JP2019090786A - Method for quantifying single metal in metal oxide - Google Patents

Method for quantifying single metal in metal oxide Download PDF

Info

Publication number
JP2019090786A
JP2019090786A JP2018170474A JP2018170474A JP2019090786A JP 2019090786 A JP2019090786 A JP 2019090786A JP 2018170474 A JP2018170474 A JP 2018170474A JP 2018170474 A JP2018170474 A JP 2018170474A JP 2019090786 A JP2019090786 A JP 2019090786A
Authority
JP
Japan
Prior art keywords
metal
solution
metal oxide
simple substance
quantifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018170474A
Other languages
Japanese (ja)
Other versions
JP6992714B2 (en
Inventor
良弘 加藤
Yoshihiro Kato
良弘 加藤
橋本 直樹
Naoki Hashimoto
直樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2019090786A publication Critical patent/JP2019090786A/en
Application granted granted Critical
Publication of JP6992714B2 publication Critical patent/JP6992714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

To provide a method enabling a single metal in a metal oxide to be selectively detected with high sensitivity, and enabling the single metal to be quantified with high degree of accuracy, the metal oxide containing the single metal of 10 ppm or less.SOLUTION: The method for quantifying a single metal in a metal oxide is provided that includes the steps of : melting a single metal in a metal oxide by a bromine-methanol melting method, and extracting the single metal to solution; separating the solution where the single metal is extracted, from an unmelted object; evaporating, drying and solidifying the solution in which the single metal is extracted; adding acid to the dried and solidified object generated by evaporation, drying and solidification to make it into a solution state; and quantifying the single metal in the solution in which the dried and solidified object is made into the solution state.SELECTED DRAWING: Figure 1

Description

本発明は、金属酸化物中における金属単体の定量方法に関する。   The present invention relates to a method of quantifying a single metal in a metal oxide.

金属酸化物は、電子機器に用いられる基板材料、誘電体材料、磁性体材料および電池材料等の原料として、様々な種類が、様々な技術分野において汎用的に利用されている。ところが当該金属酸化物はその製造過程において、不純物として微量ではあるが種々の元素が混入することがある。
当該混入する元素のうちでも、各種金属元素の単体を不純物として含んでいる金属酸化物を、上述した各種材料の原料として使用すると、含有されている金属単体が微量であっても電気特性等に悪影響を及ぼす可能性がある。この為、当該金属酸化物中に含有されている金属単体が微量であっても定量し、その含有量を把握しておくことは重要である。
尚、本発明において「金属単体」とは、化合物を形成することなく、金属からなる状態にある金属のことであり、「M単体(但し、Mは金属の元素記号)」とは、化合物を形成することなく、金属Mからなる状態にあるM金属のことである。
Various types of metal oxides are widely used in various technical fields as raw materials for substrate materials, dielectric materials, magnetic materials and battery materials used in electronic devices. However, in the production process of the metal oxide, various elements may be mixed as impurities, though in a small amount.
Among the elements to be mixed, when a metal oxide containing a single substance of various metal elements as an impurity is used as a raw material of the above-described various materials, even if the metal single substance contained is a trace amount It may have an adverse effect. For this reason, it is important to quantify and grasp the content even if the metal simple substance contained in the metal oxide is a trace amount.
In the present invention, "a single metal" refers to a metal in a state of being composed of a metal without forming a compound, and "a single M (wherein M is an elemental symbol of a metal)" means a compound. It is M metal which is in a state of metal M without being formed.

従来、金属酸化物中に含有されている微量の金属単体の定量方法であって規格として確立したものはない。しかし、金属元素の分析法として例えば非特許文献1がある。また、非特許文献2には酸化ニッケル中に含有されている金属Niの定量方法が記載されている。   Conventionally, there is no method for quantifying trace metals contained in metal oxides, which has been established as a standard. However, as an analysis method of a metal element, there is, for example, Non-Patent Document 1. In addition, Non-Patent Document 2 describes a method of determining metal Ni contained in nickel oxide.

非特許文献1に記載されている最も汎用的な分析方法である誘導結合プラズマ発光分析法(ICP−OES法)では、分析対象試料中に含有されている金属Alをハロゲンで溶解し、金属Alが溶媒に抽出された溶液と残渣とを分離する。そして、当該金属Al溶液から溶媒を揮発させて乾固させ乾固物を得る。得られた乾固物を酸分解し酸溶液とし、当該酸溶液を希釈調製してICP−OES法で定量する方法である。
非特許文献1には、当該分析方法における誘導結合プラズマ発光分析法の定量範囲は、>1質量%程度であり、通常の分析レベルにおいては簡便で有効な方法である旨が記載されている。
In inductively coupled plasma atomic emission spectrometry (ICP-OES method), which is the most versatile analysis method described in Non-Patent Document 1, metal Al contained in the sample to be analyzed is dissolved with halogen, and metal Al is dissolved. Separates the solution and the residue extracted into the solvent. Then, the solvent is evaporated from the metal Al solution to dryness to obtain a dried product. The resulting dried product is acid-decomposed to form an acid solution, and the acid solution is prepared by dilution and quantified by ICP-OES method.
Non-Patent Document 1 describes that the quantitative range of inductively coupled plasma emission spectrometry in the analysis method is about> 1% by mass, and that the method is a simple and effective method at a normal analysis level.

非特許文献2には、分析対象試料の主成分である酸化ニッケルを溶解させることなく、金属Niをハロゲンで溶解して溶媒へ抽出することにより、金属Ni溶液と残渣とを分離すること。この金属Ni溶液と残渣とを分離する操作によって、酸化ニッケル中に含有されている金属Niを0.1〜70質量%の範囲で定量分析した旨が記載されている。   In Non-Patent Document 2, metal Ni solution and residue are separated by dissolving metal Ni with halogen and extracting it into a solvent without dissolving nickel oxide which is the main component of the sample to be analyzed. It is described that the operation of separating the metal Ni solution and the residue quantitatively analyzed metal Ni contained in nickel oxide in the range of 0.1 to 70% by mass.

日本鉱業規格のJIS G2402(2009)『鉄鋼用アルミニウムドロスの金属Alの定量』Japanese Mining Standard JIS G 2402 (2009) "Determination of Al in steel and aluminum dross" 分析化学:Vol.23(1974)『酸化ニッケル中の介在金属Niの定量』Analytical chemistry: Vol. 23 (1974) "Determination of intervening metal Ni in nickel oxide"

本発明者らは、金属酸化物中において含有されている微量の金属単体の定量方法として、非特許文献1、2に記載された定量方法の適用を検討した。しかしながら、非特許文献1、2に記載の定量方法を適用しても、金属酸化物中において含有されている微量の金属単体をうまく定量出来ないことが判明した。   The present inventors examined the application of the quantification method described in Non-Patent Documents 1 and 2 as a method of quantifying a trace amount of metal simple substance contained in the metal oxide. However, it has been found that even if the quantitative method described in Non-Patent Documents 1 and 2 is applied, the trace metal simple substance contained in the metal oxide can not be quantified well.

まず、非特許文献1に記載された定量方法を適用し、例えば金属単体としてCu単体を選択した場合、当該Cu単体の検出感度が低かった。この為、金属酸化物中において含有されているCu単体量が50ppm以下の場合には、Cu単体濃度の定量が困難であることが判明した。   First, when the quantitative method described in Non-Patent Document 1 is applied and, for example, Cu simplex is selected as the metal simplex, the detection sensitivity of the Cu simplex is low. Therefore, it was found that it is difficult to determine the concentration of Cu alone when the amount of Cu alone contained in the metal oxide is 50 ppm or less.

一方、非特許文献2に記載された定量方法を適用し、例えば金属単体としてCu単体を選択し、ハロゲンでCu単体を溶解して溶媒に抽出した場合、ハロゲンが金属酸化物をも溶解し、当該金属酸化物を構成する所定金属の主成分濃度が高くなってしまった。この為、金属酸化物中において含有されているCu単体量が10ppm以下の場合には、Cu単体濃度の定量が困難であることが判明した。   On the other hand, when the quantitative method described in Non-Patent Document 2 is applied, for example, a simple substance of Cu is selected as a simple substance of metal, and a simple substance of Cu is dissolved in halogen and extracted in a solvent, the halogen also dissolves the metal oxide, The main component concentration of the predetermined metal constituting the metal oxide has become high. Therefore, it was found that it is difficult to determine the concentration of Cu alone when the amount of Cu alone contained in the metal oxide is 10 ppm or less.

本発明は、上記の状況の下で為されたものであり、その解決しようとする課題は、10ppm以下の金属単体を含有する金属酸化物中において、当該金属単体を選択的に高感度で検出でき、かつ、精度良く定量できる方法を提供することである。   The present invention has been accomplished under the above-described circumstances, and the problem to be solved is to selectively detect the metal simple substance with high sensitivity in the metal oxide containing the metal simple substance of 10 ppm or less. It is possible to provide a method that can be quantified accurately.

本発明者らは、上述の課題を解決する為、研究を行った。その結果、分析対象試料である金属酸化物中において含有されている微量の金属単体を含むメタル分を溶解、抽出する臭素メタノール溶液濃度に注目した。そして、分析対象試料である金属酸化物試料の大部分を占める金属酸化物を、残渣として分離、廃棄し、得られた溶液中において、当該金属酸化物由来の主成分濃度を低減出来る、所定の臭素メタノール溶液濃度が存在することを知見した。   The present inventors have conducted research in order to solve the above-mentioned problems. As a result, attention was focused on the concentration of a bromine methanol solution for dissolving and extracting a metal component containing a trace metal simple substance contained in the metal oxide which is an analysis target sample. Then, the metal oxide that occupies most of the metal oxide sample that is the analysis target sample is separated and discarded as a residue, and the concentration of the main component derived from the metal oxide can be reduced in the obtained solution. It was found that a bromine methanol solution concentration was present.

さらに本発明者らは、高感度に金属単体を検出可能な誘導結合プラズマ質量分析法(ICP−MS法)に想到した。当該分析方法は、測定出来る主成分濃度が(<1g/L)であることという制約を受けるが、分析対象試料中の主成分濃度を低減出来れば、適用可能な方法である。   Furthermore, the present inventors conceived of inductively coupled plasma mass spectrometry (ICP-MS method) capable of detecting a single metal with high sensitivity. The analysis method is subject to the restriction that the main component concentration that can be measured is (<1 g / L), but it is an applicable method as long as the main component concentration in the sample to be analyzed can be reduced.

以上の知見から本発明者らは、所定濃度に設定された臭素メタノール溶液を用い、分析対象試料である金属酸化物試料の大部分を占める金属酸化物を残渣として分離、廃棄し、得られた金属単体を含む溶液の溶媒を揮発させて乾固物を得る。そして、当該乾固物を酸溶解して溶液化したものをICP−MS法で測定することで、分析対象試料である金属酸化物中において含有されている微量の金属単体を定量出来ることを知見し本発明に至った。   Based on the above findings, the present inventors obtained a metal oxide occupying most of the metal oxide sample to be analyzed as a residue using the methanol solution of bromine set to a predetermined concentration as a residue, and was discarded. The solvent of the solution containing elemental metal is evaporated to obtain a dried product. Then, it has been found that, by measuring the solution obtained by dissolving the dry matter in an acid form into a solution by ICP-MS method, it is possible to quantify a trace metal simple substance contained in the metal oxide which is a sample to be analyzed. The present invention has been achieved.

すなわち、本発明に係る第1の発明は、
10ppm以下の金属単体を含有する金属酸化物中における当該金属単体の定量方法であって、
前記金属酸化物中における前記金属単体を臭素−メタノール溶解法によって溶解し、前記金属単体を溶液へ抽出する工程と、
前記金属単体を抽出した溶液と、未溶解物とを分離する工程と、
前記金属単体を抽出した溶液を蒸発乾固する工程と、
前記蒸発乾固により生成した乾固物に酸を加えて溶液化する工程と、
前記乾固物を溶液化した溶液中の金属単体を定量する工程と、を有することを特徴とする金属酸化物中における金属単体の定量方法である。
第2の発明は、
前記臭素−メタノール溶解法に用いる臭素メタノール溶液中の臭素濃度が0.2M以上0.4M以下であることを特徴とする金属酸化物中における金属単体の定量方法である。
第3の発明は、
さらに、前記乾固物を溶液化した溶液中の金属単体を定量する際、当該溶液へ内部標準物質を加えて純水で定容する工程と、を有することを特徴とする金属酸化物中における金属単体の定量方法である。
第4の発明は、
前記溶液中の金属単体を定量する際、誘導結合プラズマ質量分析法(ICP−MS法)を用いて前記金属単体量を定量することを特徴とする金属酸化物中における金属単体の定量方法である。
第5の発明は、
前記金属単体がCu単体であることを特徴とする金属酸化物中における金属単体の定量方法である。
第6の発明は、
前記金属酸化物が、Niを10質量%以上含有する金属酸化物であることを特徴とする金属酸化物中における金属単体の定量方法である。
That is, the first invention according to the present invention is
A method of quantifying a metal simple substance in a metal oxide containing a metal simple substance of 10 ppm or less, comprising
Dissolving the metal simple substance in the metal oxide by a bromine-methanol dissolution method, and extracting the metal simple substance into a solution;
Separating the unmetallized solution and the solution from which the metal single substance is extracted;
Evaporating the solution obtained by extracting the metal alone to dryness;
Acidizing the solution obtained by the evaporation to dryness;
And D. determining a single metal in a solution in which the dried material is made into a solution, the method of determining a single metal in the metal oxide.
The second invention is
The bromine concentration in the bromine methanol solution used in the bromine-methanol dissolution method is 0.2 M or more and 0.4 M or less. This is a method for quantifying a metal simple substance in a metal oxide.
The third invention is
The method further comprises the steps of adding an internal standard substance to the solution and quantifying the volume with pure water when quantifying the metal simple substance in the solution in which the dried product is made into a solution. It is a method of quantifying a single metal.
The fourth invention is
When quantifying the metal simple substance in the solution, it is a quantitative method of the metal simple substance in the metal oxide characterized by quantifying the metal simple substance quantity using inductively coupled plasma mass spectrometry (ICP-MS method) .
The fifth invention is
It is a method of quantifying a metal simple substance in a metal oxide characterized in that the metal simple substance is a Cu simple substance.
The sixth invention is
The metal oxide is a metal oxide containing 10% by mass or more of Ni.

本発明に係る金属酸化物中における金属単体の定量方法によれば、金属酸化物中に含有された10ppm以下の金属単体を、選択的に高感度で検出出来、且つ、定量することが可能になった。   According to the method for quantifying a single metal in a metal oxide according to the present invention, a single metal of 10 ppm or less contained in the metal oxide can be selectively detected with high sensitivity and can be quantified became.

実施例1に係る、金属酸化物中に含有されている微量のCu単体の定量方法を示す操作フロー図である。FIG. 5 is an operation flow diagram showing a method of quantifying a trace amount of Cu simple substance contained in a metal oxide according to Example 1.

本発明に係る金属酸化物試料中における金属単体の定量方法は、当該金属酸化物試料中の金属単体を、臭素メタノール溶液を用いて溶解、抽出し、他方、残りの金属酸化物を残渣として分離、廃棄するものである。即ち、金属単体を、金属酸化物試料中から溶解、抽出することで、当該金属単体を選択的に高感度で検出でき、かつ、比較的精度良く定量を可能とするものである。   In the method for quantifying a single metal in a metal oxide sample according to the present invention, a single metal in the metal oxide sample is dissolved and extracted using a bromine methanol solution, and the remaining metal oxide is separated as a residue , To discard. That is, by dissolving and extracting a simple metal from a metal oxide sample, the simple metal can be selectively detected with high sensitivity, and quantitative determination can be performed with relatively high accuracy.

以下、本発明に係る金属酸化物中における金属単体の定量方法について、当該金属単体としてCu単体を用いた場合を例としながら、(1)金属酸化物試料の試料調製場所、(2)金属酸化物試料の溶解容器および遠沈管の洗浄方法、(3)金属酸化物試料の秤量方法、(4)臭素−メタノール溶解法による金属単体の溶解および抽出方法、(5)抽出溶液と金属酸化物残渣とを、溶液と未溶解物とに分離する方法、(6)溶液の乾固、乾固物の溶解方法、(7)測定試料溶液の調製、(8)金属単体濃度の測定方法、(9)まとめ、の順に説明する。   Hereinafter, the method for quantifying a single metal in the metal oxide according to the present invention, (1) sample preparation place for metal oxide sample, (2) metal oxidation, taking as an example the case where Cu single is used as the single metal Method of washing dissolution sample and waste tube, (3) weighing method of metal oxide sample, (4) dissolving and extracting method of metal single body by bromine-methanol dissolution method, (5) extraction solution and metal oxide residue And (6) drying the solution, dissolving the dried product, (7) preparing a sample solution for measurement, (8) measuring the concentration of a single metal, (9 ) Summary, will be described in the order.

(1)金属酸化物試料の試料調製場所
本発明に係る金属酸化物試料の試料調製場所としては、CLASS1000レベルのクリーンルームを使用することが好ましいが、分析対象である金属種の使用履歴の少ない通常の実験室を使用することも可能である。
(1) Sample preparation place of metal oxide sample As a sample preparation place of the metal oxide sample according to the present invention, it is preferable to use a clean room of CLASS 1000 level, but usually there is little usage history of metal species to be analyzed. It is also possible to use a laboratory of

(2)金属酸化物試料の溶解容器および遠沈管の洗浄方法
金属酸化物試料の溶解容器には、PP(ポリプロピレン)製またはテフロン(登録商標)製の密閉可能な容器が、好ましく適用可能である。また、遠沈管についても試料の溶解容器と同様に、PP製またはテフロン(登録商標)製の密閉可能な容量目盛付きの容器が好ましく適用可能である。
当該容器と蓋とを、超純水で10回程度洗浄した後、直ぐに容器へ蓋をした状態で保管することが好ましい。
(2) Dissolution container of metal oxide sample and washing method of centrifuge tube As a dissolution container of metal oxide sample, a sealable container made of PP (polypropylene) or Teflon (registered trademark) is preferably applicable . In addition, as with the sample dissolution vessel, a vessel with a sealable volume scale made of PP or Teflon (registered trademark) is preferably applicable to the centrifuge tube as well.
After washing the container and the lid about 10 times with ultrapure water, it is preferable to store the container and the lid immediately in a state of being covered.

(3)金属酸化物試料の秤量方法
金属酸化物試料を、上述した密閉可能な溶解容器に秤量した後、蓋をして電子天秤で当該試料の質量(g)を秤量し記録する。なお、当該試金属酸化物料の秤量には、0.1mgまで秤量可能な電子天秤を用いることが好ましい。
(3) Weighing Method of Metal Oxide Sample After weighing a metal oxide sample in the sealable dissolution container described above, the lid is attached and the mass (g) of the sample is weighed and recorded with an electronic balance. In addition, it is preferable to use the electronic balance which can measure to 0.1 mg for the measurement of the said test metal oxide material.

(4)臭素−メタノール溶解法による金属単体の溶解および抽出方法
本発明において臭素−メタノール溶解法とは、金属酸化物試料中におけるCu単体、Fe単体を初めとした、各種金属単体分を所謂臭素メタノール溶液により溶解、抽出する方法のことである。
当該臭素メタノール溶液濃度は、金属酸化物が溶解することなく、且つ、分析対象である金属単体が溶解可能な濃度とする。
例えば、Cu単体を分析対象とした場合は、当該Cu単体が溶解可能な濃度として、当該臭素メタノール溶液中における臭素の濃度が0.2〜0.4M、さらには0.2Mが好ましいことを知見した(但し、本発明において単位Mは、モル/Lの意味である)。
上述した溶解容器中の金属酸化物試料へ、当該濃度の臭素メタノール溶液を添加し、直ぐに蓋をする。そして、60〜120分間超音波洗浄機に仕掛けて、当該金属酸化物試料中の金属単体を抽出溶液へ溶解させ、金属酸化物試料から抽出する。
(4) Dissolution and Extraction Method of Simple Metal by the Bromine-Methanol Dissolution Method In the present invention, the so-called bromine-methanol dissolution method refers to so-called bromine in various metal simple substance including Cu simple substance and Fe simple substance in metal oxide sample. It is a method of dissolving and extracting with methanol solution.
The bromine methanol solution concentration is a concentration at which the metal simple substance to be analyzed can be dissolved without dissolving the metal oxide.
For example, when Cu single substance is to be analyzed, it has been found that the concentration of bromine in the bromine methanol solution is preferably 0.2 to 0.4 M, more preferably 0.2 M, as a concentration at which the Cu single substance can be dissolved. (However, in the present invention, the unit M means mol / L).
The bromine methanol solution of the said concentration is added to the metal oxide sample in the dissolution container mentioned above, and it is immediately covered. Then, the apparatus is set on an ultrasonic cleaner for 60 to 120 minutes to dissolve the metal simple substance in the metal oxide sample in the extraction solution and extract it from the metal oxide sample.

(5)抽出溶液と金属酸化物残渣とを、溶液と未溶解物とに分離する方法
得られた抽出溶液を、フィルターを用いて濾過し、濾液を上述した遠沈管に受ける。他方、フィルター上に捕集された残渣は廃棄する。なお、フィルターとしては、テフロンフィルターが好ましく、分析対象である金属種を含まないものであれば特に限定することなく使用可能である。
(5) Method of separating extraction solution and metal oxide residue into solution and undissolved matter The obtained extraction solution is filtered using a filter, and the filtrate is subjected to the above-mentioned centrifuge tube. On the other hand, the residue collected on the filter is discarded. In addition, as a filter, a Teflon filter is preferable, and if it is a thing which does not contain metal species which are analysis object, it can be used without particular limitation.

(6)溶液の乾固、乾固物の溶解方法
上述した遠沈管に受けた濾液を80〜120℃で加熱し、溶媒である臭素メタノール溶液を完全に揮発させ、溶質が乾固するまで加熱した後、放冷する。
放冷が完了したら、引き続き遠沈管へ超純水と硝酸とを加えて加温し、生成した乾固物を完全に溶解した後、放冷する。
当該乾固物の溶解の際、酸添加量は当該乾固物を十分に溶解できる量であれば良い。また、加熱にはホットプレート等の使用が便宜である。
尚、前記硝酸は、分析対象である金属種の保証値が20ppt以下の高純度試薬を使用することが好ましい。また本発明において、「硝酸」とは濃度14Mの硝酸溶液である。
(6) Drying method of solution, dissolution method of the dried matter The filtrate received in the above-mentioned centrifuge tube is heated at 80 to 120 ° C. to completely volatilize the bromine methanol solution as the solvent until the solute is dried. After being allowed to cool.
When the cooling is completed, ultrapure water and nitric acid are subsequently added to the centrifuge tube and heated, and the resulting dried solid is completely dissolved and then allowed to cool.
At the time of dissolution of the dry matter, the amount of acid addition may be an amount that can sufficiently dissolve the dry matter. In addition, it is convenient to use a hot plate or the like for heating.
As the nitric acid, it is preferable to use a high purity reagent whose guaranteed value of metal species to be analyzed is 20 ppt or less. In the present invention, "nitric acid" is a nitric acid solution having a concentration of 14M.

(7)測定試料溶液の調製
上述した乾固物の溶液へ、内部標準物質溶液を一定量添加した後、超純水を加えて定容し測定試料溶液を得る。
例えば、Cu単体を分析対象とした場合は、内部標準物質溶液として、例えばY(イットリウム、濃度1000ng/ml)が好ましい。
(7) Preparation of Measurement Sample Solution After adding a fixed amount of the internal standard substance solution to the solution of the above-mentioned dry matter, ultrapure water is added and the volume is adjusted to obtain a measurement sample solution.
For example, in the case where Cu alone is to be analyzed, for example, Y (yttrium, concentration: 1000 ng / ml) is preferable as the internal standard substance solution.

(8)金属単体濃度の測定方法
上述した測定試料溶液における金属単体濃度の測定には、ICP−MS装置を用いるのが便宜である。そこで以下、ICP−MS装置を用いた測定試料溶液中の金属単体濃度の測定について、1)標準試料溶液の調製、2)ICP−MS装置による金属単体濃度の測定、3)金属単体濃度の算出方法、の順に説明する。
(8) Measurement Method of Single Metal Concentration It is convenient to use an ICP-MS apparatus to measure the single metal concentration in the measurement sample solution described above. Therefore, hereinafter, with regard to the measurement of metal single substance concentration in the measurement sample solution using the ICP-MS apparatus, 1) preparation of standard sample solution, 2) measurement of metal simple substance concentration by ICP-MS apparatus, 3) calculation of metal simple substance concentration The method will be described in order.

1)金属単体測定標準試料溶液の調製
測定試料溶液中の分析対象とした金属単体濃度に応じて、標準試料溶液を調製する。このとき、標準試料溶液に含有される酸濃度および分析対象とした金属濃度が、測定試料溶液における酸濃度および分析対象とした金属単体濃度と、同等の濃度になるように調製する。
例えば、Cu単体を分析対象とした場合は、Cu標準試料溶液として、市販の1g/LのCu標準試料溶液を適宜希釈して調製することが便宜である。そして、標準試料溶液は複数の濃度水準を揃える為、複数種を調製することが好ましい。
1) Preparation of a Single Metal Measurement Standard Sample Solution A standard sample solution is prepared according to the concentration of a single metal to be analyzed in a measurement sample solution. At this time, the acid concentration contained in the standard sample solution and the metal concentration to be analyzed are prepared to be equivalent to the acid concentration in the measurement sample solution and the metal single substance concentration to be analyzed.
For example, in the case where Cu alone is to be analyzed, it is convenient to prepare a Cu standard sample solution by appropriately diluting a commercially available 1 g / L Cu standard sample solution. Then, it is preferable to prepare multiple types of standard sample solutions in order to make multiple concentration levels uniform.

2)ICP−MS装置による金属単体濃度の測定
ICP−MS装置による分析対象とした金属濃度の測定質量数は、共存元素の妨害がなければ、特に限定されることはない。また、その他の測定条件については、測定装置メーカー推奨の条件を使用することが好ましい。
例えば、Cu単体を分析対象とした場合は、最も感度の良い質量数65を用いることが好ましい。一方、内部標準物質であるYの測定質量数は89を使用し、内部標準補正法で測定することが好ましい。
そして、ICP−MS装置を用いて測定試料溶液と分析対象とした金属標準試料溶液とにおいて、分析対象とした金属単体濃度を測定し、当該測定値から測定試料溶液中における分析対象とした金属単体の含有量(ng)を算出する。
尚、使用するICP−MS装置は、特に限定することはない。例えばアジレントテクノロジー(株)社製のAgilent7500csや、サーモフィッシャーサイエンティフィック(株)社製のiCAP Q ICP−MS等が挙げられる。
ICP−MS装置を用いて、測定試料溶液とCu標準試料溶液とによりCu濃度を測定した場合においては、測定試料中のCu濃度は20ppb(20ng/g)まで定量可能であった。
2) Measurement of Single Metal Concentration by ICP-MS Apparatus The mass number of the metal concentration to be analyzed by the ICP-MS apparatus is not particularly limited as long as there is no interference with coexistent elements. In addition, for other measurement conditions, it is preferable to use the conditions recommended by the measurement device manufacturer.
For example, in the case where Cu alone is to be analyzed, it is preferable to use the most sensitive mass number 65. On the other hand, it is preferable to use 89 as the measured mass number of Y, which is an internal standard substance, and to measure by the internal standard correction method.
Then, in the measurement sample solution and the metal standard sample solution to be analyzed using the ICP-MS apparatus, the single metal concentration to be analyzed is measured, and the metal simple substance to be analyzed in the measurement sample solution from the measured value. Calculate the content (ng) of
The ICP-MS apparatus to be used is not particularly limited. For example, Agilent 7500cs manufactured by Agilent Technologies Co., Ltd., iCAP Q ICP-MS manufactured by Thermo Fisher Scientific Co., Ltd., and the like can be mentioned.
In the case where the Cu concentration was measured by the measurement sample solution and the Cu standard sample solution using an ICP-MS apparatus, the Cu concentration in the measurement sample could be quantified up to 20 ppb (20 ng / g).

3)金属単体濃度の算出方法
ICP−MSで測定した測定試料溶液中における金属単体含有量(ng)を基に、式1を用いて当該測定試料溶液中の金属単体濃度を算出する。
=(A/W)・・・・・式1
但し、A:測定試料溶液中における金属単体濃度(ppb)
:測定試料溶液中における金属単体含有量(ng)
W:測定試料溶液の採取量(g)
3) Calculation Method of Single Metal Concentration Based on the single metal content (ng) in the measurement sample solution measured by ICP-MS, the single metal concentration in the measurement sample solution is calculated using Formula 1.
A 1 = (A 2 / W) ··· Formula 1
However, A 1 : Concentration of elemental metal in the sample solution for measurement (ppb)
A 2 : Content of single metal in the measurement sample solution (ng)
W: amount of sample solution to be measured (g)

(9)まとめ
上述したように、本発明に係る金属酸化物試料中における金属単体の定量方法を用いれば、当該金属酸化物試料中に含有される50ppm以下、さらには数10ppbレベル迄の分析対象である金属単体を選択的、高感度で検出出来、且つ、精度良く定量可能であった。この結果、本発明に係る金属酸化物中に含有されている微量の金属単体の定量方法は、基板材料、誘電体材料、磁性体材料および電池材料等の原料として、様々な技術分野において汎用的に利用されている金属酸化物中における、金属単体濃度の把握、管理に好適に用いることが出来ることが判明した。
(9) Summary As described above, if the method of quantifying a single metal in a metal oxide sample according to the present invention is used, the analysis target up to 50 ppm or less, and further several tens ppb level contained in the metal oxide sample It was possible to selectively detect the metal simple substance with high sensitivity, and to quantify accurately. As a result, the method for quantifying a trace metal single substance contained in the metal oxide according to the present invention is versatile in various technical fields as a raw material for substrate materials, dielectric materials, magnetic materials and battery materials. It has been found that it can be suitably used for grasping and managing the concentration of a single metal in the metal oxide used for

以下、実施例を参照しながら本発明をより具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be more specifically described with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
本実施例は分析対象である金属単体として、Cu単体を選択した場合の例である。
以下図1に示す、実施例1に係る金属酸化物(本実施例においては、Ni酸化物)中に含有されている微量のCu単体の定量方法を示す操作フロー図を参照しながら、金属酸化物中に含有されている微量のCu単体の定量方法について説明する。
Example 1
A present Example is an example at the time of selecting Cu single-piece | unit as a metal single-piece | unit which is analysis object.
Hereinafter, referring to an operation flow chart showing a method of determining a trace amount of Cu alone contained in the metal oxide (in the present embodiment, Ni oxide) according to Example 1 shown in FIG. The method of quantifying a trace amount of Cu contained in the substance is described.

50mLのPP製容器を準備し、当該容器と蓋とを、超純水で10回洗浄した後、直ぐに容器へ蓋をした状態で保管した。
Ni酸化物試料(A〜C)各々(No.1〜3)、各2gを、上述した密閉可能な溶解容器に秤量した後、蓋をして電子天秤で当該試料の質量(g)を秤量した。
上述した溶解容器中の金属酸化物試料へ、0.2Mの臭素メタノール溶液20mLを添加し、直ぐに蓋をする。そして、60分間超音波洗浄機に仕掛けて、当該金属酸化物試料中のCu単体を抽出溶液へ溶解させ、金属酸化物試料から抽出した。
尚、0.2Mの臭素メタノール溶液は、臭素液5mLをメタノール液495mLへ添加して調製したものである。
得られた抽出溶液を、目開き0.45μmのテフロンフィルターを用いて濾過し、濾液を50mLのPP製遠沈管に受けた。他方、テフロンフィルター上に捕集された残渣は廃棄した。
遠沈管に受けた濾液を、ホットプレート上にて80℃で加熱し、溶媒である臭素メタノール溶液を完全に揮発させ、溶質が乾固するまで加熱した後、放冷した。
放冷が完了したら、引き続き遠沈管へ超純水5mLと、濃度14Mの硝酸溶液0.5mLとを加えてホットプレート上にて80℃で加温し、生成した乾固物を完全に溶解した後、放冷した。
得られた乾固物の溶液へ、内部標準物質としてY(イットリウム、濃度1000ng/ml)溶液を0.1mL添加した後、超純水を加えて10mLに定容し、測定試料溶液を得た。
ここで、Ni酸化物試料Aには、試料秤量後に金属Cuを1mg秤量、添加した。そして、当該添加された金属Cuの回収率も測定した。
A 50 mL PP container was prepared, and after the container and the lid were washed 10 times with ultrapure water, the container was immediately stored with the container covered.
Ni oxide samples (A to C) Weigh each 2 g (Nos. 1 to 3) into each of the above-mentioned sealable dissolution containers, cover it, and weigh the mass (g) of the sample with an electronic balance. did.
Add 20 mL of 0.2 M bromine methanol solution to the metal oxide sample in the dissolution vessel described above and immediately cap. Then, it was set on an ultrasonic cleaner for 60 minutes to dissolve Cu simple substance in the metal oxide sample in the extraction solution and extract it from the metal oxide sample.
The 0.2 M bromine methanol solution is prepared by adding 5 mL of bromine solution to 495 mL of methanol solution.
The obtained extract solution was filtered using a 0.45 μm Teflon filter, and the filtrate was put into a 50 mL PP centrifuge tube. On the other hand, the residue collected on the Teflon filter was discarded.
The filtrate received in the centrifuge tube was heated at 80 ° C. on a hot plate to completely volatilize the bromine methanol solution as a solvent, heated until the solute became dry, and then allowed to cool.
After cooling was complete, 5 mL of ultrapure water and 0.5 mL of 14 M nitric acid solution were added to the centrifuge tube and heated on a hot plate at 80 ° C. to completely dissolve the resulting dried solid. Then it was allowed to cool.
After adding 0.1 mL of Y (yttrium, concentration: 1000 ng / ml) solution as an internal standard substance to the solution of the obtained dried product, ultrapure water was added and the volume was adjusted to 10 mL to obtain a measurement sample solution .
Here, 1 mg of metal Cu was weighed and added to the Ni oxide sample A after sample weighing. And the recovery rate of the added metal Cu was also measured.

ICP−MS装置によるCu濃度の測定質量数は65を用いた。一方、Yの測定質量数は89を使用し、内部標準補正法で測定した。
そして、ICP−MS装置を用いて測定試料溶液とCu標準試料溶液とにおいてCu濃度を測定し、当該測定値から測定試料溶液中におけるCu単体の含有量(ng)を算出する。
尚、ICP−MS装置は、アジレントテクノロジー(株)社製のAgilent7500csを使用した。
以上の操作により、各試料中のCu単体量を定量した。当該定量結果を表1に示す。
The measured mass number of the Cu concentration by the ICP-MS apparatus was 65. On the other hand, the measured mass number of Y was 89 and was measured by the internal standard correction method.
And Cu concentration is measured in a measurement sample solution and Cu standard sample solution using an ICP-MS apparatus, and content (ng) of Cu simple substance in a measurement sample solution is computed from the measurement value concerned.
The ICP-MS apparatus used was Agilent 7500 cs manufactured by Agilent Technologies.
By the above operation, the amount of elemental Cu in each sample was quantified. The quantitative results are shown in Table 1.

他方、本実施例に係る金属酸化物試料中におけるCu単体の定量方法の定量下限値を算出する為、4個のブランク(BL.1〜4)を準備し、上述したNi酸化物試料(A〜C)の分析と併行して、ブランク試験を実施した。
当該ブランク試験結果、標準偏差、10σ、定量下限の計算結果を表2に示す。
On the other hand, four blanks (BL. 1 to 4) are prepared to calculate the lower limit of quantification of the method for quantifying Cu alone in the metal oxide sample according to this example, and the Ni oxide sample (A) described above is prepared. In parallel with the analysis of-C), a blank test was performed.
Table 2 shows the results of calculation of the blank test results, standard deviation, 10σ, and lower limit of quantification.

Figure 2019090786
Figure 2019090786
Figure 2019090786
Figure 2019090786

表1の結果より、Ni酸化物試料の各試料における3個併行(No.1〜3)の繰り返し精度は、数10ppbレベルの定量分析においては十分と推測される。また、Cu単体の添加回収率は89%と良好であったため、本法は精度良く定量出来ていることが分かる。   From the results of Table 1, it is assumed that the repeat accuracy of three in parallel (No. 1 to 3) in each sample of the Ni oxide sample is sufficient in quantitative analysis of several tens ppb level. Moreover, since the addition recovery rate of Cu single-piece | unit was as favorable as 89%, it turns out that this method has quantified accurately.

表1と表2の結果から、本実施例のNi酸化物中の微量のCu単体の定量方法は、当該試料中のCu単体の濃度を20ppb程度まで定量可能な高感度で、且つ、精度良く定量方法であることが理解出来る。   From the results of Table 1 and Table 2, the method for quantifying a trace amount of Cu alone in the Ni oxide of the present embodiment is highly sensitive and accurate with which the concentration of Cu alone in the sample can be quantified to about 20 ppb. It can be understood that it is a quantitative method.

以上のことから、本実施例に係るNi酸化物中に含有されるCu単体の定量方法に拠れば、当該試料中に含有された数10ppbレベルのCu単体を高感度で検出でき、かつ、比較的精度良く定量分析が可能となった。したがって、基板材料分野等で使用されるNi酸化物中のCu単体濃度をモニターする方法として有効である。
From the above, according to the method of quantifying Cu alone contained in the Ni oxide according to this example, Cu singles of several 10 ppb level contained in the sample can be detected with high sensitivity and compared. Quantitative analysis became possible with high accuracy. Accordingly, it is effective as a method of monitoring the concentration of elemental Cu in Ni oxide used in the field of substrate materials and the like.

Claims (6)

10ppm以下の金属単体を含有する金属酸化物中における当該金属単体の定量方法であって、
前記金属酸化物中における前記金属単体を臭素−メタノール溶解法によって溶解し、前記金属単体を溶液へ抽出する工程と、
前記金属単体を抽出した溶液と、未溶解物とを分離する工程と、
前記金属単体を抽出した溶液を蒸発乾固する工程と、
前記蒸発乾固により生成した乾固物に酸を加えて溶液化する工程と、
前記乾固物を溶液化した溶液中の金属単体を定量する工程と、を有することを特徴とする金属酸化物中における金属単体の定量方法。
A method of quantifying a metal simple substance in a metal oxide containing a metal simple substance of 10 ppm or less, comprising
Dissolving the metal simple substance in the metal oxide by a bromine-methanol dissolution method, and extracting the metal simple substance into a solution;
Separating the unmetallized solution and the solution from which the metal single substance is extracted;
Evaporating the solution obtained by extracting the metal alone to dryness;
Acidizing the solution obtained by the evaporation to dryness;
Determining the metal simple substance in a solution obtained by dissolving the dried matter in solution, the method of quantifying the metal simple substance in the metal oxide.
前記臭素−メタノール溶解法に用いる臭素メタノール溶液中の臭素濃度が0.2M以上0.4M以下であることを特徴とする請求項1に記載の金属酸化物中における金属単体の定量方法。   The method according to claim 1, wherein the bromine concentration in the bromine methanol solution used in the bromine-methanol dissolution method is 0.2 M or more and 0.4 M or less. さらに、前記乾固物を溶液化した溶液中の金属単体を定量する際、当該溶液へ内部標準物質を加えて純水で定容する工程と、を有することを特徴とする請求項1または2に記載の金属酸化物中における金属単体の定量方法。   The method further comprises the steps of adding an internal standard substance to the solution and quantifying with pure water when quantifying the metal simple substance in the solution of the dried product in solution. The method of quantifying a single metal in the metal oxide as described in 4. 前記溶液中の金属単体を定量する際、誘導結合プラズマ質量分析法(ICP−MS法)を用いて前記金属単体量を定量することを特徴とする請求項1から3のいずれかに記載の金属酸化物中における金属単体の定量方法。   The metal according to any one of claims 1 to 3, wherein the amount of the metal simple substance is quantified using inductively coupled plasma mass spectrometry (ICP-MS method) when the metal simple substance in the solution is quantified. Method for quantifying simple metals in oxides. 前記金属単体がCu単体であることを特徴とする請求項1から4のいずれかに記載の金属酸化物中における金属単体の定量方法。   The method for quantifying a metal simple substance in a metal oxide according to any one of claims 1 to 4, wherein the metal simple substance is a Cu simple substance. 前記金属酸化物が、Niを10質量%以上含有する金属酸化物であることを特徴とする請求項1から5のいずれかに記載の金属酸化物中における金属単体の定量方法。   The method according to any one of claims 1 to 5, wherein the metal oxide is a metal oxide containing 10% by mass or more of Ni.
JP2018170474A 2017-11-16 2018-09-12 Quantitative method of elemental metal in metal oxide Active JP6992714B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017221090 2017-11-16
JP2017221090 2017-11-16

Publications (2)

Publication Number Publication Date
JP2019090786A true JP2019090786A (en) 2019-06-13
JP6992714B2 JP6992714B2 (en) 2022-01-13

Family

ID=66836248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018170474A Active JP6992714B2 (en) 2017-11-16 2018-09-12 Quantitative method of elemental metal in metal oxide

Country Status (1)

Country Link
JP (1) JP6992714B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249845A (en) * 1993-02-25 1994-09-09 Kawasaki Steel Corp Analysis of oxide group existing substance in each form of iron and steel powder and compaction member
JPH0721973A (en) * 1993-07-02 1995-01-24 Sumitomo Metal Ind Ltd Quantitative method of metal element in acid solution
JPH1026618A (en) * 1995-05-19 1998-01-27 Nippon Steel Corp Quick evaluating method of material present in metal
US5985674A (en) * 1995-03-14 1999-11-16 Nippon Steel Corporation Evaluation method for cleanliness of metal
JP2001221726A (en) * 2000-02-03 2001-08-17 Sumitomo Metal Mining Co Ltd Method for determining nickel salt, metal nickel and nickel oxide in carbonate
JP2002214199A (en) * 2001-01-17 2002-07-31 Sumitomo Metal Mining Co Ltd Determination method of soil contamination area
JP2009128315A (en) * 2007-11-27 2009-06-11 Nikko Kinzoku Kk Method for analyzing trace precious metal with radio-frequency plasma mass spectrometer
JP2015232167A (en) * 2014-06-10 2015-12-24 Jx日鉱日石金属株式会社 Separation method and analytic method for trace noble metal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249845A (en) * 1993-02-25 1994-09-09 Kawasaki Steel Corp Analysis of oxide group existing substance in each form of iron and steel powder and compaction member
JPH0721973A (en) * 1993-07-02 1995-01-24 Sumitomo Metal Ind Ltd Quantitative method of metal element in acid solution
US5985674A (en) * 1995-03-14 1999-11-16 Nippon Steel Corporation Evaluation method for cleanliness of metal
JPH1026618A (en) * 1995-05-19 1998-01-27 Nippon Steel Corp Quick evaluating method of material present in metal
JP2001221726A (en) * 2000-02-03 2001-08-17 Sumitomo Metal Mining Co Ltd Method for determining nickel salt, metal nickel and nickel oxide in carbonate
JP2002214199A (en) * 2001-01-17 2002-07-31 Sumitomo Metal Mining Co Ltd Determination method of soil contamination area
JP2009128315A (en) * 2007-11-27 2009-06-11 Nikko Kinzoku Kk Method for analyzing trace precious metal with radio-frequency plasma mass spectrometer
JP2015232167A (en) * 2014-06-10 2015-12-24 Jx日鉱日石金属株式会社 Separation method and analytic method for trace noble metal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
天満照郎: "酸化ニッケル中の介在金属ニッケルの定量", 分析化学, vol. 23, JPN6021037186, 1974, pages 868 - 871, ISSN: 0004600829 *

Also Published As

Publication number Publication date
JP6992714B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5098843B2 (en) Method for determining the solid solution content of the element of interest in a metal sample
JP2013509566A (en) Analysis and detection method of calcium element in ore
CN103901019A (en) Method for detecting content of heavy metal elements in metal or alloy material
Burak et al. Measurement of Solubility of Metallic Lithium Dissolved in Molten LiCl–Li 2 O
CN103604799A (en) Method for determining elements such as chromium, iron, manganese, nickel and copper in glycerol aqueous solution
JP2019090786A (en) Method for quantifying single metal in metal oxide
CN104215634A (en) Method for determining content of tin in tungsten concentrate
CN102830074B (en) The quantitative analysis method of scandium in titanium slag chlorination discarded object
JP2020148696A (en) Collection method of inclusions and/or deposits in metal sample, analysis method of inclusions and/or deposits in metal samples, and electrolytic solution
JP2019191012A (en) Element analysis method of inorganic sample
CN113188862B (en) Method for measuring content of dissolved elements in molten steel
CN109781673A (en) A kind of quality identification method of lead-acid accumulator raw material lead powder
JP2018159560A (en) Quantification method for trace amount of zinc in solution having high concentration of nickel
Shunxin et al. Separation and preconcentration of Se (IV)/Se (VI) speciation on algae and determination by graphite furnace atomic absorption spectrometry in sediment and water
JP6222526B2 (en) Method for quantifying AlN contained in Al or Al alloy
JP2012027006A (en) Method for analyzing concentration of heavy metal ion or rare-earth metal ion
JP6217932B2 (en) Method for quantifying the amount of SiO2 contained in a Cu metal material
JP7350632B2 (en) Analysis methods and kits
JP2011252711A (en) Impurity analyzing method of sample containing metal main component
CN103196780A (en) Method for determining aluminium oxide content of aluminum-manganese ball
JP7303662B2 (en) Method for analyzing metal impurities on the surface of polycrystalline silicon chunks
CN109211892B (en) Method for detecting content of residual EDTA in lithium fluoride
JP2017142123A (en) METHOD FOR QUANTIFYING Sn AND METHOD FOR MANUFACTURING SAMPLE
JP2017125688A (en) Method for analyzing rhodium
JP2008157752A (en) Quantification method of iron metal inside reduced iron pellet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6992714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150