JP2019091335A - Power generation amount prediction device, power generation amount prediction system, power generation amount prediction method, and power generation amount prediction program - Google Patents
Power generation amount prediction device, power generation amount prediction system, power generation amount prediction method, and power generation amount prediction program Download PDFInfo
- Publication number
- JP2019091335A JP2019091335A JP2017220691A JP2017220691A JP2019091335A JP 2019091335 A JP2019091335 A JP 2019091335A JP 2017220691 A JP2017220691 A JP 2017220691A JP 2017220691 A JP2017220691 A JP 2017220691A JP 2019091335 A JP2019091335 A JP 2019091335A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- solar radiation
- amount
- radiation amount
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 347
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000005855 radiation Effects 0.000 claims description 262
- 238000004364 calculation method Methods 0.000 abstract description 40
- 238000013500 data storage Methods 0.000 description 36
- 238000010586 diagram Methods 0.000 description 10
- 230000010365 information processing Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 241000321453 Paranthias colonus Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Photovoltaic Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明の実施形態は、発電量予測装置、発電量予測システム、発電量予測方法及び発電量予測プログラムに関する。 Embodiments of the present invention relate to a power generation amount prediction device, a power generation amount prediction system, a power generation amount prediction method, and a power generation amount prediction program.
太陽光発電(PV:Photovoltaic)システムの発電量は、太陽光発電システムの発電効率と、電力の出力先である機器の状態とに応じて変化する。発電量予測装置は、太陽光発電システムの発電量を予測する場合がある。しかしながら、従来の発電量予測装置は、太陽位置気象補正係数、エリア気象環境係数、PVシステム係数等の多種のデータを扱わなければ、発電量を精度よく予測することができない場合があった。 The amount of power generation of a photovoltaic power generation (PV: Photovoltaic) system changes according to the power generation efficiency of the photovoltaic power generation system and the state of the device to which the power is output. The power generation amount prediction device may predict the power generation amount of the photovoltaic power generation system. However, the conventional power generation amount prediction apparatus may not accurately predict the power generation amount unless various data such as the solar position meteorological correction coefficient, the area meteorological environment coefficient, and the PV system coefficient are handled.
本発明が解決しようとする課題は、多種のデータを扱うことなく、発電量を予測する精度を向上させることが可能である発電量予測装置、発電量予測システム、発電量予測方法及び発電量予測プログラムを提供することである。 The problem to be solved by the present invention is a power generation amount prediction device, a power generation amount prediction system, a power generation amount prediction method, and a power generation amount prediction capable of improving the accuracy of predicting the power generation amount without handling various data. It is to provide a program.
実施形態の発電量予測装置は、区分部と、発電効率取得部と、係数取得部と、区分判定部と、予測部とを持つ。区分部は、日射量実績値の集合を複数の日射量区分に区分する。発電効率取得部は、日射量実績値ごとに発電効率を取得する。係数取得部は、発電効率に基づいて日射量区分ごとに係数を取得する。区分判定部は、日射量予測値が含まれている日射量区分がいずれの日射量区分であるかを判定する。予測部は、日射量予測値が含まれている日射量区分の係数と日射量予測値とに基づいて発電量予測値を取得する。 The power generation amount prediction apparatus according to the embodiment has a sorting unit, a power generation efficiency acquiring unit, a coefficient acquiring unit, a classification determining unit, and a predicting unit. The division unit divides the set of actual solar radiation amount values into a plurality of solar radiation amount classifications. The power generation efficiency acquisition unit acquires the power generation efficiency for each of the actual solar radiation amount values. A coefficient acquisition part acquires a coefficient for every solar radiation amount division based on power generation efficiency. The category determination unit determines which range of solar radiation amount the solar radiation amount category including the solar radiation amount predicted value is. The prediction unit acquires the power generation amount prediction value based on the solar radiation amount prediction coefficient and the coefficient of the solar radiation amount division in which the solar radiation amount prediction value is included.
以下、実施形態の発電量予測装置、発電量予測システム、発電量予測方法及び発電量予測プログラムを、図面を参照して説明する。 Hereinafter, a power generation amount prediction device, a power generation amount prediction system, a power generation amount prediction method, and a power generation amount prediction program according to the embodiment will be described with reference to the drawings.
図1は、発電量予測システム10の構成の例を示す図である。発電量予測システム10は、エネルギー機器最適運用システム1と、太陽光発電設備2と、気象情報提供設備3と、エネルギー設備4と、蓄電池設備5とを備える。エネルギー機器最適運用システム1は、例えば、分散電源EMS(Energy Management System)である。エネルギー機器最適運用システム1は、発電量の予測値に基づく制御信号を生成する。エネルギー機器最適運用システム1は、太陽光発電設備2、エネルギー設備4及び蓄電池設備5に、制御信号を出力する。以下において「取得する」とは、効率や係数等の値をデータテーブルから取得するという意味でもよいし、効率や係数等の値を算出するという意味でもよい。
FIG. 1 is a diagram showing an example of the configuration of a power generation
太陽光発電設備2は、太陽光を用いて発電する設備である。太陽光発電設備2の発電量は、太陽光発電システムの発電効率と、電力の出力先であるエネルギー設備の機器の状態等とに応じて変化する。太陽光発電システムの発電効率は、日射量に応じて変化する。エネルギー設備の機器の状態とは、例えば、電力を消費する機器の動作状態や、パワーコンディショナの変換効率である。
The solar
気象情報提供設備3は、気象情報を提供する設備である。気象情報は、例えば、日射量予報、風の強さの予報である。気象情報提供設備3は、日射量の予測値である日射量予報データを、気象情報に基づいて生成する。気象情報提供設備3は、日射量予報データをエネルギー機器最適運用システム1に提供する。
The weather
エネルギー設備4は、電力や燃料等のエネルギーを消費する設備である。エネルギー設備4は、電力等のエネルギーを消費する機器を備える。エネルギー設備4の機器は、エネルギー機器最適運用システム1から出力された制御信号に応じて、電力等のエネルギーを消費する。
The
蓄電池設備5は、リチウムイオン電池等の蓄電池を備える設備である。蓄電池は、エネルギー機器最適運用システム1から取得された制御信号に応じて、太陽光発電設備2によって発電された電力を蓄積する。蓄電池は、エネルギー機器最適運用システム1から取得された制御信号に応じて、エネルギー設備4に電力を出力する。
The
次に、エネルギー機器最適運用システム1の構成の例を説明する。
エネルギー機器最適運用システム1は、発電量予測装置11と、入出力部12と、発電量・日射量実績収集部13と、気象情報収集部14と、エネルギー機器計画部15と、エネルギー機器制御部16と、エネルギー機器運用パターン記憶部17とを備える。
Next, an example of the configuration of the energy device
The energy device
発電量予測装置11は、発電量を予測する情報処理装置である。発電量予測装置11は、太陽光発電設備2による発電量を、日射量予報に基づいて予測する。発電量予測装置11は、時間単位の発電量の予測値を表す発電量予測データを、エネルギー機器計画部15に出力する。
The power generation
以下、予測に用いられる日射量の上限閾値を「日射量上限判定ライン」という。以下、予測に用いられる日射量の下限閾値を「日射量下限判定ライン」という。 Hereinafter, the upper threshold of the amount of solar radiation used for prediction is referred to as “the upper limit determination line of solar radiation amount”. Hereinafter, the lower limit threshold of the amount of solar radiation used for prediction is referred to as “the lower limit determination line of solar radiation amount”.
入出力部12は、キーボード、マウス、タッチパネル等の操作デバイスである。入出力部12は、データを送信及び受信する通信装置でもよい。入出力部12は、日射量の区分を表す日射量区分データと、日射量上限判定ラインと、日射量下限判定ラインと、発電効率に関する係数(固定値)を算出するために必要とされる発電効率データの個数データとを取得する。入出力部12は、日射量区分データと、日射量上限判定ラインと、日射量下限判定ラインと、発電効率データの個数データとを、発電量予測装置11に出力する。
The input /
発電量・日射量実績収集部13は、太陽光発電設備2における発電量の実績値である発電量実績データを、所定周期で太陽光発電設備2から収集する。発電量・日射量実績収集部13は、太陽光発電設備2における日射量の実績値である日射量実績データを、太陽光発電設備2から収集する。日射量実績データが1時間ごとに収集されており、予測対象の時間帯が9時から17時までであり、予測に使う実績日数が30日分の日射量実績データが取得されている場合、収集される日射量実績データの個数は、240(=8×30)個である。発電量・日射量実績収集部13は、発電量実績データ及び日射量実績データを、発電量予測装置11に出力する。日射量実績データは、数分間ごとの日射量の複数の実績値の平均値でもよい。
The power generation amount / solar radiation amount
気象情報収集部14は、気象情報を気象情報提供設備3から収集する。気象情報収集部14は、日射量予報データを含む気象情報を、発電量予測装置11に出力する。
エネルギー機器計画部15は、発電量予測データを発電量予測装置11から取得する。エネルギー機器計画部15は、エネルギー設備4の機器の運用パターンを表す運用パターン情報を、発電量予測データに基づいて生成する。
The meteorological
The energy
エネルギー機器制御部16は、エネルギー設備4の機器の動作を制御するための制御信号を、運用パターン情報に基づいて生成する。エネルギー機器制御部16は、エネルギー設備4に制御信号を出力する。
エネルギー機器運用パターン記憶部17は、エネルギー設備4の機器の運用パターン情報を記憶する。
The energy
The energy device operation
次に、発電量予測装置11の構成の例を説明する。
発電量予測装置11は、発電量・日射量実績日射量区分部1101と、発電効率算出・判定部1102と、発電予測可否判定・発電効率係数算出部1103と、予測日射量区分判定部1104と、発電量予測部1105と、日射量区分データ記憶部1106と、発電量・日射量実績データ記憶部1107と、発電量・日射量実績・日射量区分データ記憶部1108と、発電効率上下限データ記憶部1109と、実績データ単位発電効率データ記憶部1110と、発電予測可否判定データ記憶部1111と、日射量区分別発電効率係数記憶部1112と、日射量予報データ記憶部1113と、日射量予報日射量区分データ記憶部1114と、予測発電量データ記憶部1115とを備える。
Next, an example of the configuration of the power generation
The power generation
各機能部のうち一部又は全部は、例えば、CPU(Central Processing Unit)等のプロセッサが、プログラムを実行することにより実現される。各機能部のうち一部又は全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアを用いて実現されてもよい。また、各機能部は、クラウド技術によって複数の情報処理装置に分散されていてもよい。 For example, a processor such as a central processing unit (CPU) executes a program to realize a part or all of the functional units. Some or all of the functional units may be realized using hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit). Also, each functional unit may be distributed to a plurality of information processing apparatuses by cloud technology.
各記憶部は、フラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記憶媒体(非一時的な記憶媒体)を有する。各記憶部は、例えば、RAM(Random Access Memory)やレジスタなどの揮発性の記憶媒体を有していてもよい。 Each storage unit has a non-volatile storage medium (non-temporary storage medium) such as a flash memory or a hard disk drive (HDD). Each storage unit may have, for example, a volatile storage medium such as a random access memory (RAM) or a register.
発電量・日射量実績日射量区分部1101は、発電量実績データ及び日射量実績データを、発電量・日射量実績データ記憶部1107から取得する。発電量・日射量実績日射量区分部1101は、日射量実績データが表す日射量の実績値の有効範囲を、複数の日射量区分に区分する。
The power generation amount / solation amount actual solar radiation
図2は、日射量の判定ラインの例を示す図である。横軸は、所定時間帯において測定された日射量実績データの瞬時値を表す。所定時間帯の長さは、例えば、数分間、30分間、1時間である。以下では、所定時間帯の長さは、一例として1時間である。縦軸は、同じ所定時間帯において発電された電力量(発電電力量)を表す。以下に示す図2、図3、図4、図7における各横軸は、瞬時値の平均値を表してもよく、例えば、時刻XX:00から時刻XX:30までの発電量に対して、時刻XX:00と時刻XX:30との2点の瞬時値の平均値を表してもよい。 FIG. 2 is a diagram showing an example of a judgment line of the amount of solar radiation. The horizontal axis represents instantaneous values of the solar radiation amount actual data measured in a predetermined time zone. The length of the predetermined time zone is, for example, several minutes, 30 minutes, and one hour. Below, the length of a predetermined time zone is 1 hour as an example. The vertical axis represents the amount of power generated in the same predetermined time zone (the amount of generated power). Each horizontal axis in FIG. 2, FIG. 3, FIG. 4 and FIG. 7 shown below may represent the average value of the instantaneous value, for example, with respect to the power generation amount from time XX: 00 to time XX: 30 It may represent an average value of instantaneous values of two points of time XX: 00 and time XX: 30.
発電量・日射量実績日射量区分部1101は、日射量上限判定ラインから日射量下限判定ラインまでの日射量の実績値の範囲を表す有効範囲データと、区分の一例としての「区分1」から「区分5」までの各日射量区分を表す日射量区分データとを、日射量区分データ記憶部1106から取得する。発電量・日射量実績日射量区分部1101は、日射量の実績値の有効範囲に含まれない日射量実績データを除外する。
The generated energy and actual solar radiation
発電量・日射量実績日射量区分部1101は、日射量区分データに基づいて、日射量の実績値の有効範囲を複数の日射量区分に区分する。図2では、発電量・日射量実績日射量区分部1101は、区分の一例としての「区分1」から「区分5」までの日射量区分に、日射量の実績値の有効範囲を区分する。
The generated energy and actual solar radiation
発電効率算出・判定部1102は、発電量実績データ及び日射量実績データを、発電量・日射量実績・日射量区分データ記憶部1108から取得する。発電効率算出・判定部1102は、有効範囲データ及び日射量区分データを、発電量・日射量実績・日射量区分データ記憶部1108から取得する。
The power generation efficiency calculation /
発電効率算出・判定部1102は、発電量実績データ及び日射量実績データに基づいて、太陽光発電設備2の発電効率を日射量実績データごとに算出する。発電効率算出・判定部1102は、発電効率データを日射量実績データごとに、実績データ単位発電効率データ記憶部1110に記録する。
The power generation efficiency calculation /
以下、予測に用いられる発電効率の上限閾値を「発電効率上限判定ライン」という。以下、予測に用いられる発電効率の下限閾値を「発電効率下限判定ライン」という。 Hereinafter, the upper limit threshold of the power generation efficiency used for the prediction is referred to as “power generation efficiency upper limit determination line”. Hereinafter, the lower limit threshold of the power generation efficiency used for prediction is referred to as “power generation efficiency lower limit determination line”.
図3は、発電効率の判定ラインの例を示す図である。発電効率算出・判定部1102は、発電効率上限判定ラインから発電効率下限判定ラインからまでの発電効率の有効範囲に発電効率データが含まれているか否かを、日射量実績データごとに判定する。発電効率算出・判定部1102は、発電効率の有効範囲に含まれていない発電効率データの日射量実績データを、予測に用いられる発電効率の日射量実績データの集合から除外する。
FIG. 3 is a diagram illustrating an example of a determination line of power generation efficiency. The power generation efficiency calculation /
発電予測可否判定・発電効率係数算出部1103は、発電効率に関する係数を算出するために必要とされる発電効率データの個数データを、発電予測可否判定データ記憶部1111から取得する。発電予測可否判定・発電効率係数算出部1103は、個数データが表す個数以上の発電効率データを、実績データ単位発電効率データ記憶部1110から取得する。
The power generation prediction availability determination / power generation efficiency
発電予測可否判定・発電効率係数算出部1103は、発電効率に関する係数を算出するために必要とされる個数以上の発電効率データを取得したか否かを、「区分1」から「区分5」までの日射量区分ごとに判定する。発電予測可否判定・発電効率係数算出部1103は、発電効率に関する係数を算出するために必要とされる個数以上の発電効率データを取得した場合、日射量区分における発電効率に関する係数を算出する。発電予測可否判定・発電効率係数算出部1103は、発電効率に関する係数を算出した場合、発電量の予測が可能であると判定する。
From "
図4は、発電効率の算出の例を示す図である。発電予測可否判定・発電効率係数算出部1103は、日射量区分ごとの発電効率に基づいて、発電量の予測に用いられる発電効率に関する係数を日射量区分ごとに算出する。日射量上限判定ラインから日射量下限判定ラインまでの日射量の実績値の範囲を表す有効範囲では、発電効率に関する係数は、日射量に応じて非線形に変化する。発電予測可否判定・発電効率係数算出部1103は、日射量の実績値の有効範囲において日射量に応じて非線形に変化する発電効率に関する係数を、日射量区分ごとの発電効率に関する係数に置き換える。
FIG. 4 is a diagram showing an example of calculation of power generation efficiency. The power generation prediction availability determination / power generation efficiency
発電予測可否判定・発電効率係数算出部1103は、日射量区分ごとの複数の発電効率に基づいて、発電効率に関する係数を日射量区分ごとに算出する。例えば、発電予測可否判定・発電効率係数算出部1103は、日射量区分ごとの複数の発電効率の実績値の平均値に基づいて、発電効率に関する係数を日射量区分ごとに算出する。発電予測可否判定・発電効率係数算出部1103は、日射量区分ごとの発電効率に関する係数を、日射量区分別発電効率係数記憶部1112に記録する。
The power generation prediction availability determination / power generation efficiency
図5は、発電効率に関する係数の例を示す図である。図5では、日射量区分「区分1」の発電効率に関する係数は、「1.9398」である。日射量区分「区分1」に対応付けられている式は、「y=1.9398x」である。第1実施形態では、式のy切片は0である。
FIG. 5 is a diagram showing an example of coefficients related to power generation efficiency. In FIG. 5, the coefficient relating to the power generation efficiency of the solar radiation amount classification “
図1に戻り、発電量予測装置11の構成の説明を続ける。予測日射量区分判定部1104は、予測対象の時間帯における日射量予報データが表す日射量の予測値xがいずれの日射量区分に含まれているかを判定する。発電量予測部1105は、日射量の予測値xが含まれている日射量区分の発電効率に関する係数と日射量予報データとに基づいて、予測対象の時間帯における発電量の予測値yを算出する。予測対象の時間帯における日射量予報データが表す日射量の予測値xが日射量区分「区分1」に含まれている場合、発電量予測部1105は、日射量区分「区分1」の発電効率に関する係数「1.9398」を日射量の予測値xに乗算することによって、予測対象の時間帯における発電量の予測値y(=1.9398x)を算出する。
Returning to FIG. 1, the description of the configuration of the power generation
なお、発電量予測部1105は、式を用いて発電量の予測値yを算出する代わりに、発電量の予測値yと日射量予報データが表す日射量の実績値xとの関係を表すデータテーブルを参照することによって、データテーブルから発電量yを取得してもよい。データテーブルは、例えば、日射量区分別発電効率係数記憶部1112に記憶される。
In addition, instead of calculating the power generation amount predicted value y using a formula, the power generation
日射量区分データ記憶部1106は、入出力部12の出力に基づいて、有効範囲データと日射量区分データとを記憶する。
The solar radiation amount
発電量・日射量実績データ記憶部1107は、例えば30分間ごとの発電量実績データ及び日射量実績データを、発電量・日射量実績収集部13から取得する。発電量・日射量実績データ記憶部1107は、発電量実績データ及び日射量実績データを記憶する。
The power generation amount / solar radiation amount performance
発電量・日射量実績・日射量区分データ記憶部1108は、日射量の有効範囲に含まれている日射量実績データを、30分間等の時間単位で記憶する。発電量・日射量実績・日射量区分データ記憶部1108は、発電量・日射量実績日射量区分部1101から出力された日射量区分データを記憶する。
The power generation amount · solar radiation amount performance · solar radiation amount classification
発電効率上下限データ記憶部1109は、発電効率の有効範囲データを記憶する。
実績データ単位発電効率データ記憶部1110は、発電効率データを発電量実績データごとに記憶する。
発電予測可否判定データ記憶部1111は、発電効率に関する係数を算出するために必要とされる発電効率データの個数データ(必要数データ)を記憶する。
The power generation efficiency upper and lower limit data storage unit 1109 stores effective range data of the power generation efficiency.
Performance data unit power generation efficiency
The power generation prediction availability determination data storage unit 1111 stores number data (necessary number data) of power generation efficiency data required to calculate a coefficient related to power generation efficiency.
日射量区分別発電効率係数記憶部1112は、発電効率に関する係数データを日射量区分ごとに記憶する。
日射量予報データ記憶部1113は、所定時間帯の日射量予報データを、例えば1時間等の時間単位で記憶する。
日射量予報日射量区分データ記憶部1114は、例えば1時間等の時間単位の日射量予報データを、日射量区分データごとに記憶する。
予測発電量データ記憶部1115は、例えば1時間等の時間単位の発電量予測データを、発電量予測部1105から取得する。予測発電量データ記憶部1115は、時間単位の発電量予測データを記憶する。
The solar radiation amount category power generation efficiency
The solar radiation amount forecast
The solar radiation amount forecasted solar radiation amount classification
The predicted power generation amount data storage unit 1115 acquires power generation amount prediction data in units of time, such as one hour, from the power generation
次に、発電量予測装置11の動作の例を説明する。
図6は、発電量予測装置11の動作の例を示すフローチャートである。発電量・日射量実績日射量区分部1101及び発電効率算出・判定部1102は、予測に用いられる日射量実績データの数だけ、ステップS101からステップS102までの手順を、日射量実績データごとに繰り返す。発電量・日射量実績日射量区分部1101は、日射量の実績値の有効範囲に含まれない日射量実績データを除外する(ステップS101)。発電効率算出・判定部1102は、発電量実績データ及び日射量実績データに基づいて、太陽光発電設備2の発電効率を日射量実績データごとに算出する。発電効率算出・判定部1102は、発電効率の有効範囲に含まれていない発電効率データの日射量実績データを、予測に用いられる発電効率の日射量実績データの集合から除外する(ステップS102)。
Next, an example of the operation of the power generation
FIG. 6 is a flowchart showing an example of the operation of the power generation
発電予測可否判定・発電効率係数算出部1103は、発電効率に関する係数を算出するために必要とされる個数以上の発電効率データを取得したか否かを、日射量区分ごとに判定する(ステップS103)。発電予測可否判定・発電効率係数算出部1103は、発電効率に関する係数を算出するために必要とされる個数以上の発電効率データを取得した場合、日射量区分における発電効率に関する係数を算出する(ステップS104)。
The power generation prediction availability determination / power generation efficiency
予測日射量区分判定部1104及び発電量予測部1105は、予測対象日における予測対象の時間帯の個数だけ、ステップS105からステップS106までの手順を、予測対象の時間帯ごとに繰り返す。予測日射量区分判定部1104は、予測対象の時間帯における日射量予報データが表す日射量の予測値xがいずれの日射量区分に含まれているかを判定する(ステップS105)。発電量予測部1105は、日射量の予測値xが含まれている日射量区分の発電効率に関する係数と日射量予報データとに基づいて、予測対象の時間帯における発電量の予測値yを算出する(ステップS106)。
The forecasted solar radiation amount
以上のように、第1の実施形態の発電量予測装置11は、発電量・日射量実績日射量区分部1101と、発電効率算出・判定部1102と、発電予測可否判定・発電効率係数算出部1103と、予測日射量区分判定部1104と、発電量予測部1105とを持つ。発電量・日射量実績日射量区分部1101は、日射量実績データの集合を複数の日射量区分に区分する。発電効率算出・判定部1102は、日射量実績データごとに発電効率を取得する。発電予測可否判定・発電効率係数算出部1103は、発電効率に基づいて日射量区分ごとに係数を取得する。予測日射量区分判定部1104は、日射量予測データが含まれている日射量区分がいずれの日射量区分であるかを判定する。発電量予測部1105は、日射量予測データが含まれている日射量区分の係数と日射量予測データとに基づいて。発電量の予測値を取得する。
As described above, the power generation
これにより、第1の実施形態の発電量予測装置11は、多種のデータを扱うことなく、発電量を予測する精度を向上させることが可能である。
Thereby, the power generation
第1の実施形態の発電量予測装置11は、日射量区分に区分せずに日射量の有効範囲の全体で発電効率を算出する場合と比較して、発電効率を精度よく算出することができるので、発電量を予測する精度を向上させることが可能である。第1の実施形態の発電量予測装置11は、日射量に対して非線形である発電効率に関する係数を精度よく算出することができるので、発電量を予測する精度を向上させることが可能である。
The power generation
(第2の実施形態)
第2の実施形態では、日射量区分ごとの固定値である発電効率の平均値を発電量予測部1105が用いる代わりに、発電効率の近似式を用いて発電量予測部1105が発電量を算出する点が、第1の実施形態と相違する。第2の実施形態では、第1の実施形態との相違点についてのみ説明する。
Second Embodiment
In the second embodiment, instead of using the average value of the power generation efficiency which is a fixed value for each solar radiation amount group to be used by the power generation
図7は、発電効率の算出の例を示す図である。発電予測可否判定・発電効率係数算出部1103は、日射量区分ごとの発電効率に基づいて、発電量の予測に用いられる発電効率を表す近似式の係数及び切片を、日射量区分ごとに算出する。
FIG. 7 is a diagram showing an example of calculation of power generation efficiency. The power generation prediction availability determination / power generation efficiency
図8は、発電量の予測値を表す近似式の例を示す図である。図8では、日射量区分「区分1」に対応付けられている一次近似式は、「y=1.9545x−2.9645」である。第2実施形態では、発電量に関する式のy切片は0でなくてもよい。
FIG. 8 is a diagram showing an example of an approximate expression representing a predicted value of the amount of power generation. In FIG. 8, the first-order approximate expression associated with the solar radiation amount classification “
図9は、日射量の区分の例を示す図である。予測日射量区分判定部1104は、予測対象の時間帯における日射量予報データが表す日射量の予測値xがいずれの日射量区分に含まれているかを判定する。図9では、日射量予報データが表す日射量は、一例として689.5W/m2であり、「区分3」に含まれている。
FIG. 9 is a diagram showing an example of the division of the amount of solar radiation. The predicted solar radiation amount
図10は、発電量の予測値の例を示す図である。発電量予測部1105は、日射量の予測値xが含まれている日射量区分の発電効率に関する係数と日射量予報データとに基づいて、予測対象の時間帯における発電量の予測値yを算出する。予測対象の時間帯における日射量予報データが表す日射量の予測値xが日射量区分「区分3」に含まれている場合、発電量予測部1105は、日射量区分「区分3」に対応付けられた一次近似式「y=2.1259x−197.54」に基づいて、予測対象の時間帯における発電量の予測値yを算出する。
FIG. 10 is a diagram showing an example of the predicted value of the power generation amount. The power generation
図11は、時間帯ごとの発電量の予測値の例を示す図である。14時から15時までの時間帯における日射量の予測値xが689.5W/m2である場合、予測日射量区分判定部1104は、予測対象の時間帯における日射量予報データが表す日射量の予測値xが日射量区分「区分3」に含まれていると判定する。発電量予測部1105は、日射量区分「区分3」に対応付けられた一次近似式「y=2.1259x−197.54」に基づいて、予測対象の時間帯における発電量の予測値yを1268.3kWhと算出する。
FIG. 11 is a diagram showing an example of predicted values of the amount of power generation for each time zone. When the predicted value x of the solar radiation amount in the time zone from 14 o'clock to 15 o'clock is 689.5 W / m 2 , the predicted solar radiation amount
以上のように、第2の実施形態の発電量予測装置11は、発電量予測装置11は、発電量・日射量実績日射量区分部1101と、発電効率算出・判定部1102と、発電予測可否判定・発電効率係数算出部1103と、予測日射量区分判定部1104と、発電量予測部1105とを持つ。発電量予測部1105は、日射量予測データが含まれている日射量区分の係数を含む近似式と日射量予測データとに基づいて。発電量の予測値を取得する。
As described above, in the power generation
これにより、第2の実施形態の発電量予測装置11は、多種のデータを扱うことなく、発電量を予測する精度を向上させることが可能である。
Thereby, the power generation
以上述べた少なくともひとつの実施形態によれば、日射量予測データが含まれている日射量区分の係数と日射量予測データとに基づいて発電量の予測値を取得する発電量予測部とを持つことにより、多種のデータを扱うことなく、発電量を予測する精度を向上させることができる。 According to at least one embodiment described above, it has a power generation amount prediction unit that acquires a predicted value of power generation amount based on the solar radiation amount prediction data and the coefficient of solar radiation amount division in which the solar radiation amount prediction data is included. By this, it is possible to improve the accuracy of predicting the amount of power generation without handling various data.
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.
1…エネルギー機器最適運用システム、2…太陽光発電設備、3…気象情報提供設備、4…エネルギー設備、5…蓄電池設備、10…発電量予測システム、11…発電量予測装置、12…入出力部、13…発電量・日射量実績収集部、14…気象情報収集部、15…エネルギー機器計画部、16…エネルギー機器制御部、17…エネルギー機器運用パターン記憶部、1101…発電量・日射量実績日射量区分部、1102…発電効率算出・判定部、1103…発電予測可否判定・発電効率係数算出部、1104…予測日射量区分判定部、1105…発電量予測部、1106…日射量区分データ記憶部、1107…発電量・日射量実績データ記憶部、1108…発電量・日射量実績・日射量区分データ記憶部、1109…発電効率上下限データ記憶部、1110…実績データ単位発電効率データ記憶部、1111…発電予測可否判定データ記憶部、1112…日射量区分別発電効率係数記憶部、1113…日射量予報データ記憶部、1114…日射量予報日射量区分データ記憶部、1115…予測発電量データ記憶部
DESCRIPTION OF
Claims (9)
前記日射量実績値ごとに発電効率を取得する発電効率取得部と、
前記発電効率に基づいて前記日射量区分ごとに係数を取得する係数取得部と、
日射量予測値が含まれている前記日射量区分がいずれの前記日射量区分であるかを判定する区分判定部と、
前記日射量予測値が含まれている前記日射量区分の前記係数と前記日射量予測値とに基づいて発電量予測値を取得する予測部と
を備える発電量予測装置。 A division unit that divides a set of actual solar radiation amount values into a plurality of solar radiation amount classifications;
A power generation efficiency acquisition unit that acquires power generation efficiency for each of the solar radiation amount actual values;
A coefficient acquisition unit that acquires a coefficient for each of the solar radiation amount sections based on the power generation efficiency;
A classification determination unit that determines which of the solar radiation amount classifications the solar radiation amount classifications include a solar radiation amount prediction value;
A power generation amount prediction device comprising: a prediction unit that acquires a power generation amount prediction value based on the solar radiation amount prediction value and the coefficient of the solar radiation amount class that includes the solar radiation amount prediction value.
前記日射量実績値ごとに発電効率を取得する発電効率取得部と、
前記発電効率に基づいて前記日射量区分ごとに係数を取得する係数取得部と、
日射量予測値が含まれている前記日射量区分がいずれの前記日射量区分であるかを判定する区分判定部と、
前記日射量予測値が含まれている前記日射量区分の前記係数と前記日射量予測値とに基づいて発電量予測値を取得する予測部と、
前記発電量予測値に基づく制御信号に応じて蓄電する蓄電池と
を備える発電量予測システム。 A division unit that divides a set of actual solar radiation amount values into a plurality of solar radiation amount classifications;
A power generation efficiency acquisition unit that acquires power generation efficiency for each of the solar radiation amount actual values;
A coefficient acquisition unit that acquires a coefficient for each of the solar radiation amount sections based on the power generation efficiency;
A classification determination unit that determines which of the solar radiation amount classifications the solar radiation amount classifications include a solar radiation amount prediction value;
A prediction unit that acquires a power generation predicted value based on the solar radiation amount predicted value and the coefficient of the solar radiation amount class including the solar radiation amount predicted value;
A storage battery configured to store power according to a control signal based on the power generation predicted value.
日射量実績値の集合を複数の日射量区分に区分するステップと、
前記日射量実績値ごとに発電効率を取得するステップと、
前記発電効率に基づいて前記日射量区分ごとに係数を取得するステップと、
日射量予測値が含まれている前記日射量区分がいずれの前記日射量区分であるかを判定するステップと、
前記日射量予測値が含まれている前記日射量区分の前記係数と前記日射量予測値とに基づいて発電量予測値を取得するステップと
を含む発電量予測方法。 A power generation amount prediction method executed by the power generation amount prediction device, which
Segmenting the set of actual solar radiation values into a plurality of solar radiation categories;
Acquiring the power generation efficiency for each of the solar radiation amount actual values;
Acquiring a coefficient for each of the solar radiation amount sections based on the power generation efficiency;
Determining whether the solar radiation amount category including the solar radiation amount predicted value is any of the solar radiation amount categories;
Obtaining a power generation predicted value based on the solar radiation amount predicted value and the coefficient of the solar radiation amount class including the solar radiation amount predicted value.
日射量実績値の集合を複数の日射量区分に区分する手順と、
前記日射量実績値ごとに発電効率を取得する手順と、
前記発電効率に基づいて前記日射量区分ごとに係数を取得する手順と
日射量予測値が含まれている前記日射量区分がいずれの前記日射量区分であるかを判定する手順と、
前記日射量予測値が含まれている前記日射量区分の前記係数と前記日射量予測値とに基づいて発電量予測値を取得する手順と
を実行させるための発電量予測プログラム。 On the computer
A procedure for dividing a set of actual solar radiation values into a plurality of solar radiation categories;
A procedure for acquiring power generation efficiency for each of the solar radiation amount actual values;
A step of acquiring a coefficient for each of the solar radiation amount segments based on the power generation efficiency, and a procedure of determining which of the solar radiation amount segments the solar radiation amount segment including a solar radiation amount predicted value is included;
A power generation amount prediction program for executing a procedure of acquiring a power generation amount predicted value based on the solar radiation amount predicted value and the coefficient of the solar radiation amount class including the solar radiation amount predicted value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017220691A JP6937227B2 (en) | 2017-11-16 | 2017-11-16 | Power generation amount prediction device, power generation amount prediction system, power generation amount prediction method and power generation amount prediction program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017220691A JP6937227B2 (en) | 2017-11-16 | 2017-11-16 | Power generation amount prediction device, power generation amount prediction system, power generation amount prediction method and power generation amount prediction program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019091335A true JP2019091335A (en) | 2019-06-13 |
JP6937227B2 JP6937227B2 (en) | 2021-09-22 |
Family
ID=66836511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017220691A Active JP6937227B2 (en) | 2017-11-16 | 2017-11-16 | Power generation amount prediction device, power generation amount prediction system, power generation amount prediction method and power generation amount prediction program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6937227B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021145509A (en) * | 2020-03-13 | 2021-09-24 | オムロン株式会社 | Abnormality detection device, abnormality detection method, and abnormality detection program |
KR20220167555A (en) * | 2021-06-14 | 2022-12-21 | 한국전력공사 | Management System and Method for Controlling Output of Power Generation |
CN117040030A (en) * | 2023-10-10 | 2023-11-10 | 国网浙江宁波市鄞州区供电有限公司 | New energy consumption capacity risk management and control method and system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013191672A (en) * | 2012-03-13 | 2013-09-26 | Omron Corp | Information processing apparatus, abnormality detecting method, program, and solar power generation system |
JP2014179464A (en) * | 2013-03-14 | 2014-09-25 | Omron Corp | Photovoltaic power generation system, abnormality determination processor, abnormality determination processing method and program |
JP2016065484A (en) * | 2014-09-24 | 2016-04-28 | トヨタ自動車株式会社 | Estimation device of throttle upstream pressure |
-
2017
- 2017-11-16 JP JP2017220691A patent/JP6937227B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013191672A (en) * | 2012-03-13 | 2013-09-26 | Omron Corp | Information processing apparatus, abnormality detecting method, program, and solar power generation system |
JP2014179464A (en) * | 2013-03-14 | 2014-09-25 | Omron Corp | Photovoltaic power generation system, abnormality determination processor, abnormality determination processing method and program |
JP2016065484A (en) * | 2014-09-24 | 2016-04-28 | トヨタ自動車株式会社 | Estimation device of throttle upstream pressure |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021145509A (en) * | 2020-03-13 | 2021-09-24 | オムロン株式会社 | Abnormality detection device, abnormality detection method, and abnormality detection program |
JP7435073B2 (en) | 2020-03-13 | 2024-02-21 | オムロン株式会社 | Anomaly detection device, anomaly detection method, and anomaly detection program |
KR20220167555A (en) * | 2021-06-14 | 2022-12-21 | 한국전력공사 | Management System and Method for Controlling Output of Power Generation |
KR102621374B1 (en) * | 2021-06-14 | 2024-01-08 | 한국전력공사 | Management System and Method for Controlling Output of Power Generation |
CN117040030A (en) * | 2023-10-10 | 2023-11-10 | 国网浙江宁波市鄞州区供电有限公司 | New energy consumption capacity risk management and control method and system |
CN117040030B (en) * | 2023-10-10 | 2024-04-02 | 国网浙江宁波市鄞州区供电有限公司 | New energy consumption capacity risk management and control method and system |
Also Published As
Publication number | Publication date |
---|---|
JP6937227B2 (en) | 2021-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Khan et al. | Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies | |
Abuella et al. | Solar power forecasting using support vector regression | |
Mellit et al. | Performance prediction of 20 kWp grid-connected photovoltaic plant at Trieste (Italy) using artificial neural network | |
KR101856320B1 (en) | Forecasting apparatus and method of sunlight generation | |
da Silva Fonseca Jr et al. | Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan | |
Ghiassi-Farrokhfal et al. | Solar power shaping: An analytical approach | |
Junior et al. | On the use of maximum likelihood and input data similarity to obtain prediction intervals for forecasts of photovoltaic power generation | |
Gupta et al. | Solar energy prediction using decision tree regressor | |
JP6003247B2 (en) | Information processing apparatus, information processing apparatus control method, and program | |
Li et al. | Photovoltaic power forecasting: Models and methods | |
JP6937227B2 (en) | Power generation amount prediction device, power generation amount prediction system, power generation amount prediction method and power generation amount prediction program | |
CN105335560A (en) | Photovoltaic generation power volatility and automatic generation control reserve demand computing method thereof | |
Almaktar et al. | Artificial neural network‐based photovoltaic module temperature estimation for tropical climate of Malaysia and its impact on photovoltaic system energy yield | |
Shah et al. | A novel prediction error-based power forecasting scheme for real pv system using pvusa model: A grey box-based neural network approach | |
Touati et al. | Photo-Voltaic (PV) monitoring system, performance analysis and power prediction models in Doha, Qatar | |
CN115759467A (en) | Time-division integrated learning photovoltaic prediction method for error correction | |
CN104346659A (en) | Short-term power generation prediction method applied to high-concentration-ratio photovoltaic power generation system | |
Alanazi et al. | Day-ahead solar forecasting using time series stationarization and feed-forward neural network | |
EP4122072A1 (en) | Systems and methods for enhanced reactive power management in a hybrid environment | |
Shukla et al. | An explainable artificial intelligence based approach for the prediction of key performance indicators for 1 megawatt solar plant under local steppe climate conditions | |
Dong et al. | Very short-term photovoltaic power forecasting using uncertain basis function | |
TW201740296A (en) | Method and system for predicting power generation capacity of renewable energy using a neural network to accurately calculate the power generation capacity of renewable energy | |
Jogunuri et al. | Artificial intelligence methods for solar forecasting for optimum sizing of PV systems: A review | |
Chen et al. | Short-term wind power forecasting based on spatial correlation and artificial neural network | |
Cho et al. | Application of Parallel ANN-PSO to Hourly Solar PV Estimation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200911 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210830 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6937227 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |