JP2019092365A5 - - Google Patents

Download PDF

Info

Publication number
JP2019092365A5
JP2019092365A5 JP2017231137A JP2017231137A JP2019092365A5 JP 2019092365 A5 JP2019092365 A5 JP 2019092365A5 JP 2017231137 A JP2017231137 A JP 2017231137A JP 2017231137 A JP2017231137 A JP 2017231137A JP 2019092365 A5 JP2019092365 A5 JP 2019092365A5
Authority
JP
Japan
Prior art keywords
flywheel
power supply
output
pulse power
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017231137A
Other languages
Japanese (ja)
Other versions
JP2019092365A (en
JP6923858B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2017231137A priority Critical patent/JP6923858B2/en
Priority claimed from JP2017231137A external-priority patent/JP6923858B2/en
Publication of JP2019092365A publication Critical patent/JP2019092365A/en
Publication of JP2019092365A5 publication Critical patent/JP2019092365A5/ja
Application granted granted Critical
Publication of JP6923858B2 publication Critical patent/JP6923858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

直流パルス電源装置DC pulse power supply

本発明は、パルス的直流電流を発生する直流パルス電源装置に関するものである。 The present invention relates to a DC pulse power supply device that generates a pulsed direct current.

磁気閉じ込め核融合実験装置では、プラズマ閉じ込めるために強い磁界が必要である。
磁界は、銅線を多数回巻いた磁界コイルに電流を流すことで得られるが、強い磁界を得るためには、大電流を流す必要がある。磁界コイルには磁気エネルギーが蓄積されるため、電源はそのエネルギーを供給するものであったまた電流による電線の温度上昇からの制限で、通電は短時間である。短時間のパルス大電流直流と励磁のための高電圧の電源が必要である。そのため磁界装置を駆動するにはエネルギーを蓄積した高電圧の直流パルス電源装置が必要である。
Magnetic confinement fusion experimental equipment requires a strong magnetic field to confine the plasma.
A magnetic field is obtained by passing a current through a magnetic field coil in which a copper wire is wound many times, but in order to obtain a strong magnetic field, it is necessary to pass a large current. Since magnetic energy is stored in the magnetic field coil, the power supply supplies that energy . In addition , energization is short due to the limitation from the temperature rise of the electric wire due to the electric current. A short-time pulsed large current DC and a high voltage power supply for excitation are required. Therefore, a high-voltage DC pulse power supply device that stores energy is required to drive the magnetic field device.

従来、このようなパルス大電流電源はコンデンサを多数直列並列にして大きなコンデンサ・バンクとし、電界のエネルギーとしてエネルギーを蓄積して、そのエネルギーをコイルに放電をすることでパルス大電流を得ていた。このような急速な放電を行なうコンデンサはその放電回数寿命があって、回数が数万回から数千回の放電回数で、また、コンデンサが内部短絡を起こして破壊されるとき、コンデンサ・バンクの全エネルギーが故障コンデンサに集中して放電するためエネルギーがマイクロ秒で爆発的に放出され、短時間で大電流が流れて、その電磁力と熱で破壊される。また、一般に静電エネルギーはその蓄積エネルギー密度が低く、エネルギー量が数MJを超えるものは大規模になって困難である。近年の進歩したフィルムコンデンサは、残り寿命が静電容量の変化で予測できるが、充放電回数に限りがあるのは同じである。また、コンデンサの充電には高圧電源を必要とし、充電されている間、耐電圧上の問題が生じて、放電破壊する短絡地絡事故が起こる可能性の時間が長く、待機時に人間の感電事故の可能性も大きくなる。 Conventionally, in such a pulsed large current power supply, a large number of capacitors are arranged in series in parallel to form a large capacitor bank, energy is stored as energy of an electric field, and the energy is discharged to a coil to obtain a pulsed large current. .. Capacitors that perform such rapid discharges have a limited number of discharges, with tens of thousands to thousands of discharges, and when the capacitor is destroyed due to an internal short circuit, the capacitor bank. Since all the energy of the capacitor is concentrated and discharged to the faulty capacitor , the energy is explosively released in microseconds, a large current flows in a short time, and it is destroyed by its electromagnetic force and heat. Further, in general, electrostatic energy has a low stored energy density, and it is difficult for electrostatic energy to have an energy amount exceeding several MJ on a large scale. The remaining life of recent advanced film capacitors can be predicted by the change in capacitance, but the number of charge / discharge cycles is the same. In addition, a high-voltage power supply is required to charge the capacitor, and while it is being charged, problems with withstand voltage occur, and there is a long time that a short circuit or ground fault accident that causes discharge destruction may occur, resulting in human electric shock during standby. The possibility of an accident also increases.

その他、パルスの大電流を得るには電力用遮断器などの合成試験法として、短時間の交流大電流が必要で、試験方法として、従来から同期発電機を短絡させて短時間発生させる方法である短絡発電機法があった。所謂、短絡試験場であるが同期発電機を回転させ交流電圧を発生させておき、出力開閉器を介して短絡電流を発生させる。ここでは発電機自身の回転モーメントに蓄積されたエネルギーと界磁のダンパー巻線が界磁磁束を維持する時間の短時間、数10mSから数100mSの間、大きな電流を取り出すことができるが同期発電機を使う短絡発電機法は励磁の制御、投入位相の制御などで電流値が変わるなど制御装置などが大掛かりになので簡単なコンデンサ・バンク式直流パルス電源の代替えにはならない。 Other methods for obtaining a pulsed large current as a synthetic test methods, such as power breaker, requires short alternating large current, which as a test method to generate a short time by short-circuiting the synchronous generator from the prior There was a short-circuit generator method. Called, it is a short-circuit test site, allowed to generate an AC voltage to rotate the synchronous generator, to generate a short-circuit current through the output switch. Here short time damper winding of the generator itself stored energy of the field in the rotational moment of maintaining the field magnetic flux is between a few 10mS number 100 mS, it can be taken out a large current, synchronous short generator method using the generator control of the excitation, the current value in such control of the closing phase and changes a control device bulky so ing, not a simple capacitor bank type substitute for DC pulse power supply.

特開2003−235179号公報Japanese Unexamined Patent Publication No. 2003-235179 特開2000−358344号公報Japanese Unexamined Patent Publication No. 2000-358344

例えば、ここで想定する磁界コイルは、トカマク型核融合実験装置のトロイダル磁界コイルであるがインダクタンス44mH,直流抵抗0.14Ω、電流は2.26kである。その電力は数百kW程度で、通電時間は約0.5秒で、必要とする電力エネルギーは400kJである。これをコンデンサ・バンクに求めると設置面積は相当大きくなる。例えば、3.5kV−4600uF−28kJのコンデンサは大きさ約500×300×950mmでこれを充電した電圧の70%、エネルギーの半分を放出するとして28台のコンデンサ約800kJが必要である。 For example, field coil assumed here is the toroidal field coils of the tokamak type nuclear fusion experimental devices, inductance 44MH, DC resistance 0.14, current is 2.26k A. The electric power is about several hundred kW, the energizing time is about 0.5 seconds, and the required electric power energy is 400 kJ. If this is obtained from the capacitor bank, the installation area will be considerably large. For example, a 3.5kV-4600uF-28kJ capacitor has a size of about 500 × 300 × 950 mm, and 28 capacitors of about 800kJ are required to release 70% of the charged voltage and half of the energy.

ここでフライホイールに注目したい。フライホイールの回転モーメントに蓄えられているエネルギーは大きく図4のタテ軸の汎用55kW誘導電動機に軸直結の鋼鉄製のフライホイールでも定格1500rpmのスピードで回転すると220kJのエネルギー蓄積装置となる。
従来の短絡試験場の短絡発電機が同期発電機である。同期発電機の短絡試験の例のように、電圧を維持する時間がダンパー巻線の時定数Td’’であって、磁界電流維持の時定数は短時間であって、100mS以下で界磁磁束が減衰する、すなわち短いパルス運転でしか、大電力を得られない。
I would like to pay attention to the flywheel here. The energy stored in the rotational moment of the flywheel is large , and even a steel flywheel directly connected to the general-purpose 55 kW induction motor with a vertical shaft in FIG. 4 becomes an energy storage device of 220 kJ when rotated at a rated speed of 1500 rpm.
The short-circuit generator of the conventional short-circuit test site is a synchronous generator. As in the example of the short-circuit test of the synchronous generator, the time constant for maintaining the voltage is the time constant Td'' of the damper winding, the time constant for maintaining the magnetic field current is short, and the field magnetic flux is 100 mS or less. Is attenuated, that is, a large amount of power can be obtained only by a short pulse operation.

誘導電動機は進相電流を供給すれば自己励磁現象で誘導発電機になることは知られている。特許文献1ではフライホイールを結合した誘導電動機を使って停電時のバックアップを行っている。この特許文献1では、誘導機は同期速度付近で空転しており、回転数の低下に応じて、バックアップ電力の周波数が低下する。そこは問題で、電圧が維持されれば短時間の停電、瞬低には問題ないとしているが、周波数の低下対策には大きなフライホイールを用意する必要がある。 It is known that an induction motor becomes an induction generator by a self-exciting phenomenon if a phase-advancing current is supplied. In Patent Document 1, an induction motor combined with a flywheel is used to back up in the event of a power failure. In Patent Document 1, the induction machine is idling near the synchronous speed, and the frequency of the backup power decreases as the rotation speed decreases. There is a problem, and if the voltage is maintained, there is no problem with short-term power outages and momentary lows, but it is necessary to prepare a large flywheel as a countermeasure against frequency reduction.

本発明は、磁界発生装置の電源として、短寿命の、高電圧で、短絡事故の危険のあるコンデンサ・バンクに代わって、安全で長寿命な直流パルス大電力を小型な装置で提供することを課題とする。 The present invention provides a safe, long-life DC pulse high power in a compact device as a power source for a magnetic field generator, in place of a short-life, high-voltage, short-circuit-risk capacitor bank. Make it an issue.

本発明は、フライホイールをつけた誘導電動機を高速回転させてコンデンサによる進相電流で自己励磁させ、併せて出力電圧を制御し、その交流電力をダイオード整流器などで直流に変換して直流パルス電源装置とすることを特徴とする。 In the present invention, an induction motor equipped with a fly wheel is rotated at high speed and self-excited by a phase-advancing current of a capacitor, and at the same time, the output voltage is controlled, and the AC power is converted into DC by a diode rectifier or the like to be a DC pulse power supply. It is characterized by being a device .

本発明の直流パルス電源装置は、フライホイールの回転でエネルギーを蓄積するので感電の心配が無く、長寿命、小形で、汎用の誘導電動機が使えるという利点がある。 Since the DC pulse power supply device of the present invention stores energy by the rotation of the flywheel, there is no concern about electric shock, and there is an advantage that a general-purpose induction motor can be used with a long life and a small size.

フライホイール付き誘導機を用いた直流パルス電源装置の回路を示した説明図である。(実施例1)It is explanatory drawing which showed the circuit of the DC pulse power supply device using the induction machine with a flywheel. (Example 1) フライホイール付き誘導機を2台並列接続し、通電時、直流電圧を変化するタップ付き変圧器を用いた直流パルス電源装置の回路を示した説明図である。(実施例2)It is explanatory drawing which showed the circuit of the DC pulse power supply device which used the transformer with the tap which changes the DC voltage when energized by connecting two induction machines with a flywheel in parallel. (Example 2) 55kWのフライホイール付き誘導電動機による自励現象の実験結果である。直流電流(A)と電圧出力(V)の波形、さらに直流電力出力波形(kW)。(1)は全体波形である。(2)はその時間方向の拡大波形を示したものであるThis is the experimental result of the self-excitation phenomenon by the induction motor with a 55kW flywheel. Waveforms of DC current (A) and voltage output (V), and DC power output waveform (kW). (1) is the overall waveform. (2) is obtained by shows an enlarged waveform of the time direction. 220kJ−1500rpmのフライホイール付き55kW誘導電動機の外観を示す写真である It is a photograph which shows the appearance of the 55kW induction motor with a flywheel of 220kJ-1500rpm.

本発明に係るフライホイール誘導機による直流パルス電源装置は、核融合実験装置の磁界発生装置をパルス駆動する従来のコンデンサ・バンクをエネルギー源とした電源の代わりとなるものである。The DC pulse power supply device using the flywheel inducer according to the present invention is a substitute for a power supply using a conventional capacitor bank as an energy source for pulse-driving the magnetic field generator of the fusion experimental device.

図1は、本発明の実施例1の回路図であって、参照符号で示すのは誘導電動機の駆動用のインバータであり、インバータ3は配電系などからの直流電力を得て、誘導電動機を始動から最高速度まで駆動し、そこで待機する。パルス出力の後、フライホイール2を再加速するに、数分から10分程度を想定しているので配電系からの受電電力はわずかの増分である。インバータのモーター制御は回転スピード制御、定電力制御、出力電圧制御をする制御装置(不図示)で行うが、加速終了後、インバータを電圧維持のために進相電力を供給するSVC(Static Var Compensator)動作をさせるのが好ましいが、簡単には、加速終了時、図示はしていないがインバータの出力を交流開閉器で3相とも遮断してから発電することでも可能である。同様に図示はしていないが回転スピード、電圧・電流などシステム全体を制御監視する制御装置が必要である。 FIG. 1 is a circuit diagram of a first embodiment of the present invention, in which reference numeral 3 indicates an inverter for driving an induction motor 1 , and the inverter 3 obtains DC power from a distribution system or the like to induce. The electric motor 1 is driven from the start to the maximum speed and stands by there. Since it is assumed that it takes about several minutes to 10 minutes to re-accelerate the flywheel 2 after the pulse output , the power received from the distribution system is a slight increment. The motor of the inverter 3 is controlled by a control device (not shown) that controls the rotation speed, constant power, and output voltage. After the acceleration is completed, the inverter 3 is supplied with phase-advancing power to maintain the voltage. var Compensator) is preferably Ru is an operation, briefly, at the end of acceleration, although not shown it is possible in that the generator to shut off all three phase output of the inverter 3 in the AC switch 7 .. Similarly, although not shown, a control device that controls and monitors the entire system such as rotation speed, voltage and current is required.

フライホイール2はここでは鋼鉄製のフライホイールを大気圧中で回転させるが、空転損は多少大きくても、実験装置の電源は運転時間が短いので問題ない。特許文献2によれば大気圧ヘリウム中で空転損は3分の1になるので、運転時間が長時間に及ぶ場合は、この技術を採用するべきである。高速で回転するフライホイールは高真空容器9の中で運転されるが、真空を維持する真空ポンプ(不図示)の電力が必要で、ヘリウム大気圧中で発電機の同期速度付近で回転する鋼鉄製フライホイールの運転電力は少ない。(請求項3)
図1の参照符号で示すのは汎用の誘導電動機で、本発明では、発電機を高価な同期発電機ではなく1kWから1000kW程度まで一般に市販されている「かご型誘導電動機」を発電機として採用する。誘導電動機は進相コンデンサを並列に接続すれば自励現象で誘導発電機になる。誘導発電機としての効率は同容量の同期発電機より2%程度良いと言う報告もある。
Flywheel 2 is here rotating steel flywheel at atmospheric pressure, even if the idle loss slightly larger, the power of the experimental apparatus is no problem because the short operating time. According to Patent Document 2, since the idle loss becomes one third at atmospheric pressure helium, if the operation time span long time, should employ this technique. The flywheel 2 that rotates at high speed is operated in the high vacuum vessel 9, but requires the power of a vacuum pump (not shown) to maintain the vacuum, and rotates near the synchronous speed of the generator in helium atmospheric pressure. The operating power of the steel flywheel is low. (Claim 3)
Reference numeral 1 in FIG. 1 indicates a general-purpose induction motor. In the present invention, the generator is not an expensive synchronous generator but a "cage-type induction motor" generally available on the market from 1 kW to about 1000 kW as a generator. adopt. If the phase-advancing capacitor 4 is connected in parallel, the induction motor 1 becomes an induction generator by a self-excited phenomenon. There is also a report that the efficiency as an induction generator is about 2% better than that of a synchronous generator of the same capacity.

進相コンデンサ4の容量は発電出力や周波数によって決定することが必要で、固定の進相コンデンサであって、多少大きすぎても誘導機の励磁の飽和現象で安定するので、繰り返し同じ条件で実験運転をするトカマク型核融合実験装置のトロイダル磁界コイルの電源としては十分である。 The capacity of the phase-advancing capacitor 4 needs to be determined by the power generation output and frequency, and even if it is a fixed phase-advancing capacitor, it will be stable due to the saturation phenomenon of the excitation of the inducer even if it is a little too large. It is sufficient as a power source for the toroidal magnetic field coil of the tokamak fusion experimental device that operates.

誘導電動で発電した交流電力はダイオード整流器5で直流に変換して負荷6である磁界コイルに給電する。ダイオード整流器は0.5秒程度の短時間通電であるので冷却装置が不要なのでコンパクトなものになる。 AC power generated by the induction motor 1 is converted into DC by the diode rectifier 5 to power the field coil is the load 6. Since the diode rectifier 5 is energized for a short time of about 0.5 seconds, it does not require a cooling device and is compact.

実施例2は、さらに本発明の発展例であるが、図2に示すように、ダイオード整流器の前に交流電圧を変える変圧器8があって、負荷に合わせて電圧を変えるなどして、そのタップチェンジを高速切り替え開閉器7で行っているので、通電中直流出力電圧の制御も可能になる。トロイダル磁界コイルは時定数が0.5秒近くあるので、この程度の数10mSの制御でコイル電流の一定制御、フラットトップが十分可能である。 The second embodiment is a further development example of the present invention. As shown in FIG. 2, there is a transformer 8 that changes the AC voltage in front of the diode rectifier 5 , and the voltage is changed according to the load. Since the tap change is performed by the high-speed switching switch 7, it is possible to control the DC output voltage during energization. Since the toroidal magnetic field coil has a time constant of nearly 0.5 seconds, constant control of the coil current and flat top are sufficiently possible with control of several tens of mS.

また誘導機はすべり周波数に比例して出力分担されるので並列運転が可能で図2では、誘導機とフライホイールが2台の並列接続を示しているが、電気的に複数台を並列接続するのみで、電力、エネルギーともに容量を増すことができる。さらに、図2ではフライホイールと誘導機の風損を低減し、冷却し、かつ電気的耐圧もある特許文献2に記載のフライホイール用のガス、即ち、ヘリウムに空気を混合した大気圧のガスに封じるための密閉容器9も図示している。 Since the induction machine is power sharing in proportion to the slip frequency, can be operated in parallel, in FIG. 2, the induction machine 1 and the flywheel 2 indicates a parallel connection of two, electrically plurality The capacity of both power and energy can be increased simply by connecting the two in parallel. Further, in FIG. 2, the gas for the flywheel described in Patent Document 2, which reduces the wind damage of the flywheel 2 and the inducer 1 , cools, and has an electrical withstand voltage, that is, the atmospheric pressure obtained by mixing air with helium. A closed container 9 for sealing in the gas of the above is also shown.

図3は、図4に示す220kJ、1500rpmのフライホイールを軸直結のタテ軸型の誘導電動機55kWによるパルス直流電力出力の実証実験の結果である。実験では無負荷時、進相コンデンサで自己励磁することで、直流電圧を出力することが可能であって、それを開閉器のオンでダイオード整流器を介して直流出力を発生して、時定数0.5秒程度で減衰する直流電流が出せることを示している。これは誘導電動機が定格の2倍以上の過渡的出力を出せることを示している。 FIG. 3 shows the results of a demonstration experiment of pulsed DC power output by a vertical shaft type induction motor 55 kW in which a 220 kJ, 1500 rpm flywheel shown in FIG. 4 is directly connected to the shaft. In the experiment, when there is no load, it is possible to output a DC voltage by self-exciting with a phase-advancing capacitor, and when the switch is turned on, a DC output is generated via a diode rectifier, and the time constant is 0. It shows that a direct current that decays in about 5 seconds can be generated. This indicates that the induction motor can produce a transient output that is more than twice the rated value.

産業上では、磁界発生装置以外にパルス的直流大電流が多く使われている。例えば、放電加工機やスポット溶接では、パルス電流源にコンデンサの放電を使っている。また短時間のパルス動作を繰り返すインバータが、エネルギー源として電圧源コンデンサを使う場合、コンデンサの充放電は発熱があって寿命が短く、放電回数に制限が生じる。特に問題なのはコンデンサの寿命がしばしば、火災や爆発的事象で終わることである。ここにも本発明のフライホイール誘導機をエネルギー源にすれば、定格トルクの範囲内では繰り返し回数に制限は無いし、エネルギーをフライホイールで蓄積しているので、発電しなければ、感電事故や放電破壊事故は無いので安全である。 In industry, a large pulsed direct current is often used in addition to the magnetic field generator. For example, electric discharge machines and spot welding use capacitor discharge as a pulse current source. Further, when an inverter that repeats a pulse operation for a short time uses a voltage source capacitor as an energy source, the charging and discharging of the capacitor generates heat and has a short life, and the number of discharges is limited. Of particular concern is the life of capacitors, which often ends in a fire or explosive event. If the flywheel inducer of the present invention is used as an energy source here as well, there is no limit to the number of repetitions within the range of the rated torque, and the energy is stored in the flywheel. It is safe because there is no discharge destruction accident.

1 誘導機(かご型誘導電動機)
2 フライホイール
3 インバータ
4 進相コンデンサ
5 ダイオード整流器
6 磁界コイル
7 開閉器、または高速切替器
8 変圧器、またはタップ付き変圧器
9 密閉容器
1 Induction motor (squirrel-cage induction motor)
2 Flywheel 3 Inverter 4 Phase-advancing capacitor 5 Diode rectifier 6 Magnetic field coil 7 Switch or high-speed switch 8 Transformer or tapped transformer 9 Sealed container

Claims (4)

フライホイールにより回転する誘導電動機の端子に進相コンデンサを接続して、自己励磁現象による交流電力を発生させる誘導発電機となし、交流出力から整流器を介して直流出力を得る直流パルス電源装置Connect a phase advance capacitor to the terminals of the induction motor to be rotated by the flywheel, the self-excitation phenomenon without the induction generator to generate AC power by the DC pulse power supply device for obtaining a DC output through rectifier from AC output. 誘導発電機の交流出力を、変圧器のタップの切り替えによって出力直流電圧電流を制御する請求項1に記載の直流パルス電源装置The DC pulse power supply device according to claim 1, wherein the AC output of the induction generator is controlled by switching the tap of the transformer to control the output DC voltage and current. フライホイールと結合して回転する誘導機の風損を低減するために、密閉容器に納めて、ヘリウムと空気との大気圧の混合ガスで満たして運転する請求項1に記載の直流パルス電源装置The DC pulse power supply device according to claim 1, which is housed in a closed container and filled with a mixed gas of atmospheric pressure of helium and air in order to reduce wind damage of an inducer that rotates in combination with a flywheel. .. パルス電力とエネルギーを増加させるために、フライホイール付き誘導電動機を複数台、電気的に並列接続する請求項1に記載の直流パルス電源装置
The DC pulse power supply device according to claim 1, wherein a plurality of induction motors with flywheels are electrically connected in parallel in order to increase pulse power and energy.
JP2017231137A 2017-11-13 2017-11-13 DC pulse power supply Active JP6923858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017231137A JP6923858B2 (en) 2017-11-13 2017-11-13 DC pulse power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017231137A JP6923858B2 (en) 2017-11-13 2017-11-13 DC pulse power supply

Publications (3)

Publication Number Publication Date
JP2019092365A JP2019092365A (en) 2019-06-13
JP2019092365A5 true JP2019092365A5 (en) 2020-12-24
JP6923858B2 JP6923858B2 (en) 2021-08-25

Family

ID=66836824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017231137A Active JP6923858B2 (en) 2017-11-13 2017-11-13 DC pulse power supply

Country Status (1)

Country Link
JP (1) JP6923858B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514715A (en) * 2021-04-20 2021-10-19 核工业西南物理研究院 Single capacitor overcurrent fault real-time indication circuit when a large number of capacitors are connected in parallel
JP7001303B1 (en) * 2021-09-07 2022-01-19 株式会社シグマエナジー Charge / discharge system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622900A (en) * 1985-06-26 1987-01-08 Toshiba Corp Power source for nuclear fusion reactor
JPS63265596A (en) * 1987-04-21 1988-11-02 Mitsubishi Electric Corp Electric power generating set
JP3750045B2 (en) * 1999-06-11 2006-03-01 財団法人理工学振興会 Electric equipment cooling gas
JP3640656B2 (en) * 2001-12-05 2005-04-20 財団法人理工学振興会 Uninterruptible power system
JP2006238684A (en) * 2005-01-28 2006-09-07 Tokyo Institute Of Technology Stabilized power supply system including induction motor with flywheel connected in parallel

Similar Documents

Publication Publication Date Title
US8427116B2 (en) Starting/generating system with multi-functional circuit breaker
JP6923858B2 (en) DC pulse power supply
JP2019092365A5 (en)
WO2018235189A1 (en) Thyristor starting device
Käsemann et al. Pulsed power supply system of the ASDEX upgrade Tokamak research facility
Murayama et al. Combination of flywheel energy storage system and boosting modular multilevel cascade converter
EP1995868A2 (en) Wide speed range electric power generation system using high reactance permanent magnet machine
JP2016015824A (en) Exciting device of ac exciter
US9641114B2 (en) Generator system and method of operation
JP2004242397A (en) Power facility for emergency motor of power generation plant
KR101417509B1 (en) Synchronous generator system haing dual rotor
US9634595B2 (en) Method and a generator system for operating a generator
JP3847740B2 (en) Power generator
JP6781343B2 (en) Thyristor starter
JP5863817B2 (en) Aircraft power circuit including asynchronous machine
JP2011239553A (en) Power supply method for power supply system and power supply system
JP2004048988A (en) Switched reluctance machine
JP2011050167A (en) Secondary excitation-type power generation system
Kimura et al. Emergency power supply using flywheel and doubly fed induction generator
CN110635614B (en) Series voltage compensation type flywheel pulse generator system
Safonov et al. The influence of power system parameters on breaks of fault currents in the generator circuit breaker
Zaleskis et al. Self-Excitation System for Synchronous Generator
Santoso et al. SELF-EXCITING CAPACITOR CIRCUIT FOR A LOW-POWER, LOW-SPEED SINGLE-PHASE INDUCTION GENERATOR
EP2912765B1 (en) Dynamo-electric machine
Kato et al. Development of voltage sag compensator and UPS using a flywheel induction motor and an engine generator