TW201740296A - Method and system for predicting power generation capacity of renewable energy using a neural network to accurately calculate the power generation capacity of renewable energy - Google Patents

Method and system for predicting power generation capacity of renewable energy using a neural network to accurately calculate the power generation capacity of renewable energy Download PDF

Info

Publication number
TW201740296A
TW201740296A TW105114400A TW105114400A TW201740296A TW 201740296 A TW201740296 A TW 201740296A TW 105114400 A TW105114400 A TW 105114400A TW 105114400 A TW105114400 A TW 105114400A TW 201740296 A TW201740296 A TW 201740296A
Authority
TW
Taiwan
Prior art keywords
data
power generation
historical
module
abnormal
Prior art date
Application number
TW105114400A
Other languages
Chinese (zh)
Inventor
Kun-Hong Chen
Original Assignee
Chun He Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chun He Technology Co Ltd filed Critical Chun He Technology Co Ltd
Priority to TW105114400A priority Critical patent/TW201740296A/en
Publication of TW201740296A publication Critical patent/TW201740296A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

A system for predicting power generation capacity of renewable energy comprises a data retrieval module, a database, an abnormality point correction module, a prediction module, an input module, and an output module. The data retrieval module retrieves past weather data and past power generation data. The database stores the past weather data and the past power generation data. The abnormality point correction module removes abnormal data from the past weather data and the past power generation data. The prediction module performs training on neural network prediction model based on the past weather data and the past power generation data from which abnormal data has been filtered, so as to obtain a power generation capacity prediction model. The input module inputs future weather data, solar trajectory, and atmosphere mass to the prediction module so as to allow the prediction module to calculate a predicted power generation capacity. The output module outputs the predicted power generation capacity.

Description

再生能源發電量預測方法與系統Renewable energy generation quantity prediction method and system

本創作係有關於一種再生能源的發電量預測方法與系統,特別是有關於一種應用類神經網路的再生能源的發電量預測方法與系統。This creation is about a method and system for predicting the amount of power generated by renewable energy, and in particular, a method and system for predicting the amount of power generated by a renewable neural network using a neural network.

再生能源為來自大自然的能源,例如太陽能、風力、潮汐能、地熱能、生質能或水力等取之不盡,用之不竭的能源。然而,再生能源發電系統的發電量會受到許多外在因素的影響,例如氣候溫度、太陽日照強度或季節因素等,這些外在因素不同程度地影響再生能源發電系統的發電量,再生能源發電系統可視為一個不穩定的電源,因此,研究再生能源的隨機性與再生能源發電估算技術有著重要意義。Renewable energy is an inexhaustible source of energy from nature, such as solar energy, wind power, tidal energy, geothermal energy, biomass energy or water power. However, the amount of electricity generated by renewable energy power generation systems will be affected by many external factors, such as climate temperature, solar intensity, or seasonal factors. These external factors affect the power generation of renewable energy power generation systems to varying degrees, and renewable energy power generation systems. It can be regarded as an unstable power source. Therefore, it is important to study the randomness of renewable energy and the estimation technology of renewable energy power generation.

然而,再生能源電廠發電量的隨機性、波動性、間歇性以及不確定性等缺點,造成估算再生能源發電存在一定的困難度,估算結果與實際結果差距過大,造成估算結果不具參考價值。However, the shortcomings such as randomness, volatility, intermittentness and uncertainty of power generation in renewable energy power plants have caused certain difficulties in estimating renewable energy power generation. The difference between the estimation results and the actual results is too large, resulting in no reference value for the estimation results.

類神經網路是一種模仿生物神經網路的結構和功能的數學模型或計算模型,是由大量的人工神經元連接進行計算。類神經網路是一種運算模型,由大量的節點(或稱神經元或單元)相互連接構成。每個節點代表一種特定的輸出函數,每兩個節點之間的連接都代表一個對於通過該連接信號的權重。類神經網路已經成功地應用於預測股票指數或其他商業預測上,若能將類神經網路應用於再生能源的發電量預測上,可以估算未來時間之再生能源電廠的發電量,讓電廠管理者可以依據所預測的發電量事先分配電廠的發電,避免因發電量過多或過少時導致供電不足或過多浪費,造成電能利用率過低。A neural network is a mathematical model or computational model that mimics the structure and function of a biological neural network. It is calculated by a large number of artificial neuron connections. A neural network is an operational model consisting of a large number of nodes (or neurons or units) connected to each other. Each node represents a specific output function, and the connection between each two nodes represents a weight for passing the connection signal. Neural networks have been successfully applied to predict stock indices or other commercial forecasts. If neural networks can be applied to the prediction of renewable energy generation, it is possible to estimate the amount of power generated by renewable energy plants in the future. The power generation of the power plant can be allocated in advance according to the predicted power generation amount, so as to avoid insufficient or excessive power supply due to excessive or too little power generation, resulting in low power utilization.

本創作之目的在設計一種再生能源發電量預測系統,透過該預測系統應用類神經網路來預測再生能源電廠的發電量。The purpose of this creation is to design a renewable energy generation forecasting system that uses a neural network to predict the amount of power generated by a renewable energy plant.

根據上述之目的,本創作提供一種再生能源發電量預測系統,包含: 一資料庫,儲存複數筆歷史氣候資料、複數筆歷史發電資料、複數筆太陽軌跡資料與複數筆大氣質量資料; 一資料擷取模組,其與該資料庫連接,從該資料庫擷取該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料; 一異常點修正模組,其與該資料擷取模組連接,將該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料中的複數筆異常資料濾除; 一預測模組,其與該異常點修正模組連接,該預測模組根據已修正該些異常資料的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料進行一類神經網路預測模型的訓練以獲得一發電量預測模型; 一輸入模組,連接該預測模組,輸入複數筆未來氣候資料、一太陽軌跡與一大氣質量至該預測模組,使該預測模組計算出一預測發電量; 一輸出模組,連接該預測模組,用於輸出該預測發電量。According to the above purpose, the present invention provides a renewable energy power generation quantity prediction system, comprising: a database, storing a plurality of historical climate data, a plurality of historical power generation data, a plurality of solar trajectory data, and a plurality of air quality data; Taking a module, which is connected to the database, and extracts the historical climate data, the historical power generation data, the solar trajectory data and the air quality data from the database; an abnormal point correction module, and The data capture module connection, filtering the historical climate data, the historical power generation data, the solar trajectory data and the plurality of abnormal data in the air quality data; a prediction module, and the abnormality Point correction module connection, the prediction module performs training on a neural network prediction model based on the historical climate data, the historical power generation data, the solar trajectory data and the air quality data of the abnormal data. Obtaining a power generation prediction model; an input module, connecting the prediction module, inputting a plurality of future climate data, and A male track and predict the air mass to the module so that the module calculating a predicted power generation amount prediction; an output module, connected to the forecast module, for outputting the predicted power generation amount.

本創作之另一目的在提供一種再生能源發電量預測方法,透過該預測方法訓練類神經網路預測模型以獲得較佳的類神經網路預測模型,進而可以計算出準確率高的預測電廠發電量。Another object of the present invention is to provide a method for predicting the amount of renewable energy generation, by which a neural network prediction model is trained to obtain a better neural network prediction model, and then a predictive power plant with high accuracy can be calculated. the amount.

根據上述之目的,本創作提供一種再生能源發電量預測方法,包含下列步驟: 透過一資料擷取模組取得複數筆歷史氣候資料、複數筆歷史發電資料、複數筆太陽軌跡資料與複數筆大氣質量資料; 透過一異常點修正模組將所擷取的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料中的複數筆異常資料修正; 將已修正之該些異常資料的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料傳送至一預測模組,進行一類神經網路預測模型的訓練以獲得一發電量預測模型; 輸入一未來時間區間的複數筆預測氣候資料、一太陽軌跡以及一大氣質量至該預測模組以進行該未來時間區間的電廠發電量預測; 透過一輸出模組將所預測之該電廠發電量輸出。According to the above purpose, the present invention provides a method for predicting the amount of renewable energy power generation, comprising the following steps: obtaining a plurality of historical climate data, a plurality of historical power generation data, a plurality of solar trajectory data, and a plurality of air quality through a data acquisition module. Data; correcting the historical climate data, the historical power generation data, the solar trajectory data, and the plurality of abnormal data in the air quality data through an abnormal point correction module; The historical climate data of the abnormal data, the historical power generation data, the solar trajectory data and the air quality data are transmitted to a prediction module, and a neural network prediction model is trained to obtain a power generation prediction model. Entering a plurality of future time intervals to predict climatic data, a solar trajectory, and a mass of mass to the prediction module to perform power generation prediction of the future time interval; and predicting the power generation amount of the power plant through an output module Output.

透過本創作的再生能源發電量預測方法與系統可以計算出可靠的預測電廠發電量,因為本創作是根據歷史氣候資料與歷史發電資料透過類神經網路的方式建立該發電量預測模型,其中該些歷史氣候資料包含各種不同的發電環境狀態,而該些歷史發電資料與各種不同發電環境狀態息息相關,故本創作所建立的發電量預測模型將再生能源電廠發電量因環境氣候因素所導致的隨機性、波動性、間歇性等不確定性因素都考慮在內,使所預測的發電量具有可參考性,讓電廠管理者可以透過預測電廠發電量有效分配電廠發電量,提高發電電能的利用率。Through the creation of the renewable energy generation forecasting method and system, a reliable prediction of the power generation of the power plant can be calculated, because the creation of the power generation quantity prediction model is based on historical climate data and historical power generation data through a neural network. Some historical climate data contain various power generation environment states, and these historical power generation data are closely related to various power generation environment states. Therefore, the power generation quantity prediction model established by this creation will randomly generate the power generation of renewable energy power plants due to environmental climate factors. Uncertainty factors such as sex, volatility and intermittentness are taken into consideration, so that the predicted power generation can be referenced, allowing plant managers to effectively allocate power generation capacity by predicting power generation of power plants and improve utilization of power generation. .

以下配合圖式及本創作較佳實施例,進一步闡述本創作為達成預定創作目的所採取的技術手段。The technical means adopted by the present invention for achieving the intended purpose of creation are further explained below in conjunction with the drawings and the preferred embodiment of the present invention.

圖1為本創作之再生能源發電量預測系統的方塊圖。如圖1所示,本創作的再生能源預測系統10包含資料擷取模組11、資料庫12、異常點修正模組13、預測模組14、類神經網路預測模型15、輸入模組16與輸出模組17。Figure 1 is a block diagram of the regenerative energy generation forecasting system of the present invention. As shown in FIG. 1 , the regenerative energy prediction system 10 of the present invention includes a data acquisition module 11 , a database 12 , an abnormal point correction module 13 , a prediction module 14 , a neural network prediction model 15 , and an input module 16 . And the output module 17.

再生能源電廠的歷史氣候資料、歷史發電資料、歷史太陽軌跡資料與歷史大氣質量資料可透過工作人員將其記錄在資料庫中12中,或者再生能源電廠的歷史氣候資料、歷史太陽軌跡資料或歷史大氣質量資料可以透過電廠氣候偵測元件測得或由電腦系統從氣象網站擷取,電廠氣候偵測元件可以是溫度計、陀螺儀或電子裝置的氣象資料應用軟體等可以獲得溫度、太陽方位角或太陽高度角等資料的工具所組成。而歷史發電資料可以由電廠的發電元件將其輸出資料傳送至電腦系統中,再由電腦系統儲存於資料庫12中,在此並不侷限。再生能源電廠的歷史氣候資料、歷史發電資料、歷史太陽軌跡資料與歷史大氣質量資料作為預測未來發電量的依據,歷史氣候資料可以是太陽輻射量、溫度、濕度、氣壓、風速、風向、降雨量、雲覆量或土壤溫度等,但在此並不侷限。而歷史發電資料可以是再生能源電廠的直流(DC)的數據,例如電壓、電流、再生能源裝置發電效率(kWh/kWp/h)、千瓦(kW)、每千瓦小時(kWh)或每單位裝置發電量(kWh/kWp)等)或交流(AC)的數據,例如電壓、電流、再生能源裝置發電效率(kWh/kWp/h)、千瓦(kW)、每千瓦小時(kWh)或每單位裝置發電量(kWh/kWp)等,但在此並不侷限。Historical climate data, historical power generation data, historical solar trajectory data and historical air quality data of renewable energy power plants can be recorded in the database by staff, 12 or historical climate data, historical solar trajectory data or history of renewable energy power plants. The air quality data can be measured by the power plant climate detection component or by the computer system from the weather website. The power plant climate detection component can be a thermometer, gyroscope or electronic device meteorological data application software, etc., can obtain temperature, solar azimuth or It consists of tools such as the solar elevation angle. The historical power generation data can be transmitted from the power generation component of the power plant to the computer system, and then stored in the database 12 by the computer system, which is not limited thereto. Historical climate data, historical power generation data, historical solar trajectory data and historical air quality data of renewable energy power plants are used as the basis for predicting future power generation. Historical climate data can be solar radiation, temperature, humidity, air pressure, wind speed, wind direction, and rainfall. , cloud cover or soil temperature, etc., but not limited here. The historical power generation data may be direct current (DC) data of a renewable energy power plant, such as voltage, current, renewable energy device power generation efficiency (kWh/kWp/h), kilowatts (kW), per kilowatt hour (kWh), or per unit device. Power generation (kWh/kWp), etc. or AC (AC) data, such as voltage, current, regenerative power generation efficiency (kWh/kWp/h), kilowatts (kW), per kWh (kWh) or per unit Power generation (kWh/kWp), etc., but not limited here.

資料擷取模組11分別連接至資料庫12與異常點修正模組13,資料擷取模組11可以是電腦或行動裝置的一執行指令或應用軟體,資料擷取模組11可以設定在一固定時間(每分鐘、每小時或每天等)擷取太陽能電廠的氣候資料、發電資料、太陽軌跡與大氣質量,資料擷取模組11的設定與執行指令的設計為本領域具有基本軟體設計者所熟知,在此不再贅述。當要進行類神經網路預測模型15訓練時,資料擷取模組11將再生能源電廠的歷史氣候資料、歷史發電資料、歷史太陽軌跡資料與歷史大氣質量資料從資料庫12擷取出來,並將所擷取出來的歷史氣候資料、歷史發電資料、歷史太陽軌跡資料與歷史大氣質量資料傳送至異常點修正模組13。異常點修正模組13用於分析所擷取之歷史氣候資料、歷史發電資料、歷史太陽軌跡與歷史大氣質量,透過線性迴歸、常態分佈或資料比對等方式將異常的資料找出來,再進行濾除或修正,以增進預測的準確性。舉例來說,可以應用再生能源電廠的發電效率(Performance Ratio,PR(kWh/kWp/h))作為異常點修正的依據,以相同發電裝置的前一周的平均發電效率做為異常點判斷與修正的基準,若其它周的平均發電效率與該周的平均發電效率差距過大則視為異常點,進一步修正或濾除該異常點,也可以在同一時間比較同一電廠的不同發電裝置發電效率做為異常點修正的依據,若在相同電廠的某一發電裝置與其他發電裝置的比較值(發電效率或單位發電量)差異過大,同樣將其視為異常點,進一步修正或濾除該異常點,其修正方法可以相同發電裝置過去一段時間的平均發電效率當修正基準,或在相同時間比較同一電廠其他單個或複數個發電裝置的平均發電效率或平均單位發電量當基準進一步補值或修正。發電裝置可以為一個或多個最大功率點追蹤(Maximum Power Point Tracking,MPPT)裝置、一個或多個逆變器或是整個電廠,在此並不侷限。另外,或者在不同實施例中,也可以透過設定一門檻值,異常點修正模組13判斷歷史氣候資料、歷史發電資料、歷史太陽軌跡資料或歷史大氣質量資料是否超過門檻值,以將超過門檻值的歷史氣候資料、歷史發電資料、歷史太陽軌跡資料或歷史大氣質量資料視為異常資料並將其濾除或修正。The data capture module 11 is connected to the database 12 and the abnormal point correction module 13. The data capture module 11 can be an execution instruction or application software of the computer or the mobile device, and the data capture module 11 can be set in a At a fixed time (per minute, hourly or daily, etc.), the climate data, power generation data, solar trajectory and air quality of the solar power plant are extracted. The design of the data acquisition module 11 and the execution instruction are designed as basic software designers in the field. It is well known and will not be described here. When the neural network prediction model 15 is to be trained, the data acquisition module 11 takes the historical climate data, historical power generation data, historical solar trajectory data and historical air quality data of the renewable energy power plant from the database 12 The historical climate data, the historical power generation data, the historical solar trajectory data, and the historical atmospheric quality data taken out are transmitted to the abnormal point correction module 13. The abnormal point correction module 13 is configured to analyze the historical climate data, historical power generation data, historical solar trajectory and historical air quality, and find out the abnormal data through linear regression, normal distribution or data comparison, and then perform Filter or correct to improve the accuracy of the prediction. For example, the power generation efficiency (PR (kWh/kWp/h)) of the renewable energy power plant can be applied as the basis for the correction of the abnormal point, and the average power generation efficiency of the previous power generation device is used as the abnormal point judgment and correction. The benchmark is considered to be an abnormal point if the average power generation efficiency of other weeks is too large compared with the average power generation efficiency of the week. Further correcting or filtering out the abnormal point, it is also possible to compare the power generation efficiency of different power generation devices of the same power plant at the same time. The basis for the correction of the abnormal point is that if the difference between the power generation device of the same power plant and the other power generation device (power generation efficiency or unit power generation) is too large, it is also regarded as an abnormal point, and the abnormal point is further corrected or filtered. The correction method may be the same as the average power generation efficiency of the power generation device in the past period of time as the correction reference, or compare the average power generation efficiency or the average unit power generation amount of the other single or plural power generation devices of the same power plant at the same time as the reference further complements or corrects the reference. The power generation device may be one or more Maximum Power Point Tracking (MPPT) devices, one or more inverters, or the entire power plant, and is not limited herein. In addition, or in different embodiments, by setting a threshold, the abnormal point correction module 13 determines whether the historical climate data, the historical power generation data, the historical solar trajectory data, or the historical air quality data exceeds the threshold value, so as to exceed the threshold. Historical climate data, historical power generation data, historical solar trajectory data, or historical air quality data are considered as anomalous data and filtered or corrected.

預測模組14連接異常點修正模組13,異常點修正模組13將濾除或修正異常資料後的歷史氣候資料、歷史發電資料、歷史太陽軌跡與歷史大氣質量傳送至預測模組14進行類神經網路預測模型15的訓練以獲得一發電量預測模型。同樣,預測模組14、類神經網路預測模型15與發電量預測模型可以是電腦系統或行動裝置的一應用程式或執行指令,如何設計建造預測模組14、類神經網路預測模型15與發電量預測模型為本領域具有軟體設計或資訊工程等通常知識者所熟知,在此不再贅述。如圖2所示,類神經網路預測模型15包含輸入層(input layer)151、隱藏層(hidden layer)152與輸出層(output layer)153。輸入層151接收再生能源電廠之歷史氣候資料與歷史發電資料(或稱為訓練資料(training data)或測試資料(testing data)),輸出層153輸出類神經網路預測模型15的訓練結果或計算結果,如圖2所示。隱藏層152位於輸入層151與輸出層153之間,輸入層151、隱藏層152與輸出層153分別包含一個或多個節點154,在輸入層151的節點154分別與隱藏層152的節點154連接,且隱藏層152的節點154也分別與輸出層153的節點154連接。在預測模組14進行類神經網路預測模型15的訓練時,依訓練模式,將歷史氣候資料、歷史發電資料、歷史太陽軌跡資料與歷史大氣質量資料切割成訓練資料、調教資料及測試資料,然後利用訓練資料及調教資料進行類神經網路預測模型15的訓練及調教。由於類神經網路的技術為本領域具有通常知識者所熟知,因此有關於類神經網路的詳細介紹在此不再贅述。另外,節點154的數量或隱藏層152的層數根據不同需求可以有不同的節點154數量或層數,而非侷限於圖2所示的態樣。而且本創作的類神經網路所採用的評估誤差的方法包含均方根誤差法(Root Mean Square Error,RMSE)、平均絕對誤差法(Mean Absolute Error,MAE)、平均絕對比例誤差法(Mean Absolute Percentage Error,MAPE)或平均相對誤差(Mean Relative Error (MRE)等,其公式如下:The prediction module 14 is connected to the abnormal point correction module 13 , and the abnormal point correction module 13 transmits the historical climate data, the historical power generation data, the historical solar trajectory and the historical air quality after filtering or correcting the abnormal data to the prediction module 14 for class. The training of the neural network prediction model 15 obtains a power generation prediction model. Similarly, the prediction module 14, the neural network prediction model 15 and the power generation prediction model may be an application or an execution instruction of a computer system or a mobile device, how to design and construct a prediction module 14, a neural network prediction model 15 and The power generation prediction model is well known to those skilled in the art with software design or information engineering, and will not be described here. As shown in FIG. 2, the neural network prediction model 15 includes an input layer 151, a hidden layer 152, and an output layer 153. The input layer 151 receives historical climate data and historical power generation data (or training data or testing data) of the renewable energy power plant, and the output layer 153 outputs the training result or calculation of the neural network prediction model 15 . The result is shown in Figure 2. The hidden layer 152 is located between the input layer 151 and the output layer 153. The input layer 151, the hidden layer 152 and the output layer 153 respectively comprise one or more nodes 154, and the nodes 154 of the input layer 151 are respectively connected to the nodes 154 of the hidden layer 152. The nodes 154 of the hidden layer 152 are also connected to the nodes 154 of the output layer 153, respectively. When the prediction module 14 performs the training of the neural network prediction model 15, the historical climate data, the historical power generation data, the historical solar trajectory data and the historical air quality data are cut into training materials, training materials and test data according to the training mode. Then, using the training data and the training data, the training and tuning of the neural network prediction model 15 are performed. Since the technology of the neural network is well known to those of ordinary skill in the art, a detailed description of the neural network is not described here. In addition, the number of nodes 154 or the number of layers of the hidden layer 152 may have different number of nodes 154 or layers according to different requirements, and is not limited to the aspect shown in FIG. 2. Moreover, the methods for evaluating errors used in the neural network of the present invention include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute. Percentage Error (MAPE) or Mean Relative Error (MRE), etc., with the following formula:

其中,上述之方程式的N為訓練資料筆數,為預測發電量值,為實際發電量值。當類神經網路預測模型15的預測績效不如預期時,預測模組14則更換輸入變數、調整類神經網路預測模型15架構或參數設定,逐步提升系統預測績效。舉例來說,在訓練類神經網路模型15時,將經過異常點修正模組13濾除異常資料的去年一到八月份的歷史氣候資料、歷史發電資料、太陽方位角(Azimuth Angle)、太陽高度角(Elevation Angle)與大氣質量(Air Mass,AM)輸入至類神經網路預測模型15進行訓練,再以九到十二月份的歷史資料當測試資料,該類神經網路模型15所輸出的電廠九到十二月份預測發電量與去年九到十二月份的電廠實際發電量進行比較,並透過上述之均方根誤差法、平均絕對誤差法或平均絕對比例誤差法進行誤差評估,若誤差過大,調整類神經網路預測模型15之輸入層151的輸入參數與隱藏層之層數152節點154數量,或者調整所輸入之歷史氣候資料與歷史發電資料,再將歷史氣候資料與歷史發電資料輸入至調整後的類神經網路預測模型15,進行另一次的模型訓練誤差評估,透過上述的類神經網路預測模型15的訓練流程,最後得到預測準確率較高的類神經網路預測模型15作為本創作的發電量預測模型。Where N of the above equation is the number of training materials, In order to predict the amount of power generation, It is the actual power generation value. When the predicted performance of the neural network prediction model 15 is not as expected, the prediction module 14 replaces the input variables, adjusts the neural network prediction model 15 structure or parameter settings, and gradually improves the system prediction performance. For example, when training the neural network model 15, the historical climate data, historical power generation data, solar azimuth angle (Azimuth Angle), and the sun of the abnormal data from the abnormal point correction module 13 are filtered from January to August last year. Elevation Angle and Air Mass (AM) are input to the neural network prediction model 15 for training, and then the data is tested from September to December. The output of the neural network model 15 is output. The power plant's predicted power generation from September to December is compared with the actual power generation of the power plant from September to December last year, and the error is evaluated by the above-mentioned root mean square error method, average absolute error method or average absolute proportional error method. If the error is too large, adjust the input parameters of the input layer 151 of the neural network prediction model 15 and the number of layers 152 nodes 154 of the hidden layer, or adjust the input historical climate data and historical power generation data, and then generate historical climate data and historical power generation. The data is input to the adjusted neural network prediction model 15 for another model training error evaluation, which is pre-processed through the neural network described above. 15 model training process, and finally get a higher prediction accuracy neural network prediction model 15 as a generating capacity of this creation of predictive models.

接著,最佳模型訓練完後,透過輸入模組16輸入未來一段時間的預測氣候資料、未來一段時間的太陽軌跡資料(例如太陽的高度角與方位角等)與大氣質量(Air Mass)等未來資料至預測模組14,以進行再生能源電廠之發電量的預測。輸入模組16可以是鍵盤,由再生能源電廠的工作人員將預測氣候資料、太陽軌跡資料與大氣質量輸入至再生能源發電量預測系統10,或者輸入模組16可以是安裝於一電腦系統的程式,可以從氣候網站或相關氣候預測單位(如學術單位等)獲得未來預測氣候資料,並可以計算未來一段時間的太陽軌跡資料與大氣質量,再將這些資料輸入至預測模組14,以進行再生能源電廠的發電量預測。其中,未來時間的預測氣候資料可以從氣象局的預報資料或相關氣候預測單位所獲得,而太陽方位角(Azimuth Angle)A是指太陽光線在地平面上的投影與當地經線的夾角,太陽高度角(Elevation Angle)為觀測者所在地和太陽中心的連線與地平面所夾的角度,大氣質量(Air Mass,AM)為大氣對地球表面接收太陽光的影響程度,未來時間的太陽方位角、太陽高度角或大氣質量可以透過數學計算公式算出。輸出模組16連接預測模組14,透過輸出模組16將預測模組14透過類神經網路預測模型15所算出來的預測發電量輸出。透過上述的再生能源預測系統10,應用類神經網路預測模型15可以有效的預測電廠的發電量,根據預測的發電量讓電廠管理者可以有效的分配電力。Then, after the best model is trained, the input climate module is used to input the predicted climate data for a certain period of time, the solar trajectory data for a certain period of time (such as the altitude angle and azimuth of the sun, etc.) and the future of the air mass (Air Mass). The data is sent to the prediction module 14 for prediction of the amount of power generated by the renewable energy power plant. The input module 16 may be a keyboard, and the staff of the regenerative power plant inputs the predicted climate data, the solar trajectory data and the atmospheric quality to the regenerative energy generation quantity prediction system 10, or the input module 16 may be a program installed in a computer system. Future climate data can be obtained from climate websites or relevant climate prediction units (such as academic units), and solar trajectory data and air quality can be calculated for a period of time, and then input to prediction module 14 for regeneration. Forecast of power generation by energy power plants. Among them, the predicted climate data in the future time can be obtained from the meteorological bureau's forecast data or the relevant climate prediction unit, and the Azimuth Angle A refers to the angle between the projection of the sun's rays on the ground plane and the local meridian, the sun. The Elevation Angle is the angle between the line connecting the observer's location and the center of the sun and the ground plane. The air mass (AM) is the degree to which the atmosphere affects the earth's surface to receive sunlight, and the solar azimuth of the future time. The solar elevation angle or air quality can be calculated by mathematical calculation formula. The output module 16 is connected to the prediction module 14 and outputs the predicted power generation amount calculated by the prediction module 14 through the neural network prediction model 15 through the output module 16. Through the above-described renewable energy prediction system 10, the application-like neural network prediction model 15 can effectively predict the power generation amount of the power plant, and the power plant manager can efficiently distribute the power according to the predicted power generation amount.

圖3為本創作之再生能源預測方法的流程圖。如圖3所示,在步驟S301中,透過資料擷取模組11取得歷史氣候資料、歷史發電資料、歷史太陽軌跡與歷史大氣質量。本創作的再生能源預測方法擷取再生能源電廠的歷史氣候資料、歷史發電資料歷史太陽軌跡與歷史大氣質量作為預測未來發電量的依據。在步驟S302中,透過異常點修正模組13將所擷取的歷史氣候資料、歷史發電資料、歷史太陽軌跡與歷史大氣質量中的異常資料濾除或修正。舉例來說,異常點修正模組13可以透過迴歸分析(Regression Analysis)的方式將離群值(Outlier)的資料濾除或修正,離群值是指在數據中有一個或多個數值與其他數值相比差異較大。或者如圖4所示,異常點修正模組13可以利用常態分佈法,將擷取到的歷史氣候資料與歷史發電資料建立常態分佈曲線,進而大於3標準差(±3s)的資料點濾除或修正。所謂的標準差(Standard Deviation,SD),為在機率統計中最常使用作為統計分布程度(statistical dispersion)上的測量,標準差是一組數值自平均值分散開來程度的一種測量觀念。一個較大的標準差代表大部分的數值和其平均值之間差異較大;一個較小的標準差代表這些數值較接近平均值。在不同實施例中,甚至可以設計一個門檻值將超過門檻值的資料濾除或修正。在此需要說明的是,應用迴歸分析或常態分佈法等濾除異常點的方式為本領域具有通常知識者所熟知,在此不再贅述。而修正的方法可以同一發電裝置過去一段時間的平均發電效率當修正基準,或在相同時間比較同一發電電廠之複數個發電裝置的平均發電效率或平均單位發電量當基準進一步補值或修正該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料中的複數筆異常資料。Figure 3 is a flow chart of the method for predicting renewable energy in the present invention. As shown in FIG. 3, in step S301, the historical climate data, the historical power generation data, the historical solar trajectory, and the historical air quality are obtained through the data acquisition module 11. The regenerative energy prediction method of this creation draws on historical climate data of renewable energy power plants, historical solar trajectories of historical power generation data and historical air quality as the basis for predicting future power generation. In step S302, the abnormal point correction module 13 filters out or corrects the abnormal data in the historical climate data, the historical power generation data, the historical solar trajectory, and the historical air quality. For example, the abnormal point correction module 13 can filter or correct the outlier data by means of Regression Analysis, and the outlier value refers to one or more values and other values in the data. The numerical values are quite different. Or, as shown in FIG. 4, the abnormal point correction module 13 can use the normal distribution method to establish a normal distribution curve of the historical climate data and the historical power generation data, and further filter the data points larger than 3 standard deviations (±3 s). Or fix it. The so-called Standard Deviation (SD) is the most commonly used measure of statistical dispersion in probability statistics. The standard deviation is a measure of the degree to which a set of values is spread out from the mean. A larger standard deviation represents a larger difference between most of the values and their average values; a smaller standard deviation means that these values are closer to the average. In various embodiments, it is even possible to design a data whose threshold value will exceed or exceed the threshold value. It should be noted that the manner of filtering the abnormal points by applying the regression analysis or the normal distribution method is well known to those skilled in the art and will not be described herein. The modified method may be used to correct the average power generation efficiency of the same power generation device over a period of time, or to compare the average power generation efficiency or the average unit power generation amount of the plurality of power generation devices of the same power generation plant at the same time, and further supplement or correct the reference. Historical climate data, historical power generation data, the solar trajectory data, and multiple abnormal data in the air quality data.

在步驟S303中,將已濾除或修正異常資料的歷史氣候資料、歷史發電資料、太陽軌跡與大氣質量傳送至預測模組14,透過預測模組14進行類神經網路預測模型15的訓練以獲得一發電量預測模型。類神經網路預測模型15需要進行反覆的演算與修正,藉由輸入已濾除或修正異常點的歷史氣候資料與歷史發電資料(加太陽軌跡或大氣質量等)至預測模組14,並透過均方根誤差法(RMSE)、平均絕對誤差法(MAE)或平均絕對比例誤差法(MAPE)等數學公式與測試用的歷史氣候資料與歷史發電資料來評估類神經網路預測模型15的預測績效。若類神經網路預測模型15所預測出來的歷史預測發電量與歷史實際發電量差距過大,更換輸入至類神經網路預測模型15的歷史氣候資料與歷史發電資料(太陽軌跡或大氣質量等),調整類神經網路預測模型15的架構或參數設定,例如更改在類神經網路預測模型15之輸入層151參數、隱藏層152層數與節點154數量,逐步提升類神經網路預測模型15的預測績效,最後產生具較佳預測績效的發電量預測模型。In step S303, the historical climate data, the historical power generation data, the solar trajectory and the air quality of the filtered or corrected abnormal data are transmitted to the prediction module 14, and the neural network prediction model 15 is trained by the prediction module 14 to A power generation prediction model is obtained. The neural network prediction model 15 needs to perform repeated calculations and corrections by inputting historical climate data and historical power generation data (plus solar trajectory or air quality, etc.) that have been filtered or corrected to the prediction module 14 and through Mathematical formulas such as root mean square error method (RMSE), mean absolute error method (MAE) or mean absolute proportional error method (MAPE) and historical climate data and historical power generation data for evaluation are used to evaluate the prediction of neural network prediction model 15 Performance. If the difference between the historical predicted power generation predicted by the neural network prediction model 15 and the historical actual power generation is too large, the historical climate data and historical power generation data (sun trajectory or air quality, etc.) input to the neural network prediction model 15 are replaced. Adjusting the architecture or parameter setting of the neural network prediction model 15 , for example, changing the input layer 151 parameters of the neural network prediction model 15 , the number of layers of the hidden layer 152 and the number of nodes 154 , and gradually upgrading the neural network prediction model 15 The predicted performance, and finally the power generation forecasting model with better predictive performance.

在步驟S304中,輸入一未來時間區間的預測氣候資料、太陽軌跡(例如高度角或方位角等)以及大氣質量至預測模組14以進行未來時間區間的電廠發電量預測。其中,未來時間的預測氣候資料可以從氣象局的預報資料或相關氣候預測單位所獲得,而太陽方位角(Azimuth Angle)A是指太陽光線在地平面上的投影與當地經線的夾角,太陽高度或太陽高度角為觀測者所在地和太陽中心的連線與地平面所夾的角度,如圖5所示,太陽方位角A可透過下列公式取得:In step S304, a predicted climate data of a future time interval, a solar trajectory (such as a height angle or azimuth angle, etc.), and an air quality to prediction module 14 are input to perform power generation amount prediction for a future time interval. Among them, the predicted climate data in the future time can be obtained from the meteorological bureau's forecast data or the relevant climate prediction unit, and the Azimuth Angle A refers to the angle between the projection of the sun's rays on the ground plane and the local meridian, the sun. The height or solar elevation angle is the angle between the line connecting the observer's location and the center of the sun and the ground plane. As shown in Figure 5, the solar azimuth A can be obtained by the following formula:

其中,h 是太陽的方位角,δA 是當時的太陽赤緯,θA 為當地的地理緯度。Where h is the azimuth of the sun, δ A is the solar declination at the time, and θ A is the local geographic latitude.

太陽高度或太陽高度角α為觀測者所在地和太陽中心的連線與地平面所夾的角度,如圖5所示,太陽高度角α可以透過下列公式計算獲得其近似值:The solar height or solar elevation angle α is the angle between the line connecting the observer's location and the center of the sun and the ground plane. As shown in Fig. 5, the solar elevation angle α can be calculated by the following formula to obtain an approximate value:

其中,α是太陽高度角,ħ 是以地方恆星時系統下的時角,是目前的太陽赤緯,是當地的緯度。Where α is the solar elevation angle and ħ is the time angle under the local star system. Is the current sun declination, It is the local latitude.

大氣質量(Air Mass,AM)為大氣對地球表面接收太陽光的影響程度,其計算公式為:Air Mass (AM) is the degree to which the atmosphere affects the Earth's surface to receive sunlight. The formula is:

其中θAM 為太陽入射方向與天頂方向的夾角,如圖6所示,而θAM 又稱天頂角。Where θ AM is the angle between the incident direction of the sun and the direction of the zenith, as shown in Fig. 6, and θ AM is also called the zenith angle.

透過輸入模組16將可取得之未來時間區間的氣候資料、太陽方位角、太陽高度角與大氣質量等資料輸入至本創作的再生能源預測系統10進行再生能源電廠的發電預測,然後在步驟S305中,透過輸出模組17將所預測之電廠發電量輸出。經由輸出模組17將預測模組14所計算出來的預測發電量輸出,讓電廠管理者可以有效的分配電廠發電量。The climatic data, the solar azimuth angle, the solar elevation angle, and the air quality of the available future time interval are input to the regenerative energy prediction system 10 of the present creation through the input module 16 to perform power generation prediction of the regenerative power plant, and then in step S305 The predicted power generation amount of the power plant is output through the output module 17. The predicted power generation amount calculated by the prediction module 14 is output via the output module 17, so that the power plant manager can effectively allocate the power generation amount of the power plant.

透過本創作的再生能源預測方法與系統可預測出準確性高的電廠發電量,根據所預測之再生能源電廠的發電量讓電廠管理者可以進行電廠發電量的調配,以提升再生能源電廠發電的有效利用率。The regenerative energy prediction method and system of this creation can predict the power generation capacity of the high-accuracy power plant. According to the predicted power generation capacity of the regenerative energy power plant, the power plant manager can adjust the power generation capacity of the power plant to improve the power generation of the renewable energy power plant. Effective utilization.

以上所述僅是本創作的較佳實施例而已,並非對本創作做任何形式上的限制,雖然本創作已以較佳實施例揭露如上,然而並非用以限定本創作,任何熟悉本專業的技術人員,在不脫離本創作技術方案的範圍內,當可利用上述揭示的技術內容作出些許更動或修飾為等同變化的等效實施例,但凡是未脫離本創作技術方案的內容,依據本創作的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本創作技術方案的範圍內。The above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention in any way. Although the present invention has been disclosed above in the preferred embodiment, it is not intended to limit the present invention, and any technique familiar to the art. A person skilled in the art can make some modifications or modifications to equivalent embodiments by using the technical content disclosed above, but the content of the present invention is not deviated from the present invention. Technical simplifications Any simple modifications, equivalent changes and modifications made to the above embodiments are still within the scope of the present technical solution.

10‧‧‧再生能源預測系統
11‧‧‧資料擷取模組
12‧‧‧資料庫
13‧‧‧異常點修正模組
14‧‧‧預測模組
15‧‧‧類神經網路預測模型
151‧‧‧輸入層
152‧‧‧隱藏層
153‧‧‧輸出層
154‧‧‧節點
16‧‧‧輸入模組
17‧‧‧輸出模組
10‧‧‧Renewable Energy Forecasting System
11‧‧‧Data Capture Module
12‧‧‧Database
13‧‧‧Anomaly correction module
14‧‧‧ Forecasting Module
15‧‧‧ Neural Network Prediction Model
151‧‧‧Input layer
152‧‧‧ hidden layer
153‧‧‧ Output layer
154‧‧‧ nodes
16‧‧‧Input module
17‧‧‧Output module

圖1為本創作之再生能源發電量預測系統的方塊圖。 圖2為本創作之類神經網路預測模型的示意圖。 圖3為本創作之再生能源發電量預測方法的流程圖。 圖4為本創作之常態分佈法的分佈曲線圖。 圖5為本創作之計算太陽方位角的示意圖。 圖6為本創作之計算大氣質量的示意圖。Figure 1 is a block diagram of the regenerative energy generation forecasting system of the present invention. Figure 2 is a schematic diagram of a neural network prediction model such as the creation. Figure 3 is a flow chart of the method for predicting the amount of renewable energy generated by the present invention. Fig. 4 is a distribution curve diagram of the normal distribution method of the present creation. Figure 5 is a schematic diagram of the calculation of the solar azimuth angle of the present creation. Figure 6 is a schematic diagram of the calculated air quality of the present creation.

10‧‧‧再生能源發電量預測系統 10‧‧‧Renewable Energy Generation Forecasting System

11‧‧‧資料擷取模組 11‧‧‧Data Capture Module

12‧‧‧資料庫 12‧‧‧Database

13‧‧‧異常點修正模組 13‧‧‧Anomaly correction module

14‧‧‧預測模組 14‧‧‧ Forecasting Module

15‧‧‧類神經網路預測模型 15‧‧‧ Neural Network Prediction Model

16‧‧‧輸入模組 16‧‧‧Input module

17‧‧‧輸出模組 17‧‧‧Output module

Claims (10)

一種再生能源發電量預測系統,包含: 一資料庫,儲存複數筆歷史氣候資料、複數筆歷史發電資料、複數筆太陽軌跡資料與複數筆大氣質量資料; 一資料擷取模組,其與該資料庫連接,從該資料庫擷取該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料; 一異常點修正模組,其與該資料擷取模組連接,將該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料中的複數筆異常資料濾除; 一預測模組,其與該異常點修正模組連接,該預測模組根據已修正該些異常資料的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料進行一類神經網路預測模型的訓練以獲得一發電量預測模型; 一輸入模組,連接該預測模組,輸入複數筆未來氣候資料、一太陽軌跡與一大氣質量至該預測模組,使該預測模組計算出一預測發電量; 一輸出模組,連接該預測模組,用於輸出該預測發電量。A renewable energy power generation quantity prediction system, comprising: a database, storing a plurality of historical climate data, a plurality of historical power generation data, a plurality of solar trajectory data and a plurality of air quality data; a data acquisition module, and the data a library connection, the historical climate data, the historical power generation data, the solar trajectory data and the air quality data are extracted from the database; an abnormal point correction module is connected to the data acquisition module, Separating the historical climate data, the historical power generation data, the solar trajectory data, and the plurality of abnormal data in the air quality data; a prediction module connected to the abnormal point correction module, the prediction The module performs training on a neural network prediction model based on the historical climate data, the historical power generation data, the solar trajectory data, and the air quality data that have been corrected for the abnormal data to obtain a power generation prediction model; An input module, connected to the prediction module, inputting a plurality of future climate data, a solar trajectory and an air quality to the pre- Module, so that the predicted module calculating a predicted power generation amount; an output module, connected to the forecast module, for outputting the predicted power generation amount. 如請求項1所述之再生能源發電量預測系統,其中該異常點修正模組是應用迴歸分析、常態分佈法或資料比對方法進行該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料或該些大氣質量資料的該些異常資料的判斷,並進行資料點濾除或修正,其中修正方法是以相同發電裝置過去一段時間的平均發電效率當修正基準,或在相同時間比較同一電廠其他單個或複數個發電裝置的平均發電效率或平均單位發電量當基準進一步補值或修正。The regenerative power generation quantity prediction system according to claim 1, wherein the abnormal point correction module applies the regression analysis, the normal distribution method or the data comparison method to perform the historical climate data, the historical power generation data, and the sun. Judgment of the trajectory data or the abnormal data of the air quality data, and filtering or correcting the data points, wherein the correction method is to use the average power generation efficiency of the same power generation device for a period of time as a correction reference, or compare the same time at the same time The average power generation efficiency or average unit power generation of other single or multiple power generation units of the power plant is further supplemented or corrected by the baseline. 如請求項1所述之再生能源發電量預測系統,其中該異常點修正模組是設定一門檻值,將超過該門檻值的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料或該些大氣質量資料視為該些異常資料。The regenerative power generation quantity prediction system according to claim 1, wherein the abnormal point correction module is configured to set a threshold value, the historical climate data exceeding the threshold value, the historical power generation data, and the solar trajectory data. Or the air quality data is regarded as the abnormal data. 如請求項1所述之再生能源發電量預測系統,其中該太陽軌跡包含太陽高度角與太陽方位角。The regenerative energy generation amount prediction system according to claim 1, wherein the solar trajectory includes a solar altitude angle and a solar azimuth angle. 如請求項1所述之再生能源發電量預測系統,其中該預測模組是利用均方根誤差法(Root Mean Square Error,RMSE)、平均絕對誤差法(Mean Absolute Error,MAE)、平均絕對比例誤差法(Mean Absolute Percentage Error,MAPE)或平均相對誤差(Mean Relative Error (MRE)以評估該類神經網路預測模型的預測績效。The regenerative power generation amount prediction system according to claim 1, wherein the prediction module uses a Root Mean Square Error (RMSE), a Mean Absolute Error (MAE), and an average absolute ratio. Mean Absolute Percentage Error (MAPE) or Mean Relative Error (MRE) to evaluate the predictive performance of this type of neural network prediction model. 一種再生能源發電量預測方法,包含下列步驟: 透過一資料擷取模組取得複數筆歷史氣候資料、複數筆歷史發電資料、複數筆太陽軌跡資料與複數筆大氣質量資料; 透過一異常點修正模組將所擷取的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料中的複數筆異常資料修正; 將已修正之該些異常資料的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料傳送至一預測模組,進行一類神經網路預測模型的訓練以獲得一發電量預測模型; 輸入一未來時間區間的複數筆預測氣候資料、一太陽軌跡以及一大氣質量至該預測模組以進行該未來時間區間的電廠發電量預測; 透過一輸出模組將所預測之該電廠發電量輸出。A method for predicting the amount of renewable energy power generation includes the following steps: obtaining a plurality of historical climate data, a plurality of historical power generation data, a plurality of solar trajectory data, and a plurality of atmospheric quality data through a data acquisition module; The group corrects the historical climate data, the historical power generation data, the solar trajectory data, and the plurality of abnormal data in the air quality data; the historical climates of the abnormal data that have been corrected The data, the historical power generation data, the solar trajectory data and the air quality data are transmitted to a prediction module, and a type of neural network prediction model is trained to obtain a power generation prediction model; and a complex time interval is input The pen predicts the climatological data, a solar trajectory, and a mass of the air mass to the predictive module to predict the power generation of the power plant in the future time interval; and outputs the predicted power generation amount of the power plant through an output module. 如請求項6所述之再生能源發電量預測方法,其中在透過該異常點修正模組將所擷取的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料中的該些異常資料濾除的該步驟係透過迴歸分析或常態分佈法進行該些歷史氣候資料與該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料的該些異常資料的判斷,並進行資料點濾除或修正,其中修正方法可以相同發電裝置過去一段時間的平均發電效率當修正基準,或在相同時間比較同一電廠其他單個或複數個發電裝置的平均發電效率或平均單位發電量當基準進一步補值或修正。The method for predicting the amount of renewable energy generated according to claim 6, wherein the historical climate data captured by the abnormal point correction module, the historical power generation data, the solar trajectory data, and the air quality are obtained. The step of filtering out the abnormal data in the data is performed by using a regression analysis or a normal distribution method to perform the historical climate data and the historical power generation data, the solar trajectory data, and the abnormal data of the air quality data. Judging, and performing data point filtering or correction, wherein the correction method can be the same as the average power generation efficiency of the power generating device in the past period of time, or the average power generation efficiency or average unit of other single or multiple power generating devices in the same power plant at the same time. The amount of power generated is further supplemented or corrected as a basis. 如請求項6所述之再生能源發電量預測方法,其中在透過該異常點修正模組將所擷取的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料中的該些異常資料濾除的該步驟是設定一門檻值,將超過該門檻值的該些歷史氣候資料與該些歷史發電資料視為該些異常資料。The method for predicting the amount of renewable energy generated according to claim 6, wherein the historical climate data captured by the abnormal point correction module, the historical power generation data, the solar trajectory data, and the air quality are obtained. The step of filtering out the abnormal data in the data is to set a threshold value, and the historical climate data exceeding the threshold value and the historical power generation data are regarded as the abnormal data. 如請求項6所述之再生能源發電量預測方法,其中在將已濾除之該些異常資料的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料傳送至該預測模組,進行該類神經網路預測模型的訓練以獲得該發電量預測模型的該步驟中是利用均方根誤差法(Root Mean Square Error,RMSE)、平均絕對誤差法(Mean Absolute Error,MAE)、平均絕對比例誤差法(Mean Absolute Percentage Error,MAPE)或平均相對誤差(Mean Relative Error (MRE)以訓練該類神經網路預測模型。The method for predicting the amount of renewable energy power generation according to claim 6, wherein the historical climate data, the historical power generation data, the solar trajectory data, and the air quality data of the abnormal data that have been filtered out are transmitted. To the prediction module, the training of the neural network prediction model is performed to obtain the power generation prediction model by using Root Mean Square Error (RMSE) and Mean Absolute. Error, MAE), Mean Absolute Percentage Error (MAPE) or Mean Relative Error (MRE) to train this type of neural network prediction model. 如請求項6所述之再生能源發電量預測方法,其中在透過該異常點修正模組將所擷取的該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料中的複數筆異常資料修正的步驟是以同一發電裝置過去一段時間的平均發電效率當修正基準,或在相同時間比較同一發電電廠之複數個發電裝置的平均發電效率或平均單位發電量當基準進一步補值或修正該些歷史氣候資料、該些歷史發電資料、該些太陽軌跡資料與該些大氣質量資料中的複數筆異常資料。The method for predicting the amount of renewable energy generated according to claim 6, wherein the historical climate data captured by the abnormal point correction module, the historical power generation data, the solar trajectory data, and the air quality are obtained. The step of correcting the plurality of abnormal data in the data is to use the average power generation efficiency of the same power generation device as the correction reference, or to compare the average power generation efficiency or the average unit power generation amount of the plurality of power generation devices of the same power generation plant at the same time as the reference. Further supplementing or correcting the historical climate data, the historical power generation data, the solar trajectory data, and the plurality of abnormal data in the air quality data.
TW105114400A 2016-05-10 2016-05-10 Method and system for predicting power generation capacity of renewable energy using a neural network to accurately calculate the power generation capacity of renewable energy TW201740296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105114400A TW201740296A (en) 2016-05-10 2016-05-10 Method and system for predicting power generation capacity of renewable energy using a neural network to accurately calculate the power generation capacity of renewable energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105114400A TW201740296A (en) 2016-05-10 2016-05-10 Method and system for predicting power generation capacity of renewable energy using a neural network to accurately calculate the power generation capacity of renewable energy

Publications (1)

Publication Number Publication Date
TW201740296A true TW201740296A (en) 2017-11-16

Family

ID=61022878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105114400A TW201740296A (en) 2016-05-10 2016-05-10 Method and system for predicting power generation capacity of renewable energy using a neural network to accurately calculate the power generation capacity of renewable energy

Country Status (1)

Country Link
TW (1) TW201740296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112801329A (en) * 2019-11-14 2021-05-14 财团法人资讯工业策进会 Solar panel power generation system abnormity diagnosis and analysis device and method combining factor hidden Markov model and power generation amount prediction
TWI765821B (en) * 2021-09-13 2022-05-21 崑山科技大學 Method for predicting maximum power generation of solar system in shadow mode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112801329A (en) * 2019-11-14 2021-05-14 财团法人资讯工业策进会 Solar panel power generation system abnormity diagnosis and analysis device and method combining factor hidden Markov model and power generation amount prediction
TWI765821B (en) * 2021-09-13 2022-05-21 崑山科技大學 Method for predicting maximum power generation of solar system in shadow mode

Similar Documents

Publication Publication Date Title
De Benedetti et al. Anomaly detection and predictive maintenance for photovoltaic systems
US20220275788A1 (en) Forecasting output power of wind turbine in wind farm
Mellit et al. Short-term forecasting of power production in a large-scale photovoltaic plant
Muhammad Ehsan et al. Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron
US20200057175A1 (en) Weather dependent energy output forecasting
Zhao et al. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China
Boland et al. Short term solar radiation forecasting: Island versus continental sites
Kazem et al. Experimental and deep learning artificial neural network approach for evaluating grid‐connected photovoltaic systems
González Ordiano et al. Photovoltaic power forecasting using simple data-driven models without weather data
KR102283487B1 (en) A Forecasting System of Photovoltaic Generation Based on Machine-learning Using Realtime Satellite Data and Numerical Modeling Data
Yang et al. A novel ARX-based multi-scale spatio-temporal solar power forecast model
Zhao et al. Resilient unit commitment for day-ahead market considering probabilistic impacts of hurricanes
Fara et al. Forecasting of energy production for photovoltaic systems based on ARIMA and ANN advanced models
Gulin et al. A one-day-ahead photovoltaic array power production prediction with combined static and dynamic on-line correction
US10770898B2 (en) Methods and systems for energy use normalization and forecasting
KR102230548B1 (en) Power generation prediction and efficiency diagnosis system of solar power generation facilities using FRBFNN model
Junior et al. Forecasting regional photovoltaic power generation-a comparison of strategies to obtain one-day-ahead data
CN110556820A (en) Method and apparatus for determining energy system operating scenarios
Michael et al. Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network
JPWO2016166991A1 (en) Diagnostic system and program for photovoltaic power generation facilities
Chen et al. Research on wind power prediction method based on convolutional neural network and genetic algorithm
Shawon et al. Forecasting PV panel output using Prophet time series machine learning model
Gupta et al. Long term estimation of global horizontal irradiance using machine learning algorithms
Khalyasmaa et al. Prediction of solar power generation based on random forest regressor model
Gupta et al. A review and evaluation of solar forecasting technologies