oxide, zirconium oxide, cerium oxide, and alumina in the above-mentioned coating layer (nanoparticles when forming coating layer) It is preferable to further include a sol) and a silane compound to constitute a nanoparticle network of 0.1 to 5% by mass with respect to the coating layer. By further including a nanoparticle nanoparticle network in the coating layer, the antistatic effect can be further enhanced, and conductivity can be expressed with a smaller amount of carbon nanotubes, thereby achieving lower coloring (the hue of the carbon nanotubes It is possible to obtain an anti-static sheet with less influence. 2) In the above-mentioned coating layer, polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, polyethylene dioxythiophene, and doped bodies thereof (polystyrene (polystyrene) And further containing at least one π electron conjugated conductive polymer selected from sulfonic acid, p-toluenesulfonic acid and the like as a doping agent), and the content thereof is 1 to 25% by mass with respect to the coating layer It is preferable to do. By further including a π electron conjugated conductive polymer in the coating layer, the antistatic effect can be further enhanced, and conductivity can be expressed with a smaller amount of carbon nanotubes, resulting in lower colorability (of carbon nanotubes It is possible to obtain an antistatic sheet that is less affected by the hue. In addition, 3) the above-mentioned coating layer may simultaneously contain the above nanoparticle (a nanoparticle sol is used when forming a coating layer) and a nanoparticle network of a silane compound and the above-mentioned π electron conjugated conductive polymer. The content of the nanoparticle nanoparticle network and the π electron conjugated conductive polymer is preferably 1 to 25% by mass with respect to the coating layer, and the contained mass ratio is preferably 1:10 to 1: 1. . By further including a nanoparticle nanoparticle network and a π electron conjugated conductive polymer in a specific ratio in the coating layer, the antistatic effect can be further enhanced, and conductivity can be expressed with a smaller amount of carbon nanotubes. Thus, it is possible to obtain an anti-static sheet that is less colored (less affected by the hue of carbon nanotubes). As the silane compound, methyltrimethoxysilane, methyltriethoxysilane and the like can be used. The mixing ratio of the nanoparticles to the silane compound or the hydrolysis product thereof is preferably 90%: 10% to 40%: 60% by mass.

π電子共役系導電性ポリマーは具体的に、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体、誘導体ポリマーなどの主鎖がπ共役系で構成され、その側鎖、置換基の有無、側鎖、置換基の種類の限定は特にないが、ポリピロール、ポリチオフェン、ポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)などで、ポリピロール及び、ポリチオフェンが特に好ましく、特にポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)のようなアルキル置換化合物は、有機溶媒への溶解性に優れ好ましい。またπ電子共役系導電性ポリマーに、高分子状カルボン酸塩(ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸など)をドーピング、あるいは高分子状スルホン酸(ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)などをドーピングしたり、または高分子状カルボン酸塩と高分子状スルホン酸とを質量比2:1〜1:5で併用ドーピングすることで導電性をより高度にすることができる。π電子共役系導電性ポリマーと高分子状カルボン酸塩との比率は10:1〜1:1、π電子共役系導電性ポリマーと高分子状カルボン酸塩及び高分子状スルホン酸との比率は5:1〜1:1が好ましく、高分子状カルボン酸塩、または高分子状カルボン酸塩及び高分子状スルホン酸は、π電子共役系導電性ポリマー合成時に、π電子共役系導電性ポリマーのモノマーと共に共存し、π電子共役系導電性ポリマー合成の酸化重合時にπ電子共役系導電性ポリマー中にドーピングしたものが好ましい。   Specifically, the π electron conjugated conductive polymers are mainly composed of polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers and derivative polymers thereof. The chain is composed of a π conjugated system, and there is no particular limitation on its side chain, presence or absence of substituent, side chain, type of substituent, but polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene Polypyrrole and polythiophene are particularly preferred, such as poly (3-methoxythiophene), poly (3,4-ethylenedioxythiophene), etc., particularly poly (N-methylpyrrole), poly (3-methylthiophene) and the like. Alkyl-substituted compounds are preferred because of their excellent solubility in organic solvents. In addition, the π electron conjugated conductive polymer is doped with a polymeric carboxylate (polyacrylic acid, polymethacrylic acid, polymaleic acid, etc.), or a polymeric sulfonic acid (polyvinylsulfonic acid, polystyrene sulfonic acid, polyisoprene sulfone) Acid, polyacrylic acid ethyl sulfonic acid, poly acrylic acid butyl sulfonic acid, poly (2-acrylamido-2-methyl-1-propane sulfonic acid) etc. or doping with polymeric carboxylic acid salt and polymeric sulfone The conductivity can be further enhanced by co-doping with an acid in a mass ratio of 2: 1 to 1: 5. The ratio of the π electron conjugated conductive polymer to the polymeric carboxylate is 10: 1. 1: 1, the ratio of π electron conjugated conductive polymer to polymeric carboxylate and polymeric sulfonic acid is 5: 1 1: 1 is preferable, and the polymeric carboxylate, or the polymeric carboxylate and the polymeric sulfonic acid coexist with the monomer of the π electron conjugated conductive polymer at the time of the π electron conjugated conductive polymer synthesis. What is doped in the π electron conjugated conductive polymer at the time of oxidative polymerization of the π electron conjugated conductive polymer synthesis is preferable.

上述の塗膜層の各々は、熱可塑性樹脂被覆層の表面(塗膜層を設ける対象面の面積)に対して、少なくとも20%の面積占有率を有する連続体、最大100%の面積占有率を有する連続体であることが好ましい。このような面積占有率の塗膜層が連続体を成すことで、より少ないカーボンナノチューブ量で導電性を発現させるネットワークを可能とするので、より低着色性(カーボンナノチューブの色相の影響が少ない)、かつ抗菌性の静電気対策シートを得ることができる。塗膜層の面積占有率が20%未満だと、得られる膜材の帯電防止性と抗菌性とが不十分となることがあるので、塗膜層の面積占有率は25〜50%、かつ連続体であることが好ましい。このような連続体(ネットワーク)は、四角格子状、三角格子状、ハニカム状、丸穴パンチング状、網目状などの規則的連続体、または不規則な連続体、さらには一筆書き文字または模様、あみだくじ状、などが例示される。塗膜層の面積占有率が100%であれば膜材の帯電防止性と抗菌性は十分となるが、膜材同士の重ね合わせ接合時の接着力が不十分となることがある。このような塗膜層(導電性ネットワーク)は具体的に、π電子共役系ポリマーを構成するモノマーを化学酸化重合して得たπ電子共役系導電性ポリマーを溶媒中に可溶化、あるいは微分散させてなるπ電子共役系導電性ポリマー溶液を塗料として、あるいは水、アルコール、有機溶剤などの分散媒に、カーボンナノチューブを0.05〜5質量%含む分散溶液を塗料として、グラビアロールによる印刷、またはロータリースクリーンによる印刷により形成される。π電子共役系導電性ポリマーの場合は0.05μm〜15μmの厚さ、カーボンナノチューブの場合は0.001μm〜0.5μmの厚さが好ましい。   Each of the above-mentioned coating layers is a continuum having an area occupancy of at least 20% with respect to the surface of the thermoplastic resin coating layer (the area of the target surface on which the coating layer is provided), an area occupancy of up to 100% It is preferable that it is a continuous body having Since the coating layer having such an area occupancy ratio forms a continuum, it enables a network to express conductivity with a smaller amount of carbon nanotubes, so that the colorability is lower (the influence of the hue of carbon nanotubes is small). And an antimicrobial antistatic sheet can be obtained. If the area ratio of the coating layer is less than 20%, the antistatic property and the antimicrobial property of the resulting film material may be insufficient. Therefore, the area ratio of the coating layer is 25 to 50%, and It is preferable that it is a continuous body. Such a continuum (network) is a regular continuum such as a square lattice, triangular lattice, honeycomb, round hole punching, mesh, etc., or an irregular continuum, or a single-stroke character or pattern, A lottery ticket, etc. are illustrated. If the area occupancy rate of the coating film layer is 100%, the antistatic property and the antimicrobial property of the film material will be sufficient, but the adhesion at the time of superposition bonding of the film materials may be insufficient. Specifically, such a coating layer (conductive network) solubilizes or finely disperses a π electron conjugated conductive polymer obtained by chemical oxidation polymerization of a monomer constituting the π electron conjugated polymer in a solvent Printing with a gravure roll as a paint, or as a paint containing a dispersion of 0.05 to 5% by mass of carbon nanotubes in a dispersion medium such as water, alcohol, or an organic solvent; Or it is formed by printing by a rotary screen. In the case of the π electron conjugated conductive polymer, a thickness of 0.05 μm to 15 μm and in the case of a carbon nanotube, a thickness of 0.001 μm to 0.5 μm are preferable.

本発明の帯電防止性抗菌膜材を、シートシャッター、間仕切り、フロアシート、機器カバー、フレキシブルコンテナなどに加工するために、本発明の帯電防止性抗菌膜材同士の接合(同じ面に向き揃えての端部重ね合わせ接着)は、高周波ウエルダー機を用いて高周波振動によって接合を行うことができ、具体的に、2ヶ所の電極(一方の電極は、ウエルドバー)間に膜材を置き、ウエルドバーで加圧しながら高周波(1〜200MHz)で発振する電位差を印加することで膜材の熱可塑性樹脂被覆層を分子摩擦熱で溶融軟化状態とすることで融合し、その状態で冷却固化して接合体を得る。また、超音波振動子から発生する超音波エネルギー(16〜30KHz)の振幅を増幅させ、膜材の境界面に発生する摩擦熱を利用して融合を行う超音波融着法、またはヒーターの電気制御によって、100〜700℃に無段階設定された熱風を、ノズルを通じて膜材間に吹き込み、膜材の表面を溶融軟化させ、ノズル通過直後膜材を圧着して融合を行う熱風融着法、熱可塑性樹脂被覆層の溶融温度以上にヒーター内蔵加熱した金型(こて)を用いて被着体を圧着し融合を行う熱板融着法などによって接合可能である。上記の接合方法において、塗膜層の面積占有率が90〜100%だと、塗膜層のバインダー樹脂と熱可塑性樹脂被覆層との相溶性が悪い場合、あるいは軟化温度の温度差が大きい場合には、得られる膜材同士の接合時の接着力が不十分となるので、塗膜層の面積占有率を25〜50%として、塗膜層以外の領域、すなわち表面露出する熱可塑性樹脂被覆層と、もう一方の膜材の裏面の熱可塑性樹脂被覆層同士が少なくとも熱溶融して強固に接着可能な状態を設けることが望ましい。   In order to process the antistatic antibacterial film material of the present invention into a sheet shutter, a partition, a floor sheet, an equipment cover, a flexible container, etc., bonding of the antistatic antibacterial film materials of the present invention In the end-to-end overlap bonding), bonding can be performed by high-frequency vibration using a high-frequency welder, specifically, a film material is placed between two electrodes (one electrode is a weld bar), and welding is performed. By applying a potential difference oscillating at a high frequency (1 to 200 MHz) while pressing with a bar, the thermoplastic resin coating layer of the film material fuses by being brought into a melted and softened state by molecular frictional heat, and is cooled and solidified in that state Obtain a conjugate. In addition, ultrasonic fusion method or heater electric that performs the fusion by amplifying the amplitude of the ultrasonic energy (16 to 30 KHz) generated from the ultrasonic transducer and using the frictional heat generated at the boundary surface of the film material Hot air fusion method in which hot air set steplessly at 100 to 700 ° C by control is blown through the nozzle between the membrane material to melt and soften the surface of the membrane material, and the membrane material is pressure bonded immediately after passing through the nozzle. Bonding can be performed by a hot plate fusion method or the like in which an adherend is pressure-bonded and fused using a mold (a trowel) heated at a temperature higher than the melting temperature of the thermoplastic resin coating layer. In the above bonding method, when the area ratio of the coating layer is 90 to 100%, the compatibility between the binder resin of the coating layer and the thermoplastic resin coating layer is poor, or the temperature difference of the softening temperature is large. Since the adhesive force at the time of joining the film materials to be obtained becomes insufficient, the area occupancy of the coating film layer is 25 to 50%, and the area other than the coating film layer, that is, the thermoplastic resin coating exposed on the surface It is desirable that the layer and the thermoplastic resin-coated layer on the back surface of the other membrane material be at least heat-melted to provide a firmly bondable state.

次ぎに実施例、比較例を挙げて本発明を具体的に説明するが、本発明はこれらの例の範囲に限定されるものではない。下記実施例及び比較例において、帯電防止性抗菌膜材の効果は、表面抵抗率によって評価した。
(1)表面抵抗率測定(JIS K7194準拠)
23℃、相対湿度50%RHで膜材片を24時間静置後、下記の抵抗率計(JIS K7194準拠)を用い表面抵抗率を3回測定し、その平均値を表面抵抗率とした。但し表面抵抗率の良し悪しは導電性材料の配合量によって左右されるものであるため、本発明の課題である「低着色性」を具備することを前提に帯電防止性の良し悪しを評価した。
実施例とする帯電防止性の基準は表面抵抗率10Ω/□〜10Ω/□、表面抵抗率1010Ω/□以下のものは比較例とした。
1)高抵抗・抵抗率計
株式会社三菱化学アナリテック製「ハイレスタUP MCP-HT800(レンジ103〜1014Ω)」
2)低抵抗・抵抗率計
株式会社三菱化学アナリテック製「ロレスタGX MCP-T700(レンジ10-4〜107Ω)」
(2)抗菌性(JIS Z2801:2010年準拠)一般財団法人カケンテストセンター委託
試験片シートの表面に菌液を滴下して植菌し(植菌数は10とした。)、上記得られたシートが菌液に接するように、菌液とシートを密着させ、35℃±1℃、相対湿度90%以上の環境下で24時間±1時間培養した。その後、試験片シートを洗い流し、試験片シート1cmあたりの生菌数を測定し、抗菌活性値(対象区における菌数対数値から実施例で製造したシートにおける菌数対数値を差し引いた値)を算出した。なお、対象区は、キレート錯体を添加しないシートとした。菌液調整溶液は1/200NB培地を用いた。使用した菌種を以下に示す。表中の数値は試験片1cm当たりの生菌数であり、「ND」は生菌の不検出(Not Detected)とする。
黄色ぶどう球菌「Staphylococcus aureus subsp. aureus 12732」
大腸菌「Escherichia coli NBRC 3972」
(3)防黴性(JIS Z2911培養試験)
幅3cm×長さ3cmの試験片シートに、下記試験用黴の胞子を接種し、ポテト・デキストロース寒天培地上に置き、シャーレ中で28℃×7日間、黴の発生状況を観察し、以下の判定基準で評価した。
1:試験片の接種部分に菌糸の発育が認められない
2:試験片の接種部分に認められる菌糸の発育部分の面積が
全面積の1/3を超えない
3:試験片の接種部分に認められる菌糸の発育部分の面積が
全面積の1/3を超える
〈試験用黴〉(A)+(B)+(C)の混合黴
(A) Aspergillus niger NBRC 105649(黒黴)
(B) Penicillium citrinum NBRC 6352(青黴)
(C) Cladosporium cladosporioides NBRC 6348(クロカワ黴)
(4)低着色性
JIS Z8729の色差ΔEを着色性の判定基準とした(ブランクは硫酸バリウム白色板)
ΔE=0〜7.9 : 1=低着色性
ΔE=8〜14.9 : 2=着色性があり外観が暗い
ΔE=15〜 : 3=着色が濃く外観が黒い
EXAMPLES The present invention will next be described in more detail by way of examples and comparative examples, which should not be construed as limiting the scope of the present invention. In the following examples and comparative examples, the effect of the antistatic antibacterial film material was evaluated by surface resistivity.
(1) Surface resistivity measurement (JIS K 7194 compliant)
After leaving a piece of film material to stand at 23 ° C. and relative humidity 50% RH for 24 hours, the surface resistivity was measured three times using the following resistivity meter (in accordance with JIS K 7194), and the average value was taken as the surface resistivity. However, since the quality of the surface resistivity depends on the amount of the conductive material, the antistatic property was evaluated on the premise of having the "low colorability" which is the subject of the present invention. .
As a standard of antistatic property as an example, one having a surface resistivity of 10 5 Ω / sq to 10 9 Ω / sq and a surface resistivity of 10 10 Ω / sq or less is set as a comparative example.
1) High resistance, resistivity meter, Inc. Mitsubishi Chemical Analytech Co., Ltd. “Hiresta UP MCP-HT800 (range 10 3 to 10 14 Ω)”
2) Low-resistance resistivity meter, manufactured by Mitsubishi Chemical Analytech Co., Ltd. "Loresta GX MCP-T700 (range 10 -4 to 10 7 Ω)"
(2) Antibacterial: (. The number of inoculated was 10 4) (JIS Z2801 2010 years compliant) dropwise general Foundation family constitution test center entrusted specimen bacterial suspension on the surface of the sheet was inoculated, obtained above The bacterial solution and the sheet were brought into close contact with each other so that the sheet was in contact with the bacterial solution, and the mixture was cultured for 24 hours ± 1 hour in an environment of 35 ° C ± 1 ° C and a relative humidity of 90% or more. Thereafter, the test piece sheet is washed away, the number of viable bacteria per 1 cm 2 of the test piece sheet is measured, and the antibacterial activity value (value obtained by subtracting the bacteria count logarithm of the sheet manufactured in the example from the bacteria count logarithm of the target section) Was calculated. The target section was a sheet to which the chelate complex was not added. A cell suspension adjusting solution used a 1/200 NB medium. The bacterial species used are shown below. The numerical value in the table is the number of viable cells per 1 cm 2 of the test piece, and “ND” is not detected (Not Detected) of viable cells.
Staphylococcus aureus "Staphylococcus aureus subsp. Aureus 12732"
E. coli "Escherichia coli NBRC 3972"
(3) Antifungal property (JIS Z2911 culture test)
Inoculate the spore of the below-mentioned test sputum on the test piece sheet of width 3 cm x length 3 cm, place on a potato dextrose agar medium, observe the development of sputum at 28 ° C for 7 days in a petri dish, and It evaluated by the criterion.
1: No growth of mycelium is observed in the inoculated part of the test piece 2: The area of mycelial growth part found in the inoculated part of the test piece does not exceed 1/3 of the total area 3: Recognized in the inoculated part of the test piece The area of the growth portion of the mycelium to be grown is more than 1/3 of the total area. <Test stain> (A) + (B) + (C)
(A) Aspergillus niger NBRC 105649 (Ebony)
(B) Penicillium citrinum NBRC 6352 (blue)
(C) Cladosporium cladosporioides NBRC 6348 (Krokawa moth)
(4) Low colorability
Judgment criteria of colorability using color difference ΔE of JIS Z8729 (blank is a white plate of barium sulfate)
ΔE = 0 to 7.9: 1 = low colorability
ΔE = 8 to 14.9: 2 = colored and appearance is dark
ΔE = 15 to 3: 3 = dark in color and black in appearance

[実施例1]
ポリエステル繊維平織基布(経糸1111dtexマルチフィラメント糸条:糸密度22本/2.54cm×緯糸1111dtexマルチフィラメント糸条:糸密度24本/2.54cm:空隙率21%:質量165g/m)を基材として、その両面に下記軟質塩化ビニル樹脂組成物(1)からなる厚さ0.2mmのカレンダー成型フィルムを熱可塑性樹脂被覆層として熱圧着によるブリッジ溶融ラミネートにより、「熱可塑性樹脂被覆層/基布/熱可塑性樹脂被覆層」からなる、厚さ0.65mm、質量680g/mの積層膜材(ターポリン)を得た。
〈軟質塩化ビニル樹脂組成物(1)〉
塩化ビニル樹脂(重合度1300) 100質量部
4−シクロヘキセン−1,2−ジカルボン酸ビス(2−エチルヘキシル)
(可塑剤) 50質量部
リン酸トリクレジル(防炎可塑剤) 10質量部
エポキシ化大豆油(安定剤兼可塑剤) 5質量部
バリウム/亜鉛複合安定剤 2質量部
三酸化アンチモン(難燃剤) 10質量部
ルチル型酸化チタン(白顔料) 5質量部
ベンゾトリアゾール骨格化合物(紫外線吸収剤) 0.3質量部
上記の積層膜材(ターポリン)の表面側の熱可塑性樹脂被覆層上に、下記塗膜層(1)用の塗工液(固形分濃度16.9質量%)を用い、120メッシュの正方形格子柄グラビアロール塗工により、55.5%の面積占有率を有する格子状連続体(格子幅5mm、正方形空孔10mm×10mm)の塗膜層(1)を形成し、質量682g/mの帯電防止性抗菌膜材(ターポリン)を得た。
〈塗膜層(1)用溶液〉
メタクリル酸メチル樹脂(アクリル樹脂) 100質量部
ヒスチジン銀(キレート錯体) 1質量部
単層カーボンナノチューブ(直径1.5〜2.5nm) 0.5質量部
※キレート錯体:カーボンナノチューブの含有質量比2:1
※塗膜層に対するキレート錯体:カーボンナノチューブの含有率1.47質量%
ベンゾトリアゾール骨格化合物(紫外線吸収剤) 0.3質量部
メチルエチルケトン(希釈溶剤) 250質量部
トルエン(希釈溶剤) 250質量部
Example 1
Polyester fiber plain weave base fabric (warp 1111 dtex multifilament yarn: yarn density 22 / 2.54 cm × weft 1111 dtex multifilament yarn: yarn density 24 / 2.54 cm: porosity 21%: mass 165 g / m 2 ) A thermoplastic resin coated layer / a thermoplastic resin coated layer having a thickness of 0.2 mm made of the following soft vinyl chloride resin composition (1) as a thermoplastic resin coated layer as a base material by bridge melting lamination by thermocompression bonding A laminated film material (terporin) having a thickness of 0.65 mm and a mass of 680 g / m 2 was obtained, which was composed of a base fabric / thermoplastic resin coating layer.
<Soft vinyl chloride resin composition (1)>
Vinyl chloride resin (polymerization degree 1300) 100 parts by mass 4-cyclohexene-1,2-dicarboxylic acid bis (2-ethylhexyl)
(Plasticizer) 50 parts by mass Tricresyl phosphate (flame retardant plasticizer) 10 parts by mass Epoxidized soybean oil (stabilizer and plasticizer) 5 parts by mass Barium / zinc composite stabilizer 2 parts by mass Antimony trioxide (flame retardant) 10 Mass part Rutile type titanium oxide (white pigment) 5 mass parts Benzotriazole skeleton compound (ultraviolet light absorber) 0.3 mass parts The following coating on the thermoplastic resin coating layer on the surface side of the above laminated film material (terporin) A grid-like continuum (grating having an area occupancy of 55.5%) by coating 120 mesh square grid pattern gravure roll using a coating liquid (solid content concentration 16.9 mass%) for layer (1) A coating film layer (1) having a width of 5 mm and square holes of 10 mm × 10 mm) was formed to obtain an antistatic antibacterial film material (terpoline) having a mass of 682 g / m 2 .
Solution for Coating Layer (1)
Methyl methacrylate resin (acrylic resin) 100 parts by mass Histidine silver (chelate complex) 1 part by mass Single-walled carbon nanotubes (diameter 1.5 to 2.5 nm) 0.5 parts by mass ※ Content ratio of chelate complex: carbon nanotubes 2 : 1
※ Chelate complex to coating layer: Carbon nanotube content 1.47% by mass
Benzotriazole backbone compound (UV absorber) 0.3 parts by mass Methyl ethyl ketone (dilution solvent) 250 parts by mass Toluene (dilution solvent) 250 parts by mass

[実施例2]
実施例1の塗膜層(1)用溶液において、ヒスチジン銀(キレート錯体)1質量部を、銅エチレンジアミン四酢酸(キレート錯体)1質量部に置換えて塗膜層(2)とした以外は実施例1と同様にして厚さ0.65mm、質量682g/mの帯電防止性抗菌膜材(ターポリン)を得た。
Example 2
In the solution for the coating layer (1) of Example 1, 1 part by mass of histidine silver (chelate complex) is replaced with 1 part by mass of copper ethylenediaminetetraacetic acid (chelating complex) to form a coating layer (2) In the same manner as in Example 1, an antistatic antibacterial film material (tarpaulin) having a thickness of 0.65 mm and a weight of 682 g / m 2 was obtained.

[実施例3]
実施例1の塗膜層(1)用溶液を、塗膜層(3)用溶液に変更した以外は実施例1と同様にして厚さ0.65mm、質量682g/mの帯電防止性抗菌膜材(ターポリン)を得た。
〈塗膜層(3)用溶液〉
ポリ(3,4−エチレンジオキシチオフェン)※ポリチオフェン 20質量部
メタクリル酸メチル樹脂(アクリル樹脂) 80質量部
グリシン銅(キレート錯体) 0.5質量部
単層カーボンナノチューブ(直径1.5〜2.5nm) 1.5質量部
※キレート錯体:カーボンナノチューブの含有質量比1:3
※塗膜層に対するキレート錯体:カーボンナノチューブの含有率1.95質量%
ベンゾトリアゾール骨格化合物(紫外線吸収剤) 0.3質量部
シクロペンタノン(希釈溶剤) 100質量部
トルエン(希釈溶剤) 200質量部
メチルエチルケトン(希釈溶剤) 200質量部
[Example 3]
An antistatic antibacterial agent having a thickness of 0.65 mm and a mass of 682 g / m 2 in the same manner as in Example 1 except that the solution for the coating layer (1) of Example 1 was changed to the solution for the coating layer (3). A membrane material (tarpaulin) was obtained.
<Solution for coating layer (3)>
Poly (3,4-ethylenedioxythiophene) * polythiophene 20 parts by mass Methyl methacrylate resin (acrylic resin) 80 parts by mass Glycine copper (chelate complex) 0.5 parts by mass Single-walled carbon nanotubes (diameter 1.5 to 2. 5 nm) 1.5 parts by mass * Chelate complex: carbon nanotube content ratio 1: 3
※ Chelate complex to coating layer: Carbon nanotube content 1.95% by mass
Benzotriazole skeleton compound (ultraviolet absorber) 0.3 parts by mass Cyclopentanone (dilution solvent) 100 parts by mass Toluene (dilution solvent) 200 parts by mass Methyl ethyl ketone (dilution solvent) 200 parts by mass

[実施例4]
実施例3の塗膜層(3)用溶液において、グリシン銅(キレート錯体)0.5質量部を、銀エチレンジアミン四酢酸(キレート錯体)0.5質量部に置換えて塗膜層(4)とした以外は実施例3と同様にして厚さ0.65mm、質量682g/mの帯電防止性抗菌膜材(ターポリン)を得た。
Example 4
In the solution for the coating layer (3) of Example 3, 0.5 parts by mass of glycine copper (chelate complex) is replaced with 0.5 parts by mass of silver ethylenediaminetetraacetic acid (chelation complex) to form a coating layer (4) An antistatic antibacterial film material (terporin) having a thickness of 0.65 mm and a weight of 682 g / m 2 was obtained in the same manner as in Example 3 except for the above.

[実施例5]
実施例1の塗膜層(1)用溶液を、塗膜層(5)用溶液に変更し、ナノ粒子ネットワークを含む塗膜層(5)とした以外は実施例1と同様にして厚さ0.65mm、質量682g/mの帯電防止性抗菌膜材(ターポリン)を得た。
〈塗膜層(5)用溶液〉
メタクリル酸メチル樹脂(アクリル樹脂) 100質量部
ヒスチジン銀(キレート錯体) 1質量部
単層カーボンナノチューブ(直径1.5〜2.5nm) 0.5質量部
オルガノシリカゾル(シリカのナノ粒子) 40質量部
※粒子径10〜15nm:固形分30質量%:メチルエチルケトン溶媒
メチルトリエトキシシラン(シラン化合物) 8質量部
※シリカゾルとメチルトリエトキシシランの質量比率3:2のナノ粒子ネットワークを
塗膜層中に形成
※キレート錯体:カーボンナノチューブの含有質量比2:1
※塗膜層に対するキレート錯体:カーボンナノチューブの含有率1.23質量%
ベンゾトリアゾール骨格化合物(紫外線吸収剤) 0.3質量部
トルエン(希釈溶剤) 250質量部
メチルエチルケトン(希釈溶剤) 250質量部
[Example 5]
The solution for the coating layer (1) of Example 1 is changed to the solution for the coating layer (5), and the thickness is the same as in Example 1 except that the coating layer (5) containing the nanoparticle network is used. An antistatic antibacterial film material (terporin) having a weight of 682 g / m 2 was obtained.
<Solution for coating layer (5)>
Methyl methacrylate resin (acrylic resin) 100 parts by mass Histidine silver (chelate complex) 1 part by mass Single-walled carbon nanotubes (diameter 1.5 to 2.5 nm) 0.5 parts by mass Organosilica sol (particles of silica) 40 parts by mass ※ Particle diameter 10 to 15 nm: solid content 30% by mass: methyl ethyl ketone solvent methyltriethoxysilane (silane compound) 8 parts by mass ※ form a nanoparticle network of silica sol and methyltriethoxysilane in a mass ratio of 3: 2 in the coating layer ※ Chelate complex: Carbon nanotube content ratio 2: 1
※ Chelate complex to coating layer: Carbon nanotube content 1.23 mass%
Benzotriazole skeleton compound (UV absorber) 0.3 parts by mass Toluene (dilution solvent) 250 parts by mass Methyl ethyl ketone (dilution solvent) 250 parts by mass

[実施例6]
実施例5の塗膜層(5)用溶液において、ヒスチジン銀(キレート錯体)1質量部を、銅エチレンジアミン四酢酸(キレート錯体)1質量部に置換えて塗膜層(6)とした以外は実施例5と同様にして厚さ0.65mm、質量682g/mの帯電防止性抗菌膜材(ターポリン)を得た。
[Example 6]
In the solution for the coating film layer (5) of Example 5, 1 part by mass of histidine silver (chelating complex) was replaced with 1 part by mass of copper ethylenediaminetetraacetic acid (chelating complex) to form a coating film layer (6). In the same manner as in Example 5, an antistatic antibacterial film material (turporin) having a thickness of 0.65 mm and a weight of 682 g / m 2 was obtained.

[実施例7]
実施例3の塗膜層(3)用溶液を、π電子共役系ポリマー及びナノ粒子ネットワークを含む塗膜層(7)用溶液に変更した以外は実施例3と同様にして厚さ0.65mm、質量682g/mの帯電防止性抗菌膜材(ターポリン)を得た。
〈塗膜層(7)用溶液〉
ポリ(3,4−エチレンジオキシチオフェン)※ポリチオフェン 20質量部
メタクリル酸メチル樹脂(アクリル樹脂) 80質量部
グリシン銅(キレート錯体) 0.5質量部
単層カーボンナノチューブ(直径1.5〜2.5nm) 1.5質量部
※キレート錯体:カーボンナノチューブの含有質量比1:3
※塗膜層に対するキレート錯体:カーボンナノチューブの含有率1.63質量%
オルガノシリカゾル(シリカのナノ粒子) 40質量部
※粒子径10〜15nm:固形分30質量%:メチルエチルケトン溶媒
メチルトリエトキシシラン(シラン化合物) 8質量部
※シリカゾルとメチルトリエトキシシランの質量比率3:2のナノ粒子ネットワーク
を塗膜層中に形成
ベンゾトリアゾール骨格化合物(紫外線吸収剤) 0.3質量部
シクロペンタノン(希釈溶剤) 100質量部
トルエン(希釈溶剤) 200質量部
メチルエチルケトン(希釈溶剤) 200質量部
[Example 7]
The thickness was 0.65 mm in the same manner as in Example 3 except that the solution for the coating layer (3) in Example 3 was changed to the solution for the coating layer (7) containing a π electron conjugated polymer and a nanoparticle network. , An antistatic antibacterial film material (terpoline) having a mass of 682 g / m 2 .
Solution for Coating Layer (7)
Poly (3,4-ethylenedioxythiophene) * polythiophene 20 parts by mass Methyl methacrylate resin (acrylic resin) 80 parts by mass Glycine copper (chelate complex) 0.5 parts by mass Single-walled carbon nanotubes (diameter 1.5 to 2. 5 nm) 1.5 parts by mass * Chelate complex: carbon nanotube content ratio 1: 3
※ Chelate complex to coating layer: Carbon nanotube content 1.63% by mass
Organosilica sol (silica nanoparticles) 40 parts by mass ※ Particle size 10 to 15 nm: solid content 30% by mass: methyl ethyl ketone solvent methyltriethoxysilane (silane compound) 8 parts by mass ※ mass ratio of silica sol to methyltriethoxysilane 3: 2 Of nanoparticle network in coating layer benzotriazole skeleton compound (ultraviolet absorber) 0.3 parts by mass cyclopentanone (dilution solvent) 100 parts by mass toluene (dilution solvent) 200 parts by mass methyl ethyl ketone (dilution solvent) 200 parts Department

[実施例8]
実施例7の塗膜層(7)用溶液において、グリシン銅(キレート錯体)0.5質量部を、銀エチレンジアミン四酢酸(キレート錯体)0.5質量部に置換えて、π電子共役系ポリマー及びナノ粒子ネットワークを含む塗膜層(8)とした以外は実施例7と同様にして厚さ0.65mm、質量682g/mの帯電防止性抗菌膜材(ターポリン)を得た。
[Example 8]
In the solution for the coating film layer (7) of Example 7, 0.5 part by mass of glycine copper (chelate complex) is replaced with 0.5 parts by mass of silver ethylenediaminetetraacetic acid (chelate complex) to obtain a π electron conjugated polymer An antistatic antibacterial film material (terporin) having a thickness of 0.65 mm and a mass of 682 g / m 2 was obtained in the same manner as in Example 7 except that a coating film layer (8) containing a nanoparticle network was used.

[実施例1〜8の効果]
キレート錯体とカーボンナノチューブを含有する実施例1〜8の膜材は、何れも表面抵抗率1010Ω/□よりも優れた帯電防止性と、抗菌性・防黴性とを有し、しかも着色性が低く、カーボンナノチューブの色相の影響が少ないものであった。特に塗膜層にナノ粒子ネットワークを追加含有する実施例5〜8の膜材は、実施例1〜4の膜材よりも帯電防止性に優れ、また、特に塗膜層にπ電子共役系導電性ポリマーを追加含有する実施例3,4,7,8の膜材は、実施例1,2.5,6の膜材よりも帯電防止性に優れ、また、カーボンナノチューブはその使用量が多いほど帯電防止性に優れ(実施例3,4,7,8)、表面抵抗率105〜106Ω/□レベルの帯電防止性にも係わらず低着色性でカーボンナノチューブの色相の影響が少ないものであり、さらにキレート錯体の使用量が多い実施例1,2.5,6の膜材は、実施例3,4,7,8の膜材よりも抗菌性・防黴性に優れていた。
[Effects of Embodiments 1 to 8]
The film materials of Examples 1 to 8 each containing a chelate complex and a carbon nanotube have antistatic properties superior to the surface resistivity of 10 10 Ω / □, and antibacterial and antifungal properties, and are colored. And the influence of the color of the carbon nanotube is small. In particular, the film materials of Examples 5 to 8 additionally containing the nanoparticle network in the coating film layer are superior in antistatic property to the film materials of Examples 1 to 4 and, in particular, π electron conjugated conductive in the coating film layer The film materials of Examples 3, 4, 7 and 8 additionally containing a hydrophobic polymer are superior in antistatic property to the film materials of Examples 1, 2 and 5 and, the amount of carbon nanotubes used is large. The antistatic property is excellent (Examples 3, 4, 7, 8), and despite the antistatic property at a surface resistivity of 10 5 to 10 6 Ω / □, the colorability is low and the influence of the hue of the carbon nanotube is small. The membrane materials of Examples 1, 2 and 5 which are more in the amount of the chelate complex used and which are more excellent in antibacterial and antifungal properties than the membrane materials of Examples 3, 4, 7 and 8 .

[比較例1]
実施例1の塗膜層(1)用溶液からヒスチジン銀(キレート錯体)1質量部を省略した以外は実施例1と同様として厚さ0.65mm、質量682g/mのターポリン(9)を得た。得られたターポリンの抗菌性は実施例1のターポリン(1)よりも大きく劣り、帯電防止性にもやや劣るものであった。
Comparative Example 1
A tarpaulin (9) having a thickness of 0.65 mm and a mass of 682 g / m 2 was prepared in the same manner as in Example 1 except that 1 part by mass of histidine silver (chelate complex) was omitted from the solution for coating layer (1) of Example 1. Obtained. The antibacterial property of the obtained tarpaulin was significantly inferior to that of the tarpaulin (1) of Example 1, and the antistatic property was also somewhat inferior.

[比較例2]
実施例1の塗膜層(1)用溶液から単層カーボンナノチューブ0.5質量部を省略した以外は実施例1と同様として厚さ0.65mm、質量682g/mのターポリン(10)を得た。得られたターポリンは明度が高く概観が良好であったが、実施例1のターポリン(1)よりも大幅に帯電防止性に劣るものであった。
Comparative Example 2
A tarpaulin (10) having a thickness of 0.65 mm and a mass of 682 g / m 2 was prepared in the same manner as in Example 1 except that 0.5 parts by mass of single-walled carbon nanotubes was omitted from the solution for coating layer (1) of Example 1. Obtained. The obtained tarpaulin had high brightness and good appearance, but it was significantly inferior to the tarpaulin (1) of Example 1 in antistatic property.

[比較例3]
実施例1の塗膜層(1)用溶液において、単層カーボンナノチューブ0.5質量部をカーボンブラック0.5質量部に置換した以外は実施例1と同様として厚さ0.65mm、質量682g/mのターポリン(11)を得た。得られたターポリンは黒色外観を呈し、明度が実施例1のターポリン(1)よりも低く外観に劣り、帯電防止性にも劣るものであった。
Comparative Example 3
The solution for the coating film layer (1) of Example 1 was the same as Example 1 except that 0.5 parts by mass of single-walled carbon nanotubes was replaced with 0.5 parts by mass of carbon black, and the thickness 0.65 mm, mass 682 g A tarpaulin (11) / m 2 was obtained. The obtained tarpaulin had a black appearance, the lightness was lower than that of the tarpaulin (1) of Example 1, the appearance was inferior, and the antistatic property was also inferior.

[比較例4]
実施例1の塗膜層(1)用溶液において、ヒスチジン銀(キレート錯体)1質量部を、ゼオライト銀1質量部に置換した以外は実施例1と同様として厚さ0.65mm、質量682g/mのターポリン(12)を得た。得られたターポリンは帯電防止性が実施例1のターポリン(1)よりも劣るものであった。
Comparative Example 4
The solution for the coating layer (1) of Example 1 is the same as Example 1 except that 1 part by mass of histidine silver (chelate complex) is replaced with 1 part by mass of zeolite silver, and the thickness is 0.65 mm, and the mass is 682 g / An m 2 tarpaulin (12) was obtained. The obtained tarpaulin was inferior in antistatic property to the tarpaulin (1) of Example 1.

上記、実施例、及び比較例から明らかな様に、本発明によれば、カーボンナノチューブを利用した帯電防止フィルムを用いた静電気対策シートでありながら、より低着色性(カーボンナノチューブの色相の影響が少ない)、かつ抗菌・防黴性の静電気対策シートを得ることができるので、シートシャッター、間仕切り、フロアシート、機器カバー、エプロンなどに適して用いることができる。   As is clear from the above Examples and Comparative Examples, according to the present invention, although it is an antistatic sheet using an antistatic film utilizing carbon nanotubes, it has lower colorability (the influence of the hue of carbon nanotubes Since it is possible to obtain an anti-static sheet having antibacterial and antifungal properties, it can be suitably used as a sheet shutter, partition, floor sheet, equipment cover, apron and the like.

Claims (7)

繊維織物を基材として、その1面以上に熱可塑性樹脂被覆層を有する可撓性シートの、少なくとも1面の前記熱可塑性樹脂被覆層上に塗膜層を有し、この塗膜層がキレート錯体、及びカーボンナノチューブを含み、前記キレート錯体が、銀配位子、銅配位子、亜鉛配位子、アルミニウム配位子、ニッケル配位子、リチウム配位子、及びコバルト配位子、から選ばれた1種以上、かつ前記塗膜層が、前記熱可塑性樹脂被覆層の表面に対して、少なくとも20%の面積占有率を有する連続体であることを特徴とする帯電防止性抗菌膜材。   A film layer is formed on at least one surface of the flexible resin coated layer having a thermoplastic resin coated layer on at least one surface of the fiber fabric as a base material, and the coated layer is chelated A complex, and a carbon nanotube, wherein the chelate complex is a silver ligand, a copper ligand, a zinc ligand, an aluminum ligand, a nickel ligand, a lithium ligand, and a cobalt ligand; One or more selected, and the coating film layer is a continuous body having an area occupancy of at least 20% with respect to the surface of the thermoplastic resin coating layer . 前記キレート錯体の配位子が、アミノ酸、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ピピリジン、アセチルアセトナート、エチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルエチレンジアミン二酢酸、1,3−プロパンジアミン四酢酸、ジエチルトリアミン五酢酸、トリエチレンテトラミン六酢酸、ピリチオン、フェナントロリン、ポルフィリン及びクラウンエーテルから選ばれた1種以上である請求項1に記載の帯電防止性抗菌膜材。   The ligand of the chelate complex is amino acid, ethylenediamine, diethylenetriamine, triethylenetetramine, pyridine, acetylacetonate, ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, The antistatic antibacterial film material according to claim 1, which is one or more selected from diethyltriaminepentaacetic acid, triethylenetetramine hexaacetic acid, pyrithione, phenanthroline, porphyrin and crown ether. 前記カーボンナノチューブが、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カップ積重型カーボンナノチューブ、酸化カーボンナノチューブ、官能化カーボンナノチューブ(末端修飾及び/または側壁修飾)、及び金属(蒸着またはスパッタ)カーボンナノチューブから選ばれた1種以上である請求項1または2に記載の帯電防止性抗菌膜材。   The carbon nanotubes are single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, stacked carbon nanotubes, oxidized carbon nanotubes, functionalized carbon nanotubes (terminal modification and / or sidewall modification), and metals (vapor deposition or sputtering) The antistatic antibacterial film material according to claim 1 or 2, which is at least one selected from carbon nanotubes. 前記塗膜層がバインダー樹脂を含み、前記キレート錯体、及び前記カーボンナノチューブとの含有量が、前記塗膜層に対して0.1〜6質量%である請求項1〜3の何れか1項に記載の帯電防止性抗菌膜材。   The said coating film layer contains binder resin, The content with the said chelate complex and the said carbon nanotube is 0.1-6 mass% with respect to the said coating film layer, The any one of Claims 1-3 Antistatic antibacterial film material described in 4. 前記塗膜層が、シリカ、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化セリウム、及びアルミナ、から選ばれた1種以上のナノ粒子と、シラン化合物とをさらに含み、前記塗膜層に対して0.1〜5質量%のナノ粒子ネットワークを構成している請求項4に記載の帯電防止性抗菌膜材。   The coating layer further includes one or more nanoparticles selected from silica, titanium oxide, zinc oxide, tin oxide, zirconium oxide, cerium oxide, and alumina, and a silane compound, and the coating layer 5. The antistatic antibacterial film material according to claim 4, which comprises a nanoparticle network of 0.1 to 5% by mass. 前記塗膜層が、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、ポリエチレンジオキチオフェン、及びこれらのドーピング体、から選ばれた1種以上のπ電子共役系導電性ポリマーをさらに含み、その含有量が前記塗膜層に対して1〜25質量%である請求項4に記載の帯電防止性抗菌膜材。   At least one selected from the group consisting of polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, polyethylene dioxythiophenes, and doped bodies thereof. The antistatic antibacterial film material according to claim 4, further comprising a π electron conjugated conductive polymer of a content of 1 to 25% by mass with respect to the coating film layer. 前記塗膜層が、シリカ、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化セリウム、及びアルミナ、から選ばれた少なくとも1種のナノ粒子と、シラン化合物とによるナノ粒子ネットワークと、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体、から選ばれた少なくとも1種のπ電子共役系導電性ポリマーとをさらに含み、前記ナノ粒子と前記π電子共役系導電性ポリマーとの含有量が、前記塗膜層に対して1〜25質量%、かつ含有質量比率が1:10〜1:1である請求項4に記載の帯電防止性抗菌膜材。   The coating film layer is composed of at least one nanoparticle selected from silica, titanium oxide, zinc oxide, tin oxide, zirconium oxide, cerium oxide, and alumina, a nanoparticle network of a silane compound, and polypyrroles. And at least one π electron conjugated conductive polymer selected from polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof, The content of the nanoparticles and the π electron conjugated conductive polymer is 1 to 25% by mass with respect to the coating film layer, and the content mass ratio is 1:10 to 1: 1. Anti-static antibacterial film material.
JP2017224463A 2017-11-22 2017-11-22 Antistatic antibacterial membrane material Active JP6929543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224463A JP6929543B2 (en) 2017-11-22 2017-11-22 Antistatic antibacterial membrane material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224463A JP6929543B2 (en) 2017-11-22 2017-11-22 Antistatic antibacterial membrane material

Publications (2)

Publication Number Publication Date
JP2019093621A true JP2019093621A (en) 2019-06-20
JP6929543B2 JP6929543B2 (en) 2021-09-01

Family

ID=66970673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224463A Active JP6929543B2 (en) 2017-11-22 2017-11-22 Antistatic antibacterial membrane material

Country Status (1)

Country Link
JP (1) JP6929543B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341660A (en) * 2020-11-04 2021-02-09 科伦塑业集团股份有限公司 Antistatic polymer film and preparation method thereof
CN114213808A (en) * 2021-12-29 2022-03-22 扬州云翰塑料包装有限公司 Flame-retardant environment-friendly degradable composite packaging bag and processing method thereof
CN115651423A (en) * 2022-08-25 2023-01-31 江西华明纳米碳酸钙有限公司 Surface modified nano calcium carbonate and preparation method thereof
CN115678399A (en) * 2022-09-16 2023-02-03 曹晓燕 Anti-static coating of non-metal roller shaft
JP7348852B2 (en) 2020-01-29 2023-09-21 タイガースポリマー株式会社 Use of flexible hoses and flexible hoses

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196981A (en) * 2002-12-19 2004-07-15 Toyobo Co Ltd Resin molded article having conductive surface
JP2005336341A (en) * 2004-05-27 2005-12-08 Mitsubishi Rayon Co Ltd Composition containing carbon nanotube, composite material having coating film made thereof and method for producing the same
JP2006507380A (en) * 2002-07-23 2006-03-02 ゼネラル・エレクトリック・カンパニイ Conductive thermoplastic composite and manufacturing method
JP2007056125A (en) * 2005-08-24 2007-03-08 Mitsubishi Rayon Co Ltd Curing composition comprising carbon nano-tube and composite having cured coated film thereof
JP2007106023A (en) * 2005-10-14 2007-04-26 Kawamura Shigeru Cork sheet and its manufacturing method
JP2007531639A (en) * 2003-07-03 2007-11-08 ダウ・ライヒホールド・スペシャルティ・ラテックス、リミテッド・ライアビリティ・カンパニー Antibacterial and antistatic polymers and methods of using such polymers on various substrates
JP2008280450A (en) * 2007-05-11 2008-11-20 Dainichiseika Color & Chem Mfg Co Ltd Coating liquid
JP2009023886A (en) * 2007-07-20 2009-02-05 Nara Institute Of Science & Technology Carbon nanotube dispersion liquid, its production process and its use
KR20090027132A (en) * 2007-09-11 2009-03-16 나노캠텍주식회사 Organic-inorganic transparent conductive composition and transparent electrode and antistatic film, sheet, tray employing the same and the manufacturing method thereof
JP2010523452A (en) * 2007-05-30 2010-07-15 エルジー・ケム・リミテッド Carbon nanotube dispersant containing metal complex
JP2011525199A (en) * 2008-05-06 2011-09-15 マラード クリーク ポリマーズ,インコーポレーテッド Antibacterial and antistatic polymers and methods of using such polymers on various substrates
JP2012512144A (en) * 2008-12-15 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Process for preparing a readily dispersible solid N'-hydroxy-N-cyclohexyldiazenium oxide salt
JP2017122052A (en) * 2016-01-04 2017-07-13 平岡織染株式会社 Film material for tent structure

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507380A (en) * 2002-07-23 2006-03-02 ゼネラル・エレクトリック・カンパニイ Conductive thermoplastic composite and manufacturing method
JP2004196981A (en) * 2002-12-19 2004-07-15 Toyobo Co Ltd Resin molded article having conductive surface
JP2012035628A (en) * 2003-07-03 2012-02-23 Mallard Creek Polymers Inc Antimicrobial and antistatic polymers and methods of using such polymers on various substrates
JP2007531639A (en) * 2003-07-03 2007-11-08 ダウ・ライヒホールド・スペシャルティ・ラテックス、リミテッド・ライアビリティ・カンパニー Antibacterial and antistatic polymers and methods of using such polymers on various substrates
JP2005336341A (en) * 2004-05-27 2005-12-08 Mitsubishi Rayon Co Ltd Composition containing carbon nanotube, composite material having coating film made thereof and method for producing the same
JP2007056125A (en) * 2005-08-24 2007-03-08 Mitsubishi Rayon Co Ltd Curing composition comprising carbon nano-tube and composite having cured coated film thereof
JP2007106023A (en) * 2005-10-14 2007-04-26 Kawamura Shigeru Cork sheet and its manufacturing method
JP2008280450A (en) * 2007-05-11 2008-11-20 Dainichiseika Color & Chem Mfg Co Ltd Coating liquid
JP2010523452A (en) * 2007-05-30 2010-07-15 エルジー・ケム・リミテッド Carbon nanotube dispersant containing metal complex
JP2009023886A (en) * 2007-07-20 2009-02-05 Nara Institute Of Science & Technology Carbon nanotube dispersion liquid, its production process and its use
KR20090027132A (en) * 2007-09-11 2009-03-16 나노캠텍주식회사 Organic-inorganic transparent conductive composition and transparent electrode and antistatic film, sheet, tray employing the same and the manufacturing method thereof
JP2011525199A (en) * 2008-05-06 2011-09-15 マラード クリーク ポリマーズ,インコーポレーテッド Antibacterial and antistatic polymers and methods of using such polymers on various substrates
JP2012512144A (en) * 2008-12-15 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Process for preparing a readily dispersible solid N'-hydroxy-N-cyclohexyldiazenium oxide salt
JP2017122052A (en) * 2016-01-04 2017-07-13 平岡織染株式会社 Film material for tent structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348852B2 (en) 2020-01-29 2023-09-21 タイガースポリマー株式会社 Use of flexible hoses and flexible hoses
CN112341660A (en) * 2020-11-04 2021-02-09 科伦塑业集团股份有限公司 Antistatic polymer film and preparation method thereof
CN112341660B (en) * 2020-11-04 2021-06-22 科伦塑业集团股份有限公司 Antistatic polymer film and preparation method thereof
CN114213808A (en) * 2021-12-29 2022-03-22 扬州云翰塑料包装有限公司 Flame-retardant environment-friendly degradable composite packaging bag and processing method thereof
CN114213808B (en) * 2021-12-29 2022-10-14 扬州云翰塑料包装有限公司 Flame-retardant environment-friendly degradable composite packaging bag and processing method thereof
CN115651423A (en) * 2022-08-25 2023-01-31 江西华明纳米碳酸钙有限公司 Surface modified nano calcium carbonate and preparation method thereof
CN115651423B (en) * 2022-08-25 2023-10-13 江西华明纳米碳酸钙有限公司 Surface modified nano calcium carbonate and preparation method thereof
CN115678399A (en) * 2022-09-16 2023-02-03 曹晓燕 Anti-static coating of non-metal roller shaft

Also Published As

Publication number Publication date
JP6929543B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP2019064078A (en) Antistatic antibacterial film material
JP2019093621A (en) Antistatic antibacterial film material
JP2019093620A (en) Antistatic antibacterial film material
JP6963299B2 (en) Antistatic antibacterial membrane material
JP6119009B2 (en) Industrial material sheet
CN102089368B (en) Substrate coating comprising a complex of an ionic fluoropolymer and surface charged nanoparticles
US9138000B2 (en) Antimicrobial polymer systems using multifunctional organometallic additives for wax hosts
JP6678037B2 (en) Membrane materials for tent structures
JP6590687B2 (en) Resin composition for tent structure film material
JP2019093622A (en) Static electricity countermeasure film material for industrial material
WO2007035027A1 (en) Adhesive sheet and manufacturing method thereof
JP4017030B2 (en) Aesthetic-sustainable laminated film material
JP6119010B2 (en) Industrial material sheet
JP3994191B2 (en) Thermal barrier antifouling film material
JP6675200B2 (en) Membrane materials for tent structures
JP7333076B2 (en) Antistatic antibacterial antifungal film material
JP2019064077A (en) Antistatic antibacterial film material
JP6678032B2 (en) Membrane materials for tent structures
Sbai et al. The recent advances in nanotechnologies for textile functionalization
JP2019093624A (en) Antistatic antibacterial film material
JP2019093623A (en) Antistatic antibacterial film material
JP6852914B2 (en) Membrane material for tent structures
JP6883319B2 (en) Membrane material for seat shutter
JP2019072937A (en) Static electricity countermeasure film material for industrial material
JP2015063494A (en) Mesh sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210803

R150 Certificate of patent or registration of utility model

Ref document number: 6929543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150