JP3750045B2 - Electric equipment cooling gas - Google Patents

Electric equipment cooling gas Download PDF

Info

Publication number
JP3750045B2
JP3750045B2 JP20210899A JP20210899A JP3750045B2 JP 3750045 B2 JP3750045 B2 JP 3750045B2 JP 20210899 A JP20210899 A JP 20210899A JP 20210899 A JP20210899 A JP 20210899A JP 3750045 B2 JP3750045 B2 JP 3750045B2
Authority
JP
Japan
Prior art keywords
gas
generator
loss
cooling gas
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20210899A
Other languages
Japanese (ja)
Other versions
JP2000358344A (en
Inventor
隆一 嶋田
Original Assignee
財団法人理工学振興会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人理工学振興会 filed Critical 財団法人理工学振興会
Priority to JP20210899A priority Critical patent/JP3750045B2/en
Publication of JP2000358344A publication Critical patent/JP2000358344A/en
Application granted granted Critical
Publication of JP3750045B2 publication Critical patent/JP3750045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

【発明の目的】
【0001】
【発明の解決しようとする課題】
この発明は、立て軸型発電機やフライホイール付き電動発電機等の回転機の損失を低減する目的で機内の冷却ガスを風損が小さく、かつ電気的耐電圧のあるガスを提供しようとするものである。
【0002】
【産業上の利用分野】
発電機の冷却は発電機の形式が横軸型(タービンタイプ)の場合は主として水素を機内冷却ガスとして使用しているが立て軸型(水車タイプ)の場合は主として大気圧の空気をそのまま使用している。
【0003】
立て軸機は従来、毎分の回転数が横軸タービンタイプの場合と異なり低回転数であるため、回転にともなう風損を問題とはせずに、そのまま大気圧空気中で運転されてきた。
【0004】
近年、立て軸機も高速回転になりまたフライホイールを持つ発電機が実用化されるようになり、ローター回転転損の中で風損が大きくなって運転効率の観点で無視できなくなってきた。
【0005】
【本発明の目指すもの】
立て軸型発電機などの従来空気中で運転されてきた回転機などの電機機器の風損を低減するために、ヘリウムを主体にしたガスでかつ電気的耐電圧の低下を許容出来る範囲にできるように混合したガスを電機機器冷却ガスとして提供しようとするものである。
【0006】
【従来の技術】
立て軸型発電機の冷却には従来、大気圧の空気が用いられてきたが低速回転機であったため、風損は問題にされなかった。
【0007】
立て軸機も高速化され、またフライホイール付きが造られるようになると風損が大きくなり、例えば日本原子力研究所で1985年に建設された世界最大のフライホイール付き発電機では、定格スピードで風損が2650kWであった。
【0008】
横軸機ですでに実用化されている水素冷却を採用する検討をしたが、特にフライホイールの場合、高応力繰り返し疲労部の水素による性能劣化と運転保守上の問題があり、採用されていない。
【0009】
【発明が解決しようとする手段】
そこで、火気に対して安全で、高応力部に対しても問題のないヘリウムガスを用いれば風損は大きく低減できるため、純粋ヘリウムの耐電圧不足を補って、耐電圧を高くすることの可能な混合ガスを発明した。
【0010】
純粋に近いヘリウムは電気的耐電圧が同じ条件の空気のおよそ30%と低く、もし採用するのであれば、発電機内部の大幅な電気絶縁設計の見直しを必要とする。
【0011】
ヘリウムに絶縁耐力の大きなSF6(6弗化硫黄)のような負極性ガスを小量混合することにより、耐電圧を空気を同等に改善できれば、従来の絶縁設計のままでこの冷却ガスと置換することができる。
【0012】
【作用】
ヘリウムは電気的耐電圧が低いがこれに小量のSF6ガスを混合すれば、改善することは知られているがSF6は重いガスであり顕著な効果は得られず、またSF6ガスは地球温暖化ガスにして制限される可能性があり、また価格も高価である。
【0013】
風損は回転速度の約3乗で増えるが、ガスの密度に概略比例して大きく変わる。
【0014】
ヘリウムに空気を混合して、空気に較べ風損を低減し、かつ耐電圧も絶縁設計上許容できる十分な発電機冷却ガスを得ることが出来れば、既存の立て軸型発電機に対して大気圧で本発明のガスに置換し、漏れる分を補う簡単な密閉構造で風損を低減することができる。
【0015】
立て軸型発電機にフライホイールを直結したフライホイール付き発電機が核融合実験装置用電源や電力系統の安定化のために作られるようになったがその風損は例えば世界最大のフライホイールを持つ核融合装置JT−60トロイダル磁場コイル電源の発電機では2650kWの風損がある。
【0016】
これに本発明の電機機器冷却ガスを使えば、風損は半減し、1300kWもの運転電力の削減が可能である。
【実施例】
【0017】
風損の実測を回転円板を用いて種々の混合比のガス中の場合について行った。
【0018】
方法はガス中に回転円板を置き、高速回転させた後、自然減速をさせてその時間とともに変化する回転数を記録し(図1参照)、回転体の回転モーメントは別に計算で求めてあるので回転数の変化から各回転数における回転損失が図2のように求められる。
【0019】
混合ガスの耐電圧の実測は球ギャップとエポキシ樹脂縁面ギャップについてAC電圧で行い、図3のような結果を得た。
【0020】
その結果、ヘリウムに対して空気を50%程度混合すると空気に対して風損を大幅に低減し、耐電圧についても空気の場合に対して許容できる発電機ローター冷却ガスが得られることがわかる。
【0021】
【発明の効果】
本発明を用いて、従来の立て軸型発電機の冷却ガスを大気圧のまま置換することで風損を56%に低減させことができる。
【0022】
先のJT−60用のフライホイール付き発電機は空転損が2650kWもあったが本発明を用いれば1100kWを削減できる。
【0023】
さらに、冷却についてはヘリウムが非常に優れた性能を発褌してくれるため、機内ブロワーの流速を下げることも考えられる。
【0024】
発電機の耐電圧は発電機ローターのスリップリングや電機子コイル接続部の絶縁が重要であるが、従来機をそのまま本発明のガスを使用する場合、その程度に応じて空気の混合比を増やしても良いがそれだけ風損低減の効果も下がる。
【0025】
新規の設計の場合、耐電圧の低いガス中での運転を考慮した絶縁設計が好ましく、ヘリウムの比率を大きくすることで風損低減の効果が上がる。
【0026】
以上の説明のように、この発明のヘリウムに空気を混合した発電機冷却ガスを用いることにより空気より風損を減少させることができ、併せて冷却効果も良くなる。
【0027】
回転体の風損を減らすことにより発電機やフライホイールの回転損失を低減でき、併せて冷却効果の上昇は冷却装置の合理化となり、総合的に電機機器のエネルギー効率を上昇させることができる。
【図面の簡単な説明】
【図1】ヘリウムと空気の混合ガスを容器に満たし、その中で回転機を自然減速状態で回転数の時間変化を計測した結果が図1である。
【図2】回転数の変化を計測した結果より空転損の変化を回転数毎に算出したのが図2である。
【図3】混合ガスの放電破壊電圧の実測は球ギャップとエポキシ樹脂縁面ギャップについてAC電圧で行い、図3のような結果を得た。
OBJECT OF THE INVENTION
[0001]
[Problem to be Solved by the Invention]
This invention intends to provide a gas having a low windage loss and an electric withstand voltage for cooling gas in the machine for the purpose of reducing the loss of a rotating machine such as a vertical shaft type generator or a motor generator with a flywheel. Is.
[0002]
[Industrial application fields]
For generator cooling, when the generator type is a horizontal shaft type (turbine type), hydrogen is mainly used as the internal cooling gas, but when it is a vertical shaft type (water turbine type), air at atmospheric pressure is used as it is. is doing.
[0003]
Conventionally, the vertical shaft machine has been operated in the atmospheric pressure air as it is without causing a problem of windage loss due to the rotation because the rotational speed per minute is low unlike the case of the horizontal turbine type. .
[0004]
In recent years, vertical shaft machines have also been rotating at high speed, and generators having flywheels have been put into practical use, and wind loss has become large among rotor rotation failures, and it has become impossible to ignore in terms of operating efficiency.
[0005]
[Target of the present invention]
In order to reduce windage loss of electrical equipment such as a rotary machine that has been operated in the air, such as a vertical shaft generator, it is possible to use a gas mainly composed of helium and to allow a reduction in electrical withstand voltage. The gas thus mixed is intended to be provided as a cooling gas for electrical equipment.
[0006]
[Prior art]
Conventionally, air at atmospheric pressure has been used for cooling the vertical shaft generator, but since it was a low-speed rotating machine, windage loss was not a problem.
[0007]
As the vertical shaft machine is also increased in speed and with a flywheel, wind damage increases. For example, the world's largest generator with a flywheel built in 1985 at the Japan Atomic Energy Research Institute The loss was 2650 kW.
[0008]
We examined the use of hydrogen cooling, which has already been put to practical use in horizontal axis machines, but in the case of flywheels in particular, it has not been adopted due to performance degradation due to hydrogen in high stress repeated fatigue parts and operational maintenance problems. .
[0009]
Means to be Solved by the Invention
Therefore, using helium gas that is safe against fire and has no problem even in high-stressed areas can greatly reduce windage loss, making it possible to increase the withstand voltage by compensating for the lack of withstand voltage of pure helium. Invented a new mixed gas.
[0010]
Nearly pure helium has an electrical withstand voltage as low as about 30% of air under the same conditions, and if adopted, requires a substantial redesign of the electrical insulation design inside the generator.
[0011]
If a small amount of negative gas such as SF6 (sulfur hexafluoride), which has a high dielectric strength, is mixed in helium, and if the withstand voltage can be improved to the same level, this cooling gas is replaced with the conventional insulation design. be able to.
[0012]
[Action]
Although helium has a low electrical withstand voltage, it is known to improve if it is mixed with a small amount of SF6 gas. However, SF6 is a heavy gas and no significant effect can be obtained. The gas may be limited and the price is also expensive.
[0013]
The windage loss increases at about the third power of the rotation speed, but varies greatly in proportion to the gas density.
[0014]
If sufficient generator cooling gas can be obtained by mixing air with helium to reduce windage loss compared to air and withstand voltage, the insulation design can be tolerated. By replacing the gas of the present invention with atmospheric pressure and compensating for leakage, windage loss can be reduced.
[0015]
A flywheel generator with a flywheel directly connected to a vertical shaft generator has been created to stabilize the power supply and power system for fusion experimental equipment. The generator of the fusion device JT-60 toroidal magnetic field coil power source has a wind loss of 2650 kW.
[0016]
If the electric equipment cooling gas of the present invention is used for this, the windage loss is halved and the operating power can be reduced by 1300 kW.
【Example】
[0017]
The actual measurement of windage loss was carried out in a gas with various mixing ratios using a rotating disk.
[0018]
The method is to place a rotating disk in the gas, rotate at high speed, and then decelerate naturally and record the number of rotations that change over time (see Fig. 1), and the rotational moment of the rotating body is calculated separately. Therefore, the rotational loss at each rotational speed is obtained from the change in the rotational speed as shown in FIG.
[0019]
Actual measurement of the withstand voltage of the mixed gas was performed with an AC voltage for the sphere gap and the epoxy resin edge gap, and the results as shown in FIG. 3 were obtained.
[0020]
As a result, it is understood that when about 50% of air is mixed with helium, the windage loss is greatly reduced with respect to the air, and the generator rotor cooling gas that can withstand the withstand voltage in the case of air can be obtained.
[0021]
【The invention's effect】
By using the present invention, the wind loss can be reduced to 56% by replacing the cooling gas of the conventional vertical shaft generator with the atmospheric pressure.
[0022]
The previous generator with flywheel for JT-60 had an idling loss of 2650 kW, but 1100 kW can be reduced by using the present invention.
[0023]
Furthermore, for cooling, helium produces very good performance, so it is possible to reduce the flow rate of the in-flight blower.
[0024]
Insulation of the generator rotor slip ring and armature coil connection is important for the withstand voltage of the generator, but when using the gas of the present invention as it is with a conventional machine, increase the air mixing ratio according to the degree. However, the effect of reducing windage loss is also reduced accordingly.
[0025]
In the case of a new design, an insulation design that considers operation in a gas with a low withstand voltage is preferable, and increasing the ratio of helium increases the effect of reducing windage loss.
[0026]
As described above, by using the generator cooling gas in which air is mixed with helium according to the present invention, the windage loss can be reduced compared to air, and the cooling effect is also improved.
[0027]
By reducing the windage loss of the rotating body, it is possible to reduce the rotation loss of the generator and the flywheel, and at the same time, the increase in the cooling effect becomes the rationalization of the cooling device, and the energy efficiency of the electrical equipment can be increased overall.
[Brief description of the drawings]
FIG. 1 shows the result of measuring a change in the number of revolutions with time when a mixed gas of helium and air is filled in a container and the rotating machine is in a natural deceleration state.
FIG. 2 is a diagram in which a change in idling loss is calculated for each rotation speed from the result of measuring the change in the rotation speed.
FIG. 3 shows the results of measurement of the discharge breakdown voltage of the mixed gas using AC voltage for the sphere gap and the epoxy resin edge gap, as shown in FIG.

Claims (1)

発電機で運転される回転体を有する電機機器において、前記回転体の風損を減らす目的でヘリウムガスに電気的耐電圧を上昇させるため、前記ヘリウムガスに対して空気を混合した大気圧のガスを、電機機器内空気に置換して運転することによって、風損による回転損失を低減することが可能で、発電機にフライホイールを直結したフライホイール付き発電機に適用される電機機器冷却ガス。In electric apparatus having a rotating body which is operated by the generator, to increase the electrical breakdown voltage in the helium gas for the purpose of reducing the windage loss of the rotating body, the atmospheric pressure of a mixed gas of air against the helium gas The electric equipment cooling gas applied to the generator with the flywheel that can reduce the rotation loss due to the wind loss and is directly connected to the generator.
JP20210899A 1999-06-11 1999-06-11 Electric equipment cooling gas Expired - Fee Related JP3750045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20210899A JP3750045B2 (en) 1999-06-11 1999-06-11 Electric equipment cooling gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20210899A JP3750045B2 (en) 1999-06-11 1999-06-11 Electric equipment cooling gas

Publications (2)

Publication Number Publication Date
JP2000358344A JP2000358344A (en) 2000-12-26
JP3750045B2 true JP3750045B2 (en) 2006-03-01

Family

ID=16452104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20210899A Expired - Fee Related JP3750045B2 (en) 1999-06-11 1999-06-11 Electric equipment cooling gas

Country Status (1)

Country Link
JP (1) JP3750045B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923858B2 (en) * 2017-11-13 2021-08-25 嶋田 隆一 DC pulse power supply
US11225905B1 (en) 2020-09-11 2022-01-18 Raytheon Technologies Corporation Supercritical fluid systems

Also Published As

Publication number Publication date
JP2000358344A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
US4935656A (en) High speed motor/generator for turbocharger
CN104201848B (en) A kind of double-stator permanent magnet vernier wind-driven generator
CN110971095B (en) Double-stator wind driven generator and power generation system
CN112003332A (en) Inertia-expandable phase modulator flywheel system and using method thereof
CN101001036A (en) Variable-speed constant-frequency wind motor, excitation control system thereof and control method thereof
JP3750045B2 (en) Electric equipment cooling gas
CN101001073A (en) Wind power generation excitation control method and serial double-rotor generator
CN201466812U (en) Horizontal axial rotating part electronic power supply device
RU2152118C1 (en) Slow-speed overhung multipole synchronous generator
CN107956640A (en) A kind of small-sized wind power generator
CN201742269U (en) Brushless excitation multiphase water-cooling synchronous wind driven generator
CN100492869C (en) Exciting magnetic control method of the dual-rotor wind power generation and its control system
CN100535434C (en) Tandem type wind electrical motor with dual rotors, and speed changing, frequency converting excitation system
CN107707076A (en) Wide scope speed change Shaft-Generator and axle generator design method
CN102237768A (en) Generator
CN101997371B (en) Radial magnetic field coreless permanent-magnet wind driven generator
CN107659094A (en) Energy-efficient string pole series Ultra-Low Speed direct driving motor
CN201004590Y (en) Serial permanent dual rotor wind electromotor and speed-varying and frequency-constant control system
CN207705935U (en) A kind of structure-improved for the anti-frizzle of edge banding machine plate
CN200987111Y (en) Series permanent-magnetic speed varying constant frequency excitation dual rotors wind motor
Naoe et al. A Three-Phase PM Generator with Double Rotors for Low-Head Hydropower–Trial Structure and Basic Characteristics
CN2416661Y (en) Backing double-rotor efficient generator
CN105449984A (en) Magnetic levitation repulsive force cycle power generation system
CN2585480Y (en) Reverse direction two rotator type high-efficiency generator
CN2035804U (en) Vertical single-phase alternating-current permanent magnetic water turbine-generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees