JP2019090890A - Imaging optical system and imaging apparatus - Google Patents

Imaging optical system and imaging apparatus Download PDF

Info

Publication number
JP2019090890A
JP2019090890A JP2017218681A JP2017218681A JP2019090890A JP 2019090890 A JP2019090890 A JP 2019090890A JP 2017218681 A JP2017218681 A JP 2017218681A JP 2017218681 A JP2017218681 A JP 2017218681A JP 2019090890 A JP2019090890 A JP 2019090890A
Authority
JP
Japan
Prior art keywords
optical system
imaging
lens
object side
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017218681A
Other languages
Japanese (ja)
Other versions
JP7026933B2 (en
Inventor
晃 山岸
Akira Yamagishi
晃 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Optical Co Ltd
Original Assignee
Nitto Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Optical Co Ltd filed Critical Nitto Optical Co Ltd
Priority to JP2017218681A priority Critical patent/JP7026933B2/en
Publication of JP2019090890A publication Critical patent/JP2019090890A/en
Application granted granted Critical
Publication of JP7026933B2 publication Critical patent/JP7026933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide a compact variable power optical system.SOLUTION: There is provided an imaging optical system 6 including: a reflection optical system 10 with a positive refractive power; and a refractive optical system 20 with a positive refractive power located on an image surface side of the reflection optical system, in ascending order of the distance from an object side 2. The reflection optical system 10 includes: a main mirror M1 with a recessed surface facing the object side 2; and a sub mirror M2 on the optical axis of the main mirror for guiding light reflected to the main mirror to the image surface side. The refractive optical system 20 includes: a first lens group G1, which moves integrally with the reflection optical system at the time of zooming and moves alone at the time of focusing; and a second lens group G2, which moves alone at the time of zooming, in ascending order of the distance from the object side 2.SELECTED DRAWING: Figure 1

Description

本発明は、反射光学系を含む撮像光学系および撮像装置に関するものである。   The present invention relates to an imaging optical system including a reflection optical system and an imaging apparatus.

特許文献1には、コンパクトな反射屈折光学系を提供することが記載されている。この反射屈折光学系は、物体側から順に、主反射鏡と副鏡とを持つ正屈折力の第1レンズ群と正屈折力の第2レンズ群とを有し物体の1次像を形成する対物光学系と、この1次像からの光により射出瞳を形成する接眼光学系とを有する。   Patent Document 1 describes that a compact catadioptric optical system is provided. This catadioptric optical system, in order from the object side, has a first lens group of positive refracting power and a second lens group of positive refracting power having a main reflecting mirror and a sub mirror to form a primary image of an object. It has an objective optical system, and an eyepiece optical system that forms an exit pupil with light from this primary image.

特開平06−273674号公報Japanese Patent Application Laid-Open No. 06-273674

反射光学系を含むコンパクトな撮像光学系であって、ズーミングが可能で、さらに、フォーカシングの機構も簡易に実現できる撮像光学系が求められている。   There is a need for a compact imaging optical system including a reflection optical system, capable of zooming, and further capable of easily realizing a focusing mechanism.

本発明の一態様は、物体側から順に、正の屈折力の反射光学系と、反射光学系により像面側に導かれた光を結像する正の屈折力の屈折光学系とを有する撮像光学系である。反射光学系は、物体側に凹面を向けた主鏡と、主鏡の光軸上に配置され、主鏡に反射された光を像面側に導く副鏡とを含む。屈折光学系は、物体側から順に、ズーミングの際に反射光学系と一体で移動し、フォーカシングの際に独立して移動する第1のレンズ群と、ズーミングの際に独立して移動する第2のレンズ群とを含む。   One embodiment of the present invention includes, in order from an object side, a reflective optical system having positive refractive power, and an imaging having a refractive optical system having positive refractive power for imaging light guided to the image plane side by the reflective optical system. It is an optical system. The reflective optical system includes a main mirror having a concave surface facing the object side, and a sub mirror disposed on the optical axis of the main mirror and guiding light reflected by the main mirror to the image plane side. The dioptric system moves integrally with the catoptric system during zooming in order from the object side, and moves independently during the zooming from the first lens group which moves independently during focusing. And the lens group of

物体側に反射光学系を配置した撮像光学系は、物体側の大口径のレンズを反射光学系に置き換えることができるので、レンズの価格を抑えることができ、特に、レンズが高額になりやすい赤外線撮像光学系に適している。また、撮像光学系の全長を短縮でき、FNo.の小さな明るい光学系を提供できるというメリットもある。本発明においては、撮像光学系を、物体側に配置された反射光学系と、像面側に配置された屈折光学系とに分けて構成することにより、ズーミングおよびフォーカシングの際に、反射光学系と屈折光学系とを分けて制御することが容易となる。その一方、最も反射光学系側に配置される第1のレンズ群をズームの際に反射光学系と一体で移動することによりズーミングの際の諸収差の補正を行い、さらに、反射光学系の像面側に配置された第1のレンズ群でフォーカシングを行うことにより、反射光学系を含むインナーフォーカス型の撮像光学系を提供できる。   An imaging optical system in which a reflection optical system is disposed on the object side can replace a lens with a large aperture on the object side with a reflection optical system, so that the price of the lens can be suppressed. It is suitable for an imaging optical system. In addition, the entire length of the imaging optical system can be shortened. There is also an advantage that a small bright optical system can be provided. In the present invention, the imaging optical system is divided into a reflective optical system disposed on the object side and a dioptric optical system disposed on the image plane side, whereby the reflective optical system is provided during zooming and focusing. And dioptric optical system can be easily divided and controlled. On the other hand, various aberrations in zooming are corrected by moving the first lens unit disposed closest to the side of the reflective optical system integrally with the reflective optical system during zooming, and an image of the reflective optical system is further corrected. By performing focusing with the first lens group disposed on the surface side, it is possible to provide an inner focus type imaging optical system including a reflection optical system.

反射光学系の合成焦点距離fmと、当該撮像光学系の望遠端から広角端にわたる合成焦点距離faとが以下の条件を満たしてもよい。
10<fm/fa<20 ・・・(1)
下限を下回ると、反射光学系のパワーが強くなりすぎて収差補正が難しくなり、上限を上回ると反射光学系のパワーが小さくなりすぎて撮像光学系の全長が長くなる。
The combined focal length fm of the reflective optical system and the combined focal length fa from the telephoto end to the wide angle end of the imaging optical system may satisfy the following conditions.
10 <fm / fa <20 (1)
Below the lower limit, the power of the reflective optical system becomes too strong and aberration correction becomes difficult, and when the upper limit is exceeded, the power of the reflective optical system becomes too small and the total length of the imaging optical system becomes long.

屈折光学系の第2のレンズ群は、ズーミングの際に独立して移動する負の屈折力の前群と、ズーミングの際に独立して移動する正の屈折力の後群とを含んでもよい。屈折光学系を構成するレンズはゲルマニウム製またはカルコゲナイド製であってもよい。   The second lens group of the refractive optical system may include a front group of negative power which moves independently during zooming and a rear group of positive power which moves independently during zooming. . The lens constituting the refractive optical system may be made of germanium or chalcogenide.

本発明の他の態様の1つは、上記に記載の撮像光学系と、撮像光学系の像面側に配置された撮像デバイスとを有する撮像装置である。   One of the other aspects of this invention is an imaging device which has an imaging optical system as described above, and an imaging device arrange | positioned at the image surface side of an imaging optical system.

撮像光学系を含む撮像装置の構成を示す図。FIG. 2 is a diagram showing a configuration of an imaging apparatus including an imaging optical system. レンズデータを示す図。The figure which shows lens data. 非球面係数を示す図。The figure which shows an aspheric coefficient. ズームデータを示す図。The figure which shows zoom data. 諸数値を示す図。The figure which shows various values.

図1に、撮像用の光学系を備えた撮像装置(カメラ、カメラ装置)の一例を示している。図1(a)は広角端の配置を示し、図1(b)は望遠端の配置を示す。この撮像装置1は、撮像光学系(結像光学系、レンズシステム)6と、撮像光学系6の像面側(画像側、撮像側、結像側)3に配置された撮像素子(撮像デバイス、像面)5とを有する。この撮像デバイス5は、赤外線(赤外光)の画像が取得できるように調整されており、撮像装置1は、サーマル・イメージング・システム、監視用途などの赤外光撮像装置である。また、撮像光学系6は、赤外線用の望遠用ズームレンズシステムである。   FIG. 1 shows an example of an imaging apparatus (camera, camera apparatus) provided with an optical system for imaging. FIG. 1 (a) shows the arrangement at the wide-angle end, and FIG. 1 (b) shows the arrangement at the telephoto end. The imaging apparatus 1 includes an imaging optical system (imaging optical system, lens system) 6 and an imaging element (imaging device) disposed on the image plane side (image side, imaging side, imaging side) 3 of the imaging optical system 6 , Image plane 5). The imaging device 5 is adjusted so as to obtain an infrared (infrared) image, and the imaging device 1 is an infrared imaging device such as a thermal imaging system or a monitoring application. The imaging optical system 6 is a telephoto zoom lens system for infrared light.

撮像光学系6は、物体側2から順に、正の屈折力の反射光学系10と、反射光学系10の像面側3に配置された正の屈折力の屈折光学系20とを有する。反射光学系10は、物体側(被写体側)2からの光を集光する対物レンズとしての機能を含み、屈折光学系20は、反射光学系10により像面側3に導かれた光を像面である撮像デバイス5に結像する機能を含む。   The imaging optical system 6 includes, in order from the object side 2, a reflective optical system 10 of positive refractive power and a refractive optical system 20 of positive refractive power disposed on the image plane side 3 of the reflective optical system 10. The reflective optical system 10 has a function as an objective lens for condensing light from the object side (subject side) 2, and the dioptric optical system 20 images the light guided to the image plane side 3 by the reflective optical system 10. It includes a function of forming an image on the imaging device 5 which is a plane.

反射光学系10は、物体側2に凹面を向けた正のパワーの主鏡M1と、主鏡M1の光軸7上に配置され、主鏡M1に反射された光を像面側に導く、像面側3に凸面を向けた負のパワーの副鏡M2とを含む。この反射光学系10においては、副鏡M2は、光軸7に沿って光を反射し、主鏡M1の像面側3に、光軸7に同軸上に配置された屈折光学系20へ光を導く。   The reflective optical system 10 is disposed on the optical axis 7 of the main mirror M1 of positive power having a concave surface facing the object side 2 and the optical axis 7 of the main mirror M1, and guides the light reflected by the main mirror M1 to the image plane side And a negative power submirror M2 having a convex surface on the image plane side 3. In this reflection optical system 10, the sub mirror M2 reflects light along the optical axis 7, and on the image plane side 3 of the main mirror M1, to the dioptric system 20 coaxially arranged with the optical axis 7 Lead.

屈折光学系20は、物体側2から順に、ズーミングの際に反射光学系10と一体で移動し、フォーカシングの際に独立して移動する第1のレンズ群G1と、ズーミングの際に独立して移動する第2のレンズ群G2とを含む。第2のレンズ群G2は、さらに、ズーミングの際に独立して移動する負の屈折力の前群G2fと、ズーミングの際に独立して移動する正の屈折力の後群G2bとを含む。   The dioptric system 20 moves sequentially from the object side 2 integrally with the catoptric system 10 during zooming, and independently during the zooming with a first lens group G1 moving independently during focusing. And a moving second lens group G2. The second lens group G2 further includes a front group G2f of negative refractive power which moves independently during zooming, and a rear group G2b of positive refractive power which moves independently during zooming.

最も物体側2の反射光学系10と第1のレンズ群G1とが全体として正のパワーの移動群を構成し、広角端から望遠端へ変倍する際に、物体側2へ移動する。前群G2fは、全体として負のパワーの移動群を構成し、広角端から望遠端へ変倍する際に、像面側3へ移動する。後群G2bは、全体として正のパワーの移動群を構成し、広角端から望遠端へ変倍する際に、像面側3へ移動する。   The reflective optical system 10 on the most object side 2 and the first lens group G1 as a whole constitute a moving group of positive power, and move to the object side 2 when zooming from the wide angle end to the telephoto end. The front group G2f forms a moving group of negative power as a whole, and moves to the image plane side 3 when zooming from the wide-angle end to the telephoto end. The rear group G2b as a whole constitutes a moving group of positive power, and moves to the image plane side 3 when zooming from the wide-angle end to the telephoto end.

本例の屈折光学系20においては、第1のレンズ群G1は、ゲルマニウム製の両凸の正レンズL1の一枚構成である。第2のレンズ群G2の前群G2fは、カルコゲナイド製で像面側3に凸の負のメニスカスレンズL2と、ゲルマニウム製で像面側3に凸の正のメニスカスレンズL3との2枚構成である。第2のレンズ群G2の後群G2bは、カルコゲナイド製で物体側2に凸の正のメニスカスレンズL4の一枚構成である。   In the refractive optical system 20 of this embodiment, the first lens group G1 is a single-plate configuration of a biconvex positive lens L1 made of germanium. The front group G2f of the second lens group G2 has a two-lens configuration of a negative meniscus lens L2 made of chalcogenide and convex on the image plane side 3 and a positive meniscus lens L3 made of germanium and convex on the image plane side 3 is there. The rear group G2b of the second lens group G2 is a single-element configuration of a positive meniscus lens L4 made of chalcogenide and convex on the object side 2.

図2に撮像光学系6を構成する各光学素子(ミラーおよびレンズ)のデータを示している。曲率半径(Ri)は物体側2から順に並んだ各光学素子の各面(S)の曲率半径(mm)、面間隔diは各面の間の光軸に沿った距離(mm)、屈折率ndは各レンズの屈折率(波長11μm)、各レンズの焦点距離(波長11μm)を示す。   FIG. 2 shows data of each optical element (mirror and lens) constituting the imaging optical system 6. The radius of curvature (Ri) is the radius of curvature (mm) of each surface (S) of each optical element arranged in order from the object side 2, and the surface spacing di is the distance (mm) along the optical axis between the surfaces, the refractive index nd indicates the refractive index (wavelength 11 μm) of each lens and the focal length (wavelength 11 μm) of each lens.

主鏡M1の面S1、副鏡M2の面S2、レンズL1の物体側2の面S3、レンズL2の像面側3の面S6、レンズL3の像面側3の面S8、レンズL4の物体側2の面S9は非球面であり、図3(a)および(b)に非球面係数を示す。非球面は、Xを光軸方向の座標、Yを光軸と垂直方向の座標、光の進行方向を正、Rを近軸曲率半径とすると、図3(a)および(b)に示した係数K、A、B、C、DおよびEを用いて次式で表わされる。なお、「En」は、「10のn乗」を意味する。
X=(1/R)Y2/[1+{1−(1+K)(1/R)2Y2}1/2]
+AY4+BY6+CY8+DY10+EY12
The surface S1 of the main mirror M1, the surface S2 of the sub mirror M2, the surface S3 of the object side 2 of the lens L1, the surface S6 of the image surface 3 of the lens L2, the surface S8 of the image surface 3 of the lens L3, an object of the lens L4 The surface S9 of side 2 is aspheric, and the aspheric coefficients are shown in FIGS. 3 (a) and 3 (b). The aspheric surface is shown in FIGS. 3A and 3B, where X is the coordinate in the optical axis direction, Y is the coordinate in the direction perpendicular to the optical axis, the traveling direction of light is positive, and R is the paraxial radius of curvature. It is expressed by the following equation using coefficients K, A, B, C, D and E. "En" means "10 to the n-th power".
X = (1 / R) Y2 / [1+ {1- (1 + K) (1 / R) 2Y2} 1/2]
+ AY 4 + BY 6 + CY 8 + DY 10 + EY 12

図4に、変倍の際に移動する各群G1、G2f、G2bおよび撮像デバイス5の各面間隔V1、V2およびV3の値を示している。図5に、撮像光学系6の諸数値を示している。この撮像光学系6は、変倍比1.5のズーム光学系(変倍光学系)であり、F値(FNo.)は広角端で1.4、望遠端で2.1であり、広角端から望遠端にかけて2.5以下と明るい赤外線用の変倍光学系6となっている。また、副鏡M2の面S2から撮像デバイス5の撮像面までの光軸上の距離が広角端で227mm、望遠端で241mmであり、広角端から望遠端にかけて250mm以下とコンパクトな赤外線用の光学系6となっている。   FIG. 4 shows values of the surface intervals V1, V2, and V3 of the groups G1, G2 f, and G2 b, and the imaging device 5, which move during zooming. FIG. 5 shows various values of the imaging optical system 6. The imaging optical system 6 is a zoom optical system (variable magnification optical system) having a magnification change ratio of 1.5, and an F number (FNo.) Is 1.4 at the wide angle end and 2.1 at the telephoto end. It is a variable power optical system 6 for bright infrared rays, which is 2.5 or less from the end to the telephoto end. In addition, the distance on the optical axis from the surface S2 of the secondary mirror M2 to the imaging surface of the imaging device 5 is 227 mm at the wide angle end and 241 mm at the telephoto end. It is a system 6

反射光学系10の合成焦点距離fmは3725mmであり、撮像光学系6の全系の合成焦点距離faは、広角端で200.0mm、望遠端で299.9mmであり、fm/faは、広角端で18.63、望遠端で12.42であり、条件(1)を満たす。したがって、コンパクトで、諸収差の補正が良好な赤外線撮像光学系6を提供できる。   The combined focal length fm of the reflective optical system 10 is 3725 mm, and the combined focal length fa of the whole system of the imaging optical system 6 is 200.0 mm at the wide angle end and 299.9 mm at the telephoto end, and fm / fa is a wide angle 18.63 at the end and 12.42 at the telephoto end, satisfying the condition (1). Accordingly, it is possible to provide the infrared imaging optical system 6 which is compact and has good correction of various aberrations.

この撮像光学系6は、物体側2に反射光学系10を配置しており、物体側2の大口径となる集光光学系をレンズではなく反射光学系に置き換えている。したがって、赤外線光学系において高価格の要因の1つである物体側2の大口径のレンズを省略することが可能であり、低コストでFNo.が小さく、明るい赤外線光学系を提供できる。特に、反射光学系10を正のパワーの主鏡M1と、主鏡M1と向き合う負のパワーの副鏡M2との組み合わせによるカセグレンタイプの光学系とすることにより反射光学系10の全長を短縮し、全体としてコンパクトな撮像光学系6を実現している。   In this imaging optical system 6, a reflection optical system 10 is disposed on the object side 2, and a focusing optical system that has a large aperture on the object side 2 is replaced with a reflection optical system instead of a lens. Therefore, it is possible to omit the large aperture lens on the object side 2 which is one of the factors of high cost in the infrared optical system, and the FNo. Can provide a bright and bright infrared optical system. In particular, the total length of the reflective optical system 10 is shortened by making the reflective optical system 10 a Cassegrain-type optical system by combining the primary mirror M1 of positive power and the secondary mirror M2 of negative power facing the primary mirror M1. A compact imaging optical system 6 is realized as a whole.

さらに、物体側2に反射光学系10を配置し、像面側3に屈折光学系20を配置し、屈折光学系20の最も物体側2の第1のレンズ群G1をズーミングする際に反射光学系10と一体で動かし、第1のレンズ群G1をフォーカシングの際に動かしてインナーフォーカスを実現している。したがって、ズーミングの際に移動する移動群を反射光学系10の単独で構成せずに第1のレンズ群G1を含めることにより収差補正を可能とするとともに、その第1のレンズ群G1を反射光学系10の内部ではなく主鏡M1よりも像面側3に離すことにより簡単な機構でインナーフォーカスを実現している。   Furthermore, the catoptric system 10 is disposed on the object side 2, the dioptric system 20 is disposed on the image plane side 3, and the first lens group G 1 on the most object side 2 of the dioptric system 20 is zoomed. By moving integrally with the system 10, the first lens group G1 is moved during focusing to realize the inner focus. Therefore, aberration correction can be performed by including the first lens group G1 without configuring the moving group that moves during zooming with the reflective optical system 10 alone, and the first lens group G1 can be used as the reflective optical system. The inner focus is realized by a simple mechanism by separating from the main mirror M1 to the image plane side 3 rather than inside the system 10.

さらに、屈折光学系20は4枚構成であり、物体側2からゲルマニウム製のレンズL1,カルコゲナイド製のレンズL2、ゲルマニウム製のレンズL3およびカルコゲナイド製のレンズL4を配置している。ゲルマニウムガラスは、2〜20μmの赤外領域に透過波長帯を有し、屈折率が4.0前後と高く、3〜12μmの波長帯近傍において特に低分散特性を有するレンズ材料である。一方、カルコゲナイドガラスは、赤外線透過性が高く、ゲルマニウムレンズよりも低屈折率で高分散なレンズ材料である。赤外線に対して、屈折率および分散が異なるレンズを交互に配置することにより色収差が良好に補正された赤外線用の撮像光学系6を提供できる。特に、第2のレンズ群G2の前群G2fは、負のパワーのカルコゲナイド製のレンズL2と正のパワーのゲルマニウムレンズL3との組み合わせであって、同じ方向を向いたメニスカスレンズが組み合わされた移動群となっており、ズーミングの際の色収差補正に良好に作用する。   Further, the refractive optical system 20 has a four-lens configuration, and from the object side 2, a lens L1 made of germanium, a lens L2 made of chalcogenide, a lens L3 made of germanium and a lens L4 made of chalcogenide are disposed. Germanium glass is a lens material having a transmission wavelength band in the infrared region of 2 to 20 μm, a high refractive index of around 4.0, and particularly low dispersion characteristics in the vicinity of the wavelength band of 3 to 12 μm. Chalcogenide glass, on the other hand, is a lens material that has high infrared transparency, a lower refractive index, and a higher dispersion than germanium lenses. By alternately arranging lenses different in refractive index and dispersion with respect to infrared rays, it is possible to provide an imaging optical system 6 for infrared rays whose chromatic aberration is well corrected. In particular, the front group G2f of the second lens group G2 is a combination of a lens L2 made of chalcogenide of negative power and a germanium lens L3 of positive power, which is a combined movement of meniscus lenses directed in the same direction It is a group and works well for correcting chromatic aberration during zooming.

また、反射光学系10から出力された光が最初に入力される第1のレンズ群G1がインナーフォーカス用のレンズであり、さらに、それに、屈折率の高いゲルマニウム製のレンズL1を採用することによりフォーカス調整機能を高めている。また、屈折光学系20の3つの移動群、すなわち、第1のレンズ群G1、第2のレンズ群G2の前群G2f、後群G2bは、正−負−正の対称的なパワー配置となっており、収差補正に適したパワー配置を備えている。   In addition, the first lens group G1 to which the light output from the reflective optical system 10 is first input is a lens for inner focusing, and furthermore, by adopting a lens L1 made of germanium having a high refractive index. The focus adjustment function is enhanced. In addition, the three moving groups of the refractive optical system 20, that is, the front group G2f and the rear group G2b of the first lens group G1 and the second lens group G2 have a symmetrical power arrangement of positive-negative-positive. And a power arrangement suitable for aberration correction.

なお、上記では、ゲルマニウム製のレンズおよびカルコゲナイド製のレンズを備えた赤外線(赤外光)用の撮像装置を例に本発明を説明しているが、赤外光用としては、シリコン製のレンズ、ZnS製のレンズなどを採用してもよく、反射光学系10と可視光用の屈折光学系20との組み合わせであってもよい。   In the above, the present invention is described using an imaging device for infrared (infrared light) provided with a lens made of germanium and a lens made of chalcogenide as an example, but for infrared light, a lens made of silicon A lens made of ZnS or the like may be employed, or a combination of the reflective optical system 10 and the refractive optical system 20 for visible light may be used.

1 撮像装置、 6 撮像光学系
10 反射光学系、 20 屈折光学系
Reference Signs List 1 imaging device, 6 imaging optical system 10 reflective optical system, 20 refractive optical system

Claims (5)

物体側から順に、正の屈折力の反射光学系と、
前記反射光学系の像面側に配置された正の屈折力の屈折光学系とを有し、
前記反射光学系は、物体側に凹面を向けた主鏡と、
前記主鏡の光軸上に配置され、前記主鏡に反射された光を像面側に導く副鏡とを含み、
前記屈折光学系は、物体側から順に、ズーミングの際に前記反射光学系と一体で移動し、フォーカシングの際に独立して移動する第1のレンズ群と、
ズーミングの際に独立して移動する第2のレンズ群とを含む、撮像光学系。
From the object side, a reflective optical system of positive refractive power,
And a refractive optical system of positive refractive power disposed on the image plane side of the reflective optical system,
The reflective optical system includes a main mirror having a concave surface facing the object side;
And a secondary mirror disposed on the optical axis of the primary mirror to guide the light reflected by the primary mirror to the image plane side,
The refracting optical system moves in order from the object side, integrally with the reflective optical system during zooming, and a first lens group which moves independently during focusing.
An imaging optical system including a second lens group which moves independently during zooming;
請求項1において、
前記反射光学系の合成焦点距離fmと、当該撮像光学系の望遠端から広角端にわたる合成焦点距離faとが以下の条件を満たす、撮像光学系。
10<fm/fa<20
In claim 1,
An imaging optical system in which a combined focal length fm of the reflection optical system and a combined focal length fa from the telephoto end to the wide angle end of the imaging optical system satisfy the following condition;
10 <fm / fa <20
請求項1または2において、
前記第2のレンズ群は、ズーミングの際に独立して移動する負の屈折力の前群と、
ズーミングの際に独立して移動する正の屈折力の後群とを含む、撮像光学系。
In claim 1 or 2,
The second lens group comprises a front group of negative refractive power which moves independently during zooming;
An imaging optical system including a rear lens of positive refractive power which moves independently during zooming.
請求項1ないし3のいずれかにおいて、
前記屈折光学系を構成するレンズはゲルマニウム製またはカルコゲナイド製である、撮像光学系。
In any one of claims 1 to 3,
An imaging optical system, wherein a lens constituting the refractive optical system is made of germanium or chalcogenide.
請求項1ないし4のいずれかに記載の撮像光学系と、
前記撮像光学系の像面側に配置された撮像デバイスとを有する撮像装置。
An imaging optical system according to any one of claims 1 to 4.
And an imaging device disposed on the image plane side of the imaging optical system.
JP2017218681A 2017-11-14 2017-11-14 Imaging optical system and imaging device Active JP7026933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017218681A JP7026933B2 (en) 2017-11-14 2017-11-14 Imaging optical system and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017218681A JP7026933B2 (en) 2017-11-14 2017-11-14 Imaging optical system and imaging device

Publications (2)

Publication Number Publication Date
JP2019090890A true JP2019090890A (en) 2019-06-13
JP7026933B2 JP7026933B2 (en) 2022-03-01

Family

ID=66836281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017218681A Active JP7026933B2 (en) 2017-11-14 2017-11-14 Imaging optical system and imaging device

Country Status (1)

Country Link
JP (1) JP7026933B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077665A (en) * 2019-12-30 2020-04-28 西安邮电大学 Low-cost compact type large zoom ratio catadioptric continuous zooming system
CN115185074A (en) * 2022-07-19 2022-10-14 凯迈(洛阳)测控有限公司 Catadioptric miniaturized short-wave infrared imaging optical system
WO2023071647A1 (en) * 2021-10-28 2023-05-04 Oppo广东移动通信有限公司 Optical lens, camera module, and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842509B1 (en) * 1970-08-27 1973-12-13
JPS5744115A (en) * 1980-08-30 1982-03-12 Asahi Optical Co Ltd Reflex telephoto zoom lens system
JPS6139015A (en) * 1984-07-31 1986-02-25 Canon Inc Reflecting/refracting type zoom lens
US5089910A (en) * 1990-06-28 1992-02-18 Lookheed Missiles & Space Company, Inc. Infrared catadioptric zoom relay telescope with an asperic primary mirror
JP2010262163A (en) * 2009-05-08 2010-11-18 Nikon Corp Variable power type telephotographic optical system and optical device including the same
CN103913840A (en) * 2014-03-11 2014-07-09 中国科学院长春光学精密机械与物理研究所 Large-caliber refractive and reflective three-component continuous zooming optical system
JP2017219642A (en) * 2016-06-07 2017-12-14 キヤノン株式会社 Catadioptric system and imaging apparatus equipped with the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842509B1 (en) * 1970-08-27 1973-12-13
JPS5744115A (en) * 1980-08-30 1982-03-12 Asahi Optical Co Ltd Reflex telephoto zoom lens system
JPS6139015A (en) * 1984-07-31 1986-02-25 Canon Inc Reflecting/refracting type zoom lens
US5089910A (en) * 1990-06-28 1992-02-18 Lookheed Missiles & Space Company, Inc. Infrared catadioptric zoom relay telescope with an asperic primary mirror
JP2010262163A (en) * 2009-05-08 2010-11-18 Nikon Corp Variable power type telephotographic optical system and optical device including the same
CN103913840A (en) * 2014-03-11 2014-07-09 中国科学院长春光学精密机械与物理研究所 Large-caliber refractive and reflective three-component continuous zooming optical system
JP2017219642A (en) * 2016-06-07 2017-12-14 キヤノン株式会社 Catadioptric system and imaging apparatus equipped with the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077665A (en) * 2019-12-30 2020-04-28 西安邮电大学 Low-cost compact type large zoom ratio catadioptric continuous zooming system
CN111077665B (en) * 2019-12-30 2022-02-01 西安邮电大学 Low-cost compact type large zoom ratio catadioptric continuous zooming system
WO2023071647A1 (en) * 2021-10-28 2023-05-04 Oppo广东移动通信有限公司 Optical lens, camera module, and electronic device
CN115185074A (en) * 2022-07-19 2022-10-14 凯迈(洛阳)测控有限公司 Catadioptric miniaturized short-wave infrared imaging optical system
CN115185074B (en) * 2022-07-19 2023-06-06 凯迈(洛阳)测控有限公司 Catadioptric miniaturized shortwave infrared imaging optical system

Also Published As

Publication number Publication date
JP7026933B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
JP6615974B2 (en) Zoom lens system and imaging apparatus
US10215972B2 (en) Optical system and image pickup apparatus including the same
US10663702B2 (en) Zoom lens system and imaging apparatus
JP5197242B2 (en) Zoom lens and imaging apparatus having the same
WO2015146067A1 (en) Zoom-lens system, interchangeable-lens device, and camera system
JP3573575B2 (en) Optical system
JP5317669B2 (en) Zoom lens and imaging apparatus having the same
CN201666968U (en) Zoom lens for projection and projection type display device
JP2013134498A (en) Wide-angle zoom lens
JP2009192886A (en) Infrared zoom lens
US20120154552A1 (en) Three-dimensional image pickup optical system and three-dimensional image pickup apparatus
KR101707874B1 (en) Imaging optics
JP2013083921A (en) Zoom lens and image forming apparatus
JP2016161701A (en) Infrared lens
JP7026933B2 (en) Imaging optical system and imaging device
JP3713250B2 (en) Eyepiece variable magnification optical system
TWM396970U (en) Projector with zoom lens and projection-type display device
JP2013114262A (en) Zoom lens system
JP2011048320A (en) Zoom lens
WO2017213058A1 (en) Image forming optical system, and imaging device and projection device provided with same
JP2021067703A5 (en)
JP5611901B2 (en) Variable magnification optical system for projection and projection display device
JP2017078725A (en) Variable power optical system
WO2021230218A1 (en) Lens system and projector
JP5367540B2 (en) Projection zoom lens and projection display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220208

R150 Certificate of patent or registration of utility model

Ref document number: 7026933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150